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Abstract

Deep learning is increasingly being applied in
safety-critical domains. For these scenarios it is
important to know the level of uncertainty in a
model’s prediction to ensure appropriate decisions
are made by the system. Deep ensembles are the
de-facto standard approach to obtaining various
measures of uncertainty. However, ensembles often
significantly increase the resources required in the
training and/or deployment phases. Approaches
have been developed that typically address the
costs in one of these phases. In this work we pro-
pose a novel training approach, self-distribution
distillation (S2D), which is able to efficiently train
a single model that can estimate uncertainties.
Furthermore it is possible to build ensembles of
these models and apply hierarchical ensemble dis-
tillation approaches. Experiments on CIFAR-100
showed that S2D models outperformed standard
models and Monte-Carlo dropout. Additional out-
of-distribution detection experiments on LSUN,
Tiny ImageNet, SVHN showed that even a stan-
dard deep ensemble can be outperformed using
S2D based ensembles and novel distilled models.

1 INTRODUCTION

Neural networks (NNs) have enjoyed much success in re-
cent years achieving state-of-the-art performance on a large
number of tasks within domains such as natural language
processing [Vaswani et al., 2017], speech recognition [Hin-
ton et al., 2012] and computer vision [Krizhevsky et al.,
2012]. Unfortunately, despite the prediction performance
of NNs they are known to yield poor estimates of the un-
certainties in their predictions—in knowing what they do
not know [Lakshminarayanan et al., 2017, Guo et al., 2017].
With the increasing application of neural network based

systems in performing safety-critical tasks such as biomet-
ric identification [Schroff et al., 2015], medical diagnosis
[De Fauw et al., 2018] or fully autonomous driving [Kendall
et al., 2019], it becomes increasingly important to be able to
robustly estimate the uncertainty in a model’s prediction. By
having access to accurate measures of predictive uncertainty,
a system can act in a more safe and informed manner.

Ensemble methods, and related schemes, have become the
standard approach for uncertainty estimation. Lakshmi-
narayanan et al. [2017] proposed generating a deep (random-
seed) ensemble by training each member model with a dif-
ferent initialisation and stochastic gradient descent (SGD).
Not only does this ensemble perform significantly better
than a standard trained NN, it also displays better predictive
uncertainty estimates. Although simple to implement, train-
ing and deploying an ensemble results in a linear increase
in the computational cost. Alternatively Gal and Ghahra-
mani [2016] introduced the Monte Carlo (dropout) ensemble
(MC ensemble) which at test time estimates predictive uncer-
tainty by sampling members of an ensemble using dropout.
Though this approach generally does not perform as well as
a deep ensemble (given the same computational power and
neglecting memory) [Lakshminarayanan et al., 2017], it is
significantly cheaper to train as it integrates the ensemble
generation method into training.

Despite ensemble generation methods being computation-
ally more expensive, they have an important ability to de-
compose predictive (total) uncertainty into data and knowl-
edge uncertainty [Depeweg et al., 2018, Gal and Ghahra-
mani, 2016]. Knowledge or epistemic uncertainty refers to
the lack of knowledge or ignorance about the most opti-
mal choice of model (parameters) [Hüllermeier and Waege-
man, 2021]. As additional data is collected, the uncertainty
in model parameters should decrease. This form of uncer-
tainty becomes important whenever the model is tasked
with making predictions for out-of-distribution data-points.
For in-distribution inputs, it is expected that the trained
model can return reliable predictions. On the other hand,
data or aleatoric uncertainty, represents inherent noise in the
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data being modelled, for example from overlapping classes.
Even if more data is collected, this type of noise is inherent
to the process and cannot be avoided or reduced [Malinin
and Gales, 2018, Gal and Ghahramani, 2016, Ovadia et al.,
2019]. The ability to decompose and distinguish between
these sources of uncertainty is important as it allows the
cause of uncertainty in the prediction to be known. This in
turn advises the user how the prediction should be used in
downstream tasks [Houlsby et al., 2011, Kirsch et al., 2019].

Summary of contributions: In this work we make two impor-
tant contributions to NN classifier training and uncertainty
prediction. First we introduce self-distribution distillation
(S2D), a new general training approach that in an integrated,
simultaneous fashion, trains a teacher ensemble and distribu-
tion distils the knowledge to a student. This integrated train-
ing allows the user to bypass training a separate expensive
teacher ensemble while distribution distillation [Malinin
et al., 2020] allows the student to capture the diversity and
model a distribution over ensemble member predictions. Ad-
ditionally, distribution distillation would give the student the
ability to estimate both data and knowledge uncertainty in a
single forward pass unlike standard NNs which inherently
can not decompose predictive uncertainty, and unlike ensem-
ble methods which can not perform the decomposition in a
single pass. Second, we train an ensemble of these newly
introduced models and investigate different distribution dis-
tillation techniques giving rise to hierarchical distributions
over predictions for uncertainty. This approach is useful
when there are no, or few, computational constraints in the
training phase but still require robust uncertainties and effi-
ciency in the deployment stage.

2 BACKGROUND

This section describes two techniques for uncertainty esti-
mation. First, ensemble methods for predictive uncertainty
estimation will be viewed from a Bayesian viewpoint. Sec-
ond, a specific form of distillation for efficient uncertainty
estimation will be discussed.

2.1 ENSEMBLE METHODS

From a Bayesian perspective the parameters, θ, of a neural
net are treated as random variables with some prior distri-
bution p(θ). Together with the training data D, this allows
the posterior distribution p(θ|D) to be derived. To obtain
the predictive distribution over all classes y ∈ Y (for some
input x∗), marginalisation over θ is required:

P(y|x∗,D) = Ep(θ|D)

[
P(y|x∗,θ)

]
Since finding the true posterior is intractable, a variational
approximation p(θ|D) ≈ q(θ) is made [Jordan et al., 1999,
Blundell et al., 2015, Graves, 2011, Maddox et al., 2019].

Furthermore, marginalising over all weight values remains
intractable leading to a sampling ensemble, approximation
method [Gal and Ghahramani, 2016, Lakshminarayanan
et al., 2017]:

P(y|x∗,D) ≈ 1

M

M∑
m=1

P(y|x∗,θ(m)), θ(m) ∼ q(θ)

Here, an ensemble generation method is required to obtain
the predictive distribution and uncertainty. Two previously
mentioned approaches to generate an ensemble are deep
(naive) random-seed and MC-dropout ensemble1. Deep en-
sembles are based on training M models on the same data
but with different initialisations leading to functionally dif-
ferent solutions. On the other hand, a MC-dropout ensemble
explicitly defines a variational approximation through the
hyper-parameters of dropout [Srivastava et al., 2014] (used
during training), allowing for straightforward sampling of
model parameters. Another related technique, Model Soups
[Wortsman et al., 2021] is based on fine-tuning an already
trained model using different hyper-parameters [Wenzel
et al., 2020] to achieve some diversity, which saves com-
pute due to fine-tuning often being cheaper than training
a full model. Furthermore, SWA-Gaussian [Maddox et al.,
2019], finds a Gaussian approximation based on the first
two moments of stochastic gradient descent iterates. Unlike
the deep ensemble approach, and similar to MC-dropout,
this method allows for simple and efficient sampling but
suffers from higher memory consumption. Even a diagonal
Gaussian approximation requires twice the memory of a
standard network.

There also exists alternative memory and/or compute effi-
cient ensemble approaches such as BatchEnsembles [Wen
et al., 2020] and MIMO [Havasi et al., 2021]. While the
former approach is parameter efficient it requires multiple
forward passes at test time similar to MC ensembles. The
latter avoids this issue by generating independent subnet-
works within a single deep model through the simultaneous
"mixing" of multiple inputs and generation of multiple out-
puts. Although the training cost of such a system could be
comparable to a deep ensemble [Havasi et al., 2021], the
inference cost is significantly lower. However, MIMO suf-
fers from several drawbacks, one being the requirement of
several input and output layers, which in large scale classifi-
cation could consist of many millions of parameters. Finally,
while many of the mentioned ensemble methods can straight-
forwardly be generalised to sequence tasks such as neural
machine translation, MIMO presents a further challenge.
It becomes a non-trivial task to "mix" input sequences of
different lengths and address how this should be handled by
sequence models such as transformers.

1In-depth comparisons of ensemble methods were conducted
in Ovadia et al. [2019], Ashukha et al. [2020]



2.1.1 Predictive Uncertainty Estimation

Given an ensemble, the goal is to estimate and decompose
the predictive uncertainty. First, the entropy of the predictive
distribution P(y|x∗,D) can be seen as a measure of total
uncertainty. Second, this can be decomposed [Depeweg
et al., 2018, Kendall and Gal, 2017] as:

Total Uncertainty︷ ︸︸ ︷
H
[
P(y|x∗,D)

]
=

Knowledge Uncertainty︷ ︸︸ ︷
I
[
y,θ|x∗,D

]
+ Ep(θ|D)

[
H[P(y|x∗,θ)]

]︸ ︷︷ ︸
Data Uncertainty

(1)

where I is mutual information and H represents entropy.
This specific decomposition allows total uncertainty to be
decomposed into separate estimates of knowledge and data
uncertainty. Furthermore, the conditional mutual informa-
tion can be rephrased as:

I
[
y,θ|x∗,D

]
= Ep(θ|D)

[
KL
(
P(y|x∗,θ)

∥∥ P(y|x∗,D))]
For an in-domain sample x∗ the mutual information should
be low as appropriately trained models P(y|x∗,θ) should
be close to the predictive distribution. High predictive uncer-
tainty will only occur if the input exists in a region of high
data uncertainty, for example when an input has significant
class overlap. When the input x∗ is out-of-distribution of
the training data, one should expect inconsistent, different,
predictions P(y|x∗,θ) leading to a much higher knowledge
uncertainty estimate.

2.2 ENSEMBLE DISTILLATION METHODS

Ensemble methods have generally shown superior perfor-
mance on a range of tasks but suffer from being computa-
tionally expensive. To tackle this issue, a technique called
knowledge distillation (KD) and its variants were developed
for transferring the knowledge of an ensemble (teacher) into
a single (student) model while maintaining good perfor-
mance [Hinton et al., 2014, Kim and Rush, 2016, Guo et al.,
2020, Vadera et al., 2020]. This is generally achieved by
minimising the KL-divergence between the student predic-
tion and the predictive distribution of the teacher ensemble.
In essence, KD trains a new student model to predict the
average prediction of its teacher model. However from the
perspective of uncertainty estimation the student model no
longer has any information about the diversity of various
ensemble member predictions; it was only trained to model
the average prediction. Hence, it is no longer possible to
decompose the total uncertainty into different sources, only
the total uncertainty can be obtained from the student. To
tackle this issue ensemble distribution distillation (En2D)
was developed [Malinin et al., 2020].

Let π signify a categorical distribution, that is πc = P(y =
ωc|π). The goal is to directly model the space of categor-
ical predictions {π(m) = f(x∗;θ(m))}Mm=1 made by the

ensemble. In work developed by Malinin et al. [2020] this is
done by letting a student model (with weights φ) predict the
parameters of a Dirichlet, which is a continuous distribution
over categorical distributions:

p(π|x∗,φ) = Dir(π;α), α = f(x∗;φ) (2)

The key idea in this concept is that we are not directly
interested in the posterior p(θ|D) but how predictions π
for particular inputs behave when induced by this posterior.
Therefore, it is possible to replace p(θ|D) with a trained
distribution p(π|x∗,φ). It is now necessary to train the
student given the information from the teacher which is
straightforwardly done using negative log-likelihood:

L(φ) = − 1

M

M∑
m=1

ln Dir(π(m);α) (3)

A decomposable estimate of total uncertainty is then pos-
sible by using conditional mutual information between the
class y and prediction π Malinin and Gales [2018]:

Total Uncertainty︷ ︸︸ ︷
H
[
P(y|x∗,φ)

]
=

Knowledge Uncertainty︷ ︸︸ ︷
I
[
y,π|x∗,φ

]
+ Ep(π|x∗,φ)

[
H[P(y|π)]

]︸ ︷︷ ︸
Data Uncertainty

(4)

This decomposition has a similar interpretation to eq. (1).
Using a Dirichlet model, these uncertainties can be found
using a single forward pass, achieving a much higher level
of efficiency compared to an ensemble. Assuming this dis-
tillation technique is successful, the distribution distilled
student should be able to closely emulate the ensemble and
be able to estimate similar high quality uncertainties on both
ID and OOD data.

However, ensemble distribution distillation is only applica-
ble and useful when the ensemble members are not over-
confident and display diversity in their predictions—there is
no need in capturing diversity when there is none. For ex-
ample, many state of the art convolutional neural networks
are over-parameterised, display severe overconfidence and
can essentially achieve perfect training accuracy which re-
stricts the effectiveness of distribution distillation in terms
of capturing the diversity in the teacher ensemble [Guo et al.,
2017, Seo et al., 2019, Ryabinin et al., 2021]. Furthermore,
this method can only be used when an ensemble is available,
leading to a high training cost.

3 SELF-DISTRIBUTION DISTILLATION

In this section we propose self-distribution distillation (S2D)
for efficient training and uncertainty estimation, bypassing
the need for a separate teacher ensemble. This combines:

• parameter sharing: allowing the teacher and student to
share a common feature extraction base would acceler-



Figure 1: Dirichlet S2D model during training. Only the black part of the network is retained during inference, matching the
behaviour of a standard model.

ate training significantly, each will branch off and have
their own head;

• stochastic regularisation: the teacher can generate mul-
tiple predictions efficiently by forward propagating an
input through its head (with a stochastic regulariser)
several times, emulating the behaviour of an ensemble;

• distribution distillation: while the teacher branch is
trained on cross-entropy, the student is taught to predict
a distribution over teacher predictions capturing the
diversity compactly.

This process is summarised in Fig. 2. The proposed ap-

Figure 2: General structure of a self-distribution distilled
model. M stochastic teacher branch forward propagations
are trained on cross-entropy and simultaneously distribution
distilled to the student.

proach can take many specific forms with regards to the
type of feature extraction module, stochastic regulariser,
teacher branch and student modelling choice. For example,
the teacher could entail a much larger branch capturing com-
plex patterns in the data, while the student could consist of
a smaller branch used for compressing teacher knowledge
into a more efficient form, at test time. On the other end,
training efficiency can be achieved by forcing the teacher
and student share the same branch parameters.

In this work, we choose a highly efficient model config-
uration, shown in Fig. 1. The main functional difference
between the teacher and the student branches is the use of
logit values, z: for the teacher branch a probability is pre-
dicted; whereas the student uses the logits for a Dirichlet
distribution. Furthermore the teacher uses stochastic regu-
larisation techniques (SRTs) in generating multiple teacher
predictions, analogous to an ensemble. In this work multi-
plicative Gaussian noise (Gaussian dropout) with unit mean
and uniformly random standard deviation is used. This form
was chosen due to simplicity of sampling and possible en-
semble diversity by simply controlling the level of variance

in the noise. There is a wide range of other choices regard-
ing what SRTs to use, from Bernoulli dropout, additive
Gaussian noise to deciding at which teacher branch layers
this should be introduced. Furthermore, since the Dirichlet
distribution has bounded ability to represent diverse ensem-
ble predictions [Malinin et al., 2020], simply generating
multiple teacher prediction by propagating through the last
layer will not be the limiting factor in this model. To further
improve the memory efficiency of the model, a single final
linear layer shared by both student and teacher branches
is used. This parameter sharing makes the S2D model ef-
ficient even when the number of classes is large, and does
not use any more parameters compared to a standard model.
Note any NN classifier can be cast into a self-distribution
distillation format by inserting stochasticity prior to the final
linear layer and can easily be combined with many other
approaches such as MIMO [Havasi et al., 2021] and SWAG
[Maddox et al., 2019].

This choice of integrating ensemble teacher training and dis-
tribution distillation into a single entity utilising parameter
tying also serves as a regulariser (optimising two objectives
using the same set of weights) and allows for inexpensive
training. The regularisation effect also arises from train-
ing the student on forward KL-divergence (a mode cover-
ing loss) both the student, and therefore teacher, will have
smoother predictions. The only added training cost is from
multiple forward passes through the final linear layer, a
process which can easily be parallelised. Additionally, the
restricted form of Fig. 1 brings some numerical stability.
As noted by Malinin et al. [2020], optimising a student to
predict a Dirichlet distribution can be unstable when there is
a lack of common support between prediction and extremely
sharp teacher outputs. However, note that teacher predic-
tions are closely related to the expected student prediction:

π(m) = Softmax(z(m)), z = E
[
z(m)

]
,

EDir(π;α)

[
π
]
=
α

α0
= Softmax(z)

leading to increased common support. Additionally, multi-
plicative stochasticity in the teacher forces the outputs to
have some diversity, mildly limiting overconfidence.



3.1 TRAINING CRITERIA AND TEMPERATURE

Now we train the teacher branch using cross-entropy, and
simultaneously, use the teacher predictions to train the stu-
dent branch. Let the weights of this model be denoted by φ
and say we have some input-target pair (x, y). The teacher
loss (for a single sample) is then:

Lth(φ) = −
1

M

M∑
m=1

∑
c

δ(y, ωc) lnπ
(m)
c

where δ is the indicator function. The student branch could
be trained using log-likelihood as in eq. (3) but it has been
found that this approach could be unstable [Fathullah et al.,
2021, Ryabinin et al., 2021]. Instead we use the teacher cat-
egorical predictions in estimating a proxy teacher Dirichlet
α̃ using maximum log-likelihood. The resulting student loss
is KL-divergence based:

Lst(φ) = KL
(
Dir(π; α̃)

∥∥∥ Dir(π;α)),
α̃ = argmax

α̂

∑
m

ln Dir(π(m); α̂)

The proxy Dirichlet is estimated using a numerical approach
developed by Minka [2000]. The overall training loss be-
comes L(φ) = Lth(φ) + µLst(φ) with a small constant
µ.

Deep learning models often overfit on training data leading
to less informative outputs. To alleviate these issues we inte-
grate temperature scaling in the student branch loss. While
training the teacher branch predictions on cross-entropy we
temperature scale the same predictions and use the resulting
ones in estimating a proxy teacher Dirichlet. The student
branch will repeatedly be taught to predict a smoother/wider
Dirichlet distribution, while the teacher branch’s objective
is to maximise the probability of the correct class resulting
in a middle ground.

4 SELF-DISTRIBUTION DISTILLED
ENSEMBLE APPROACHES

If computational resources during the training phase are
not constrained it would open up the possibility for self-
distribution distilled ensembles and various hierarchical dis-
tillation approaches of such models. First it can be noted
that the ensemble generation methods mentioned in previ-
ous sections can easily be used with the S2D models in
the previous section. The predictive distribution of such an
ensemble would take the following form:

P(y = ωc|x∗,D) = Ep(φ|D)

[
Ep(π|x∗,φ) [P(y = ωc|π)]

]
= Ep(φ|D)

[
αc

α0

]
=

1

M

M∑
m=1

α
(m)
c

α
(m)
0

Furthermore, an ensemble of Dirichlet models can be used
to estimate similar uncertainty measures as previously de-
scribed:

H
[
P(y|x∗,D)

]
= I

[
y,π|x∗,D

]
+ Ep(φ|D)

[
Ep(π|x∗,φ)

[
H[P(y|π)]

]]
This is a generalisation of eq. (4) since specific weights φ
have been replaced with conditioning on the datasetD. Com-
puting these uncertainties requires only a few modifications
compared to the standard ensemble in eq. (1).

4.1 HIERARCHICAL DISTRIBUTION
DISTILLATION

Next, the most natural step is to transfer the knowledge
of an S2D (Dirichlet) ensemble into a single model. A
choice needs to be made regarding the hierarchy of stu-
dent modelling: should the student predict a categorical2,
Dirichlet, or a distribution over Dirichlets—hereby given
the family name hierarchical distribution distillation (H2D).
Initially we start by training a student model to predict
a single Dirichlet identical to eq. (2). However, since the
S2D ensemble provides, for an input x∗, a set of Dirichlets
{α(m) = f(x∗;φ(m))}Mm=1 a modified distillation crite-
rion is needed:

L(φ) = 1

M

M∑
m=1

KL
(
Dir(π;α(m))

∥∥∥ Dir(π;α))
where α = f(x∗;φ). This KL-divergence based loss also
allows the reverse KL criterion to be used [Malinin and
Gales, 2019] if desired. One criticism of this form of model,
Dirichlet H2D (H2D-Dir), is that the diversity across en-
semble members is lost, similar to the drawback in standard
distillation. Therefore, we seek a distribution over Dirichlets
to capture this higher level of diversity.

To model the space of Dirichlets we need to define a distri-
bution over the parameters. Here we are faced with a choice:
(1) model the parameters α ∈ RK

+ directly (restricted to the
non-negative real space) or (2) apply a transformation to
simplify the modelling. Here a logarithmic transformation
z = lnα ∈ RK is applied and a simple distribution over the
Dirichlet parameters, a diagonal Gaussian, to be used (see
Appendix C for a justification for this modelling choice).
With these building blocks, the goal of H2D is to train a
student model with weights λ and predict the parameters of
a diagonal Gaussian (µ,σ) (H2D-Gauss):

p(lnα|x∗,λ) = N (lnα;µ,σ2) =

K∏
c=1

N (lnαc;µc, σ
2
c )

2Since transferring knowledge from a Dirichlet ensemble into
a student predicting a categorical critically loses information about
diversity, this method will not be investigated.



Table 1: Test performance (± 2 std) and compute cost. Dropout regularisation was only used for C100. Inference times (per
input) were estimated using an NVIDIA V100 GPU. *SWAG inference speeds do not take into account the time to update
batch norm statistics.

Dataset C100 C100+ Computational Cost
Model Acc NLL %ECE Acc NLL %ECE Params Inference

Individual 74.6 ±0.5 1.11 ±0.07 11.95 ±1.65 77.5 ±0.2 1.01 ±0.14 10.84 ±2.32 0.80M 2.3msS2D Individual 75.7 ±0.5 0.87 ±0.02 2.54 ±1.11 78.1 ±0.4 0.81 ±0.03 4.35 ±1.23

MIMO 75.2 ±0.6 1.05 ±0.13 10.51 ±2.75 77.6 ±0.7 0.89 ±0.18 8.23 ±3.90 0.83M 2.3msS2D MIMO 75.4 ±0.1 0.90 ±0.08 5.77 ±1.63 78.1 ±0.6 0.80 ±0.07 4.07 ±0.43

SWAG-Diag 74.8 ±1.0 1.08 ±0.05 10.73 ±1.31 77.7 ±0.9 0.98 ±0.03 9.60 ±3.25 1.60M 11.6ms*S2D SWAG-Diag 75.9 ±0.6 0.85 ±0.03 3.87 ±0.88 78.2 ±1.3 0.79 ±0.07 3.65 ±0.62

MC ensemble 75.6 ±0.9 0.94 ±0.04 6.67 ±1.18 - - - 0.80M 11.5msS2D MC ensemble 76.6 ±0.4 0.83 ±0.02 2.57 ±0.58 - - -

Deep ensemble 79.3 0.76 1.44 82.1 0.66 1.61 4.00M 11.5msS2D Deep ensemble 79.7 0.73 5.48 82.1 0.64 3.79

EnD 77.9 0.91 10.36 81.2 0.81 9.51 0.80M 2.3msH2D-Dir 77.7 0.84 3.24 80.9 0.71 3.42
H2D-Gauss 77.5 0.77 1.39 80.5 0.68 2.41 0.83M 2.4ms

where µ,σ = f(x∗;λ). By sampling from this Gaussian,
one can obtain multiple Dirichlet distributions similar to,
but cheaper than, an S2D ensemble. Clearly, the flexibility
of such a model can easily be extended by allowing the
model to predict a fully specified covariance, however due
to computational tractability only diagonal covariance mod-
els are used in this work. Note that a secondary head is
required for such a model. In a similar fashion to previous
approaches, this model can be trained using negative log-
likelihood or by estimating a proxy teacher Gaussian and
use KL-divergence. In this work we have adopted the proxy
approach, see Appendix A.1 for details.

5 EXPERIMENTAL EVALUATION

This section investigates the self-distribution distillation ap-
proach on classifying image data. First, this approach is
compared to standard trained models and established ensem-
ble based methods (deep ensembles and MC-dropout) as
well as the diagonal version of SWAG (SWAG-Diag) and
MIMO. Second, self-distribution distillation is combined
with all above mentioned approaches. Finally, knowledge
distillation is compared to hierarchical distribution distilla-
tion of Dirichlet ensembles.

This comparison is based on two sets of experiments. The
first set compares the performance of all baselines and pro-
posed models in terms of image classification performance
and calibration on CIFAR-100 [Krizhevsky and Hinton,
2009] without (C100) and with (C100+) a data augmenta-
tion scheme. The second set of experiments compares the
out-of-distribution/domain (OOD) detection performance

using various unseen datasets such as LSUN [Yu et al.,
2015], Tiny ImageNet [CS231N, 2017] and SVHN [Netzer
et al., 2011].

All experiments are based on training DenseNet-BC (k =
12) models with a depth of 100 [Huang et al., 2017]. For
ensemble generation methods M = 5 models were sam-
pled (in the case of MC-dropout ensembles and SWAG) or
trained (in the case of deep ensembles). For MIMO we use
two output heads (M = 2) due to limited capacity in the
chosen model [Havasi et al., 2021]. Note that for this choice
of model it was not possible to use ensemble distribution
distillation since DenseNet-BC models display high confi-
dence on the training data of CIFAR-100 causing instability
in distillation. All single model training runs were repeated
5 times; mean ± 2 standard deviations are reported. The
experimental setup and additional experiments are described
in Appendix A-D.

5.1 CIFAR-100 CLASSIFICATION
PERFORMANCE EXPERIMENTS

The first batch of experiments show the classification perfor-
mance using a range of metrics such as accuracy, negative
log-likelihood (NLL) and expected calibration error (ECE),
see Table 1. Perhaps the most noteworthy result is the im-
provement in all metrics and datasets of a self-distribution
distilled model compared to its standard counterpart. The
improvement is more than 2 standard deviations. A similar
picture can be observed for the S2D versions of SWAG-Diag
and MC-dropout which, without any notable gain in cost
of training and inference, improve upon their equivalent



Table 2: OOD detection results (LSUN resize) trained on C100. Best in column and best overall.

Model OOD %AUROC OOD %AUPR
Conf. TU DU KU Conf. TU DU KU

Individual 77.3 ±0.9 79.8 ±0.9 74.2 ±1.1 76.9 ±1.2

S2D Individual 78.4 ±2.3 80.7 ±3.2 80.8 ±3.1 80.0 ±4.2 75.4 ±2.5 78.3 ±3.5 79.5 ±3.5 75.5 ±3.8

MIMO 78.5 ±1.2 80.5 ±1.4 80.6 ±1.4 75.0 ±2.8 75.0 ±1.4 78.0 ±1.6 78.1 ±1.6 67.0 ±3.5

S2D MIMO 80.6 ±4.1 81.4 ±4.4 81.4 ±4.4 81.3 ±4.2 76.6 ±5.2 78.8 ±5.4 80.3 ±5.4 77.7 ±5.3

SWAG-Diag 78.5 ±1.0 80.5 ±1.2 80.6 ±1.3 75.2 ±0.8 75.0 ±1.4 78.1 ±1.7 78.3 ±1.8 67.1 ±1.0

S2D SWAG-Diag 78.7 ±2.3 80.9 ±2.8 81.1 ±2.7 80.9 ±3.8 75.4 ±2.7 78.4 ±3.6 79.7 ±3.2 76.2 ±4.1

MC ensemble 76.6 ±0.8 78.3 ±0.8 78.9 ±0.8 72.4 ±1.2 72.2 ±1.0 74.6 ±1.6 75.6 ±1.7 64.2 ±2.0

S2D MC ensemble 77.7 ±0.9 79.8 ±1.5 80.5 ±1.1 78.1 ±2.9 73.7 ±1.0 76.1 ±1.7 78.6 ±1.3 72.0 ±3.2

Deep ensemble 81.1 82.9 83.4 79.2 77.7 80.4 81.2 73.6
S2D Deep Ensemble 82.4 84.8 85.0 83.5 79.5 82.5 83.9 78.7

EnD 79.4 81.0 75.8 78.2
H2D-Dir 80.3 83.2 83.4 86.4 77.9 81.9 81.9 83.4
H2D-Gauss 80.8 83.9 85.7 80.7 78.2 82.0 85.8 76.0

standard counterparts in all metrics. Regarding MIMO a
small gain can still be observed when switching to the self-
distribution distillation framework but this boost is smaller.
Finally for the deep ensemble approach, the S2D version
only shows a marginal improvement in accuracy and NLL
but a notable increase in ECE. In fact, it is observed that
ensembling standard and S2D models reduces and increases
ECE respectively. This trend is associated with the level
of ensemble calibration. Unlike a standard deep ensemble,
the members of the S2D counterpart are close to being cali-
brated, displaying little to no overconfidence. Ensembling
these calibrated models lead to under-confident average pre-
dictions hence, the increased calibration error. Note, calibra-
tion error and negative log-likelihood can easily be reduced
for in-domain data, post-training, by temperature scaling
predictions.

The next set of comparisons regard various distilled models,
see the final block of Table 1. As expected they all perform
in between the performance of an individual model and
the deep ensemble. While standard ensemble distillation
(knowledge distillation) was found to consistently achieve
better accuracy than other distillation methods, this success
was highly dependent on the value of temperature scaling
used. A sub-optimal choice of temperature can drastically
reduce performance. On the other hand, when distilling an
S2D ensemble, no additional hyper-parameters are needed.
We observe that while both H2D-Dir and H2D-Gauss ob-
tained a higher NLL they also achieved better calibration
than their S2D ensemble teacher. Lastly, one can observe
that H2D-Dir and H2D-Gauss both outperform the standard
SWAG-Diag and MC-dropout ensemble while using only
a single forward pass. Although these distilled models in-
volve an expensive training phase (a teacher ensemble is
required) they are able to, at test time, achieve much higher

computational efficiency and estimate and decompose total
uncertainty.

5.2 OUT-OF-DISTRIBUTION DETECTION
EXPERIMENTS

The second batch of experiments investigate the out-of-
distribution detection performance of models. The goal
is to differentiate between two types of data, negative in-
distribution (ID, sampled from the same source as the train-
ing data) and positive out-of-distribution (OOD) data.

In all experiments the models were trained on C100. The
ID data was always set to the test set of C100 and OOD
data was the test set of LSUN/TIM/SVHN. Both LSUN and
TIM examples had to be resized or randomly cropped as
preprocessing before being fed to the model. The detection
was done using four uncertainty estimates: confidence, total
uncertainty (TU), data or aleatoric uncertainty (DU) and
knowledge or epistemic uncertainty (KU). Performance was
measured using the threshold independent AUROC [Man-
ning and Schütze, 1999] and AUPR [Fawcett, 2006] metrics.
Due to limited space, some LSUN and TIM experiments
have been moved to Appendix B.1.

First, there is not a single case in Tables 2 and 3 where
an individual model, MIMO, SWAG-Diag or MC-dropout
ensemble is able to outperform the detection performance
of a single S2D model. This statement holds for all the anal-
ysed uncertainties apart from confidence where both MIMO
and SWAG-Diag are insignificantly better. When compar-
ing to a deep ensemble, the S2D model is outperformed in
many cases. The general trend is that the ensemble is able to
output marginally higher quality confidence and total uncer-
tainty estimates in most datasets, but that S2D sometimes



Table 3: OOD detection results (SVHN) trained on C100. Best in column and best overall.

Model
OOD %AUROC OOD %AUPR

Conf. TU DU KU Conf. TU DU KU

Individual 79.7 ±5.6 81.8 ±6.0 88.3 ±3.6 89.6 ±3.9

S2D Individual 83.0 ±2.9 86.0 ±2.2 87.7 ±2.2 81.2 ±3.8 90.6 ±1.7 92.0 ±1.6 94.4 ±1.1 86.1 ±3.3

MIMO 81.8 ±4.1 84.3 ±4.5 84.3 ±4.5 80.9 ±5.3 89.9 ±2.5 91.4 ±2.8 91.4 ±2.8 88.2 ±3.1

S2D MIMO 84.1 ±2.3 87.2 ±2.1 87.4 ±2.1 83.7 ±1.8 89.6 ±1.8 92.9 ±1.6 93.2 ±1.6 90.4 ±1.3

SWAG-Diag 81.4 ±3.0 83.5 ±3.6 83.5 ±3.4 80.5 ±4.9 89.2 ±2.6 90.2 ±3.2 90.2 ±3.1 88.3 ±3.6

S2D SWAG-Diag 83.2 ±2.7 86.3 ±2.6 87.7 ±2.5 82.7 ±4.3 90.7 ±1.7 92.3 ±1.8 94.3 ±1.4 87.3 ±3.2

MC ensemble 79.0 ±4.3 81.6 ±4.7 83.1 ±4.6 68.3 ±3.0 88.1 ±2.8 89.3 ±3.3 90.7 ±3.1 77.4 ±1.8

S2D MC ensemble 82.3 ±4.3 85.9 ±4.1 88.4 ±3.5 79.7 ±6.1 90.5 ±2.6 92.1 ±2.7 95.0 ±1.7 85.4 ±4.2

Deep ensemble 84.5 87.2 86.8 85.0 91.3 92.5 92.2 91.5
S2D Deep ensemble 86.5 89.9 91.7 85.1 92.6 94.1 96.2 88.4

EnD 78.0 79.8 87.0 87.9
H2D-Dir 84.6 88.4 88.5 87.6 91.7 93.6 91.7 90.6
H2D-Gauss 81.2 85.3 90.1 74.5 90.0 91.4 95.9 81.7

outperforms the ensemble when using data uncertainty (as
in Table 3).

Interestingly, the MC ensemble seems to degrade the qual-
ity of confidence and total uncertainty when compared to
its standard individual counterpart. However, since a MC-
dropout ensemble can estimate data uncertainty, it is able to
outperform the standard model overall. Similarly, the S2D
MC ensemble generally has inferior detection performance
compared to its single deterministic model equivalent. The
only exception is in detecting SVHN where the ensemble
has marginally better data uncertainty estimates. Regarding
SWAG-Diag and MIMO they both gain from being cast into
a self-distribution distillation viewpoint drastically increas-
ing their detection performance without additional cost at
inference.

Although the S2D deep ensemble, when compared to its
vanilla counterpart, wasn’t able to show any noticeable ac-
curacy boost (on CIFAR-100) it does outperform in this
detection task. The only case where the S2D ensemble was
not able to outshine the vanilla ensemble is when both use
knowledge uncertainty to detect SVHN examples using the
AUPR metric. Generally, S2D based systems outperform
their standard counterparts.

Regarding distillation based approaches, it is observed that
knowledge ensemble distillation, EnD, is able to outperform
the standard model in all cases except SVHN detection, and
in no case is able to reach the deep ensemble performance,
which it was distilled from. On the other hand, both the
H2D-Dir and H2D-Gauss models outperform the distilled
model and are able to decompose predictive uncertainty.
Specifically we discover that H2D-Dir is able to generate the
highest quality knowledge uncertainty estimates in almost

all cases, and is able to outperform its S2D ensemble teacher
using this uncertainty. The H2D-Gauss model however, was
not able to boast similar high quality knowledge uncertainty.
Instead, this model displayed the generally best performing
data uncertainty estimates, able to outperform the vanilla
deep ensemble in all cases, and the S2D equivalent in all
but SVHN detection.

6 CONCLUSION

Uncertainty estimation within deep learning is becoming in-
creasingly importance, with deep ensembles being the stan-
dard for estimating various sources of uncertainty. However,
ensembles suffer from significantly higher computational
requirements. This work proposes self-distribution distil-
lation (S2D), a novel collection of approaches for directly
training models able to estimate and decompose predic-
tive uncertainty, without explicitly training an ensemble,
and can seamlessly be combined with other approaches.
Additionally, if one is not resource restricted during the
training phase, a novel approach, hierarchical distribution
distillation (H2D), is described for transferring/distilling
the knowledge of S2D style ensembles into a single flexi-
ble and robust student model. It is shown that S2D models
are able to outperform standard models and rival MC en-
sembles on the CIFAR-100 test set. Additionally, S2D is
able to estimate higher quality uncertainty estimates com-
pared to standard models and MC ensembles and in most
cases, able to better detect out-of-distribution images from
the LSUN, SVHN and TIM datasets. Combination of S2D
with other promising approaches such as MIMO and SWAG
also show additional gains in accuracy and detection per-
formance. S2D is also able to rival the deep ensemble in



certain cases even though it only requires a single forward
pass. Furthermore, S2D deep ensembles and H2D derived
student models are shown to notably outperform the deep
ensemble in almost all detection problems. These promising
results show that the efficient self-distribution and novel
hierarchical distribution distillation approaches have the po-
tential to train robust uncertainty estimating models able to
outperform deep ensembles. Future work should further in-
vestigate self-distribution distillation in other domains such
as natural language processing and speech recognition. The
need for more efficient uncertainty estimation is especially
useful for these areas as they often utilise large-scale mod-
els. Furthermore, one could also analyse variations of S2D
such as utilising less weight sharing, generating more di-
verse teacher predictions or changing the student modelling
choices.
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A EXPERIMENTAL CONFIGURATION

Table 4: Description of datasets used in training and evaluating models.

Dataset Train Test Classes

CIFAR-100 50000 10000 100
LSUN - 10000 10
SVHN - 26032 10
Tiny ImageNet - 10000 200

All models were trained on the CIFAR-100 dataset, with and without data augmentation. The augmentation scheme involves
randomly mirroring and shifting images following He et al. [2016], Huang et al. [2016]. Remaining datasets were used as
out-of-distribution samples in the detection task.

All individual models, and ensemble members were based of off the DenseNet-BC (k = 12, 100 layers) architecture and
trained according to Huang et al. [2017]. SWAG-Diag was obtained by checkpointing the weights of the last 20 epochs
with a reduced learning rate of η = 1.0 × 10−4. MIMO with two output heads was trained using the same setup as for
the standard model. To keep training costs comparable to (S2D) individual models, no batch or input repetition was used
[Havasi et al., 2021]. Similarly all self-distribution distilled equivalents were trained with identical training recipes with the
addition of a student loss (µ = 1.28× 10−4).

Regarding distilled based models, the EnD baseline was trained using negative log-likelihood using the average temperature
scaled prediction of the teacher ensemble, with T ∈ {1.0, 2.0, 3.0, 4.0, 5.0}. For the hierarchical distribution distillation
approaches the students were first initialised with the weights of an S2D model trained for 150 epochs, for increased
stability. Thereafter, each student was trained using the appropriate H2D criteria with a significantly reduced learning rate.
H2D-Dir was trained using η = 5.0× 10−5 for an additional 150 epochs. H2D-Gauss required an initial learning rate of
η = 5.0× 10−3 which was reduced by a factor of 2 after 75 and 150 epochs. It was trained for 170 epochs. Additionally,
uncertainties were computed by generating 50 samples from each Gaussian prediction, since this modelling choice does not
result in closed form expressions.

A.1 PROXY TARGET TRAINING

Since the use of negative log-likelihood can be unstable in training S2D and distilling H2D models we utilise proxy targets
and KL-divergence. It has already been mentioned that the proxy target in S2D follows:

α̃ = argmax
α̂

∑
m

ln Dir(π(m); α̂), π(m) = Softmax(z(m), T ) (5)

Each categorical prediction will be temperature scaled, with T = 1.5, to mitigate overconfident predictions. While H2D-Dir
does not require any proxy targets, the Gaussian equivalent does. The proxy diagonal Gaussian, estimated according to
maximum log-likelihood, has a closed-form expression:

µ̃ =
1

M

M∑
m=1

lnα(m), σ̃2 =
1

M

M∑
m=1

(lnα(m) − µ̃)2 (6)

where v2 = v � v represents an element-wise multiplication. This is then used in a KL-divergence based loss, training the
student with prediction µ,σ according to:

KL
(
N (z; µ̃, σ̃2)

∥∥∥ N (z;µ,σ2)
)
=

K∑
c=1

ln
(σc
σ̃c

)
+
σ̃2
c + (µc − µ̃c)

2

2σ2
c

− 1

2
(7)

Note however, that the proxy targets are detached from any back gradient propagation calculations. This is to simulate
typical teacher-student knowledge transfer where teacher weights are kept fixed during student training.



B OUT-OF-DISTRIBUTION DETECTION

This section covers remaining out-of-distribution detection experiments. First, we cover the LSUN and Tiny ImageNet
detection problem for all models considered in section 5.2. Thereafter, additional experiments will be run on ensembles of
various sizes. This is to investigate if the low quality of knowledge uncertainty estimates is caused by a limited number of
ensemble members.

B.1 TINY IMAGENET EXPERIMENTS

Similar to the results section 5.2 the S2D Deep ensemble and H2D-Gauss outperformed all other models, see Table 6 and 7.
The only exception is the use of confidence on resized TIM with the AUROC metric where the Deep ensemble marginally
outperforms the S2D equivalent. However, unlike previous results, knowledge uncertainty seems to perform on par with or
outperform confidence. The one exception is the MC ensemble.

Table 5: OOD detection results (LSUN random crop) trained on C100. Best in column and best overall.

Model
OOD %AUROC OOD %AUPR

Conf. TU DU KU Conf. TU DU KU

Individual 83.2 ±2.1 85.7 ±4.5 79.4 ±5.6 83.0 ±5.9

S2D Individual 85.4 ±4.5 88.9 ±4.1 90.3 ±4.0 84.1 ±4.8 81.9 ±6.2 86.6 ±5.7 90.3 ±5.0 76.0 ±5.1

MIMO 83.3 ±3.9 86.2 ±4.2 86.3 ±4.3 80.9 ±1.6 79.6 ±6.6 83.8 ±6.8 83.8 ±6.9 72.4 ±3.7

S2D MIMO 85.8 ±2.5 89.5 ±2.8 90.7 ±2.8 85.5 ±2.8 78.0 ±3.4 84.8 ±3.5 89.4 ±3.4 75.2 ±3.3

SWAG-Diag 84.3 ±2.8 87.1 ±3.1 87.1 ±3.1 80.8 ±7.2 80.8 ±4.0 84.5 ±3.8 84.6 ±3.8 73.4 ±14.2

S2D SWAG-Diag 85.6 ±2.7 89.1 ±2.5 90.4 ±2.5 85.3 ±3.0 81.8 ±4.0 86.5 ±3.6 90.2 ±3.4 76.4 ±3.6

MC ensemble 81.0 ±3.5 84.4 ±4.0 86.4 ±3.8 63.0 ±4.0 77.0 ±3.6 81.7 ±4.0 84.9 ±4.0 53.1 ±3.1

S2D MC ensemble 83.3 ±2.3 86.9 ±3.2 90.0 ±2.5 77.7 ±5.3 79.3 ±3.2 83.8 ±4.3 90.1 ±3.2 69.8 ±4.8

Deep ensemble 85.9 89.1 90.9 80.4 82.0 86.3 89.1 72.5
S2D Deep ensemble 86.8 90.5 93.7 81.5 83.0 87.9 93.9 73.4

EnD 84.7 87.4 81.1 84.9
H2D-Dir 85.3 88.9 88.8 91.7 82.5 87.4 87.6 87.1
H2D-Gauss 86.9 90.6 95.1 76.0 82.9 88.0 95.7 67.0

Table 6: OOD detection results (TIM resize) trained on C100. Best in column and best overall.

Individual 77.6 ±0.7 79.5 ±0.7 74.2 ±0.7 77.1 ±0.9

S2D Individual 78.0 ±0.8 80.1 ±0.7 79.6 ±0.8 78.1 ±0.4 75.3 ±0.9 77.7 ±0.9 76.6 ±1.2 76.3 ±0.5

MIMO 78.1 ±0.4 79.9 ±0.7 79.9 ±0.8 76.3 ±1.5 74.6 ±1.0 77.3 ±1.3 77.4 ±1.3 69.6 ±2.0

S2D MIMO 80.1 ±1.2 80.7 ±1.2 80.7 ±1.2 80.4 ±1.2 77.3 ±1.6 77.8 ±1.6 77.7 ±1.5 77.5 ±1.6

SWAG-Diag 77.7 ±0.7 79.6 ±0.6 79.6 ±0.6 76.4 ±0.7 74.2 ±0.8 77.0 ±0.8 77.1 ±0.8 70.0 ±0.7

S2D SWAG-Diag 78.6 ±0.7 80.5 ±0.6 80.1 ±0.7 79.2 ±0.5 75.6 ±0.9 78.1 ±1.1 77.1 ±1.0 76.5 ±0.9

MC ensemble 78.5 ±0.5 80.6 ±0.3 80.8 ±0.4 76.6 ±0.6 75.2 ±0.5 78.1 ±0.6 78.4 ±0.5 70.9 ±1.1

S2D MC ensemble 79.3 ±0.5 81.1 ±0.5 81.1 ±0.5 80.4 ±0.6 76.4 ±0.7 78.5 ±0.8 78.1 ±1.0 77.1 ±0.7

Deep ensemble 81.7 83.6 83.5 81.0 78.9 81.6 81.5 76.6
S2D Deep Ensemble 81.5 84.2 82.8 82.8 79.1 82.0 79.9 80.0

EnD 78.7 80.4 75.4 78.0
H2D-Dir 77.3 79.8 79.6 81.6 74.5 77.9 77.7 79.2
H2D-Gauss 80.5 82.6 83.7 82.8 78.8 81.4 82.5 80.1



Table 7: OOD detection results (TIM random crop) trained on C100. Best in column and best overall.

Individual 76.7 ±4.1 79.2 ±4.2 74.7 ±3.6 78.5 ±3.8

S2D Individual 80.2 ±5.9 85.4 ±6.2 84.5 ±5.9 86.4 ±6.3 79.3 ±6.3 83.3 ±6.7 81.9 ±6.6 83.1 ±6.7

MIMO 79.4 ±4.8 81.9 ±5.3 81.9 ±5.3 79.8 ±4.6 77.1 ±4.8 80.9 ±5.2 80.8 ±5.3 74.9 ±8.1

S2D MIMO 80.3 ±8.6 86.5 ±8.5 86.5 ±8.5 86.9 ±8.6 80.0 ±6.5 82.9 ±6.4 83.0 ±6.4 84.9 ±6.5

SWAG-Diag 78.4 ±3.5 80.9 ±3.7 80.9 ±4.0 78.6 ±2.0 76.0 ±3.3 79.8 ±3.4 79.7 ±3.7 73.7 ±3.5

S2D SWAG-Diag 80.5 ±6.0 84.8 ±6.5 83.8 ±6.3 86.6 ±6.6 79.4 ±5.5 83.4 ±6.1 81.8 ±6.2 83.4 ±6.0

MC ensemble 75.8 ±4.5 78.8 ±4.8 79.7 ±4.9 69.3 ±3.7 74.3 ±4.0 78.5 ±4.3 80.0 ±4.3 60.8 ±3.7

S2D MC ensemble 78.8 ±6.3 82.1 ±6.4 82.6 ±6.5 82.0 ±6.1 77.1 ±5.2 81.1 ±5.1 81.8 ±5.1 79.8 ±4.9

Deep ensemble 80.9 84.2 83.5 82.3 79.3 83.9 83.2 79.8
S2D Deep ensemble 84.8 88.5 86.4 89.7 82.8 87.3 84.4 87.7

EnD 72.7 74.8 71.4 75.0
H2D-Dir 74.7 78.2 77.9 84.2 73.2 77.7 77.5 81.7
H2D-Gauss 83.2 88.0 88.0 88.5 81.0 86.0 87.2 84.1

B.2 ENSEMBLE SIZE EXPERIMENTS

Knowledge uncertainty was found to have underwhelming performance (especially for MC and Deep ensembles) and did
not show similar trends to prior work [Malinin and Gales, 2018, 2021, Malinin et al., 2020]. To possibly mitigate this, the
ensemble size was increased as a smaller number of models could lead to inaccurate measures of diversity and knowledge
uncertainty. Results are compiled in Tables 8-13.

Performance on the CIFAR-100 test set is shown in Table 8. Increasing the ensemble size leads to improved accuracy and
lower negative log-likelihoods as would be expected. The MC ensemble also becomes better calibrated. The Deep ensemble
on the other hand has increasing calibration error with the number of members. This is due to the ensemble prediction
becoming under-confident when averaging over a large number of members.

Out-of-distribution detection performance on LSUN, SVHN and TIM are compiled in Tables 9-13. Although the MC
ensemble enjoys improved accuracy when increased in size, it seems to remain relatively unaffected in terms of OOD
detection using any uncertainty metric. In detecting LSUN using random crops, the performance of KU interestingly
deteriorates notably. Overall this points to MC ensembles’ lacking ability in utilising new information from additional
ensemble member draws/samples for better uncertainty estimation. Regarding the Deep ensemble, it generally improves with
increasing size with any metric, however with diminishing returns. In this case all uncertainties improve with ensemble size,
not only knowledge uncertainty. Therefore it seems that the cause for confidence, total and data outperforming knowledge
uncertainty is not due to the ensemble size being limited to five members.

Table 8: Test performance of various ensembles and sizes (± 2 std). All models are trained on C100.

Ensemble Type Ensemble Size (M) Acc. NLL %ECE

5 75.6 ±0.9 0.94 ±0.04 6.67 ±1.18

MC 10 75.8 ±0.9 0.92 ±0.04 6.11 ±1.11

20 76.0 ±1.0 0.91 ±0.04 5.81 ±1.12

5 79.3 0.76 1.44
Deep 10 80.1 0.71 1.91

20 80.3 0.68 2.19



Table 9: OOD detection results (LSUN resize) trained on C100.

Type M
OOD %AUROC OOD %AUPR

Conf. TU DU KU Conf. TU DU KU

5 76.6 ±0.8 78.3 ±0.8 78.9 ±0.8 72.4 ±1.2 72.2 ±1.0 74.6 ±1.6 75.6 ±1.7 64.2 ±2.0

MC 10 76.7 ±0.6 78.3 ±0.8 79.1 ±0.9 72.6 ±1.2 72.3 ±1.1 74.6 ±1.6 75.9 ±1.7 64.3 ±2.0

20 76.8 ±0.7 78.4 ±0.8 79.2 ±0.8 72.7 ±1.3 72.4 ±1.2 74.6 ±1.6 76.0 ±1.7 64.3 ±2.3

5 81.1 82.9 83.4 79.2 77.7 80.4 81.2 73.6
Deep 10 82.0 83.9 84.8 80.3 79.1 81.8 83.4 74.9

20 82.2 84.0 85.1 80.9 79.4 81.8 83.6 75.7

Table 10: OOD detection results (LSUN random crop) trained on C100.

5 81.0 ±3.5 84.4 ±4.0 86.4 ±3.8 63.0 ±4.0 77.0 ±3.6 81.7 ±4.0 84.9 ±4.0 53.1 ±3.1

MC 10 81.0 ±3.5 84.4 ±3.9 86.7 ±3.7 61.6 ±3.9 77.0 ±3.7 81.8 ±4.0 85.4 ±4.0 52.2 ±3.0

20 80.8 ±3.7 84.1 ±4.1 86.6 ±3.9 60.9 ±4.0 76.7 ±3.9 81.3 ±4.2 85.3 ±4.2 51.7 ±3.0

5 85.9 89.1 90.9 80.4 82.0 86.3 89.1 72.5
Deep 10 85.7 89.3 91.3 81.3 81.8 86.4 89.9 73.1

20 86.2 89.8 92.2 82.0 82.1 86.8 91.0 73.1

Table 11: OOD detection results (SVHN) trained on C100.

5 79.0 ±4.3 81.6 ±4.7 83.1 ±4.6 68.3 ±3.0 88.1 ±2.8 89.3 ±3.3 90.7 ±3.1 77.4 ±1.8

MC 10 78.9 ±4.4 81.5 ±4.7 83.3 ±4.7 67.5 ±3.1 88.0 ±2.7 89.3 ±3.3 90.9 ±3.1 76.6 ±2.0

20 78.9 ±4.4 81.5 ±4.7 83.3 ±4.7 67.1 ±3.3 88.1 ±2.7 89.2 ±3.3 90.9 ±3.1 76.3 ±2.0

5 84.5 87.2 86.8 85.0 91.3 92.5 92.2 91.5
Deep 10 84.1 87.0 87.5 83.9 91.2 92.4 93.1 90.3

20 83.7 86.6 87.2 84.1 91.0 92.2 92.9 90.6

Table 12: OOD detection results (TIM resize) trained on C100.

5 78.5 ±0.5 80.6 ±0.3 80.8 ±0.4 76.6 ±0.6 75.2 ±0.5 78.1 ±0.6 78.4 ±0.5 70.9 ±1.1

MC 10 78.7 ±0.6 80.8 ±0.4 81.0 ±0.5 77.4 ±0.7 75.4 ±0.6 78.4 ±0.6 78.7 ±0.5 72.2 ±1.1

20 78.8 ±0.5 80.9 ±0.4 81.2 ±0.4 77.9 ±0.7 75.6 ±0.5 78.4 ±0.4 78.8 ±0.4 72.9 ±1.4

5 81.7 83.6 83.5 81.0 78.9 81.6 81.5 76.6
Deep 10 82.3 84.1 84.2 82.4 79.8 82.2 82.4 78.7

20 82.6 84.4 84.5 83.0 80.1 82.4 82.8 79.6

Table 13: OOD detection results (TIM random crop) trained on C100.

5 75.8 ±4.5 78.8 ±4.8 79.7 ±4.9 69.3 ±3.7 74.3 ±4.0 78.5 ±4.5 80.0 ±4.3 60.8 ±3.7

MC 10 75.7 ±4.8 78.7 ±5.1 79.7 ±5.2 69.1 ±3.9 74.2 ±4.2 78.5 ±4.5 80.2 ±4.5 60.7 ±3.8

20 75.7 ±4.7 78.6 ±5.0 79.7 ±5.2 69.0 ±4.1 74.3 ±4.1 78.4 ±4.4 80.3 ±4.3 60.6 ±4.4

5 80.9 84.2 83.5 82.3 79.3 83.9 83.2 79.8
Deep 10 82.8 86.5 85.7 85.5 81.0 85.8 85.0 83.7

20 83.4 87.1 86.1 86.8 81.6 86.4 85.4 85.4

C BEHAVIOUR OF UNCERTAINTIES

This section investigates how the uncertainties produced from a vanilla Deep ensemble differ from self-distribution distilled
derived systems, and how well hierarchical distribution distillation captures the behaviour of its teacher. The comparison
will be made between the in-domain CIFAR-100 and, out of simplicity, only the out-of-domain SVHN test set.

Figure 3 shows the contrast of various uncertainties between an CIFAR-100 (ID) and SVHN (OOD) test sets. Clearly, the S2D
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Figure 3: Histograms of various uncertainties produced by Deep ensemble, S2D, S2D Deep ensemble and H2D-Gauss
systems. Out-of-distribution data was generated from the SVHN test set.

systems output ID uncertainties in a consistent manner, even matching the conceptually different Deep ensemble. Observe
that S2D integrates temperature scaling (smoothing predictions) into the training of models; total and data uncertainties3

estimated by these models will naturally have larger entropy than Deep ensembles. While it is expected that the Deep
ensemble would have different behaviour on the SVHN OOD set, it is surprising to observe how well H2D-Gauss aligns
with its S2D Deep ensemble teacher. An individual S2D model was also able to generate closely related total and data
uncertainty estimates, but suffers significantly in producing consistent knowledge uncertainties. These results raise the
question if a Gaussian student could capture the diversity in a vanilla Deep ensemble by modelling the logits, in a similar
fashion to how H2D-Gauss models its teacher—a possible avenue for future work.

D ADDITIONAL EXPERIMENTS: WIDERESNET

Following the DenseNet-BC experiments in section 5 we repeated them with a different architecture. In this section we focus
on a significantly larger WideResNet [Zagoruyko and Komodakis, 2016] model with a depth of 28 and a widening factor
of 10. The standard and S2D models were both trained as described in Zagoruyko and Komodakis [2016], with the S2D
specific parameters being the same as previously described. The only difference is that teacher predictions were generated
using multiplicative Gaussian noise with a fixed standard deviation of 0.10.

The H2D-Gauss model was also trained in a different manner. First, it was initialised from an S2D model trained for 150
epochs. Thereafter it was trained for an additional 80 epochs with a starting learning rate of η = 2 × 10−3 which was
reduced by a factor of 4 after 60 epochs. For this section, EnD and H2D-Dir were not investigated.

Table 14 shows test set performance. Unlike previous experiments, S2D was not able to outperform an individual model
by more than two standard deviations, in this case achieving around one standard deviation improvement in accuracy.
Interestingly, the MC approach has worse accuracy for both the standard and S2D case, however this could be due to the
small number of drawn samples (M = 5). Furthermore, both Deep ensembles significantly outperform their individual
equivalents with the S2D version being slightly better in all measured performance metrics. The notable result in this table is
the high performance of H2D-Gauss, able to outperform the Deep ensemble in C100 and achieve near ensemble performance
in C100+.

In the OOD detection task we observe that both versions of the MC ensemble struggle to outperform their individual
counterparts. There also seems to be a disparity in performance when comparing resize and random cropped LSUN and

3Knowledge uncertainty does not necessarily increase with temperature.



Table 14: Test performance (± 2 std).

Dataset C100 C100+

Model Acc. NLL %ECE Acc. NLL %ECE

Individual 73.9 ±0.5 1.05 ±0.02 5.26 ±0.78 81.1 ±0.3 0.76 ±0.01 5.21 ±0.44

S2D Individual 74.2 ±0.5 1.06 ±0.05 5.48 ±2.25 81.3 ±0.3 0.74 ±0.01 4.24 ±0.74

MC ensemble 73.6 ±0.5 1.05 ±0.03 4.70 ±0.88 81.0 ±0.5 0.74 ±0.01 3.29 ±0.36

S2D MC ensemble 73.8 ±0.4 1.03 ±0.04 2.95 ±1.01 81.0 ±0.3 0.73 ±0.01 1.99 ±0.35

Deep ensemble 77.1 0.88 5.08 83.4 0.63 2.27
S2D Deep ensemble 77.9 0.86 4.52 83.6 0.63 1.84

H2D-Gauss 77.4 0.95 5.19 82.8 0.71 2.45

TIM. With random crops, all S2D systems notably outperform their standard counterparts. In this case both S2D Individual
and H2D-Gauss were able to outperform the Deep ensemble using any uncertainty metric. In the other case of resizing
LSUN and TIM images and in SVHN the detection performance difference is smaller but the S2D Deep ensemble still
remains the best model with both H2D-Gauss and Deep ensemble performing similarly.

Table 15: LSUN (resize) OOD detection results. Best in column and best overall.

Model
OOD %AUROC OOD %AUPR

Conf. TU DU KU Conf. TU DU KU

Individual 76.3 ±0.5 76.7 ±0.6 70.7 ±0.8 71.1 ±0.9

S2D Individual 76.0 ±1.1 76.5 ±1.5 76.7 ±1.4 75.7 ±1.6 71.4 ±1.8 72.0 ±2.7 72.8 ±3.7 69.7 ±2.0

MC ensemble 75.8 ±0.6 76.2 ±0.7 76.4 ±0.7 65.2 ±1.7 70.3 ±1.0 70.5 ±1.1 70.8 ±1.2 56.2 ±1.5

S2D MC ensemble 75.7 ±1.0 76.4 ±1.7 77.0 ±1.6 75.2 ±2.1 71.0 ±1.6 71.6 ±2.7 73.1 ±3.8 69.6 ±2.6

Deep ensemble 77.6 78.0 78.4 68.0 72.3 72.6 73.1 58.8
S2D Deep ensemble 77.7 78.5 79.3 76.8 73.2 74.1 75.9 71.3

H2D-Gauss 77.1 77.2 77.8 77.5 72.0 71.8 71.9 72.3

Table 16: LSUN (random crop) OOD detection results. Best in column and best overall.

Individual 72.4 ±5.0 73.9 ±5.4 67.0 ±2.9 68.7 ±3.1

S2D Individual 75.8 ±3.4 77.6 ±4.3 77.9 ±4.7 76.5 ±4.6 70.5 ±3.9 72.6 ±4.9 74.4 ±4.7 71.4 ±5.5

MC ensemble 68.9 ±5.6 70.3 ±6.0 70.9 ±6.2 50.8 ±3.7 64.0 ±3.0 65.2 ±3.5 66.1 ±3.6 45.7 ±1.5

S2D MC ensemble 72.7 ±3.2 74.5 ±4.1 75.9 ±4.3 72.0 ±4.4 67.7 ±3.3 69.7 ±4.6 73.4 ±4.4 65.7 ±5.0

Deep ensemble 72.1 74.2 75.2 60.6 67.2 69.2 70.5 51.6
S2D Deep ensemble 75.5 78.4 80.0 75.4 70.7 73.9 77.2 69.0

H2D-Gauss 76.0 77.6 77.8 76.4 69.6 71.5 74.1 70.9



Table 17: SVHN OOD detection results. Best in column and best overall.

Individual 80.1 ±4.6 81.6 ±4.4 88.3 ±2.4 89.0 ±2.3

S2D Individual 80.1 ±4.4 81.6 ±4.4 81.9 ±4.8 81.4 ±5.4 88.6 ±2.3 89.2 ±2.5 90.1 ±2.5 87.8 ±4.1

MC ensemble 77.6 ±4.9 79.1 ±4.5 79.7 ±4.5 56.6 ±2.5 86.9 ±2.3 87.5 ±2.2 88.0 ±2.2 70.2 ±1.2

S2D MC ensemble 77.3 ±4.7 79.0 ±4.8 80.1 ±4.6 77.3 ±5.6 87.1 ±2.5 87.7 ±2.7 89.6 ±2.5 85.7 ±3.9

Deep ensemble 81.5 83.4 84.0 68.3 89.2 89.9 90.4 77.9
S2D Deep ensemble 81.5 83.7 84.6 81.8 89.6 90.5 92.0 88.1

H2D-Gauss 81.5 82.1 83.2 80.6 88.6 88.4 90.5 87.1

Table 18: TIM (resize) OOD detection results. Best in column and best overall.

Individual 79.7 ±0.4 80.5 ±0.4 75.9 ±0.5 76.9 ±0.5

S2D Individual 79.2 ±0.6 80.0 ±0.5 80.2 ±0.3 80.2 ±0.4 76.0 ±1.0 77.1 ±1.0 77.1 ±0.7 76.7 ±0.7

MC ensemble 79.8 ±0.4 80.6 ±0.3 80.7 ±0.4 68.3 ±1.7 76.1 ±0.7 77.0 ±0.6 77.1 ±0.6 59.5 ±1.6

S2D MC ensemble 79.4 ±0.6 80.3 ±0.7 80.2 ±1.0 80.1 ±0.7 75.9 ±0.9 77.1 ±1.0 77.2 ±1.1 76.8 ±0.6

Deep ensemble 81.8 82.7 82.7 72.5 78.4 79.3 79.2 64.1
S2D Deep ensemble 81.9 82.9 82.9 82.5 79.0 80.2 80.2 79.6

H2D-Gauss 80.9 81.4 81.4 81.5 77.4 79.0 78.9 78.0

Table 19: TIM (random crop) OOD detection results. Best in column and best overall.

Individual 71.2 ±3.8 72.8 ±4.0 68.9 ±3.5 70.9 ±4.0

S2D Individual 73.1 ±3.0 74.9 ±3.6 76.3 ±3.9 75.9 ±3.4 71.4 ±1.7 73.7 ±2.2 74.5 ±2.4 73.4 ±2.4

MC ensemble 70.1 ±3.5 71.8 ±3.7 72.1 ±3.7 57.1 ±1.0 68.1 ±3.6 70.2 ±3.9 70.6 ±3.9 50.4 ±1.1

S2D MC ensemble 71.7 ±2.7 73.8 ±3.2 74.2 ±3.3 73.7 ±3.1 70.0 ±1.5 72.6 ±1.7 73.3 ±1.8 71.9 ±1.6

Deep ensemble 72.2 74.5 74.7 65.2 70.3 72.9 73.0 58.1
S2D Deep ensemble 74.3 77.0 77.3 77.1 72.6 75.9 76.2 75.5

H2D-Gauss 75.2 76.9 77.3 76.4 72.0 74.0 74.5 73.5
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