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ABSTRACT

Pretraining large language models (LLMs) on high-quality, structured data such
as mathematics and code substantially enhances reasoning capabilities. However,
existing math-focused datasets built from Common Crawl suffer from degraded
quality due to brittle extraction heuristics, lossy HTML-to-text conversion, and
the failure to reliably preserve mathematical structure. In this work, we intro-
duce Nemotron-CC-Math, a large-scale, high-quality mathematical corpus con-
structed from Common Crawl using a novel, domain-agnostic pipeline specifically
designed for robust scientific text extraction.
Unlike previous efforts, our pipeline recovers math across various formats (e.g.,
MathJax, KaTeX, MathML) by leveraging layout-aware rendering with lynx and
a targeted LLM-based cleaning stage. This approach preserves the structural in-
tegrity of equations and code blocks while removing boilerplate, standardizing
notation into LATEX representation, and correcting inconsistencies.
We collected a large, high-quality math corpus, namely Nemotron-CC-Math-3+
(133B tokens) and Nemotron-CC-Math-4+ (52B tokens). Notably, Nemotron-
CC-Math-4+ not only surpasses all prior open math datasets-including Mega-
Math, FineMath, and OpenWebMath-but also contains 5.5× more tokens than
FineMath-4+, which was previously the highest-quality math pretraining dataset.
When used to pretrain a Nemotron-T 8B model, our corpus yields +4.8 to +12.6
gains on MATH and +4.6 to +14.3 gains on MBPP+ over strong baselines, while
also improving general-domain performance on MMLU and MMLU-Stem.
We present the first pipeline to reliably extract scientific content-including math-
from noisy web-scale data, yielding measurable gains in math, code, and general
reasoning, and setting a new state of the art among open math pretraining corpora.
To support open-source efforts, we will release our code and datasets1.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) has sparked a growing interest in improv-
ing their mathematical reasoning capabilities. Recent studies indicate that pretraining on carefully
curated domain-specialized data—such as mathematics (Paster et al., 2024; Han et al., 2024; Wang
et al., 2024b; Azerbayev et al., 2024) and code (Kocetkov et al., 2022; Lozhkov et al., 2024; Li
et al., 2023)—substantially improves domain-specific accuracy, general knowledge and reasoning
abilities (Muennighoff et al., 2023; Aryabumi et al., 2024; Lewkowycz et al., 2022; Shao et al.,
2024). This suggests that high-quality mathematical data plays a pivotal role not only in solving
math problems but also in strengthening broader reasoning skills.

Math capabilities of models like O1 (OpenAI, 2024) and DeepSeek-R1 (Guo et al., 2025) critically
depend on access to large-scale, high-quality mathematical pretraining data. Unfortunately, datasets
used in pretraining SOTA models like DeepSeekMath (Shao et al., 2024), Minerva (Lewkowycz
et al., 2022) and Qwen-2.5-Math (Yang et al., 2024) are not publicly released. Meanwhile, open-
source alternatives such as OpenWebMath (OWM) (Paster et al., 2024), FineMath (Allal et al.,
2025), InfiMMWebMath (Han et al., 2024) and MathPile (Wang et al., 2024b) remain limited in

1Code and data will be released upon acceptance.
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Figure 1: Overview of the Nemotron-CC-Math construction pipeline. Starting from Common Crawl
snapshots, we extract math-related URLs using curated datasets (e.g., MegaMath, FineMath). After
fetching 229.54M webpages, we render pages through Lynx and apply LLM-based cleaning, qual-
ity filtering, and deduplication (see §2.1). We visualize the topic distribution of our data (Right).

both scale and fidelity—largely due to brittle extraction pipelines that degrade content quality and
fail to preserve mathematical equations and structure (see Appendix A.3).

While Common Crawl forms a primary source for large-scale pretraining (Penedo et al., 2023; Tang
et al., 2024; Su et al., 2025), its value for mathematical pretraining remains underexploited. Existing
math-specific extraction pipelines (Paster et al., 2024; Zhou et al., 2025) are not well-suited to fully
leverage this resource. In particular, current methods frequently fail to detect or accurately extract
equations, either omitting them altogether or corrupting their structure (Han et al., 2024; Allal et al.,
2025). This severely compromises content fidelity. Mathematical notation on the web appears in a
wide range of formats—including MathML, LATEX, and dynamically rendered scripts—whose rep-
resentations continue to evolve over time (see Figure 2). Compounding this challenge, HTML pages
in Common Crawl often lack associated stylesheets and JavaScript resources, preventing proper ren-
dering and further obstructing reliable equation recovery. These limitations collectively hinder the
construction of high-quality mathematical pretraining corpora that capture the breadth and variety
of real-world mathematical content.

To bridge this gap, we propose a modular, scalable, and domain-agnostic framework for reliably ex-
tracting mathematically rich content from raw web data, enabling the construction of a large-scale,
diverse, and high-fidelity math corpus. Our multi-stage extraction and filtering pipeline ensures
quality at scale (see Figure 1). In the first stage, HTML documents are rendered into text using the
Lynx text-based browser2, which preserves mathematical equations and symbols with high accu-
racy. In the second stage, a lightweight LLM normalizes heterogeneous math representations into
LATEX while discarding boilerplate and irrelevant content. This LLM-based approach allows us to
avoid the brittle, heuristic-based rules employed in previous pipelines (Paster et al., 2024), resulting
in more reliable and consistent extraction of mathematical content. Subsequently, we apply a qual-
ity classifier to retain the high-quality pages, followed by deduplication to eliminate redundancy. In
addition, we perform thorough contamination detection against downstream benchmarks (see § 2.4),
ensuring that any overlapping or duplicated samples are identified and removed from the corpus.

By leveraging the scale of Common Crawl and the rigor of our pipeline, we present Nemotron-CC-
Math—the highest quality open-source math corpus to date, comprising of 133B tokens, where its
highest quality subset (Nemotron-CC-Math-4+) totals 53B tokens. Our pipeline is optimized for
performance using Polars and Ray, enabling us to process terabytes of HTML content efficiently. To
facilitate future research, we release both the dataset and our full pipeline implementation.

Our contributions are as follows:

• We reviewed prior data extraction pipelines, and show that they fail to accurately extract
math and code content, often stripping math equations and code snippets (Appendix A.3).

• We introduce a scalable and modular pipeline for extracting high-quality mathematical
content from Common Crawl, explicitly addressing the longstanding challenge of HTML
math variability-including LaTeX, MathML, Unicode, and inline or malformed equations.

• To our knowledge, this is the first work to employ the text-based browser Lynx for
HTML-to-plain-text conversion with preservation of math and code formatting, and to in-
troduce LLM-based standardization of mathematical representations across the content.

2https://lynx.invisible-island.net/
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LLM

[MATH: <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" 
scriptlevel="0"> <mi>f</mi> <mo>(</mo><mi>x</mi><mo>)</mo> <mo>=</mo> <msup> <mi>x
</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> 
</mrow> <annotation encoding="application/x-tex"> {\displaystyle f(x)=x^{2}} 
</annotation> </semantics> :MATH]  {\displaystyle f(x)=x^{2}}

[latex] f(x)=x^{2}[/latex]
[text] f(x)=x^{2}[/text]
\[ f(x) = x^{2} \]
[img[f(x)=x^{2}]]

LaTeX Delimiters:

Pre Tags:

<pre xml:lang="latex">
f(x)=x^{2}</pre>

MathML Tags: 

<img src="https://latex.codecogs.com/svg.image?f(x)=x^{2}" 
alt="f(x)=x^{2}"/>

Image Tags: 

  \[ f(x) = x^{2} \]

Latex Format

Figure 2: Mathematical expressions on HTML pages appear in diverse formats—LaTeX within cus-
tom delimiters, <pre> blocks, image tags, and MathML. These variations challenge standard text
extraction pipelines, which often fail to recover the underlying LATEX equations correctly. To address
this, we use an LLM to standardize all mathematical representations into a unified LATEX format.

• We will release Nemotron-CC-Math, a dataset of 133B tokens of high-quality and diverse
math-rich web documents extracted from Common Crawl, whose 4+ subset contains 5.5×
more tokens than FineMath-4+, the previous best math pretraining dataset.

• We will open-source our full pipeline (extraction, processing and scoring) to ensure repro-
ducibility and support its application to other domains.

• We thoroughly analyze Nemotron-CC-Math by examining its composition, including
statistics on webpage types, subject areas, and the most frequent source domains.

• Through extensive experiments and detailed quality analysis (§3.3), we demonstrate that
models pretrained on our dataset outperform those trained on existing pretraining math
datasets across a range of benchmarks, including math, code, and general knowledge tasks.

2 THE COLLECTION OF NEMOTRON-CC-MATH

We construct the Nemotron-CC-Math corpus from Common Crawl3, a large-scale web archive ex-
tensively used in recent LLM training (Dubey et al., 2024; Hui et al., 2024; DeepSeek-AI et al.,
2025). Common Crawl contains over 300B documents across more than 6M WARC files (each
contains over 1GB of compressed content). Our goal is to build a pipeline that can process the tech-
nical content from Common Crawl correctly. We apply our pipeline to math domain to assemble a
high-quality, large-scale corpus of mathematical content from Common Crawl. To achieve this, we
designed a robust and highly scalable data processing pipeline capable of operating at the full scale
of Common Crawl, as illustrated in Figure 1.

Prior efforts such as OWM (Paster et al., 2024) and DeepSeekMath (Shao et al., 2024) rely on
lightweight classifiers to identify technical pages. We initially explored a similar approach but
found fundamental limitations in achieving meaningful improvements: first, mathematical content
constitutes < 1% of Common Crawl, making manual ground truth annotation extremely difficult;
second, since classifiers must run on all Common Crawl documents, only very efficient methods like
FastText with simplified HTML parsing are viable. This creates an inherently high-bias setup with
no straightforward path to improvement—attempts to increase recall for technical content invari-
ably lead to drastic drops in precision. Rather than refining such classifiers for marginal gains, we
leverage community-filtered datasets: extracting URLs from OWM, InfiMM-WebMath (Han et al.,
2024), FineMath (Allal et al., 2025), and MegaMath (Zhou et al., 2025), including all major sub-
sets. This approach allows us to benefit from the diverse filtering strategies employed by different
research groups while avoiding the limitations of any single classifier.

We then retrieve the original HTML from 98 Common Crawl snapshots (2014-2024) for these URLs,
enabling fine-grained extraction that preserves mathematical expressions, symbols, and formatting-
often degraded in prior processing (Appendix A.3). This process yields 229.54M high-quality web-
pages spanning a diverse range of mathematical content.

2.1 RELIABLE TEXT EXTRACTION FOR SCIENTIFIC CONTENT

2.1.1 LIMITATIONS OF PRIOR WORK

Extracting mathematical content from raw HTML presents a significant challenge for text extraction
pipelines. Unlike natural language, which often follows consistent structural patterns, math equa-

3https://commoncrawl.org/
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tions appear in highly variable forms across the web (see Figure 2). These variations stem from the
absence of standardized conventions for embedding math in HTML, as well as the diversity of ren-
dering engines (e.g., MathJax, KaTeX, MathML, image-based representations, and custom plugins).
Moreover, websites frequently evolve their rendering strategies, making any fixed set of heuristics
fragile in practice. As a result, existing extraction pipelines often fail to reliably extract scientific
content, with equations either missed entirely, mis-parsed, or distorted. Preserving formatting is
equally important: the indentation and layout of code blocks and the placement of mathematical
symbols often carry semantic meaning, and losing this structure severely degrades the value of the
extracted content for downstream modeling.

Existing content extraction tools such as JUSTEXT (Endrédy & Novák, 2013), TRAFILATURA (Bar-
baresi, 2021), and RESILIPARSE (Bevendorff et al., 2018)—used in large-scale dataset construction
pipelines including The Pile (Gao et al., 2020), FineMath (Allal et al., 2025), and RefinedWeb
(Penedo et al., 2023)—were designed primarily for general-purpose boilerplate removal and narra-
tive text extraction. While effective for general documents, they often strip or corrupt equations,
miss inline LATEX equations changing semantics, and flatten (or miss) code blocks requiring strict
indentation (e.g., Python). These shortcomings limit their usability for building high-quality math
or code datasets. Examples are provided in Appendix A.3.

2.1.2 OUR TEXT EXTRACTION PIPELINE

The diversity of mathematical representations on the web necessitates using large language models
to faithfully convert technical HTML content into a format suitable for LLM pretraining. Since
raw HTML from WARC files is too verbose for direct LLM processing, and traditional parsers risk
losing critical information, we employ lynx, a text-based browser that renders web pages into plain
text while preserving mathematical equations and code formatting. Unlike DOM-based parsers used
in prior work (Paster et al., 2024; Zhou et al., 2025; Allal et al., 2025), lynx executes HTML layout
rules to produce output that mirrors the human-perceived page structure, reliably capturing equations
and maintaining code indentation.

While lynx preserves the structural layout of web pages, its output includes boilerplate elements
such as navigation bars and redundant headers. To refine this output, we apply an LLM cleanup pass
using Phi-4 (Abdin et al., 2024a)(14B parameters), which preserves primary content and references
while removing non-essential content. LLM additionally standardizes mathematical expressions
into consistent LATEX format (Figure 2), and corrects typographical errors. This two-stage pipeline-
structural preservation via lynx followed by semantic refinement via an LLM-yields high-quality,
coherent text suitable for large-scale mathematical corpora. Ablation studies (§3.2) show that this
cleanup task is simple enough for smaller models to perform effectively. Qualitative comparisons
with prior work and the full cleanup prompt are provided in Appendices A.3 and A.5, respectively.

2.2 QUALITY CLASSIFICATION

To support the later stages of training where data fidelity is especially important (Hu et al., 2024; Ab-
din et al., 2024b), we further filtered our Nemotron-CC-Math to retain only its highest-scoring sub-
set, Nemotron-CC-Math-4+. We employed the FineMath classifier (Allal et al., 2025) which assigns
a 5-point scale score to each page, focusing on identifying content with mathematical reasoning and
material suited to middle- and high-school levels. The data distribution for each quality score is
provided in Appendix §A.7. After classification, we also performed deduplicatication and decon-
tamination (see §2.3 and §2.4). We developed two variants of Nemotron-CC-Math: Nemotron-CC-
Math-4+ (52.32B tokens, 45M documents) with scores 4-5 and Nemotron-CC-Math-3+ (133.26B
tokens, 101M documents) with scores 3-5.

2.3 FUZZY DEDUPLICATION

Removing near-duplicate documents is essential for efficient and stable model training, and reduc-
ing the risk of memorization (Lee et al., 2022; Tokpanov et al., 2024). We applied fuzzy deduplica-
tion using the NeMo-Curator framework, which uses a MinHash-based Locality Sensitive Hashing
(LSH) (Broder, 2000) to efficiently detect duplicates. The probability that two documents with Jac-
card similarity S hash to the same bucket is P = 1 − (1 − Sb)r, where b is the number of hash
functions per band and r is the number of bands. With r=20 bands and b=13 hash functions per

4
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Table 1: Comparison of Nemotron-CC-Math with math pretraining datasets. Nemotron-CC-Math-
4+ is 5.5× larger than the highest-quality open math dataset (FineMath-4+) with a permissive li-
cense, and substantially outperforms FineMath across math, code, and knowledge tasks (Table 2).

Dataset Open
Source

#Documents
(M)

#Tokens
(B) Source

Minerva (Lewkowycz et al., 2022) ✗ - 38.50 arXiv, Web
MathMix (Lightman et al., 2023) ✗ - 1.50 Unknown
DeepSeekMath (Shao et al., 2024) ✗ - 120 CommonCrawl
ProofPile (Azerbayev et al., 2023) ✓ 2.04 8.30 arXiv, Textbooks, Formal Math Libraries,

StackExchange, ProofWiki, MATH
ProofPile-2 (Azerbayev et al., 2024) ✓ 11.20 55 OpenWebMath, ArXiv, AlgebraicStack
AMPS (Hendrycks et al., 2021b) ✓ 5.10 0.70 Khan Academy, Synthetic data
MathPile (Wang et al., 2024b) ✓ 0.73 9.50 arXiv, Textbooks, ProofWiki, Wikipedia,

StackExchange, CommonCrawl

OpenWebMath (Paster et al., 2024) ✓ 6.30 14.70 CommonCrawl
InfiMM-WebMath-4+ (Han et al., 2024) ✓ 6.30 8.50 CommonCrawl
FineMath-4+ (Allal et al., 2025) ✓ 6.70 9.60 CommonCrawl
MegaMath-Pro (Zhou et al., 2025) ✓ 15 15.10 CommonCrawl

Nemotron-CC-Math-4+ (Ours) ✓ 45.10 52.32 CommonCrawl

InfiMM-WebMath-3+ (Han et al., 2024) ✓ 13.90 20.50 CommonCrawl
FineMath-3+ (Allal et al., 2025) ✓ 21.40 34 CommonCrawl
MegaMath-Web (Zhou et al., 2025) ✓ 106.50 263.90 CommonCrawl

Nemotron-CC-Math-3+ (Ours) ✓ 101.15 133.26 CommonCrawl

band, our setup targets a Jaccard similarity threshold of 0.8. Pairwise similarity is computed using
24-character n-grams, and LSH uses concurrent shuffling of five bands to identify duplicates.

2.4 DECONTAMINATION

The source documents used in Nemotron-CC-Math are from mostly pre-decontaminated datasets.
However, we follow a more thorough decontamination procedure as outlined in Yang et al. (2023).
We embed all the documents in Nemotron-CC-Math using the Qwen2.5B 32B model (Qwen et al.,
2025) as well as all the prompts and answers from our evaluation benchmarks: MMLU (Hendrycks
et al., 2021a), MMLU-Pro (Wang et al., 2024a), MATH (Hendrycks et al., 2021b), and
GSM8K (Cobbe et al., 2021). We remove all documents with a cosine similarity above 0.9 to
any benchmark prompt or answer, resulting in the removal of less than 0.002% of all documents.

3 EXPERIMENTS

Datasets We compare Nemotron-CC-Math to existing prior math pretraining datasets, including
Megamath, OWM, and FineMath. Table 1 summarizes the dataset statistics.

Experimental Setup Math and code abilities generally arise only after extensive training; follow-
ing Blakeney et al. (2024); Dubey et al. (2024); OLMo et al. (2024); Allal et al. (2025) to estimate
the quality of different math pretraining datasets, we run annealing ablations on a mid training
checkpoint of Nemotron-T 8B model (NVIDIA et al., 2025). The base model was pretrained on
9T tokens using a mixture of general-domain and math-focused corpora (see Appendix A.8 for a
detailed breakdown). In each ablation, the target math dataset is upweighted to constitute 30% of
the total data blend, while the weights of all other datasets are correspondingly downweighted to
make up the remaining 70%. This controlled adjustment isolates the contribution of the math data
while preserving overall blend composition (See Appendix A.4 for hyper-parameters). We consider
two controlled ablations:

• 100B Token Ablation: This setting targets compact, high-quality math datasets, typically
below 30B tokens. For each run, the mathematical portion of the blend is replaced with a
single candidate dataset-such as FineMath-4+, MegaMath-Pro, or OWM—enabling direct
comparison with Nemotron-CC-Math-4+. The modified blends are trained for 100B tokens
to evaluate performance under a consistent compute budget.

• 300B Token Ablation: To fairly assess larger math datasets, including FineMath-3+ and
MegaMath-Web, we apply the same replacement and proportional adjustment strategy but
extend the total annealing budget to 300B tokens. This configuration also tests whether
increased scale can offset dataset quality differences.
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Benchmarks We evaluate model performance across a diverse suite of benchmarks spanning
knowledge understanding, code, and mathematical reasoning tasks. Knowledge understanding is
assessed using MMLU datasets, including MMLU-Pro (Wang et al., 2024a), MMLU, and MMLU-
STEM (Hendrycks et al., 2021a) with results reported as exact match (EM) accuracy. Code gener-
ation quality is measured on four tasks-MBPP (Austin et al., 2021), and HumanEval (Chen et al.,
2021) and their EvalPlus variants, HumanEval+ and MBPP+ (Liu et al., 2023). For code tasks, fol-
lowing Guo et al. (2025), to improve the stability, we report the avg@20 which reports the average
accuracy from generating 20 samples for each prompt. To produce these samples, we apply nucleus
sampling with a temperature of 0.6 and a top-p value of 0.95. Mathematical reasoning is evalu-
ated on the GMS8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021b) benchmarks, with
greedy decoding and using Math-Verify4 for symbolic matching. We run evaluations of all models
ourselves using lm-evaluation-harness5.

3.1 PRETRAINING EXPERIMENTS RESULTS

Results Tables 2 compare Nemotron-T 8B models pretrained with different math datasets at 100B
and 300B tokens, respectively. Across all benchmarks, models using the curated Nemotron-CC-
Math consistently match or outperform competing datasets—including OWM, MegaMath, and
FineMath—on knowledge, code, and math tasks.

At 100B tokens, Nemotron-CC-Math-4+ achieves the top results in every math task-e.g., 40.6 on
MATH (+4.8 vs. FineMath-4+, +6.6 vs. MegaMath-Pro) and 76.27 on GMS8K (+0.3 vs. FineMath-
4+, +4.85 vs. OWM). It also leads most code benchmarks (e.g., 34.82 on HumanEval+, +2.3 vs.
OWM) and all knowledge tasks (e.g., 38.49 on MMLU-Pro, +2.1 vs. MegaMath-Pro).

At 300B tokens, Nemotron-CC-Math-3+ extends these gains-reaching 44.2 on MATH (+9.6 vs.
FineMath-3+, +12.6 vs. MegaMath-Web) and 80.06 on GMS8K (+0.6 vs. FineMath-3+, +3.6 vs.
OWM). Code scores also improve substantially, with 37.16 on HumanEval+ (+3.0 vs. FineMath-
3+) and 43.51 on MBPP+ (+4.6 vs. MegaMath-Web, +14.32 vs. Finemath-3+). Knowledge remains
best or near-best across MMLU variants, with a top score of 64.26 on MMLU-STEM.

Although we do not explicitly target the code domain, it is noteworthy that the curated Nemotron-
CC-Math datasets substantially improve code performance. Upon analysis, we find that Nemotron-
CC-Math-3+ and Nemotron-CC-Math-4+ contain approximately 4.3M and 1.44M samples with
code snippets6. In contrast to prior datasets, which often fail to capture code content, our curation
pipeline retains code snippets in full, preserving syntax and structure. We attribute the observed code
improvements to this incidental yet high-quality code data. Overall, results show that high-quality
curated math data in pretraining boosts performance in math reasoning, code, and general knowl-
edge. Comparing 100B and 300B token results, gains scale with more pretraining. This highlights
the value of high-quality math data for improving LLMs across specialized and general domains.

3.2 ABLATION ON MODEL CHOICE

To ablate the model choice for the task of boilerplate removal from rendered web pages, we sampled
7M documents and evaluated several instruction-tuned LLMs including DeepSeek-V3 (Liu et al.,
2024), Qwen2.5-32B/Instruct, Qwen2.5-72B/Instruct (Team, 2024), and Phi-4 across knowledge,
coding, and math benchmarks.

Table 3 presents the results. Surprisingly, despite its significantly smaller size (14B parameters),
Phi-4 performs competitively across all domains, often matching or exceeding the results of much
larger models such as DeepSeek-V3 (671B) and Qwen2.5-72B-Instruct (72B). In particular, Phi-4
achieves the best performance on math tasks (e.g., 79.98 EM on GMS8K and 40.6 EM on MATH)
and leads or matches the performance in several code-related benchmarks.

Given the marginal differences in performance and the substantial gap in computational cost, we
selected Phi-4 as the default model for all experiments in this paper. Our findings indicate that
the task of webpage boilerplate removal does not require excessively large models, and smaller
instruction-tuned models can yield efficient and effective results.

4https://github.com/huggingface/math-verify
5https://github.com/EleutherAI/lm-evaluation-harness.
6We filter out examples enclosed within triple backticks indicating a code block (e.g., “‘python ... “‘).
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Models Trained on 100B Tokens

Benchmark (Metric) OWM
MegaMath

(Pro)
FineMath

(4+)
Nemotron-CC-Math

(4+)

Knowledge
MMLU-Pro (EM) 35.49 36.41 36.74 38.49
MMLU (EM) 65.62 66.81 66.73 67.55
MMLU-Stem (EM) 58.83 60.86 61.62 62.67

Code

HumanEval+ (avg@20) 32.53 31.01 32.16 34.82
MBPP+ (avg@20) 43.76 46.03 28.88 45.11
MBPP (avg@20) 53.11 52.51 53.42 53.48
HumanEval (avg@20) 37.07 35.91 37.77 38.93

Math MATH (EM) 29.20 34.00 35.80 40.60
GMS8K (EM) 71.42 73.46 75.97 76.27

Models Trained on 300B Tokens

Benchmark (Metric) OWM
MegaMath

(Web)
FineMath

(3+)
Nemotron-CC-Math

(3+)

Knowledge
MMLU-Pro (EM) 35.00 36.33 39.57 39.32
MMLU (EM) 65.20 65.44 67.92 68.20
MMLU-Stem (EM) 59.20 59.88 62.29 64.26

Code

HumanEval+ (avg@20) 33.54 32.29 34.18 37.16
MBPP+(avg@20) 37.59 38.89 29.19 43.51
MBPP (avg@20) 52.22 53.05 57.57 56.15
HumanEval(avg@20) 38.32 36.34 37.80 40.30

Math MATH (EM) 34.20 31.60 34.60 44.20
GMS8K (EM) 76.42 78.24 79.45 80.06

Table 2: Evaluation results for models trained with different math datasets using either 100B or 300B
tokens. NEMOTRON-CC-MATH variants consistently outperform or obtain comparable results to
OpenWebMath, MegaMath, and FineMath baselines across knowledge, code, and math tasks. Math
performance improves with a longer token horizon, showing Nemotron-CC-Math continues to scale
effectively with increased training. Code results use average accuracy over 20 generations; all other
tasks use exact match (EM). Bold indicates the best result in each row.

3.3 LLM-AIDED QUALITY ASSESSMENT OF SCIENTIFIC CONTENT FIDELITY

We first performed an overlap analysis across OWM, MegaMath-Pro, FineMath, and our Nemotron-
CC-Math datasets, identifying 97,788 shared samples. As this joint subset is far too small for mean-
ingful side-by-side pretraining experiments, we use it as a rigorous, shared basis for comparative
quality assessment. To complement standard benchmark results, we conduct an LLM-aided qual-
ity assessment to directly measure how effectively Common-Crawl-derived mathematical datasets

Benchmark (Metric) DeepSeek-V3 Qwen2.5-32B Qwen2.5-72B Phi-4

Knowledge

MMLU-Pro (EM) 38.82 39.65 39.65 38.49
MMLU (EM) 67.68 67.01 67.73 67.54
MMLU-Stem (EM) 62.96 61.88 62.73 63.24

Code

HumanEval+ (avg@20) 28.54 28.35 29.63 30.40
MBPP+ (avg@20) 45.99 38.58 41.34 41.88
MBPP (avg@20) 53.91 53.83 54.09 55.39
HumanEval (avg@20) 32.10 31.92 35.21 34.09

Math MATH (EM) 36.60 38.80 38.60 40.60
GMS8K (EM) 75.51 74.00 73.92 79.98

Table 3: Model choice ablation. We compare DeepSeek-V3 (671B), Qwen2.5-32B/72B, and Phi-4
(14B) across benchmarks. Despite its smaller size, Phi-4 performs competitively—often leading in
math—demonstrating smaller models can efficiently clean webpages without losing performance.
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Figure 3: LLM-Aided quality assessment results comparing the cleaned webpage quality across four
datasets: Ours (Nemotron-CC-Math), OWM, FineMath, and MegaMath. The LLM judge scored
100 randomly sampled documents from each dataset on four dimensions. Our method achieves the
strongest performance in preserving mathematical expressions and code structure, with competitive
faithfulness and the highest readability. These results highlight the effectiveness of the Lynx →
LLM pipeline in retaining scientific structure while improving textual clarity.

preserve scientific content during extraction and cleaning. This assessment focuses on four critical
dimensions essential for high-quality mathematical pretraining corpora:

• Math Preservation (0–3 or N/A): Correctness and completeness of mathematical expres-
sions unified to LATEX.

• Code Preservation (0–3 or N/A): Structural and semantic integrity, syntax, and functional
behavior of preserved code blocks.

• Faithfulness (0–3): Preservation of core scientific content integrity without omission or
meaning alteration.

• Readability (0–3): Overall clarity, organization, coherence, and textual flow of the output
document.

Methodology We randomly sampled 100 webpages from the shared subset. We employed OpenAI
gpt-5.1 as an automated judge to assess the conversion quality. The judge was provided with the
original raw text (extracted via Lynx ) and the converted document from each dataset, guided by a
detailed scoring rubric and evaluation instructions (see Appendix A.6). We report the mean score
for each dataset across the 100 samples and four dimensions.

Results Figure 3 summarizes the assessment results. Nemotron-CC-Math demonstrates superior
fidelity in preserving the underlying scientific structure, achieving the highest scores in both Math
and Code Preservation:

• Math Preservation (2.55): Our score significantly surpasses all baselines (OWM: 2.28,
FineMath: 2.31, MegaMath: 1.85). This validates that our combined lynx-based extrac-
tion and LLM-driven LATEX normalization more reliably preserves mathematical content
than prior heuristic HTML-to-text pipelines.

• Code Preservation (3.00): Nemotron-CC-Math achieved the maximum score, substan-
tially outperforming all competitors (OWM/FineMath: 2.50, MegaMath: 1.75). This con-
firms the effectiveness of the lynx-based approach in retaining code formatting and in-
dentation, often lost by DOM-based extractors.

• Faithfulness (2.44) and Readability (2.90): Although our faithfulness score is marginally
lower than FineMath (2.63) and OWM (2.59)—a consequence of the intentional LLM-
based cleanup that may involve compressing or rewriting contextual details—Nemotron-
CC-Math achieved the highest readability. This demonstrates that our pipeline successfully
trades a minimal loss in literal text preservation for superior textual coherence and clarity.
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Domain #Documents
(M)

Document
%

mathhelpforum.com 8.54 8.44
jiskha.com 5.33 5.26
physicsforums.com 2.82 2.78
math.stackexchange.com 2.38 2.35
mathforum.org 2.38 2.35
openstudy.com 1.88 1.86
forums.wolfram.com 1.51 1.49
mathoverflow.net 1.33 1.32
nrich.maths.org 1.13 1.12
mathisfunforum.com 0.76 0.75
coursehero.com 0.76 0.75
brilliant.org 0.68 0.67
gmatclub.com 0.65 0.65
chegg.com 0.58 0.57
gradesaver.com 0.54 0.53
socratic.org 0.49 0.49
purplemath.com 0.45 0.44
physics.stackexchange.com 0.44 0.43
betterlesson.com 0.41 0.41
brainmass.com 0.40 0.40

Domain #Characters
(B)

Characters
%

mathhelpforum.com 17.11 3.67
jiskha.com 12.52 2.69
mathforum.org 8.96 1.92
physicsforums.com 8.19 1.76
math.stackexchange.com 6.96 1.49
mathoverflow.net 6.78 1.45
nrich.maths.org 6.24 1.34
scribd.com 4.47 0.96
educator.com 3.58 0.77
forums.wolfram.com 3.35 0.72
docplayer.net 3.20 0.69
en.wikipedia.org 3.07 0.66
openstudy.com 3.10 0.66
gmatclub.com 2.73 0.59
mathisfunforum.com 2.72 0.58
coursehero.com 2.31 0.50
slideplayer.com 2.06 0.44
hindawi.com 1.98 0.42
softmath.com 1.95 0.42
archive.org 1.96 0.42

Table 4: Comparison of Most Common Domains by Document (left) and Character Count (right).

In conclusion, these results confirm that Nemotron-CC-Math offers the optimal balance between
structural fidelity and textual clarity. By moving beyond brittle heuristic pipelines, our Lynx
→ LLM approach captures essential scientific content and structure while yielding coherent, high-
quality text, establishing Nemotron-CC-Math as a substantially higher-quality scientific corpus com-
pared to existing Common-Crawl-based math pretrainig datasets.

3.4 DATASET ANALYSIS

Data Composition We measured domain distribution by document and character count. Table 4
shows the top twenty domains by each metric. Similar to prior work (Paster et al., 2024), the most
common sources are discussion forums, Q&A sites, and educational resources. Overall, the dataset
spans 980,922 unique domains, with the top 100 domains accounting for 36.46% of characters and
43.22% of documents.

Topic Distribution To characterize the dataset, we randomly sampled 150,000 documents and
classified them into mathematics, physics, statistics, chemistry, economics, computer science, or
other using the Qwen3-30B-A3B-Instruct-2507 model (see Appendix A.2 for the prompt). Figure
1 shows the results. Most documents pertain to mathematics, with the remainder distributed across
the other scientific domains; approximately 4.12% fall outside these categories.

4 RELATED WORKS

High-quality math pretraining datasets are essential for improving LLM reasoning. OWM compiles
14.7B tokens from Common Crawl but relies on brittle heuristics and Resiliparse for HTML ren-
dering, often stripping or corrupting formulas and code. FineMath inherits these issues, building its
54B-token corpus using the OWM pipeline. Similarly, MegaMath faces similar challenges.

MathPile (Wang et al., 2024b) aggregates 9.5B tokens from sources including arXiv (85%), text-
books, and forums but much of the content remains in raw LATEX form, limiting usability for LLM
pretraining. InfiMM-Web-Math (Han et al., 2024) is 40B tokens multimodal dataset pairing im-
ages with math text. Proof-Pile (Azerbayev et al., 2023) is a 8.3B-token dataset collected from
various sources such as arXiv, formal math libraries, Wikipedia and Stack Exchange. Proof-Pile-
2 (Azerbayev et al., 2024) is a 55B-token dataset combining arXiv, OWM, and Algebraic-Stack
mathematical code. Additionally, auxiliary datasets include AMPS (Hendrycks et al., 2021b) with
Khan Academy problems and Mathematica-generated content, and NaturalProofs (Welleck et al.,
2021), covering theorems and proofs from ProofWiki and the Stacks project.

Proprietary datasets like WebMath (OpenAI) (Polu & Sutskever, 2020), MathMix (Lightman et al.,
2023), DeepSeekMath (Shao et al., 2024), and Minerva’s Math Web Pages (Lewkowycz et al., 2022)
advance math reasoning but lack public access, limiting transparency. We release Nemotron-CC-
Math openly to foster community progress.
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5 CONCLUSION

We present a scalable, domain-agnostic pipeline for extracting high-quality technical content from
Common Crawl, focusing here on the mathematical domain. By integrating robust HTML-to-text
conversion with LLM-based domain-aware cleaning, our approach addresses longstanding chal-
lenges in web-scale extraction of structured technical data.

Applied to the math domain, our pipeline produced Nemotron-CC-Math, whose 4+ subset is 5.5×
larger than the previous highest-quality math set, FineMath-4+. Pretraining on Nemotron-CC-Math
improves math reasoning (+12.6 MATH), code generation (+14.3 MBPP+), and general knowledge
(+5.1 MMLU-Stem), outperforming prior math datasets.

Importantly, the modular, domain-agnostic design enables application to other technical fields. As
LLMs advance, our pipeline offers a crucial tool for generating targeted, high-quality pretraining
data to drive model capabilities.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (LLM) solely to aid in polishing the writing of this paper, includ-
ing improving grammar, clarity, and flow. The LLM was not involved in the research ideation,
methodology, experiments, analysis, or interpretation of results.

A.2 PROMPT USED FOR TOPIC CLASSIFICATION

We employ the following prompt to classify documents into a predefined set of categories. Dur-
ing classification, the large language model (LLM) occasionally produces category labels that fall
outside the predefined taxonomy: mathematics, computer science, physics, statistics, economics,
chemistry, and other. To maintain consistency and reduce label fragmentation, any out-of-taxonomy
label is reassigned to the category other, ensuring a coherent and structured category distribution.

You are a topic classification assistant.
Given the following document text, identify its main topic from this list only:
− Mathematics
− Computer Science
− Physics
− Statistics
− Chemistry
− Economics
− Other

Choose the single most relevant category from the list.
Document:
{text}

Your output should be only 1 word. Finish your response right after category and do not add any
explanation.

A.3 QUALITATIVE EXAMPLES

This section presents qualitative comparisons among OpenWebMath (OWM), MegaMath-Pro,
FineMath-4+, and Nemotron-CC-Math-4+, highlighting differences in content quality.

A.3.1 DEGENERATE CASES IN MEGAMATH-PRO DATASET

We identified a subset of degenerate generations within the MegaMath-Pro dataset. Representative
examples are presented below to illustrate this phenomenon. Notably, these samples achieve unex-
pectedly high scores on both mathematical and language scores, raising concerns about the dataset’s
overall reliability for pretraining LLMs. For each example, we provide the associated metadata. The
excerpts shown correspond to the initial portion of each generation; in every case, the text extends
over several additional pages, repeating the final sentence displayed.

A.3.2 SIDE BY SIDE COMPARISON BETWEEN OUR DATASET AND PRIOR WORK

We observe that our pipeline not only keep the math equations but also keep the codes and their
formatting. We observe that previous pipeline in most cases are not keeping codes or lose their
formatting. This is specifically important for languages like python. To highlight this difference, we
provide two sets of examples demonstrating both code and mathematical equations. Notably, inline
equations are often removed in prior work, such as MegaMath.
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A degenerate sample from MegaMath-Pro

The Integral Calculator is able to calculate integrals online of the composition of common
functions, using integral properties, the different mechanisms of integration and calculation
online. The Integral Calculator is a simple online calculator that computes the definite and
indefinite integrals. The Integral Calculator will show you a graphical version of your input
while you type.
The Integral Calculator is a free online tool for calculating the value of a definite integral. The
Integral Calculator, part of the graphing calculator, helps with one variable calculus. The Inte-
gral Calculator supports definite and indefinite integrals (antiderivatives) as well as integrating
functions with many variables.
The Integral Calculator is able to calculate integrals online of the composition of common
functions, using integral properties, the different mechanisms of integration and calculation
online. The Integral Calculator is a simple online calculator that computes the definite and
indefinite integrals. The Integral Calculator will show you a graphical version of your input
while you type.
The Integral Calculator is a free online tool for calculating the value of a definite integral. The
Integral Calculator, part of the graphing calculator, helps with one variable calculus. The Inte-
gral Calculator supports definite and indefinite integrals (antiderivatives) as well as integrating
functions with many variables.
The Integral Calculator is able to calculate integrals online of the composition of common
functions, using integral properties, the different mechanisms of integration and calculation
online. The Integral Calculator is a simple online calculator that computes the definite and
indefinite integrals. The Integral Calculator will show you a graphical version of your input
while you type.
The Integral Calculator is a free online tool for calculating the value of a definite integral. The
Integral Calculator, part of the graphing calculator, helps with one variable calculus. The Inte-
gral Calculator supports definite and indefinite integrals (antiderivatives) as well as integrating
functions with many variables.
The Integral Calculator is able to calculate integrals online of the composition of common
functions, using integral properties, the different mechanisms of integration and calculation
online. The Integral Calculator is a simple online calculator that computes the definite and
indefinite integrals. The Integral Calculator will show you a graphical version of your input
while you type.
The Integral Calculator is a free online tool for calculating the value of a definite integral. The
Integral Calculator, part of the graphing calculator, helps with one variable calculus. The Inte-
gral Calculator supports definite and indefinite integrals (antiderivatives) as well as integrating
functions with many variables.
The Integral Calculator is able to calculate integrals online of the composition of common
functions, using integral properties, the different mechanisms of integration and calculation
online. The Integral Calculator is a simple online calculator that computes the definite and
indefinite integrals. The Integral Calculator will show you a graphical version of your input
while you type.
The Integral Calculator is a free online tool for calculating the value of a definite integral. The
Integral Calculator, part of the graphing calculator, helps with one variable calculus. The Inte-
gral Calculator supports definite and indefinite integrals (antiderivatives) as well as integrating
functions with many variables.
The Integral Calculator is able to calculate integrals online of the composition of common
functions, using integral properties, the different mechanisms of integration and calculation
online. The Integral Calculator is a simple online calculator that computes the definite and
indefinite integrals. The Integral Calculator will show you a graphical version of your input
while you type.
The Integral Calculator is a free online tool for calculating the value of a definite integral.

Meta:
URL: http://031c82c.netsolhost.com/yvcmr4/article.php?c08ee4=complex-integration-calculator
Math Score: 0.9996713399887085

Lang Score: 0.7893766164779663

WARC Filename: CC-MAIN-2022-21/segments/1652662531762.30/warc/CC-MAIN-20220520061824-00605.warc.gz
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A degenerate sample from MegaMath-Pro

The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.
The angle will be calculated and displayed. Use the law of cosines to find one of the angles.
The angle will be calculated and displayed. The angle will be calculated and displayed.

Meta:
URL: http://102theking.com/regina-ward-sbolp/how-to-find-an-angle-without-an-angle-finder-ebb037
Math Score: 0.9885214567184448

Lang Score: 0.8642399311065674

WARC Filename: CC-MAIN-2021-31/segments/1627046154796.71/warc/CC-MAIN-20210804045226-00255.warc.gz
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A degenerate sample from MegaMath-Pro

The equation of the axis of symmetry in a vertical parabola is equal to the x-coordinate of
the vertex. The axis of symmetry always passes through the vertex of the parabola. The x-
coordinate of the vertex is equal to the formula.
To learn about the axis of symmetry, watch this tutorial! The axis of symmetry is the line that
divides the graph into two perfect halves. The axis of symmetry is always a vertical line of the
form x = n, where n is a real number. A parabola is the graph of a quadratic function. Each
parabola has a line of symmetry. Also known as the axis of symmetry, this line divides the
parabola into mirror images. The line of symmetry is always a vertical line of the form x = n,
where n is a real number.
When graphing, we want to include certain special points in the graph. The y-intercept is the
point where the graph intersects the y-axis. The x-intercepts are the points where the graph
intersects the x-axis. The vertex is the point that defines the minimum or maximum of the
graph.
The axis of symmetry for an equation with x 2 is the vertical line that passes through the vertex.
The axis of symmetry is the line x = h, where (h, k) is the vertex of the parabola.
The axis of symmetry is the line that divides the graph into two perfect halves. The axis of
symmetry is always a vertical line of the form x = n, where n is a real number.
The equation of the axis of symmetry in a vertical parabola is equal to the x-coordinate of
the vertex. The axis of symmetry always passes through the vertex of the parabola. The x-
coordinate of the vertex is equal to the formula.
To learn about the axis of symmetry, watch this tutorial! The axis of symmetry is the line that
divides the graph into two perfect halves. The axis of symmetry is always a vertical line of the
form x = n, where n is a real number.
A parabola is the graph of a quadratic function. Each parabola has a line of symmetry. Also
known as the axis of symmetry, this line divides the parabola into mirror images. The line of
symmetry is always a vertical line of the form x = n, where n is a real number.
When graphing, we want to include certain special points in the graph. The y-intercept is the
point where the graph intersects the y-axis. The x-intercepts are the points where the graph
intersects the x-axis. The vertex is the point that defines the minimum or maximum of the
graph.
The axis of symmetry for an equation with x 2 is the vertical line that passes through the vertex.
The axis of symmetry is the line x = h, where (h, k) is the vertex of the parabola.
The axis of symmetry is the line that divides the graph into two perfect halves. The axis of
symmetry is always a vertical line of the form x = n, where n is a real number.
The equation of the axis of symmetry in a vertical parabola is equal to the x-coordinate of
the vertex. The axis of symmetry always passes through the vertex of the parabola. The x-
coordinate of the vertex is equal to the formula.
To learn about the axis of symmetry, watch this tutorial! The axis of symmetry is the line that
divides the graph into two perfect halves. The axis of symmetry is always a vertical line of the
form x = n, where n is a real number.
A parabola is the graph of a quadratic function. Each parabola has a line of symmetry. Also
known as the axis of symmetry, this line divides the parabola into mirror images. The line of
symmetry is always a vertical line of the form x = n, where n is a real number.
When graphing, we want to include certain special points in the graph. The y-intercept is the
point where the graph intersects the y-axis. The x-intercepts are the points where the graph
intersects the x-axis. The vertex is the point that defines the minimum or maximum of the
graph.
The axis of symmetry for an equation with x 2 is the vertical line that passes through the vertex.
The axis of symmetry is the line x = h, where (h, k) is the vertex of the parabola.
The axis of symmetry is the line that divides the graph into two perfect halves. The axis of
symmetry is always a vertical line of the form x = n, where n is a real number. The equa-
tion of the axis of symmetry in a vertical parabola is equal to the x-coordinate of the vertex.
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Detailed explanation of a smart solution to an algo problem beating 99.9% submission

Written on January 7th, 2018 by @10000TB
[attachments article algorithm col slide lamparas−colgantes−algorithm−slide−03.jpg]

This post is about a coding problem and why the solution I pasted down below is smart.
Problem:

Given two sparse matrices A and B, return the result of AB.

You may assume that A’s column number is equal to B’s row number.

Example:

A = [
[ 1, 0, 0],
[−1, 0, 3]

]

B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]

]

| 1 0 0 | | 7 0 0 | | 7 0 0 |
AB = | −1 0 3 | x | 0 0 0 | = | −7 0 3 |

| 0 0 1 |

If it is of your interest, I would recommend you take a few minutes to think about how you would
approach this problem!

The main focus of this post is to 1)explain in detail why the provided solution is smart and 2)make
some improvements/tweaks in the code of the smart solution to show you which part is really
essential, 3) also i will briefly mention why Sparse Matrix Manipulation can help make some
improvements on top of the smart solution.

a) Originally, the normal way to calculate the multiplication of two metrics A, and B is as follow: We
take the the all values from the first line of A, and all values from the first column of B, and
multiply the corresponding values and sum them up, the final sum is the value for the location of
first column and first row in final result matrix. Similarly, the value at [ i ][ j ] of result matrix C,
which is C[ i ][ j ] is calculated as:

C[ i ][ j ] = A[ i ][0]B[0][j] + A[i][1]B[1][j] + A[i][2]B[2][j] + ... A[i][K]B[K][j]
(which is the sum of each multiplication of corresponding K values from row i of A and K values from

column j of B)
The Key is: if we calculate it this way, we finishing calculating the final value for the result matrix at

once
Then a brute force solution is as follow:
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public class Solution {
public int[][] multiply(int[][] A, int[][] B) {

int m = A.length, n = A[0].length, nB = B[0].length;
int[][] C = new int[m][nB];

for(int i = 0; i < m; i++) {
for (int j = 0; j < nB; j++) {

for(int k = 0; k < n; k++) {
C[i][j] += A[i][k] * B[k][j];

}
}

}
return C;

}
}

b) The smart solution: the key part of smart solution is that: it does not calculate the final result at
once, and it takes each value from A, and calculate and partial sum and accumulate it into the
final spot:

For example, for each value A[i][k], if it is not zero, it will be used at most nB times ( n is B[0].
length ), which can be illustrated as follow: Generally for the following equation:

C[i][j] = A[i][0]B[0][j] + A[i][1]B[1][j] + A[i][2]B[2][j] + ... A[i][k]B[k][j] .... A[i][K]B[K][j]
j can be from 0 to nB, if we write all of them down, it will like following:
For i from 0 to nB:
C[ i ][ 0 ]=A[ i ][0]B[0][0] + A[i][1]B[1][0] + A[i][2]B[2][0] + ... A[i][k]B[k][0] .... A[i][K]B[K

][0]
C[ i ][ 1 ]=A[ i ][0]B[0][1] + A[i][1]B[1][1] + A[i][2]B[2][1] + ... A[i][k]B[k][0] .... A[i][K]B[K

][1]
...
C[ i ][ nB ]=A[ i ][0]B[0][nB] + A[i][1]B[1][nB] + A[i][2]B[2][nB] + ... A[i][k]B[k][nB] .... A[i][K

]*B[K][nB]
As you can see from above: for the same value A[i][k] from the first matrix, it will be used at most

nB times if A[i][k] is not zero. And the smart solution is taking advantage of that!!!, the smart
solution can be described as:

For each value A[i][k] in matrix A, if it is not zero, we calculate A[i][k] * B[k][j] and accumulate it
into C[ i ][ j ] (Key part: the C[ i ][ j ] by now is not the final value in the result matrix !!
Remember, in the brute force solution, the final value of C[i][j], takes sum of all multiplication
values of K corresponding values from A and B? here C[ i ][ j ] is only sum of some
multiplication values, NOT ALL until the program is done)

BY NOW, it is very clear that, if the value A[ i ][ k ] from matrix is zero, we skip a For−loop−
calculation, which is a loop iterating nB times, and this is the key part of why the smart solution
is smart!!!

The smart solution code is as follow:
public class Solution {

public int[][] multiply(int[][] A, int[][] B) {
int m = A.length, n = A[0].length, nB = B[0].length;
int[][] C = new int[m][nB];

for(int i = 0; i < m; i++) {
for(int k = 0; k < n; k++) {

if (A[i][k] != 0) {
for (int j = 0; j < nB; j++) {

if (B[k][j] != 0) C[i][j] += A[i][k] * B[k][j];
}

}
}

}
return C;

}
}

(Credit:@yavinci; I am having a different version of the solution, so I am directly referencing the
original version as a reference to demonstrate how mine is different).
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Based on the discussion above, the inner checking (if (B[k][j] != 0)) is actually not necessary,
because whether or not we have that check, we still iterate nB times, ( since the operation C[i][j
] += A[i][k] * B[k][j]; inside the if−check is O(1) time)

So the smart solution can also be written as follow by removing the check ( which is my version ):
public class Solution {

public int[][] multiply(int[][] A, int[][] B) {
int m = A.length, n = A[0].length, nB = B[0].length;
int[][] C = new int[m][nB];

for(int i = 0; i < m; i++) {
for(int k = 0; k < n; k++) {

if (A[i][k] != 0) {
for (int j = 0; j < nB; j++) {

if (B[k][j] != 0) C[i][j] += A[i][k] * B[k][j];
}

}
}

}
return C;

}
}

c) ”Sparse matrix manipultion” helps, if we compress the first sparse matrix into rows of lists( in
each row list, it contains ( value, index ) pair ), we actually don’t need to go over all values in a
row in matrix A when are calculating the final result matrix. But Overall, it does not help
improve run time algorithmatically!!
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A sample from Nemotron-CC-Math

# 10000 Terabyte

## Detailed Explanation of a Smart Solution to an Algorithm Problem

*Written on January 7th, 2018 by @10000TB*

This post is about a coding problem and why the solution provided is smart. The problem is as follows:

**Problem:** Given two sparse matrices \( A \) and \( B \), return the result of \( AB \). You may
assume that \( A \)’s column number is equal to \( B \)’s row number.

**Example:**

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
−1 & 0 & 3
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
7 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
AB = \begin{bmatrix}
1 & 0 & 0 \\
−1 & 0 & 3
\end{bmatrix}
\times
\begin{bmatrix}
7 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
7 & 0 & 0 \\
−7 & 0 & 3
\end{bmatrix}
\]

If you are interested, consider how you would approach this problem!

The main focus of this post is to:
1. Explain in detail why the provided solution is smart.
2. Make some improvements/tweaks in the code of the smart solution to show which part is really

essential.
3. Briefly mention why Sparse Matrix Manipulation can help make improvements.

### a) Brute Force Solution

The normal way to calculate the multiplication of two matrices \( A \) and \( B \) is as follows: We
take all values from the first row of \( A \) and all values from the first column of \( B \), multiply
the corresponding values and sum them up. The final sum is the value for the location of the first

row and first column in the final result matrix \( C \). Similarly, the value at \( C[i][j] \) is
calculated as:
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\[
C[i][j] = A[i][0]B[0][j] + A[i][1]B[1][j] + A[i][2]B[2][j] + \ldots + A[i][K]B[K][j]
\]

The brute force solution is as follows:

‘‘‘java
public class Solution {

public int[][] multiply(int[][] A, int[][] B) {
int m = A.length, n = A[0].length, nB = B[0].length;
int[][] C = new int[m][nB];

for (int i = 0; i < m; i++) {
for (int j = 0; j < nB; j++) {

for (int k = 0; k < n; k++) {
C[i][j] += A[i][k] * B[k][j];

}
}

}
return C;

}
}
‘‘‘

### b) The Smart Solution

The key part of the smart solution is that it does not calculate the final result at once. Instead, it takes
each value from \( A \), calculates a partial sum, and accumulates it into the final spot.

For example, for each value \( A[i][k] \), if it is not zero, it will be used at most \( nB \) times (\( n
\) is \( B[0].length \)). Generally, for the following equation:

\[
C[i][j] = A[i][0]B[0][j] + A[i][1]B[1][j] + A[i][2]B[2][j] + \ldots + A[i][k]B[k][j] + \ldots + A[i][K]

B[K][j]
\]

\( j \) can be from 0 to \( nB \). If we write all of them down, it will look like this:

For \( i \) from 0 to \( nB \):

\[
C[i][0] = A[i][0]B[0][0] + A[i][1]B[1][0] + A[i][2]B[2][0] + \ldots + A[i][k]B[k][0] + \ldots + A[i][

K]B[K][0]
\]

\[
C[i][1] = A[i][0]B[0][1] + A[i][1]B[1][1] + A[i][2]B[2][1] + \ldots + A[i][k]B[k][1] + \ldots + A[i][

K]B[K][1]
\]

\[
\ldots
\]

\[
C[i][nB] = A[i][0]B[0][nB] + A[i][1]B[1][nB] + A[i][2]B[2][nB] + \ldots + A[i][k]B[k][nB] + \

ldots + A[i][K]B[K][nB]
\]
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As you can see, for the same value \( A[i][k] \) from the first matrix, it will be used at most \( nB \)
times if \( A[i][k] \) is not zero. The smart solution takes advantage of this by calculating \( A[
i][k] \times B[k][j] \) and accumulating it into \( C[i][j] \). Note that \( C[i][j] \) is not the
final value in the result matrix at this point. In the brute force solution, the final value of \( C[i][
j] \) is the sum of all multiplication values of corresponding values from \( A \) and \( B \);
here, \( C[i][j] \) is only the sum of some multiplication values, not all, until the program is
done.

The smart solution code is as follows:

‘‘‘java
public class Solution {

public int[][] multiply(int[][] A, int[][] B) {
int m = A.length, n = A[0].length, nB = B[0].length;
int[][] C = new int[m][nB];

for (int i = 0; i < m; i++) {
for (int k = 0; k < n; k++) {

if (A[i][k] != 0) {
for (int j = 0; j < nB; j++) {

if (B[k][j] != 0) C[i][j] += A[i][k] * B[k][j];
}

}
}

}
return C;

}
}
‘‘‘

(Credit: @yavinci; I am having a different version of the solution, so I am directly referencing the
original version as a reference to demonstrate how mine is different.)

Based on the discussion above, the inner checking \( (if (B[k][j] \neq 0)) \) is actually not necessary
because whether or not we have that check, we still iterate \( nB \) times. The operation \( C[i
][j] += A[i][k] \times B[k][j] \) inside the if−check is \( O(1) \) time. So the smart solution
can also be written as follows by removing the check (which is my version):

‘‘‘java
public class Solution {

public int[][] multiply(int[][] A, int[][] B) {
int m = A.length, n = A[0].length, nB = B[0].length;
int[][] C = new int[m][nB];

for (int i = 0; i < m; i++) {
for (int k = 0; k < n; k++) {

if (A[i][k] != 0) {
for (int j = 0; j < nB; j++) {

C[i][j] += A[i][k] * B[k][j];
}

}
}

}
return C;

}
}
‘‘‘

### c) Sparse Matrix Manipulation

Sparse matrix manipulation helps if we compress the first sparse matrix into rows of lists (in each
row list, it contains (value, index) pairs). We actually don’t need to go over all values in a row
in matrix \( A \) when calculating the final result matrix. However, overall, it does not help
improve runtime algorithmically.
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A sample from OpenWebMath

Detailed explanation of a smart solution to an algo problem beating 99.9% submission

This post is about a coding problem and why the solution I pasted down below is smart.

Problem:

Given two sparse matrices A and B, return the result of AB.

You may assume that A’s column number is equal to B’s row number.

Example:

A = [
[ 1, 0, 0],
[−1, 0, 3]
]

B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]
]

| 1 0 0 | | 7 0 0 | | 7 0 0 |
AB = | −1 0 3 | x | 0 0 0 | = | −7 0 3 |
| 0 0 1 |

If it is of your interest, I would recommend you take a few minutes to think about how you would
approach this problem!

The main focus of this post is to 1)explain in detail why the provided solution is smart and 2)make some
improvements/tweaks in the code of the smart solution to show you which part is really essential,

3) also i will briefly mention why Sparse Matrix Manipulation can help make some improvements
on top of the smart solution.

a) Originally, the normal way to calculate the multiplication of two metrics A, and B is as follow: We
take the the all values from the first line of A, and all values from the first column of B, and
multiply the corresponding values and sum them up, the final sum is the value for the location of
first column and first row in final result matrix. Similarly, the value at [ i ][ j ] of result matrix C,
which is C[ i ][ j ] is calculated as:

C[ i ][ j ] = A[ i ][0]B[0][j] + A[i][1]B[1][j] + A[i][2]B[2][j] + ... A[i][K]B[K][j]
(which is the sum of each multiplication of corresponding K values from row i of A and K values from

column j of B)
The Key is: if we calculate it this way, we finishing calculating the final value for the result matrix at

once

Then a brute force solution is as follow:

b) The smart solution: the key part of smart solution is that: it does not calculate the final result at once,
and it takes each value from A, and calculate and partial sum and accumulate it into the final spot:

For example, for each value A[i][k], if it is not zero, it will be used at most nB times ( n is B[0].length ),
which can be illustrated as follow: Generally for the following equation:

C[i][j] = A[i][0]B[0][j] + A[i][1]B[1][j] + A[i][2]B[2][j] + ... A[i][k]B[k][j] .... A[i][K]B[K][j]

j can be from 0 to nB, if we write all of them down, it will like following:

For i from 0 to nB:
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C[ i ][ 0 ]=A[ i ][0]
B[0][0] + A[i][1]B[1][0] + A[i][2]B[2][0] + ... A[i][k]B[k][0] .... A[i][K]B[K][0]
C[ i ][ 1 ]=A[ i ][0]
B[0][1] + A[i][1]B[1][1] + A[i][2]B[2][1] + ... A[i][k]B[k][0] .... A[i][K]B[K][1]

C[ i ][ nB ]=A[ i ][0]
B[0][nB] + A[i][1]B[1][nB] + A[i][2]B[2][nB] + ... A[i][k]B[k][nB] .... A[i][K]*B[K][nB]

As you can see from above: for the same value A[i][k] from the first matrix, it will be used at most
nB times if A[i][k] is not zero. And the smart solution is taking advantage of that!!!, the smart
solution can be described as:

For each value A[i][k] in matrix A, if it is not zero, we calculate A[i][k] * B[k][j] and accumulate it
into C[ i ][ j ] (Key part: the C[ i ][ j ] by now is not the final value in the result matrix !!
Remember, in the brute force solution, the final value of C[i][j], takes sum of all multiplication
values of K corresponding values from A and B? here C[ i ][ j ] is only sum of some
multiplication values, NOT ALL until the program is done)

BY NOW, it is very clear that, if the value A[ i ][ k ] from matrix is zero, we skip a For−loop−
calculation, which is a loop iterating nB times, and this is the key part of why the smart solution
is smart!!!

The smart solution code is as follow:

(Credit:@yavinci; I am having a different version of the solution, so I am directly referencing the
original version as a reference to demonstrate how mine is different).

Based on the discussion above, the inner checking (if (B[k][j] != 0)) is actually not necessary,
because whether or not we have that check, we still iterate nB times, ( since the operation C[i][j
] += A[i][k] * B[k][j]; inside the if−check is O(1) time)

So the smart solution can also be written as follow by removing the check ( which is my version ):

c) ”Sparse matrix manipultion” helps, if we compress the first sparse matrix into rows of lists( in
each row list, it contains ( value, index ) pair ), we actually don’t need to go over all values in a
row in matrix A when are calculating the final result matrix. But Overall, it does not help
improve run time algorithmatically!!
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A sample from MegaMath-Pro

# Detailed Explanation of a Smart Solution to a Matrix Multiplication Problem

The problem involves multiplying two sparse matrices A and B. We are given that A’s column number
is equal to B’s row number.

## Problem Statement

Given two sparse matrices A and B, return the result of AB.

Example:
A = [
[ 1, 0, 0],
[−1, 0, 3]
]
B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]
]
The result AB is calculated as follows:
AB = [
[ 7, 0, 0 ],
[ −7, 0, 3 ]
]

## Normal Approach to Matrix Multiplication

The normal way to calculate the multiplication of two matrices A and B is to take the values from the
first line of A and the first column of B, multiply the corresponding values, and sum them up. The
final sum is the value for the location of the first column and first row in the final result matrix.

C[i][j] = A[i][0]*B[0][j] + A[i][1]*B[1][j] + A[i][2]*B[2][j] + ... + A[i][K]*B[K][j]

## Brute Force Solution

The brute force solution involves calculating the final result at once.

## Smart Solution

The smart solution does not calculate the final result at once. Instead, it takes each value from A,
calculates a partial sum, and accumulates it into the final spot.

For each value A[i][k], if it is not zero, it will be used at most nB times (where n is B[0].length). The
smart solution can be described as follows:

For each value A[i][k] in matrix A, if it is not zero, calculate A[i][k] * B[k][j] and accumulate it into C[i
][j].

The key part of the smart solution is that it skips a For−loop calculation if the value A[i][k] from matrix
A is zero. This is the key part of why the smart solution is smart.

## Smart Solution Code

The smart solution code can be written as follows:

## Improvement Using Sparse Matrix Manipulation

Sparse matrix manipulation can help improve the solution by compressing the first sparse matrix into
rows of lists (in each row list, it contains a (value, index) pair). This allows us to avoid going over
all values in a row in matrix A when calculating the final result matrix. However, this does not
improve the runtime algorithmatically.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

## Key Takeaways

* The smart solution does not calculate the final result at once.
* The smart solution skips a For−loop calculation if the value A[i][k] from matrix A is zero.
* Sparse matrix manipulation can help improve the solution, but it does not improve the runtime

algorithmatically.

## Example Multiple Choice Question

What is the key advantage of the smart solution?

A) It calculates the final result at once.
B) It skips a For−loop calculation if the value A[i][k] from matrix A is zero.
C) It uses sparse matrix manipulation to improve runtime.
D) It has a higher time complexity than the brute force solution.

Answer: B) It skips a For−loop calculation if the value A[i][k] from matrix A is zero.
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A sample document from Finemath-4+

# Detailed explanation of a smart solution to an algo problem beating 99.9% submission

This post is about a coding problem and why the solution I pasted down below is smart.

Problem:

Given two sparse matrices A and B, return the result of AB.

You may assume that A’s column number is equal to B’s row number.

Example:

A = [
[ 1, 0, 0],
[−1, 0, 3]
]

B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]
]

| 1 0 0 | | 7 0 0 | | 7 0 0 |
AB = | −1 0 3 | x | 0 0 0 | = | −7 0 3 |
| 0 0 1 |

If it is of your interest, I would recommend you take a few minutes to think about how you would
approach this problem!

The main focus of this post is to 1)explain in detail why the provided solution is smart and 2)make some
improvements/tweaks in the code of the smart solution to show you which part is really essential,

3) also i will briefly mention why Sparse Matrix Manipulation can help make some improvements
on top of the smart solution.

a) Originally, the normal way to calculate the multiplication of two metrics A, and B is as follow: We
take the the all values from the first line of A, and all values from the first column of B, and
multiply the corresponding values and sum them up, the final sum is the value for the location of
first column and first row in final result matrix. Similarly, the value at [ i ][ j ] of result matrix C,
which is C[ i ][ j ] is calculated as:

C[ i ][ j ] = A[ i ][0]B[0][j] + A[i][1]B[1][j] + A[i][2]B[2][j] + ... A[i][K]B[K][j]
(which is the sum of each multiplication of corresponding K values from row i of A and K values from

column j of B)
The Key is: if we calculate it this way, we finishing calculating the final value for the result matrix at

once

Then a brute force solution is as follow:

b) The smart solution: the key part of smart solution is that: it does not calculate the final result at once,
and it takes each value from A, and calculate and partial sum and accumulate it into the final spot:

For example, for each value A[i][k], if it is not zero, it will be used at most nB times ( n is B[0].length ),
which can be illustrated as follow: Generally for the following equation:

C[i][j] = A[i][0]B[0][j] + A[i][1]B[1][j] + A[i][2]B[2][j] + ... A[i][k]B[k][j] .... A[i][K]B[K][j]

j can be from 0 to nB, if we write all of them down, it will like following:

For i from 0 to nB:
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C[ i ][ 0 ]=A[ i ][0]
B[0][0] + A[i][1]B[1][0] + A[i][2]B[2][0] + ... A[i][k]B[k][0] .... A[i][K]B[K][0]
C[ i ][ 1 ]=A[ i ][0]
B[0][1] + A[i][1]B[1][1] + A[i][2]B[2][1] + ... A[i][k]B[k][0] .... A[i][K]B[K][1]

C[ i ][ nB ]=A[ i ][0]
B[0][nB] + A[i][1]B[1][nB] + A[i][2]B[2][nB] + ... A[i][k]B[k][nB] .... A[i][K]*B[K][nB]

As you can see from above: for the same value A[i][k] from the first matrix, it will be used at most
nB times if A[i][k] is not zero. And the smart solution is taking advantage of that!!!, the smart
solution can be described as:

For each value A[i][k] in matrix A, if it is not zero, we calculate A[i][k] * B[k][j] and accumulate it
into C[ i ][ j ] (Key part: the C[ i ][ j ] by now is not the final value in the result matrix !!
Remember, in the brute force solution, the final value of C[i][j], takes sum of all multiplication
values of K corresponding values from A and B? here C[ i ][ j ] is only sum of some
multiplication values, NOT ALL until the program is done)

BY NOW, it is very clear that, if the value A[ i ][ k ] from matrix is zero, we skip a For−loop−
calculation, which is a loop iterating nB times, and this is the key part of why the smart solution
is smart!!!

The smart solution code is as follow:

(Credit:@yavinci; I am having a different version of the solution, so I am directly referencing the
original version as a reference to demonstrate how mine is different).

Based on the discussion above, the inner checking (if (B[k][j] != 0)) is actually not necessary,
because whether or not we have that check, we still iterate nB times, ( since the operation C[i][j
] += A[i][k] * B[k][j]; inside the if−check is O(1) time)

So the smart solution can also be written as follow by removing the check ( which is my version ):

c) ”Sparse matrix manipultion” helps, if we compress the first sparse matrix into rows of lists( in
each row list, it contains ( value, index ) pair ), we actually don’t need to go over all values in a
row in matrix A when are calculating the final result matrix. But Overall, it does not help
improve run time algorithmatically!!
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A sample document from MegaMath-Web

### Example 1: Calculating Heat Transfer Through Conduction: Conduction Rate Through an Ice Box
A Styrofoam ice box has a total area of 0.950 m20.950 m2 and walls with an average thickness of 2.50

cm. The box contains ice, water, and canned beverages atThe inside of the box is kept cold by
melting ice. How much ice melts in one day if the ice box is kept in the trunk of a car at

**Strategy**
This question involves both heat for a phase change (melting of ice) and the transfer of heat by

conduction. To find the amount of ice melted, we must find the net heat transferred. This value can
be obtained by calculating the rate of heat transfer by conduction and multiplying by time.

**Solution**
− Identify the knowns.
− Identify the unknowns. We need to solve for the mass of the ice,We will also need to solve for the net

heat transferred to melt the ice,
− Determine which equations to use. The rate of heat transfer by conduction is given by
[latex]\boldsymbol{=}[/latex]
− The heat is used to melt the ice:
− Insert the known values:
[latex]\boldsymbol{=}[/latex][latex]\boldsymbol{=\:13.3\textbf{ J/s}}.[/latex]
− Multiply the rate of heat transfer by the time ():
− Set this equal to the heat transferred to melt the ice:Solve for the mass
[latex size=”2”]\boldsymbol{\frac{Q}{L {\textbf{f}}}}[/latex][latex size=”2”]\boldsymbol{\frac

{1.15\times10ˆ6\textbf{ J}}{334\times10ˆ3\textbf{ J/kg}}}[/latex]

**Discussion**
The result of 3.44 kg, or about 7.6 lbs, seems about right, based on experience. You might expect to use

about a 4 kg (7−10 lb) bag of ice per day. A little extra ice is required if you add any warm food or
beverages.

Inspecting the conductivities in Table 3 shows that Styrofoam is a very poor conductor and thus a good
insulator. Other good insulators include fiberglass, wool, and goose−down feathers. Like
Styrofoam, these all incorporate many small pockets of air, taking advantage of air’s poor thermal
conductivity.

Substance |
Thermal conductivity k (J/s.m.°C) |
−−−|−−−|
Silver | 420 |
Copper | 390 |
Gold | 318 |
Aluminum | 220 |
Steel iron | 80 |
Steel (stainless) | 14 |
Ice | 2.2 |
Glass (average) | 0.84 |
Concrete brick | 0.84 |
Water | 0.6 |
Fatty tissue (without blood) | 0.2 |
Asbestos | 0.16 |
Plasterboard | 0.16 |
Wood | 0.08−0.16 |
Snow (dry) | 0.10 |
Cork | 0.042 |
Glass wool | 0.042 |
Wool | 0.04 |
Down feathers | 0.025 |
Air | 0.023 |
Styrofoam | 0.010 |
Table 3. Thermal Conductivities of Common Substancesˆ{1} |

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

A combination of material and thickness is often manipulated to develop good insulators−the smaller
the conductivityand the larger the thicknessthe better. The ratio ofwill thus be large for a good
insulator. The ratiois called thefactor. The rate of conductive heat transfer is inversely
proportional toThe larger the value ofthe better the insulation.factors are most commonly
quoted for household insulation, refrigerators, and the like−unfortunately, it is still in non−
metric units of ftˆ{2}.°F.h/Btu, although the unit usually goes unstated (1 British thermal unit [
Btu] is the amount of energy needed to change the temperature of 1.0 lb of water by 1.0 °F). A
couple of representative values are anfactor of 11 for 3.5−in−thick fiberglass batts (pieces) of
insulation and anfactor of 19 for 6.5−in−thick fiberglass batts. Walls are usually insulated with
3.5−in batts, while ceilings are usually insulated with 6.5−in batts. In cold climates, thicker
batts may be used in ceilings and walls.

Note that in Table 3, the best thermal conductors−silver, copper, gold, and aluminum−are also the
best electrical conductors, again related to the density of free electrons in them. Cooking
utensils are typically made from good conductors.

### Example 2: Calculating the Temperature Difference Maintained by a Heat Transfer: Conduction
Through an Aluminum Pan

Water is boiling in an aluminum pan placed on an electrical element on a stovetop. The sauce pan has
a bottom that is 0.800 cm thick and 14.0 cm in diameter. The boiling water is evaporating at
the rate of 1.00 g/s. What is the temperature difference across (through) the bottom of the pan?

**Strategy**

Conduction through the aluminum is the primary method of heat transfer here, and so we use the
equation for the rate of heat transfer and solve for the temperature difference {.}

**Solution**

− Identify the knowns and convert them to the SI units.
The thickness of the pan,the area of the pan,and the thermal conductivity,

− Calculate the necessary heat of vaporization of 1 g of water:
− Calculate the rate of heat transfer given that 1 g of water melts in one second:
− Insert the knowns into the equation and solve for the temperature difference:
[latex size=”2”]\boldsymbol{\frac{Q}{t}\left(\frac{d}{kA}\right)}[/latex][latex size=”2”]\

boldsymbol{\frac{8.00\times10ˆ{−3}\textbf{ m}}{(220\textbf{ J/s}\cdotp\textbf{m}\
cdotpˆ{\circ}\textbf{C})(1.54\times10ˆ{−2}\textbf{ m}ˆ2)}}[/latex]

**Discussion**

The value for the heat transferis typical for an electric stove. This value gives a remarkably small
temperature difference between the stove and the pan. Consider that the stove burner is red hot
while the inside of the pan is nearly because of its contact with boiling water. This contact
effectively cools the bottom of the pan in spite of its proximity to the very hot stove burner.
Aluminum is such a good conductor that it only takes this small temperature difference to
produce a heat transfer of 2.26 kW into the pan.

Conduction is caused by the random motion of atoms and molecules. As such, it is an ineffective
mechanism for heat transport over macroscopic distances and short time distances. Take, for
example, the temperature on the Earth, which would be unbearably cold during the night and
extremely hot during the day if heat transport in the atmosphere was to be only through
conduction. In another example, car engines would overheat unless there was a more efficient
way to remove excess heat from the pistons.

### Check Your Understanding

**1:** How does the rate of heat transfer by conduction change when all spatial dimensions are
doubled?

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

# Summary

− Heat conduction is the transfer of heat between two objects in direct contact with each other.
− The rate of heat transfer(energy per unit time) is proportional to the temperature differenceand the

contact areaand inversely proportional to the distancebetween the objects:
[latex]\boldsymbol{=}[/latex]
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A sample document from Nemotron-CC-Math

### Example 1: Calculating Heat Transfer Through Conduction: Conduction Rate Through an Ice Box

A Styrofoam ice box has a total area of 0.950 m2 and walls with an average thickness of 2.50 cm. The
box contains ice, water, and canned beverages at \(0ˆ{\circ}\textbf{C}\). The inside of the box is
kept cold by melting ice. How much ice melts in one day if the ice box is kept in the trunk of a car
at \(35.0ˆ{\circ}\textbf{C}\)?

**Strategy**
This question involves both heat for a phase change (melting of ice) and the transfer of heat by

conduction. To find the amount of ice melted, we must find the net heat transferred. This value can
be obtained by calculating the rate of heat transfer by conduction and multiplying by time.

**Solution**
1. Identify the knowns.
\[
A = 0.950\,\text{m}ˆ2; \, d = 2.50\,\text{cm} = 0.0250\,\text{m}; \, T 1 = 0ˆ{\circ}\text{C}; \,

T 2 = 35.0ˆ{\circ}\text{C}; \, t = 1\,\text{day} = 24\,\text{hours} = 86,400\,\text{s}.
\]

2. Identify the unknowns. We need to solve for the mass of the ice, \( m \). We will also need to solve
for the net heat transferred to melt the ice, \( Q \).

3. Determine which equations to use. The rate of heat transfer by conduction is given by
\[
\frac{Q}{t} = \frac{kA(T 2−T 1)}{d}.
\]

4. The heat is used to melt the ice: \( Q = mL {\textbf{f}} \).

5. Insert the known values:
\[
\frac{Q}{t} = \frac{(0.010\,\text{J/s}\cdot\text{m}\cdotˆ{\circ}\text{C})(0.950\,\text{m}ˆ2)

(35.0ˆ{\circ}\text{C}−0ˆ{\circ}\text{C})}{0.0250\,\text{m}} = 13.3\,\text{J/s}.
\]

6. Multiply the rate of heat transfer by the time (\(1\,\text{day} = 86,400\,\text{s}\)):
\[
Q = (Q/t)t = (13.3\,\text{J/s})(86,400\,\text{s}) = 1.15 \times 10ˆ6\,\text{J}.
\]

7. Set this equal to the heat transferred to melt the ice: \( Q = mL {\textbf{f}} \). Solve for the mass \(
m \):

\[
m = \frac{Q}{L {\textbf{f}}} = \frac{1.15 \times 10ˆ6\,\text{J}}{334 \times 10ˆ3\,\text{J/kg}}

= 3.44\,\text{kg}.
\]

**Discussion**
The result of 3.44 kg, or about 7.6 lbs, seems about right, based on experience. You might expect to use

about a 4 kg (7−10 lb) bag of ice per day. A little extra ice is required if you add any warm food or
beverages.

Inspecting the conductivities in Table 3 shows that Styrofoam is a very poor conductor and thus a good
insulator. Other good insulators include fiberglass, wool, and goose−down feathers. Like
Styrofoam, these all incorporate many small pockets of air, taking advantage of air’s poor thermal
conductivity.

**Substance Thermal Conductivity**

| Substance | Thermal conductivity \(k\) (J/s·m·°C) |
|−−−−−−−−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
| Silver | 420 |
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| Copper | 390 |
| Gold | 318 |
| Aluminum | 220 |
| Steel iron | 80 |
| Steel (stainless) | 14 |
| Ice | 2.2 |
| Glass (average) | 0.84 |
| Concrete brick | 0.84 |
| Water | 0.6 |
| Fatty tissue (without blood) | 0.2 |
| Asbestos | 0.16 |
| Plasterboard | 0.16 |
| Wood | 0.08−0.16 |
| Snow (dry) | 0.10 |
| Cork | 0.042 |
| Glass wool | 0.042 |
| Wool | 0.04 |
| Down feathers | 0.025 |
| Air | 0.023 |
| Styrofoam | 0.010 |

*Table 3. Thermal Conductivities of Common Substances*

A combination of material and thickness is often manipulated to develop good insulators−the smaller
the conductivity \( k \) and the larger the thickness \( d \), the better. The ratio of \( d/k \)
will thus be large for a good insulator. The ratio \( d/k \) is called the \( R \) factor. The rate of
conductive heat transfer is inversely proportional to \( R \). The larger the value of \( R \), the
better the insulation. \( R \) factors are most commonly quoted for household insulation,

refrigerators, and the like−unfortunately, it is still in non−metric units of ft2.°F.h/Btu, although
the unit usually goes unstated (1 British thermal unit [Btu] is the amount of energy needed to
change the temperature of 1.0 lb of water by 1.0 °F). A couple of representative values are an \(
R \) factor of 11 for 3.5−in−thick fiberglass batts (pieces) of insulation and an \( R \) factor of
19 for 6.5−in−thick fiberglass batts. Walls are usually insulated with 3.5−in batts, while

ceilings are usually insulated with 6.5−in batts. In cold climates, thicker batts may be used in
ceilings and walls.

*Figure 4.* The fiberglass batt is used for insulation of walls and ceilings to prevent heat transfer
between the inside of the building and the outside environment.

Note that in Table 3, the best thermal conductors−silver, copper, gold, and aluminum−are also the
best electrical conductors, again related to the density of free electrons in them. Cooking
utensils are typically made from good conductors.

### Example 2: Calculating the Temperature Difference Maintained by a Heat Transfer: Conduction
Through an Aluminum Pan

Water is boiling in an aluminum pan placed on an electrical element on a stovetop. The saucepan has
a bottom that is 0.800 cm thick and 14.0 cm in diameter. The boiling water is evaporating at the
rate of 1.00 g/s. What is the temperature difference across (through) the bottom of the pan?

**Strategy**
Conduction through the aluminum is the primary method of heat transfer here, and so we use the

equation for the rate of heat transfer and solve for the temperature difference.

\[
T 2−T 1 = \frac{Q}{t}\left(\frac{d}{kA}\right).
\]

**Solution**
1. Identify the knowns and convert them to the SI units.

− The thickness of the pan, \( d = 0.800\,\text{cm} = 8.0 \times 10ˆ{−3}\,\text{m} \),
− The area of the pan, \( A = \pi(0.14/2)ˆ2\,\text{m}ˆ2 = 1.54 \times 10ˆ{−2}\,\text{m}ˆ2 \),
− The thermal conductivity, \( k = 220\,\text{J/s}\cdot\text{m}\cdotˆ{\circ}\text{C} \).
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2. Calculate the necessary heat of vaporization of 1 g of water:
\[
Q = mL {\textbf{v}} = (1.00 \times 10ˆ{−3}\,\text{kg})(2256 \times 10ˆ3\,\text{J/kg}) =

2256\,\text{J}.
\]

3. Calculate the rate of heat transfer given that 1 g of water evaporates in one second:
\[
Q/t = 2256\,\text{J/s or }2.26\,\text{kW}.
\]

4. Insert the knowns into the equation and solve for the temperature difference:
\[

T 2−T 1 = \frac{Q}{t}\left(\frac{d}{kA}\right) = (2256\,\text{J/s})\frac{8.00 \times
10ˆ{−3}\,\text{m}}{(220\,\text{J/s}\cdot\text{m}\cdotˆ{\circ}\text{C})(1.54 \times
10ˆ{−2}\,\text{m}ˆ2)} = 5.33ˆ{\circ}\text{C}.

\]

**Discussion**

The value for the heat transfer \( Q/t = 2.26\,\text{kW or }2256\,\text{J/s} \) is typical for an
electric stove. This value gives a remarkably small temperature difference between the stove
and the pan. Consider that the stove burner is red hot while the inside of the pan is nearly
\(100ˆ{\circ}\text{C}\) because of its contact with boiling water. This contact effectively
cools the bottom of the pan in spite of its proximity to the very hot stove burner. Aluminum is
such a good conductor that it only takes this small temperature difference to produce a heat
transfer of 2.26 kW into the pan.

Conduction is caused by the random motion of atoms and molecules. As such, it is an ineffective
mechanism for heat transport over macroscopic distances and short time distances. Take, for
example, the temperature on the Earth, which would be unbearably cold during the night and
extremely hot during the day if heat transport in the atmosphere was to be only through
conduction. In another example, car engines would overheat unless there was a more efficient
way to remove excess heat from the pistons.

### Check Your Understanding

1: How does the rate of heat transfer by conduction change when all spatial dimensions are doubled?

### Summary

− Heat conduction is the transfer of heat between two objects in direct contact with each other.
− The rate of heat transfer \( Q/t \) (energy per unit time) is proportional to the temperature

difference \( T 2−T 1 \) and the contact area \( A \) and inversely proportional to the distance
\( d \) between the objects:

\[
\frac{Q}{t} = \frac{kA(T 2−T 1)}{d}.
\]
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A sample document from OpenWebMath

### Example 1: Calculating Heat Transfer Through Conduction: Conduction Rate Through an Ice Box

A Styrofoam ice box has a total area of 0.950 m20.950 m2 and walls with an average thickness of 2.50
cm. The box contains ice, water, and canned beverages atThe inside of the box is kept cold by
melting ice. How much ice melts in one day if the ice box is kept in the trunk of a car at

Strategy
This question involves both heat for a phase change (melting of ice) and the transfer of heat by

conduction. To find the amount of ice melted, we must find the net heat transferred. This value can
be obtained by calculating the rate of heat transfer by conduction and multiplying by time.

Solution
1. Identify the knowns.
2. Identify the unknowns. We need to solve for the mass of the ice,We will also need to solve for the net

heat transferred to melt the ice,
3. Determine which equations to use. The rate of heat transfer by conduction is given by
$\boldsymbol{=}$
4. The heat is used to melt the ice:
5. Insert the known values:
$\boldsymbol{=}$$\boldsymbol{=\:13.3\textbf{ J/s}}.$
6. Multiply the rate of heat transfer by the time ():
7. Set this equal to the heat transferred to melt the ice:Solve for the mass
[latex size=”2”]\boldsymbol{\frac{Q}{L {\textbf{f}}}}[/latex][latex size=”2”]\boldsymbol{\frac

{1.15\times10ˆ6\textbf{ J}}{334\times10ˆ3\textbf{ J/kg}}}[/latex]

Discussion

The result of 3.44 kg, or about 7.6 lbs, seems about right, based on experience. You might expect to use
about a 4 kg (7−10 lb) bag of ice per day. A little extra ice is required if you add any warm food or
beverages.

Inspecting the conductivities in Table 3 shows that Styrofoam is a very poor conductor and thus a good
insulator. Other good insulators include fiberglass, wool, and goose−down feathers. Like
Styrofoam, these all incorporate many small pockets of air, taking advantage of air’s poor thermal
conductivity.

Substance Thermal conductivity
k (J/s.m.°C)
Silver 420
Copper 390
Gold 318
Aluminum 220
Steel iron 80
Steel (stainless) 14
Ice 2.2
Glass (average) 0.84
Concrete brick 0.84
Water 0.6
Fatty tissue (without blood) 0.2
Asbestos 0.16
Plasterboard 0.16
Wood 0.08−0.16
Snow (dry) 0.10
Cork 0.042
Glass wool 0.042
Wool 0.04
Down feathers 0.025
Air 0.023
Styrofoam 0.010
Table 3. Thermal Conductivities of Common Substances1

A combination of material and thickness is often manipulated to develop good insulators−the smaller the
conductivityand the larger the thicknessthe better. The ratio ofwill thus be large for a good insulator. The
ratiois called thefactor. The rate of conductive heat transfer is inversely proportional to
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The larger the value ofthe better the insulation.factors are most commonly quoted for household
insulation, refrigerators, and the like−unfortunately, it is still in non−metric units of ft2.°F.h/Btu
, although the unit usually goes unstated (1 British thermal unit [Btu] is the amount of energy
needed to change the temperature of 1.0 lb of water by 1.0 °F). A couple of representative
values are anfactor of 11 for 3.5−in−thick fiberglass batts (pieces) of insulation and anfactor of
19 for 6.5−in−thick fiberglass batts. Walls are usually insulated with 3.5−in batts, while ceilings
are usually insulated with 6.5−in batts. In cold climates, thicker batts may be used in ceilings
and walls.

Note that in Table 3, the best thermal conductors−silver, copper, gold, and aluminum−are also the
best electrical conductors, again related to the density of free electrons in them. Cooking
utensils are typically made from good conductors.

### Example 2: Calculating the Temperature Difference Maintained by a Heat Transfer: Conduction
Through an Aluminum Pan

Water is boiling in an aluminum pan placed on an electrical element on a stovetop. The sauce pan has
a bottom that is 0.800 cm thick and 14.0 cm in diameter. The boiling water is evaporating at
the rate of 1.00 g/s. What is the temperature difference across (through) the bottom of the pan?

Strategy
Conduction through the aluminum is the primary method of heat transfer here, and so we use the

equation for the rate of heat transfer and solve for the temperature difference.
[latex size=”2”]\boldsymbol{\frac{Q}{t}\left(\frac{d}{kA}\right)}.[/latex]

Solution
1. Identify the knowns and convert them to the SI units.
The thickness of the pan,the area of the pan,and the thermal conductivity,
2. Calculate the necessary heat of vaporization of 1 g of water:
3. Calculate the rate of heat transfer given that 1 g of water melts in one second:
4. Insert the knowns into the equation and solve for the temperature difference:
[latex size=”2”]\boldsymbol{\frac{Q}{t}\left(\frac{d}{kA}\right)}[/latex][latex size=”2”]\

boldsymbol{\frac{8.00\times10ˆ{−3}\textbf{ m}}{(220\textbf{ J/s}\cdotp\textbf{m}\
cdotpˆ{\circ}\textbf{C})(1.54\times10ˆ{−2}\textbf{ m}ˆ2)}}[/latex]

Discussion
The value for the heat transferis typical for an electric stove. This value gives a remarkably small

temperature difference between the stove and the pan. Consider that the stove burner is red hot
while the inside of the pan is nearly because of its contact with boiling water. This contact
effectively cools the bottom of the pan in spite of its proximity to the very hot stove burner.
Aluminum is such a good conductor that it only takes this small temperature difference to
produce a heat transfer of 2.26 kW into the pan.

Conduction is caused by the random motion of atoms and molecules. As such, it is an ineffective
mechanism for heat transport over macroscopic distances and short time distances. Take, for
example, the temperature on the Earth, which would be unbearably cold during the night and
extremely hot during the day if heat transport in the atmosphere was to be only through
conduction. In another example, car engines would overheat unless there was a more efficient
way to remove excess heat from the pistons.

1: How does the rate of heat transfer by conduction change when all spatial dimensions are doubled?

# Summary
− Heat conduction is the transfer of heat between two objects in direct contact with each other.
− The rate of heat transfer(energy per unit time) is proportional to the temperature differenceand the

contact areaand inversely proportional to the distancebetween the objects:
$\boldsymbol{=}$
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A sample document lynx output

Example 1: Calculating Heat Transfer Through Conduction: Conduction Rate Through an Ice Box

A Styrofoam ice box has a total area of 0.950 m20.950 m2 and walls with an average thickness of 2.50
cm. The box contains ice, water, and canned beverages at \boldsymbol{0ˆ{\circ}\textbf{C}}.
The inside of the box is kept cold by melting ice. How much ice melts in one day if the ice box is
kept in the trunk of a car at \boldsymbol{35.0ˆ{\circ}\textbf{C}}?

Strategy
This question involves both heat for a phase change (melting of ice) and the transfer of heat by

conduction. To find the amount of ice melted, we must find the net heat transferred. This value can
be obtained by calculating the rate of heat transfer by conduction and multiplying by time.

Solution
1. Identify the knowns.
\boldsymbol{A=0.950\textbf{ m}ˆ2;\:d=2.50\textbf{ cm}=0.0250\textbf{ m};\:T 1=0ˆ{\circ}\
textbf{C};\:T 2=35.0ˆ{\circ}\textbf{C},\:t=1\textbf{ day}=24\textbf{ hours}=86,400\textbf{
s}}.

2. Identify the unknowns. We need to solve for the mass of the ice, \boldsymbol{m}. We will also
need to solve for the net heat transferred to melt the ice, \boldsymbol{Q}.

3. Determine which equations to use. The rate of heat transfer by conduction is given by
\boldsymbol{\frac{Q}{t}} [latex]\boldsymbol{=}[/latex] \boldsymbol{\frac{kA(T 2−T 1)}{d
}}.

4. The heat is used to melt the ice: \boldsymbol{Q=mL {\textbf{f}}}.
5. Insert the known values:
\boldsymbol{\frac{Q}{t}} [latex]\boldsymbol{=}[/latex] \boldsymbol{\frac{(0.010\textbf{ J/s
}\cdotp\textbf{m}\cdotpˆ{\circ}\textbf{C})(0.950\textbf{ m}ˆ2)(35.0ˆ{\circ}\textbf{C
}−0ˆ{\circ}\textbf{C})}{0.0250\textbf{ m}}} [latex]\boldsymbol{=\:13.3\textbf{ J/s}}.[/latex
]

6. Multiply the rate of heat transfer by the time ( \boldsymbol{1\textbf{ day }=\:86,400\textbf{ s}}
):

\boldsymbol{Q=(Q/t)t=(13.3\textbf{ J/s})(86,400\textbf{ s})=1.15\times10ˆ6\textbf{ J}}.
7. Set this equal to the heat transferred to melt the ice: \boldsymbol{Q=mL {\textbf{f}}}. Solve for

the mass \boldsymbol{m}:
\boldsymbol{m\:=} [latex size=”2”]\boldsymbol{\frac{Q}{L {\textbf{f}}}}[/latex] \
boldsymbol{=} [latex size=”2”]\boldsymbol{\frac{1.15\times10ˆ6\textbf{ J}}{334\times10ˆ3\
textbf{ J/kg}}}[/latex] \boldsymbol{=\:3.44\textbf{ kg}}.

Discussion
The result of 3.44 kg, or about 7.6 lbs, seems about right, based on experience. You might expect to

use about a 4 kg (7−10 lb) bag of ice per day. A little extra ice is required if you add any warm
food or beverages.

Inspecting the conductivities in Table 3 shows that Styrofoam is a very poor conductor and thus a good
insulator. Other good insulators include fiberglass, wool, and goose−down feathers. Like

Styrofoam, these all incorporate many small pockets of air, taking advantage of air’s poor thermal
conductivity.

Substance Thermal conductivity
k (J/s·m·°C)
Silver 420
Copper 390
Gold 318
Aluminum 220
Steel iron 80
Steel (stainless) 14
Ice 2.2
Glass (average) 0.84
Concrete brick 0.84
Water 0.6
Fatty tissue (without blood) 0.2
Asbestos 0.16
Plasterboard 0.16
Wood 0.08−0.16
Snow (dry) 0.10
Cork 0.042
Glass wool 0.042 41
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Wool 0.04
Down feathers 0.025
Air 0.023
Styrofoam 0.010

Table 3. Thermal Conductivities of Common Substancesˆ1

A combination of material and thickness is often manipulated to develop good insulators−the
smaller the conductivity \boldsymbol{k} and the larger the thickness \boldsymbol{d}, the
better. The ratio of \boldsymbol{d/k} will thus be large for a good insulator. The ratio \
boldsymbol{d/k} is called the \boldsymbol{R} factor. The rate of conductive heat transfer is
inversely proportional to \boldsymbol{R}. The larger the value of \boldsymbol{R}, the better
the insulation. \boldsymbol{R} factors are most commonly quoted for household insulation,
refrigerators, and the like−unfortunately, it is still in non−metric units of ftˆ2.°F.h/Btu, although
the unit usually goes unstated (1 British thermal unit [Btu] is the amount of energy needed to
change the temperature of 1.0 lb of water by 1.0 °F). A couple of representative values are an \
boldsymbol{R} factor of 11 for 3.5−in−thick fiberglass batts (pieces) of insulation and an \
boldsymbol{R} factor of 19 for 6.5−in−thick fiberglass batts. Walls are usually insulated with
3.5−in batts, while ceilings are usually insulated with 6.5−in batts. In cold climates, thicker
batts may be used in ceilings and walls.

The figure shows two thick rectangular pieces of fiberglass batt lying one upon the other.

Figure 4. The fiberglass batt is used for insulation of walls and ceilings to prevent heat transfer
between the inside of the building and the outside environment.

Note that in Table 3, the best thermal conductors−silver, copper, gold, and aluminum−are also the
best electrical conductors, again related to the density of free electrons in them. Cooking
utensils are typically made from good conductors.

Example 2: Calculating the Temperature Difference Maintained by a Heat Transfer: Conduction
Through an Aluminum Pan

Water is boiling in an aluminum pan placed on an electrical element on a stovetop. The sauce pan
has a bottom that is 0.800 cm thick and 14.0 cm in diameter. The boiling water is evaporating at
the rate of 1.00 g/s. What is the temperature difference across (through) the bottom of the pan?

Strategy
Conduction through the aluminum is the primary method of heat transfer here, and so we use the

equation for the rate of heat transfer and solve for the temperature difference[.]
\boldsymbol{T 2−T 1\:=} [latex size=”2”]\boldsymbol{\frac{Q}{t}\left(\frac{d}{kA}\right)

}.[/latex]

Solution
1. Identify the knowns and convert them to the SI units.

The thickness of the pan, \boldsymbol{d=0.800\textbf{ cm}=8.0\times10ˆ{−3}\textbf{ m}},
the area of the pan, \boldsymbol{A=\pi(0.14/2)ˆ2\textbf{ m}ˆ2=1.54\times10ˆ{−2}\textbf{
m}ˆ2}, and the thermal conductivity, \boldsymbol{k=220\textbf{ J/s}\cdotp\textbf{m}\
cdotpˆ{\circ}\textbf{C}}.

2. Calculate the necessary heat of vaporization of 1 g of water:
\boldsymbol{Q=mL {\textbf{v}}=(1.00\times10ˆ{−3}\textbf{ kg})(2256\times10ˆ3\textbf{
J/kg})=2256\textbf{ J}}.

3. Calculate the rate of heat transfer given that 1 g of water melts in one second:
\boldsymbol{Q/t\:=\:2256\textbf{ J/s or }2.26\textbf{ kW}}.

4. Insert the knowns into the equation and solve for the temperature difference:
\boldsymbol{T 2−T 1\:=} [latex size=”2”]\boldsymbol{\frac{Q}{t}\left(\frac{d}{kA}\
right)}[/latex] \boldsymbol{=(2256\textbf{ J/s})} [latex size=”2”]\boldsymbol{\frac{8.00\
times10ˆ{−3}\textbf{ m}}{(220\textbf{ J/s}\cdotp\textbf{m}\cdotpˆ{\circ}\textbf{C})
(1.54\times10ˆ{−2}\textbf{ m}ˆ2)}}[/latex] \boldsymbol{=\:5.33ˆ{\circ}\textbf{C}}.

Discussion
The value for the heat transfer \boldsymbol{Q/t\:=\:2.26\textbf{ kW or }2256\textbf{ J/s}} is

typical for an electric stove. This value gives a remarkably small temperature difference
between the stove and the pan. Consider that the stove burner is red hot while the inside of the
pan is nearly \boldsymbol{100ˆ{\circ}\textbf{C}} because of its contact with boiling water.
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This contact effectively cools the bottom of the pan in spite of its proximity to the very hot stove
burner. Aluminum is such a good conductor that it only takes this small temperature difference
to produce a heat transfer of 2.26 kW into the pan.

Conduction is caused by the random motion of atoms and molecules. As such, it is an ineffective
mechanism for heat transport over macroscopic distances and short time distances. Take, for
example, the temperature on the Earth, which would be unbearably cold during the night and
extremely hot during the day if heat transport in the atmosphere was to be only through
conduction. In another example, car engines would overheat unless there was a more efficient
way to remove excess heat from the pistons.

Check Your Understanding

1: How does the rate of heat transfer by conduction change when all spatial dimensions are doubled
?

Summary

* Heat conduction is the transfer of heat between two objects in direct contact with each other.
* The rate of heat transfer \boldsymbol{Q/t} (energy per unit time) is proportional to the

temperature difference \boldsymbol{T 2−T 1} and the contact area \boldsymbol{A} and
inversely proportional to the distance \boldsymbol{d} between the objects:
\boldsymbol{\frac{Q}{t}} [latex]\boldsymbol{=}[/latex] \boldsymbol{\frac{kA(T 2−T 1}{
d}}.
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A.4 HYPER-PARAMETERS

For phase 1 training, we trained a transformer model on a token horizon of 9 trillion tokens. We used
a sequence length of 8192 and global batch size of 768 (6291456 tokens per batch). we used a peak
learning rate of 6 × 10−4, and warmup over 8.3 billion toknes; we used cosine learning rate decay
with a minimum value equal to 1% of the peak value, and weight decay of 0.1. We use AdamW
optimizer (Loshchilov & Hutter, 2017) with parameters β1 = 0.9 and β2 = 0.95, and a gradient
clipping threshold of 1.0.

We pre-train our model using Megatron-LM7; we rely on Transformer Engine8 for FP8 support. We
use 8-way tensor model parallelism (Shoeybi et al., 2020) with sequence parallelism (Korthikanti
et al., 2022) for additional memory savings, and 768-way data parallelism with optimizer state dis-
tributed over the data-parallel replicas (Rajbhandari et al., 2020). We trained the Nemotron-T 8B
transformer model on 2048 NVIDIA H100 GPUs.

In Phase 2 training, annealing experiments were conducted with total token counts of 100 billion
and 300 billion. We employed a linear learning rate decay schedule with no warmup phase, using
an initial learning rate of 2× 10−4. Optimization was performed using the AdamW optimizer with
β1 = 0.9, β2 = 0.95, and a gradient clipping threshold set to 1.0 to ensure stability during training.

A.5 PROMPT FOR HTML DUMP CLEANUP AND MATH NORMALIZATION

During the LLM-based cleanup stage, we employ the following prompt template to remove boil-
erplate content from raw HTML dumps. Specifically, we utilize the Phi-4 model to identify and

7https://github.com/nvidia/megatron-lm.
8https://github.com/nvidia/transformerEngine.
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extract meaningful content while discarding irrelevant HTML artifacts. Additionally, it also guide
the model to unify math representation in latex. The template used is as follows:

You are given raw text extracted from an HTML page. Process this text to extract only the
meaningful content, following these strict guidelines:

1. Retain only the main content and its associated titles. Remove all boilerplate,
navigation menus, sidebars, footers, headers, related articles, spam comments, in-
teractive elements, and advertisements.

2. Preserve all mathematical content-this includes theorems, formulas, proofs, def-
initions, explanations, and any mathematical references.

3. Retain relevant comments and references if they contribute meaningfully to the
understanding of the content (e.g., clarifications, citations, or author notes). Discard
irrelevant or low-quality comments.

4. Format all mathematical expressions using LaTeX enclosed in single dollar
signs on each side ($), not [], (), or other variants.

5. Do NOT answer or respond to any questions or prompts that appear in the
document. If a question is part of the content, keep it verbatim, but do not generate
an answer or explanation.

6. Do not remove or discard any part of the code. If any code blocks contain errors
or formatting issues, make minimal changes to make them runnable, but otherwise
leave them exactly as they are.

7. Fix typos, grammatical mistakes, and unclear phrasing. Rewrite sentences
when necessary to improve clarity, coherence, and flow, while preserving the
meaning and style of the original content.

8. Ensure the output is clean, well-structured, and natural. Format titles, sections,
equations, and tables to produce high-quality, publication-ready text.

9. If the page contains no meaningful content (e.g., it’s entirely boilerplate, menus, or
ads), return exactly: ”NO USEFUL CONTENT”

Text:{text}
Task: Start directly with the processed text. DO NOT include any introductory or framing
phrases such as “Here is the cleaned content”, “Processed output”, or similar. End your
response after the cleaned content.

A.6 PROMPT FOR SCIENTIFIC CONTENT ASSESSMENT

For clarity and reproducibility, we provide the full prompt and scoring rubric utilized for the LLM-
aided quality assessment described in § 3.3. This detailed prompt defines the exact criteria used by
the automated judge (gpt-5.1) for scoring math preservation, code preservation, faithfulness, and
readability, ensuring a standardized and objective quality comparison across all evaluated datasets.
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You are an expert evaluator. Your primary task is to compare the ORIGINAL DOCUMENT
against the CONVERTED DOCUMENT to assess how well the core scientific content is
preserved.

The converted document’s goal is to retain only the core scientific content while uni-
fying math to the target LaTeX format.

Acceptable Conversion Outcomes (No Penalty)
The CONVERTED DOCUMENT’s goal is Content Cleanup and Math Unification into
Latex. You must NOT penalize the converted document for the following:

• Removal of boilerplate, footers, navigation, references, bibliographies, etc.
• Paraphrasing: Rewording of main content or headings, provided the original

meaning is preserved.

Criteria for Penalization
• Penalties are applied only when the integrity of the core scientific content is com-

promised:
• Essential Content Missing: Core scientific text, math, or code is missing.
• Meaning Altered: Changes to text, math, or code that fundamentally change the

meaning or alter program behavior.

You must evaluate 4 dimensions using this scoring scale:
• 0 = Not preserved / severely corrupted
• 1 = Partially preserved / major issues
• 2 = Mostly preserved / minor issues
• 3 = Perfectly preserved
• N/A = Category not applicable because the ORIGINAL contains no content of that

type

Definitions:

• Math Preservation (0–3 or “N/A”): Evaluate the correctness AND retaining of
the math equations and expressions. Note that original math in web can appear in
various forms such as:

– MathJax / KaTeX
– MathML
– SVG/PNG equation images
– Inline symbolic expressions in text

All math must be converted to proper LaTeX in the CONVERTED DOCUMENT
and retained with its meaning intact.

Do NOT penalize:
– harmless formatting differences (whitespace, line breaks, equivalent LaTeX

forms, etc)
– conversion from any math format (MathML, KaTeX, images, etc.) into LaTeX

Penalize when:
– math equations are missing, incomplete, replaced with prose, or altered in

meaning.
– MathML, MathJax, or other math formats are not retained or not converted to

LaTeX
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• Non-standard LaTeX or unnecessary commands are used that could misrepresent
the math (e.g., \displaystyle in inline math)

• IMPORTANT: If the original contains multiple equations and the converted docu-
ment keeps only one, or removes mathematical structure, the score MUST be 1 or
lower.

• Score 0 only when math equations are stripped, or severely corrupted.

• Code Preservation (0–3 or “N/A”): correctness, completeness, syntax, indenta-
tion, parsability, and structural fidelity.

– Minor whitespace changes or equivalent code rewrites are NOT penalized
when functionality is preserved.

– Penalize only when missing main code content or changes that alter pro-
gram behavior or functionality.

• Faithfulness (0–3): This dimension assesses the overall integrity and inclusion of
the core scientific content.

– Penalize Only If:
* Main content is missing.
* Meaning is altered (e.g., hallucinations, fabricated steps, meaning-

changing rewrites).
* Scientific integrity is compromised.

– No Penalty For:
* Missing boilerplate, navigation, references, bibliographies, etc.
* Correcting corrupted math or code fragments to their intended mean-

ing.
* Minor changes in non-essential sections.
* Paraphrased headings/content when scientific integrity is preserved.

• Readability (0–3): This score evaluates the overall clarity, organization, and co-
herence of the converted document, including:

– Logical structure and organization
– Clear, descriptive section headings
– Proper paragraphing and spacing
– Smooth flow and coherence
– Absence of jarring formatting or fragmentation
– Whether the text reads like a clean, human-written explanation
– Scoring guide:

* 3 = Highly readable (well-structured, coherent, clearly sectioned; polished
and easy to follow)

* 2 = Mostly readable (minor structural or coherence flaws)
* 1 = Hard to read (poor structure, missing context, unclear or disorganized)
* 0 = Very poor readability (fragmented, confusing, incoherent, minimal

structure)
– Readability does NOT affect correctness of content, but reflects presenta-

tion quality.
Rules:

• Use “N/A” ONLY if the ORIGINAL document contains no math or no code, re-
spectively.

• Output must be STRICT JSON. No commentary before or after.
• The ”notes” list should contain only meaningful issues, written as short natural

language strings. Do NOT include trivial formatting changes or minor spacing
differences.
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• Include meaningful notes. If no meaningful issues, output [].
• Do NOT escape JSON with backticks.

Here is an example of the EXACT output format you must produce:

{
”math”: 3,
”code”: ”N/A”,
”faithfulness”: 3,
”readability”: 3,
”notes”: [

”Missing the ’Related Work’ section from the original document”,
”Paragraph order slightly altered in Section 2”

]
}

Here are the documents to evaluate:

ORIGINAL DOCUMENT:

{original text}

CONVERTED DOCUMENT:

{text}

A.7 NEMOTRON-CC-MATH CORPUS STATISTICS BEFORE QUALITY FILTERING

To ensure full transparency of our data construction pipeline, we report the scale of the raw corpus
prior to applying the quality-based filtering and deduplication steps described in §2.2 and §2.3,
respectively. Table 5 summarizes the number of documents and total tokens associated with each
quality score assigned during the initial Common Crawl extraction stage. Following the practice
established by the FineMath dataset, documents assigned scores of 1 and 2—which correspond to
the lowest-quality portions of the corpus—were removed before subsequent processing.

Score # Documents # Tokens (B)
Score 1 35,171,234 78.71
Score 2 68,120,438 125.96
Score 3 64,171,676 92.99
Score 4 48,312,962 56.79
Score 5 227,127 0.29

Table 5: Corpus statistics prior to quality filtering.

A.8 DATA MIXTURES USED DURING PRE-TRAINING EXPERIMENTS.

To evaluate the value of our data, we setup a pretraining experiment. We used the same mixture as
used in NVIDIA et al. (2025). The data mixture spans eight broad content categories: web crawl,
mathematics, Wikipedia, code, academic publications, high quality crawl subset (Crawl++), multi-
lingual corpora, and synthetic instruction-style datasets. The Crawl++ category aggregates curated
web-derived sources such as OpenWebText, BigScience, and Reddit. The multilingual component
covers nine languages: Spanish, German, French, Italian, Portuguese, Chinese, Japanese, Korean,
and Russian. To construct the mixtures, NVIDIA et al. (2025) applied uniform weighting within
datasets of the same quality tier, and they assigned greater weight to datasets of higher quality.

Following NVIDIA et al. (2025), we adopt a phased pretraining strategy. Phase 1 emphasizes data
diversity by leveraging a broad and heterogeneous mixture of sources. In contrast, Phases 2 pri-
marily focus on higher-quality datasets, such as Wikipedia and academic corpora, to refine model
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(a) Phase 1 data mixture.
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(b) Phase 2 data mixture.

Figure 4: Data mixtures for each phase of pretraining experiments presented in Table 2.

performance. The data mixtures used in each phase 1 and phase 2 are shown in Figure 4. We begin
by pretraining a Nemotron-T 8B transformer model using Phase 1 mixture for a total of 9 trillion
tokens. To assess the value of each of the math datasets, we then conduct a series of annealing
experiments using the phase 2 mixture as a base. In each variant, we substitute the math dataset
with a target dataset under evaluation, assigning it a fixed weight of 30%. The remaining 70% of
the mixture is rebalanced proportionally among the other data sources to maintain a consistent total.
Table 2 show the results for model trained on an additional 100 and 300 billion token budget.
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