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Abstract

Self-attention and position embedding are two001
key modules in transformer-based Large Lan-002
guage Models (LLMs). However, the poten-003
tial relationship between them is far from well004
studied, especially for long context window ex-005
tending. In fact, anomalous behaviors harming006
long context extrapolation exist between Ro-007
tary Position Embedding (RoPE) and vanilla008
self-attention unveiled by our work. To address009
this issue, we propose a novel attention mecha-010
nism, CoCA (Collinear Constrained Attention).011
Specifically, we enforce a collinear constraint012
between Q and K to seamlessly integrate RoPE013
and self-attention. While only adding minimal014
computational and spatial complexity, this in-015
tegration significantly enhances long context016
window extrapolation ability. We provide an017
optimized implementation, making it a drop-018
in replacement for any existing transformer-019
based models. Extensive experiments show020
that CoCA performs extraordinarily well in ex-021
tending context windows. A CoCA-based GPT022
model, trained with a context length of 512,023
can seamlessly extend the context window up024
to 32K (60×), without any fine-tuning. Addi-025
tionally, by dropping CoCA in LLaMA-7B, we026
achieve extrapolation up to 32K within only 2K027
training length.028

1 Introduction029

In the seminal work of Transformer (Vaswani et al.,030

2017), it claims the ability of "extrapolating to se-031

quence length longer than the ones encountered032

during training". This is an ideal hypothesis, but ac-033

tually not work in practice for vanilla Transformer.034

Several subsequent works, collectively known as035

long context extrapolation, have delved into ex-036

ploring the capabilities of large language models037

(LLMs) trained within the range of [1, N − 1] to038

effectively extend the testing sequence ≥ N .039

Existing studies primarily focus on attention ker-040

nel (Beltagy et al., 2020; Ding et al., 2023; Han041

Figure 1: Perplexity evaluation on 100 PG-19 documents with
a sliding window strategy (Stride = 512). The perplexity of
RoFormer (Su et al., 2024) sharply exceeds 1000 beyond its
training length, while CoCA maintains a low plateau even at
60 × its training length. ALibi (Press et al., 2022) encounters
Out of Memory (OOM) issues for input Nmax > 8000 due to
flash-attention (Dao et al., 2022) incompatibility, we suppose
it maintains perplexity for Nmax > 8000.

et al., 2023) or position embedding (Huang et al., 042

2023), often neglecting the intrinsic relationship 043

between the two key modules. Attention bias is an 044

alternative to the explicit encoding of positional in- 045

formation. ALibi (Press et al., 2022) and KERPLE 046

(Chi et al., 2022), incorporate heuristic and com- 047

positional triangle kernel-based negative causal at- 048

tention bias, respectively. While these approaches 049

effectively manage to maintain low perplexity, they 050

fall short in capturing long-range dependencies due 051

to introducing local hypotheses to context tokens. 052

Another branch of methods involve simply scal- 053

ing Rotary Position Embedding (RoPE) (Su et al., 054

2024) to extrapolate the inference context length 055

with minimal or no fine-tuning. For instance, Posi- 056

tion Interpolation (PI) (Chen et al., 2023) employs 057

linear scaling on each position number from n to 058

n/k, where k is the extrapolation ratio. NTK-aware 059

Scaled RoPE (bloc97, 2023) and Dynamic-NTK 060

(Emozilla, 2023) combine high-frequency extrapo- 061

lation and low-frequency interpolation. They scale 062
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the basis in RoPE upon the sequence length to063

adapt to the unseen position indices. However,064

these methods primarily alleviate the problem of065

modeling the rotation angles in out-of-distribution066

positions, without recognizing the intrinsic correla-067

tion between attention matrices and rotation angles.068

Therefore, these methods still suffer from a limited069

context window extending ratio.070

Here, we present a new perspective on the rela-071

tionship between position embedding (with a fo-072

cus on RoPE) and the self-attention mechanism.073

In a nutshell, RoPE utilizes a rotation matrix to074

encode absolute positions while simultaneously075

incorporating explicit relative position dependen-076

cies within the self-attention formulation (Su et al.,077

2024). It is designed based on the relative angular078

difference between the queries (Q) and keys (K).079

However, latent relationships exist between Q and080

K, as these two matrices are directly multiplied.081

We demonstrate that incorrect initialization of the082

angle between Q and K in RoPE leads to undesir-083

able behavior around the context window boundary,084

harming its performance for context extrapolation.085

To address this undesirable behavior , we pro-086

pose an innovative architecture called Collinear087

Constrained Attention (CoCA). Specifically, we088

enforce a collinear constraint between Q and K089

by initializing the angle between every two hid-090

den dimensions in the Q and K vectors to 0. This091

allows for a seamless integration of RoPE and self-092

attention. The model architecture and comparison093

with RoFomer (Su et al., 2024) is illustrated in094

Figure 2.095

Extensive experiments show that a CoCA-based096

GPT model, trained within 512 context length,097

seamlessly extends the context window up to 32K098

(60x) without perplexity divergence. A compre-099

hensive comparison between our method and ex-100

isting methods is presented in Figure 1. Further-101

more, it enhances long-context retrieval ability,102

achieving a passkey retrieval accuracy of 50%+103

even when extrapolating to 16x longer than its104

training context length by applying Dynamic-NTK105

(Emozilla, 2023). Additionally, by dropping CoCA106

in LLaMA-7B, we achieve extrapolation up to 32K107

within only 2K training length.108

Our main contributions can be summarized as109

follows:110

• We unveil undesirable context boundary be-111

havior resulting from the absence of modeling112

the relationship between position embeddings113

and self-attention. 114

• To tackle the undesirable context boundary be- 115

havior, we propose Collinear Constrained At- 116

tention (CoCA) to seamlessly integrate the po- 117

sition embeddings and self-attention, achiev- 118

ing excellent long context window extrapola- 119

tion performance. 120

• CoCA extends its context window from 512 121

to 32K without fine-tuning, achieving over 122

50% accuracy even when 16 × longer than its 123

training length. Using CoCA in LLaMA-7B, 124

we achieve extrapolation up to 32K within just 125

2K training length. 126

• CoCA introduces minimal computational and 127

spatial complexity compared to vanilla self- 128

attention. We provide an optimized imple- 129

mentation of CoCA, making it able to be 130

a seamless drop-in replacement for existing 131

transformer-based models. 132

2 Method 133

In this section, we describe our proposed Collinear 134

Constrained Attention (CoCA). We begin with in- 135

troducing the background theory of RoPE (Su et al., 136

2024) in Section 2.1, and then analyze the anoma- 137

lous behaviors between the attention matrices and 138

RoPE in Section 2.2. Finally, we introduce the 139

proposed method CoCA in section 2.3 and derive 140

a slack constraint version of CoCA in Section 2.4, 141

respectively. 142

2.1 Rotary Position Embedding 143

Position embedding is a crucial component in 144

transformer-based models. Here we focus on Ro- 145

tary Position Embedding (RoPE) (Su et al., 2024), 146

which is widely used by LLMs including LLaMA 147

(Touvron et al., 2023a), LLaMA-2 (Touvron et al., 148

2023b), GPT-NeoX (Black et al., 2022) and Qwen 149

(Bai et al., 2023). Suppose the positional index is 150

an integer n ∈ [1, N ], and the corresponding in- 151

put vector x = [x0, x1, ..., xd−1]
T, where N is the 152

sequence length, d is the dimension of the atten- 153

tion head. RoPE defines a vector-valued complex 154

function f(x, n): 155

f(x, n) = [(x0 + ix1)e
inθ0 , (x2 + ix3)e

inθ1 ,

. . . , (xd−1 + ixd)e
inθd/2−1 ]T,

where θj = B−2j/d,

(1) 156

in this paper, the base B = 10, 000. 157

2



Figure 2: Architecture comparison between RoFormer and CoCA. (a) RoFormer; (b) CoCA; (c) The implementation detial
of K in CoCA. Q, T, and V are produced using projection matrices identical to those employed in the vanilla self-attention. T
undergoes a halving operation, with the other half being duplicated. K is then computed as the element-wise product of Q and T,
adhering to a collinear constraint with Q. Note that kn ∈ RN×d, where n ∈ [1, N ] is the positional index of key, d is the head
dimension, N is the sequence length.

After the application of RoPE, the transformed158

vectors for query (q) and key (k) become f(q,m)159

and f(k, n), respectively. Here, m,n ∈ [0, N ]160

represent the positional indices of q and k. The161

attention operation is computed as the dot product162

between f(q,m) and f(k, n), defined as follows:163

a(m,n) = Re(⟨f(q,m), f(k, n)⟩)

= Re

d/2−1∑
j=0

(q2j + iq2j+1)(k2j − ik2j+1)e
i(m−n)θj


=

d/2−1∑
j=0

[(q2jk2j + q2j+1k2j+1) cos((m− n)θj)

+ (q2jk2j+1 − q2j+1k2j) sin((m− n)θj)]
(2)164

The attention score a(m− n) depends on the rela-165

tive position (m− n).166

2.2 Anomalous Behavior between RoPE and167

Attention Matrices168

After applying RoPE, the attention score a(m− n)169

can be interpreted as the sum of d/2 inner prod-170

ucts of complex numbers, as illustrated in Equa-171

tion (2). For any pair of qj = (q2j , q2j+1) and172

kj = (k2j , k2j+1), which is the 2-dimensional173

slicing of q (or qm) and k (or kn), we introduce174

the initial angle Θj between them, measured coun-175

terclockwise from kj to qj in the complex plane. 176

Throughout our analysis, we keep the position of 177

kj fixed, systematically rotating qj to compre- 178

hensively examine their relative positions. The 179

final angle between qj and kj is represented as 180

θ(qj ,kj) = Θj + (m− n)θj , where m and n are 181

positional indices of qj and kj . 182

In this concept, the attention score can be for- 183

mulized as: 184

a(m,n) =

d/2−1∑
j=0

|qj ||kj | cos(θ(qj ,kj)) (3) 185

Refer to Figure 3 for a visual representation of 186

this concept for any individual j ∈ [0, d/2] in the 187

2-D subspace. There are four distinct scenarios 188

between qj and kj after rotation. 189

(1) Scenario (b) and (c): When m > n and 190

Θj ≤ π, or m < n and Θj > π, the value of 191

cos(θ(qj ,kj)) between qj and kj decreases with 192

the expanding distance between m and n. In these 193

2 scenarios, no anomalous behavior is observed, 194

as the attention score naturally decreases with the 195

positional distance. This trend persists until the rel- 196

ative angle θ(qj ,kj) rotates beyond the boundary 197

of π. 198

(2) Scenario (a) and (d): When m < n and 199
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Figure 3: Anomalous behavior of RoPE in 2-D plane. The inner product of vectors qj and kj is contingent upon the relative angle
θ(qj ,kj), defined as Θj + (m− n)θj . Here, Θj represents the initial angle, and (m− n)θj signifies the position-dependent
rotation angle. (a) m < n and Θj ≤ π. (b) m > n and Θj ≤ π. (c) m < n and Θj > π. (d) m > n and Θj > π.

Θj ≤ π, or m > n and Θj > π, intriguing phe-200

nomena emerge. As the distance between m and201

n grows, the value of cos(θ(qj ,kj)) between qj202

and kj paradoxically increases. This anomaly has203

a notable impact on attention scores, particularly204

affecting the τ closest tokens. In this context, τ is205

defined as Θj/θj for scenario (a) and (2π−Θj)/θj206

for scenario (d). Consequently, attention scores for207

these tokens are abnormally diminished.208

For bidirectional language models, all four cases209

may occur. For causal models, only scenario (b)210

and (d) manifest, as m consistently exceeds n.211

The attention score a(m− n) is the sum of d/2212

inner-products, one of them turns out anomalous213

may be insignificant, however, experiments con-214

firmed this significance. Further analysis of this215

rotary borders anomalous behaviour is discussed in216

Appendix D.2.217

2.3 Collinear Constrained Attention218

To tackle the anomalous behavior between RoPE219

and attention matrices, we propose a novel ap-220

proach called Collinear Constrained Attention221

(CoCA). Specifically, by applying a collinear con-222

straint to any pair of qj = (q2j , q2j+1) and kj =223

(k2j , k2j+1), we seamlessly integrate RoPE into224

self-attention mechanism, achieving long context225

extrapolation.226

To formalize this, considering a sequence of N227

input tokens SN = {wn}Nn=1, with corresponding228

word embeddings EN = {xn}Nn=1, where xn ∈229

Rd is the d-dimensional word embedding vector of230

token wn without position information. First, the231

queries qm are obtained:232

qm = WQxm,∀m ∈ [1, N ] (4)233

Next, we derive the keys kn with collinear con-234

straints. This begins with the introducing of the235

constraint coefficient tn for each token position n,236

as depicted in Equation (5).237

tn = WTxn, ∀n ∈ [1, N ] (5) 238

Next, Equation (6) imposes the collinearity con- 239

dition on the coefficients t2j and t2j+1, where 240

tn = [t0, t1, ..., td−1]
T, ensuring that each pair is 241

identical. This step effectively duplicates each 2- 242

dimensional segment of the tensor. 243

t2j = t2j+1, ∀j ∈ [0, d/2− 1]

tn = Relu(tn)
(6) 244

Subsequently, the keys are calculated as shown 245

in Equation (7), where kn are represented by the 246

element-wise multiplication of Q = (q1, ...,qN ) 247

and tn. This results in an expansion of dimen- 248

sionality, as kn ∈ RN×d now includes an addi- 249

tional sequence length dimension. We address 250

potential memory pressure by optimizing tensor 251

contractions, ensuring no net increase in memory 252

consumption. For an in-depth analysis, please refer 253

to Appendix C. 254

kn = Q⊙ tn = (q1 ◦ tn, ...,qN ◦ tn) (7) 255

After that, we apply RoPE on Q and K, with the 256

function f detailed in Equation (1). 257

f(qm) = f(qm,m)

f(kn) = f(Q⊙ tn, n) = f(Q, n)⊙ tn
(8) 258

Finally, the attention score of CoCA would be: 259

a(m,n) = Re(⟨f(qm,m), f(qm, n) ◦ tn⟩) (9) 260

Equation (9) illustrates the additional dimension 261

of the keys in our CoCA mechanism. Specifically, 262

it maps the index of each query to the additional 263

dimension, establishing a collinear relationship be- 264

tween the n-th key and the m-th query. This is a 265

critical aspect of our method. 266

2.4 Slacking the Constraint on Query 267

In Section 2.3, we present a theoretically precise 268

solution for CoCA. However, practical implemen- 269

tation faces challenges due to the complexity of 270
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O(N2d) when storing f(Q, n). To address this is-271

sue, we provide a dual implementation with O(Nd)272

complexity in this section and prove their equiva-273

lence.274

Theorem 1. (Dual implementation of CoCA) For275

any attention score defined in Equation (9), there276

exists an equivalent form as follows:277

a(m,n) = Re(⟨f(qm,m),qm ◦ f(tn, n)⟩) (10)278

with constraint:279

q2j = q2j+1, ∀j ∈ [0, d/2− 1] (11)280

281

Proof : The proof consists of two steps.282

Step 1. We prove that, by imposing the con-283

straint q2j = q2j+1, ∀j ∈ [0, d/2 − 1],284

Re(⟨f(qm,m),qm ◦ f(tn, n)⟩) is equivalent to285

Re(⟨f(qm,m), f(qm, n) ◦ tn⟩).286

To see this, we calculate the difference between287

f(qm, n) ◦ tn and qm ◦ f(tn, n):288

f(qm, n) ◦ tn − qm ◦ f(tn, n)

=


t0(q0 cosnθ0 − q1 sinnθ0)
t1(q0 sinnθ0 + q1 cosnθ0)

. . .
td−2(qd−2 cosnθd/2−1 − qd−1 sinnθd/2−1)
td−1(qd−2 sinnθd/2−1 + qd−1 cosnθd/2−1)



−


q0(t0 cosnθ0 − t1 sinnθ0)
q1(t0 sinnθ0 + t1 cosnθ0)

. . .
qd−2(td−2 cosnθd/2−1 − td−1 sinnθd/2−1)
qd−1(td−2 sinnθd/2−1 + td−1 cosnθd/2−1)


(12)289

Recall that t2j = t2j+1,∀j ∈ [0, d/2 − 1] (see290

Equation (6)), Equation (12) is equivalent to:291

f(qm, n) ◦ tn − qm ◦ f(tn, n)

=


t0(q0 − q1) sinnθ0
t1(q0 − q1) sinnθ0

. . .
td−2(qd−2 − qd−1) sinnθd/2−1

td−1(qd−2 − qd−1) sinnθd/2−1

 (13)292

Clearly, if we impose the constraint q2j =293

q2j+1, ∀j ∈ [0, d/2 − 1], the vector in Equation294

(13) becomes null and we deduce that:295

f(qm, n) ◦ tn − qm ◦ f(tn, n) = 0 (14)296

Consequently, with the constraint q2j =297

q2j+1, ∀j ∈ [0, d/2− 1], we have:298

Re(⟨f(qm,m),qm ◦ f(tn, n)⟩)
= Re(⟨f(qm,m), f(qm, n) ◦ tn⟩)

(15)299

Step 2. We further demonstrate that,300

q2j = q2j+1,∀j ∈ [0, d/2 − 1] is in fact301

a redundant constraint when calculating 302

Re(⟨f(qm,m), f(qm, n) ◦ tn⟩). To verify 303

this, we expand the inner product: 304

Re(⟨f(qm,m), f(qm, n) ◦ tn⟩)

=

d/2−1∑
j=0

[(q22jt2j + q22j+1t2j+1) cos((m− n)θj)

+ (q2jq2j+1t2j − q2j+1q2jt2j+1) sin((m− n)θj)]
(16) 305

Recall again t2j = t2j+1,∀j ∈ [0, d/2 − 1], we 306

have 307

Re(⟨f(qm,m), f(qm, n) ◦ tn⟩)

=

d/2−1∑
j=0

t2j [(q
2
2j + q22j+1) cos((m− n)θj)]

=

d/2−1∑
j=0

t2j |qj |2 cos((m− n)θj)

(17) 308

This implies that Re(⟨f(qm,m), f(qm, n) ◦ 309

tn⟩) depends solely on the magnitude of qj = 310

(q2j , q2j+1) in 2-D subspace, demonstrating the in- 311

dependence of the relationship between q2j and 312

q2j+1. Refer to Appendix D.3 for the rigorous 313

proof. 314

Now we conclude that, with the con- 315

straint q2j = q2j+1, ∀j ∈ [0, d/2 − 1], 316

Re(⟨f(qm,m),qm ◦ f(tn, n)⟩) is equivalent 317

to Re(⟨f(qm,m), f(qm, n) ◦ tn⟩) with no 318

constraint on query. 319

By removing q2j = q2j+1 constraint, we desig- 320

nate this modified version as CoCA-Slack. The 321

mathematical definition is provided in Appendix 322

D.4. 323

3 Experimental Setting 324

This section provides an overview of the experimen- 325

tal setup, including details regarding the training 326

data utilized and the baseline models employed to 327

evaluate the effectiveness of the proposed method. 328

3.1 Training Data 329

Our model undergoes training on a combination of 330

datasets, including the Pile training dataset (Gao 331

et al., 2020), BookCorpus (Zhu et al., 2015), and 332

the Wikipedia Corpus (Foundation, 2021). Ad- 333

ditionally, we integrate manually collected open- 334

source code from GitHub repositories with at least 335

1 star. From these datasets, we derive a sample of 336

approximately 50B tokens, maintaining a composi- 337

tion of 75% text and 25% code. 338
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3.2 Model Variants339

To evaluate the effectiveness of our proposed ap-340

proach, we train 3 models from scratch under iden-341

tical experimental settings, including ALibi (Press342

et al., 2022), RoFomer (Su et al., 2024), and Ro-343

Former+CoCA. All models share common specifi-344

cations, featuring a size of 350M, 24 layers, a hid-345

den dimension of 1024, 16 attention heads, and a346

maximum sequence length of 512. The key distinc-347

tions among them lie in variations in self-attention348

mechanisms and position embeddings. The imple-349

mentation is optimized based on EleutherAI GPT-350

NeoX1. Training a model from scratch demands351

substantial computational resources. Therefore, we352

also conduct experiments involving fine-tuning ex-353

isting LLMs with a drop-in CoCA module. For354

this purpose, we utilize the LLaMA-7B model355

(Touvron et al., 2023a), which was trained with356

a context length of 2,048. Additionally, we employ357

dynamic-NTK for all the above models.358

In summary, our comparison models are cat-359

egorized as follows: ALibi, RoFormer, Ro-360

Former+CoCA, RoFormer+dynamic NTK, and Ro-361

Former+dynamic NTK & CoCA, all falling un-362

der the training from scratch category. Mean-363

while, LLaMA-7B, LLaMA-7B+CoCA, LLaMA-364

7B+dynamic NTK, and LLaMA-7B+dynamic365

NTK & CoCA belong to the fine-tuning LLM with366

drop-in CoCA category.367

3.3 Implementation Detials368

Pre-training Procedure We train all models us-369

ing the next token prediction objective. We use370

AdamW (Loshchilov and Hutter, 2017) with β1371

= 0.9 and β2 = 0.95. The learning rate follows a372

linear warm-up of 1% of total steps, starting from373

1e-7. Subsequently, the learning rate is adjusted374

to 1e-4 with linear decay, eventually reaching 1e-5.375

The training utilizes 8 A100 GPUs, with a global376

batch size of 256 and 2 gradient steps accumulation,377

taking approximately 96 hours for 2 epochs.378

Fine-tuning Procedure To integrate CoCA in379

LLaMA, we employ a three-stage fine-tuning strat-380

egy: (1) only updating the K projection (7% of381

parameters). This stage aims to reconstruct the382

K projection in CoCA. By freezing the other pa-383

rameters, we maintain attention scores as closely as384

possible to those of vanilla self-attention. (2) updat-385

ing the QKV projection (21% of parameters). This386

stage aims to address intrinsic over-fitting in vanilla387

1https://github.com/EleutherAI/gpt-neox/tree/v2.0

self-attention caused by undesired behaviors be- 388

tween RoPE and attention matrices. (3) fine-tuning 389

all parameters. Each stage involves 15K steps, to- 390

taling 7.5B tokens (22B tokens overall), using the 391

next token prediction objective. The training length 392

of LLaMA-7B + CoCA remains at 2,048 as in the 393

original model. All experiments are conducted with 394

32 A100 GPUs, setting a per-device batch size to 8 395

without gradient accumulation. 396

4 Experiment Results 397

We conducted experiments to shed light on the 398

following reasonable doubts: 399

• Can our new attention mechanism CoCA im- 400

prove the long context extrapolation perfor- 401

mance of existing models? 402

• Can combining CoCA with other extending 403

methods for RoPE effectively solve the three 404

types of rotational boundary problems dis- 405

cussed in Appendix D.2? 406

4.1 Long Sequence Language Modeling 407

We evaluate the long sequence language model- 408

ing performance of both our model and baseline 409

models on the test splits of the PG-19 dataset (Rae 410

et al., 2020). For this evaluation, we randomly se- 411

lect a subsample comprising 100 documents, each 412

containing at least 32,768 SentencePiece (Kudo 413

and Richardson, 2018) tokens. We then truncate 414

each test document to its initial 32,768 tokens. The 415

evaluation involves calculating perplexity across 416

different context window sizes using a sliding win- 417

dow approach, as described by (Press et al., 2022), 418

with a stride of 512. The perplexity results for both 419

our models and baselines are presented in Table 1 420

and Figure 1. 421

Based on our experiments, the evaluation re- 422

sults indicate that models combined with CoCA ex- 423

hibit significantly improved perplexity with longer 424

inference sequence length. For pre-trained mod- 425

els, by increasing the context window size from 426

512 (training context window size) to 32k, the 427

perplexity of CoCA only increases from 20.11 to 428

171.63, whereas the perplexity of RoFormer be- 429

comes inf . Additionally, by increasing the context 430

window size from 2K to 32K, the perplexity of fine- 431

tuned LLaMA-7B+CoCA only increases 21.68, 432

while LLaMA-7B with other extending methods 433

increases more than 100. In general, we observe a 434

consistent trend of CoCA achieving better perplex- 435

ity with longer context windows. This suggests 436
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Method
Evaluation Context Window Size (Perplexity ↓)

512 1024 2048 4096 8192 16k 32k
Training model from scratch

ALibi 18.69 21.27 28.20 35.66 37.03 OOM OOM
RoFomer 19.66 411.50 3276.00 3026.00 3028.00 inf inf
+ dynamic NTK 19.66 22.30 38.00 75.75 138.13 370.75 380.75
+ CoCA 20.11 33.47 69.06 113.19 157.38 141.00 171.63
+ dynamic NTK & CoCA 20.11 20.81 25.88 34.16 55.75 89.31 101.13

Fine-tuning LLM with drop-in CoCA
LLaMA-7B 9.25 7.56 7.30 9673.14 inf inf inf
+ dynamic NTK 9.25 7.56 7.30 9.40 14.40 63.62 133.87
+ CoCA 9.91 8.49 8.27 24.23 42.00 23.83 29.95
+ dynamic NTK & CoCA 9.91 8.49 8.27 8.61 9.56 11.10 13.98

Table 1: Evaluation perplexity on 100 PG-19 documents using sliding window (S = 512) strategy. Dynamic-NTK is employed
without fine-tuning. The best result is highlighted in bold.

that CoCA has a more robust position embedding,437

enabling it to handle long context more effectively.438

In contrast, we observe that models extended439

through the direct application of dynamic NTK-440

aware Scaled RoPE exhibit a larger increase in441

perplexity at longer sequences. The perplexity442

of both RoFormer+dynamic NTK and LLaMA-443

7B+dynamic NTK remains significantly higher444

than that combining CoCA. This difference be-445

comes more pronounced as the sequence length446

increases. When the inference sequence length447

reaches 32k, the perplexity of RoFormer+dynamic448

NTK increases to 380.75, while the result for449

RoFormer+CoCA is only 171.63. Similarly, the450

perplexity of LLaMA-7B+dynamic NTK reaches451

133.87, whereas LLaMA-7B+CoCA is only 29.95.452

It is worth noting that the model achieves the best453

performance when both dynamic NTK and CoCA454

are combined. Particularly, LLaMA-7B+dynamic455

NTK & CoCA consistently maintains a very low456

perplexity. Even when the inference sequence457

length has reached 32k (16 × longer than the train-458

ing length), the perplexity is only 13.89. This indi-459

cates that combining CoCA with other extending460

methods for RoPE can effectively address the three461

types of rotational boundary problems, achieving462

robust long-text extrapolation modeling capabili-463

ties.464

4.2 Long Context Retrieval465

Perplexity evaluates the performance of language466

model in predicting the next token. However, it is467

insufficient for a comprehensive assessment of the468

effective context window size. To address this, we469

conducted experiments using a passkey retrieval470

task (Mohtashami and Jaggi, 2023) to evaluate our 471

method and baselines. The task involves identi- 472

fying and retrieving a randomly hidden passkey 473

within a lengthy document. More details of task 474

definition and test sample generation settings can 475

be found in Appendix B.1. Table 2 illustrates the 476

accuracy of all tested models and their variants. 477

It is evident that ALibi exhibited failures when 478

tested on sequences that were 1× longer than its 479

training length, attributed to its local hypothesis. 480

In contrast, our model consistently demonstrated 481

superior accuracy. RoFormer+dynamic NTK & 482

CoCA maintained a 50% accuracy, even with the 483

test sequence length expanded to 16× its training 484

length. Similarly, LLaMA-7B+dynamic NTK & 485

CoCA still maintained a 30% accuracy when the 486

test length was up to 32K. 487

4.3 Impact of Strict and Slack Constraint on 488

Q 489

As mentioned in Section 2.4, we implement a 490

slack version of CoCA, referred to as CoCA-Slack. 491

In this section, under the same experimental set- 492

tings, we implement two versions of CoCA based 493

on RoFormer-350M, labeled as CoCA-Slack and 494

CoCA-Strict. The comparison results between 495

them are shown in Table 3. 496

We observe that the CoCA-Strict and CoCA- 497

Slack models exhibit similar performance in long 498

sequence language modeling, as evidenced by 499

comparable perplexity results. However, in the 500

passkey retrieval task, contrary to our initial ex- 501

pectations, the CoCA-Strict model produces sig- 502

nificantly lower results. This unexpected outcome 503

suggests that models with a slack constraint may 504
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Method
Evaluation Context Window Size (Accuracy↑)

512 1024 2048 4096 8192 16k 32k
Traning model from scratch

ALibi 0.82 0.65 0.28 0.18 0.12 OOM OOM
RoFomer 0.99 0.53 0.30 0.18 0.04 0.02 0.04
+ dynamic NTK 0.99 1.00 0.95 0.70 0.41 0.16 0.06
+ CoCA 1.00 0.64 0.33 0.19 0.06 0.02 0.04
+ dynamic NTK & CoCA 1.00 1.00 0.96 0.89 0.50 0.23 0.08

Fine-tuning LLM with drop-in CoCA
LLaMA-7B 1.00 1.00 1.00 0.61 0.21 0.07 0.09
+ dynamic NTK 1.00 1.00 1.00 0.81 0.26 0.06 0.03
+ CoCA 1.00 1.00 1.00 0.71 0.28 0.11 0.10
+ dynamic NTK & CoCA 1.00 1.00 1.00 1.00 0.85 0.51 0.30

Table 2: Long context retrieval performance on passkey retrieval task. The best result is highlighted in bold.

Method 512 1024 2048 4096 8192 16384 32768
Performance on Long Sequence Modeling (Perplexity)

CoCA-Slack 20.11 19.02 24.92 40.53 68.38 92.75 103.44
ntk-2

CoCA-Strict +0.07 +0.61 -1.58 -4.03 +15.37 +12.38 +1.94
CoCA-Slack 20.11 20.81 25.88 34.16 55.75 89.31 101.13

ntk-4
CoCA-Strict +0.07 -0.49 -0.66 -0.88 +3.16 -18.25 -2.57
CoCA-Slack 20.11 23.66 29.05 37.47 55.5 88.88 111.38

ntk-8
CoCA-Strict +0.07 -1.74 -0.64 +1.16 +0.03 +0.5 +0.31

Performance on Long Context Retrieval (Passkey Accuracy)
CoCA-Slack 1.0 0.99 0.94 0.77 0.47 0.27 0.15

ntk-2
CoCA-Strict +0.0 -0.12 -0.3 -0.42 -0.34 -0.22 -0.07
CoCA-Slack 1.0 1.0 0.96 0.89 0.5 0.23 0.08

ntk-4
CoCA-Strict +0.0 -0.11 -0.38 -0.46 -0.38 -0.19 -0.02
CoCA-Slack 1.0 0.98 0.99 0.85 0.5 0.11 0.02

ntk-8
CoCA-Strict +0.0 -0.05 -0.34 -0.51 -0.4 -0.07 -0.01

Table 3: Comparison results for the Strict and Slack Constraints of Q in our proposed CoCA module. Superior performance to
CoCA-Slack is indicated by the green color, while inferior performance is signified by the red color. The perplexity of the strict
and slack models is comparable, whereas the strict model achieved lower accuracy in the passkey retrieval task.

offer additional performance advantages, such as a505

larger effective context window size.506

Understanding the reasons behind the superiority507

of slack constraints will be a key focus of our future508

work. In this regard, we provide some theoretical509

insights in Appendices D.3 and D.4. These insights510

aim to shed light on the underlying mechanisms511

that contribute to the observed differences and lay512

the groundwork for a more comprehensive analysis513

in subsequent research.514

5 Conclusion515

In this paper, we introduce Collinear Constrained516

Attention (CoCA), a novel approach that integrates517

position embedding with the self-attention mecha-518

nism. This innovation addresses undesired behav-519

iors occurring around the context window bound-520

ary, which stem from discrepancies between RoPE521

and attention matrices. To the best of our knowl- 522

edge, we are the first to analyze the initial angles be- 523

tween queries and keys in the self-attention mecha- 524

nism, which gives rise to anomalous phenomena in 525

RoPE. Furthermore, we deduce a slack constraint 526

for our implementation of CoCA. Extensive ex- 527

periments demonstrate that incorporating CoCA 528

into existing models significantly enhances perfor- 529

mance in both long sequence language modeling 530

and long context retrieval tasks. Additionally, the 531

simultaneous integration of CoCA with other ex- 532

tended RoPE methods (e.g., dynamic-NTK) effec- 533

tively mitigates three types of rotation boundary 534

issues, resulting in remarkably improved capabili- 535

ties for long context extrapolation. 536
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Limitations537

Our current approach, CoCA, has thus far under-538

gone exclusive validation on RoPE. Experimen-539

tal results demonstrate that CoCA enhances the540

long-context extrapolation performance of LLMs541

and further augments other extension methods by542

addressing rotational boundary issues. However,543

questions arise regarding its applicability to more544

general methods. While the effectiveness of slack545

position embedding (SPE) is evident, a deeper un-546

derstanding of the underlying reasons for its supe-547

rior performance necessitates further investigation.548
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A Related Work680

Existing researches are mainly focused on the sub-681

module of attention kernel or position embedding682

(Huang et al., 2023). In the following sections, we683

will separately introduce works on these two as-684

pects: Section A.1 primarily addresses the former,685

while Section A.2 delves into the latter.686

A.1 Efficient Attention Mechanisms687

Several works aim to implement efficient atten-688

tion mechanisms with reduced computational de-689

mands, even achieving linear complexity. This en-690

ables extending the effective context length bound-691

ary of LLMs during inference by directly increas-692

ing Lmax in the pre-training stage (Ding et al.,693

2023; Mohtashami and Jaggi, 2023). Notewor- 694

thy approaches include Longformer (Beltagy et al., 695

2020), utilizing slide window attention, and mod- 696

els such as StreamingLLM (Xiao et al., 2023) and 697

LM-Infinite (Han et al., 2023), which leverage a 698

global-local attention mechanism. These variants 699

have achieved success to a certain extent, but still 700

face issues we unveiled in this work when using 701

RoPE as their positional encoding method. 702

A.2 Extrapolative Position Embedding 703

Methods 704

Extrapolative position embedding methods aim 705

to enhance the length generalization capability of 706

LLMs. 707

A.2.1 Attention Bias 708

In seeking alternatives to the explicit encoding of 709

positional information, researchers have explored 710

the integration of attention bias to capture the se- 711

quential and temporal nuances inherent in natural 712

language. Early approaches, such as T5 (Ruder 713

et al., 2019), incorporate learnable attention bias. 714

However, these methods do not explicitly address 715

the challenge of length extrapolation. ALibi (Press 716

et al., 2022) introduces a negative causal atten- 717

tion bias in a heuristic manner. Extending the 718

ALiBi-style attention bias, KERPLE (Chi et al., 719

2022) treats it as a composition triangle kernel 720

for self-attention and modifies style Xpos (Sun 721

et al., 2023) by integrating it with RoPE. While 722

these approaches effectively manage to maintain 723

low perplexity levels, they fall short in capturing 724

long-range dependencies due to introducing local 725

hypotheses to context tokens. 726

A.2.2 Extend RoPE 727

Besides, various strategies have been explored 728

to extend RoPE (Su et al., 2024), a commonly 729

employed positional encoding method in popu- 730

lar LLMs. Recent approaches involve simply 731

scaling it to extrapolate the inference context 732

length with minimal or no fine-tuning. For in- 733

stance, Position Interpolation (PI) (Chen et al., 734

2023) applies linear scaling on each position num- 735

ber from n to n/k, densifying the representation 736

space to extend the farthest length boundary by 737

k times. Other approaches, such as NTK-aware 738

Scaled RoPE (bloc97, 2023) and Dynamic-NTK 739

(Emozilla, 2023), combine high-frequency extrap- 740

olation and low-frequency interpolation. These 741

training-free methods require limited code changes 742
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during inference (Peng et al., 2023). However,743

these methods aim solely at alleviating the prob-744

lem of modeling the rotation angles in out-of-745

distribution (OOD) positions without recognizing746

the intrinsic correlation between attention matrices747

and rotation angles. Therefore, these methods still748

suffer from a limited context window extending749

ratio.750

Previous methods independently investigate self-751

attention and position embedding without consid-752

ering their intrinsic relationship, especially for the753

widely used RoPE method.754

B Additional Experiment755

B.1 Passkey Retrieval Task Definition756

757
There is an important info hidden inside a lot of758
irrelevant text. Find it and memorize them. I will quiz759
you about the important information there.760

761
The grass is green. The sky is blue. The sun is yellow.762
Here we go. There and back again.763
... // Repeat x times.764

765
// Passkey is 5 randomly generated numbers.766
The passkey is 12345. Remeber it. 12345 is the passkey.767

768
The grass is green. The sky is blue. The sun is yellow.769
Here we go. There and back again.770
... // Repeat y times.771

772
What is the passkey?773774

Listing 1: Prompt format for passkey retrieval (Mohtashami
and Jaggi, 2023). The passkey is randomly generated from
10,000 to 99,999.

The passkey retrieval task, as proposed by Mo-775

htashami and Jaggi (2023), involves the model re-776

covering a randomly generated passkey hidden in777

a long document (see Listing 1 for the task prompt778

format). Given a language model, we can deter-779

mine the effective context window by assessing780

the upper and lower bounds. We assume a random781

passkey is k tokens away from the end of the in-782

put. If a model consistently fails to recover the783

passkey in multiple attempts, it suggests a context784

window size smaller than k. Conversely, successful785

retrievals indicate an effective context window size786

of at least k tokens (Chen et al., 2023).787

In our experiments, we generate test samples788

based on the prompt template in Listing 1, with789

lengths ranging from 512 to 32k. There are 100790

test cases for each length. Given a language model,791

we input the passkey task prompt, examine the792

model’s output for the new 64 tokens, and calculate793

the accuracy. 794

B.2 Analysis I : Consistency of Optimization 795

in Position Embedding 796

The passkey retrieval results are presented in Sec- 797

tion 4.2. Our model demonstrates superior passkey 798

retrieval accuracy compared to baseline models 799

under various conditions. However, we remain in- 800

trigued about its optimization, specifically whether 801

it occurs within or beyond the confines of the train- 802

ing context window. To probe this further, we cat- 803

egorize the experimental data into two segments: 804

passkey distance shorter and farther than the train- 805

ing context window length. 806

Figure 4 (a) illustrates the comparison results 807

when the passkey is inserted less than 512 tokens 808

away from the end token, while Figure 4 (b) illus- 809

trates that outside this range. When the passkey is 810

inserted outside the 512 window, RoFormer+NTK 811

& CoCA consistently outperforms Roformer+NTK 812

across various lengths of inference sequences. This 813

superiority persists when the passkey is inserted 814

inside the 512 window. Notably, with an increase 815

in the length of the inference sequence, RoFormer 816

+ NTK & CoCA demonstrates increasingly supe- 817

rior performance compared to RoFormer + NTK. 818

These experiments suggest that our model can con- 819

sistently optimize the position embedding and ex- 820

tend the effective context window. 821

B.3 Analysis II : Impact of Dynamic-NTK in 822

CoCA 823

We utilize the dynamic NTK method (Emozilla, 824

2023) during the inference process, applying it sep- 825

arately to both our model and the baseline model. 826

To comprehensively assess the robustness of these 827

models, we conduct a thorough validation by vary- 828

ing scaling factors (2, 4, and 8). 829

The results in Figures 1 and 5 demonstrate that, 830

with the integration of the dynamic NTK method, 831

our model achieves higher passkey accuracy and 832

lower perplexity. Additionally, when the scaling 833

factor varies between 2, 4, and 8, the vanilla Ro- 834

Former model fails to maintain stable performance. 835

In contrast, CoCA consistently outperforms Ro- 836

Former at different scaling rates. This consistent 837

trend indicates that our model is more robust, show- 838

ing minimal performance fluctuations with changes 839

in the scaling factor. 840

Furthermore, it suggests that by implement- 841

ing collinear constraints, we can cleverly address 842
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(a) Inserting passkey inside 512 tokens away from end tokens (b) Inserting passkey outside 512 tokens away from end tokens

Figure 4: Comparison of effective context window between RoFormer + NTK and RoFormer + NTK & CoCA.

Figure 5: Passkey accuracy distribution on 4 range of distances.
CoCA outperforms RoFormer for all distances and scaling
factors of NTK.

anomalous behavior in RoPE, allowing RoPE to843

better leverage other extrapolation techniques.844

B.4 Analysis III : Compatibility of CoCA with845

PI846

B.4.1 Experiment Setup847

We conduct experiments utilizing the pre-trained848

LLaMA-7B model (Touvron et al., 2023a) and849

LLaMA-7B + CoCA from Section 3.2. To apply850

PI , we follow the settings of Chen et al. (2023):851

We set the fine-tuning sequence length to 32,768.852

The learning rate is adjusted to 2e− 5 with no de-853

cay to match. All other settings are maintained as854

the LLaMA-7B configuration. All experiments are855

conducted with 32 A100 GPUs, setting a per-device856

batch size to 1 without gradient accumulation. The857

experiments take 6,000 steps to accomplish.858

B.4.2 Long Context Validation 859

The results of fine-tuning with PI are presented 860

in Table 4. In terms of long sequence modeling, 861

both LLaMA-7B+PI and LLaMA-7B+CoCA PI 862

demonstrate competitive performance across se- 863

quence lengths ranging from 512 to 8192. How- 864

ever, at longer sequence lengths (16384 and 32768), 865

LLaMA-7B+CoCA PI exhibits a slight perfor- 866

mance advantage over LLaMA-7B+PI. For long 867

context retrieval, both methods achieve exception- 868

ally high accuracy, with scores approaching the 869

ideal value of 1.0 across all sequence lengths. 870

Overall, these findings suggest that the integra- 871

tion of PI and the CoCA module with the LLaMA- 872

7B model yields robust performance in both long 873

sequence modeling and long context retrieval tasks. 874

Additionally, the CoCA module demonstrates the 875

ability to maintain performance levels compara- 876

ble to PI, particularly evident at longer sequence 877

lengths. 878

B.4.3 Short Context Validation 879

In addition to enhancing long-context extrapola- 880

tion, it is imperative to consider the practicality and 881

scalability of CoCA in short contexts. Hence, we 882

evaluate our model on OpenCompass (Contribu- 883

tors, 2023), which comprises various dimensions, 884

including reasoning, understanding, language, and 885

examination. The results are presented in Table 5. 886

The table demonstrates that LLaMA-7B models 887

integrated with CoCA achieve performance com- 888

parable to the baseline LLaMA-7B across all eval- 889

uated dimensions. Specifically, the integration of 890
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Method 512 1024 2048 4096 8192 16384 32768
Performance on Long Sequence Modeling (Perplexity)

LLaMA-7B+PI 9.06 7.55 7.74 7.16 7.04 6.93 7.11
+ CoCA & PI 9.65 8.19 8.37 7.87 7.84 7.83 7.96

Performance on Long Context Retrieval (Passkey Accuracy)
LLaMA-7B+PI 1.0 1.0 1.0 1.0 1.0 1.0 0.99

+ CoCA & PI 1.0 1.0 1.0 1.0 1.0 0.99 0.99

Table 4: Comparison results for LLaMA-7B+PI and LLaMA-7B+CoCA & PI after fine-tuning with sequence length of 32,768.
CoCA succeeds in maintaining the performance of PI within fine-tuning window size.

Method Reasoning Understanding Language Examination Average
LLaMA-7B 48.25 47.57 46.41 29.63 42.97
+ CoCA 45.55 51.14 55.27 25.14 44.28
+ PI 44.98 51.54 54.79 27.03 44.59
+ CoCA & PI 46.88 51.82 55.56 25.31 44.89

Table 5: OpenCompass results of LLaMA-7B and its vari-
ants. Models integrated with CoCA achieved comparable
performance to LLaMA-7B, leading no harm to the expres-
sion ability of the model.

CoCA yields no significant degradation in the ex-891

pression ability of the model. This suggests that892

CoCA is effective not only in long-context scenar-893

ios but also in short-context tasks, demonstrating its894

versatility and suitability for practical applications.895

C Computational and Spatial Complexity896

Analysis897

Module
vanilla self-attention CoCA

Computational Spatial Computational Spatial

WQK(T )V 3Nd2h Nd 3Nd2h Nd

T half — — Ndh Nd

T Relu — — Ndh Nd

QK(T) rotation 2Ndh Nd 2Ndh Nd

Krot = Q ◦ Trot — — N2dh N2d

QrotK
T
rot N2dh N2 N2dh N2

Mask N2 N2 N2 N2

Softmax N2 N2 N2 N2

Table 6: The comparison of computational and spatial com-
plexity between vanilla self-attention block and CoCA. Here,
N represents the sequence length, h denotes the number of
heads, and d signifies the dimension of each head.

In this section, we analyze the computational898

and spatial complexities of CoCA. Table 6 pro-899

vides a detailed comparison between the vanilla900

self-attention mechanism and CoCA.901

When using the operation Krot = Q ◦ Trot, the902

computational complexity of CoCA does not ex-903

ceed twice that of the vanilla self-attention. In904

practice, the training and inference speed of CoCA905

are comparable to the vanilla self-attention mech-906

anism, with only a slight increase of about 5% to907

10% , as depicted in Figure 6. However, there is908

Figure 6: Inference speed comparison between CoCA and
vanilla self-attention.

a significant increase in spatial complexity when 909

expanding Krot = Q ◦ Trot, becoming d times that 910

of the vanilla self-attention. This level of spatial 911

complexity is not practical for applications. 912

To address this problem, we can draw inspiration 913

from the computation of QrotKT
rot, which involves 914

two steps: element-wise multiplication between 915

Qrot and Krot followed by summation along the 916

hidden dimension. Optimization is attainable by 917

condensing the hidden dimension before fully ex- 918

panding the sequence length dimension. Conse- 919

quently, the spatial complexity is effectively re- 920

duced from N2d to N2. This optimization strategy 921

is equally applicable to Krot = Q ◦ Trot. These 922

two components can be unified as articulated in 923

Equation (18): 924

QrotK
T
rot = Qrot(Q ◦ Trot)

T (18) 925

The commendable work accomplished by 926

opt_einsum (a. Smith and Gray, 2018) facilitates 927

the optimization of Equation (18). Experimen- 928

tal results indicate that Roformer+CoCA only de- 929

mands approximately 60GB of GPU memory dur- 930

ing inference with a sequence length of 32k, align- 931

ing closely with the memory consumption of the 932

vanilla self-attention mechanism. 933
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D Theoretical Proof934

D.1 Strong Form of Long-term Decay with935

CoCA936

We have introduced the basic theory of Rotary Po-937

sition Embedding in Section 2.1. In fact, (Su et al.,938

2024) shows that RoPE has the characteristic of939

long-term decay:940

|a(s)| =

∣∣∣∣∣Re

d/2−1∑
j=0

hje
isθj

 ∣∣∣∣∣
≤ (max

i
|hi+1 − hi|)

d/2−1∑
j=0

|Sj+1|

(19)941

where hj := (q2j + iq2j+1)(k2j − ik2j+1) and942

Sj :=
∑j−1

k=0 e
isθk , s = (m− n), m for the index943

of query, n for the index of key. Since the value of944 ∑d/2−1
j=0 |Sj+1| decays with the relative distance s,945

the attention score decays either.946

This characteristic ensures the stability of RoPE947

during extrapolation to some extent by preventing948

outliers. For CoCA, a stronger deduction can be949

formulated as follows:950

|a(s)| ≤ (max
i

|li+1 − li|)
d/2−1∑
j=0

|Cj+1| (20)951

where lj := |q2j+iq2j+1||k2j+ik2j+1|, and Cj :=952 ∑j−1
k=0 cos(sθk). Furthermore, it holds that:953

|li+1 − li| ≤ |hi+1 − hi| (21)954

Proof : Notice that when the initial angle Θj be-955

tween qj and kj is 0, from Equation (17), the at-956

tention score can be simplified as:957

a(s) = Re

d/2−1∑
j=0

hje
isθj


=

d/2−1∑
j=0

lj cos(sθj)

(22)958

By following the study of (Su et al., 2024), we959

can easily derive the estimation in Equation (20).960

For Equation (21), applying the triangle inequal-961

ity, we get:962

|hi+1 − hi| ≥ ||hi+1| − |hi|| (23)963

Reviewing the definition of hi = (q2j +964

iq2j+1)(k2j − ik2j+1), we will find:965

|hi+1 − hi| ≥ ||hi+1| − |hi||
= ||qi+1k

∗
i+1| − |qik

∗
i ||

= ||qi+1ki+1| − |qiki||
= |li+1 − li|

(24)966

Figure 7: Rotary Borders Analysis. Regarding qj as x-axis, 3
distinct boundaries correspond to kj , −qj , and qj

D.2 Rotary Borders Analysis 967

In Section 2.2, we analyzed the anomalous phe- 968

nomena of RoPE. To illustrate the rotation anoma- 969

lies, let’s focus on a specific instance (case (d) of 970

Section 2.2). As shown in Figure 7, three distinct 971

boundaries emerge during the rotation. By adopt- 972

ing a relative coordinate system with qj serving 973

as the x-axis, these boundaries correspond to kj , 974

−qj , and qj . 975

Everytime the relative angle of qj and kj crosses 976

these boundaries, the monotonicity of their inner- 977

product < qj ,kj > undergoes a reversal. Thus, 978

for the vanilla self-attention, it learnt a piecewise 979

monotonic function of < qj ,kj >: 980

< qj ,kj >=



↑ (m− n), ∀ − (2π −Θj) ≤ θ(qj ,kj) < 0

↓ (m− n), ∀0 ≤ θ(qj ,kj) < π

↑ (m− n), ∀π ≤ θ(qj ,kj) < 2π

...

↑ (m− n), ∀(2k − 1)π ≤ θ(qj ,kj) < (2k)π

↓ (m− n), ∀(2k)π ≤ θ(qj ,kj) < (2k + 1)π
(25) 981

where θ(qj ,kj) = Θj + (m − n)θj defined in 982

Section 2.2. 983

This introduces confusion into the model dur- 984

ing direct context extrapolation. Therefore, meth- 985

ods like PI and NTK tried to introduce interpola- 986

tion or extrapolation techniques to eliminate out- 987

of-distribution (OOD) positions. 988

Except the first equation in Equation (25), the 989

two boundaries caused by −qj , and qj are regular 990

with periodicity of 2π, it is easy to handle when 991

applying methods like PI or NTK. However, the 992

boundaries caused by kj are hard to handle. There 993

are d/2∗h∗L (d for head dimension, h for number 994

of heads, L for number of layers) different bound- 995

aries during context extrapolation, which break the 996

periodicity of 2π. 997

Furthermore, after applying interpolation or ex- 998

trapolation techniques, more positions will fall into 999
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this abnormal area. It increased k times (k for in-1000

terpolation factor) for PI and λ2j/d times (λ for1001

scaling factor) for NTK.1002

From this perspective, positional concentration1003

of PI resulted in more trouble than NTK, i.e. ad-1004

ditionally more positions in abnormal area during1005

context extrapolation. This may explain in some ex-1006

tent why NTK could be used without fine-tuning for1007

vanilla self-attention, but PI requires fine-tuning.1008

By enforcing Θj to 0, our proposed CoCA, con-1009

straining kj to be collinear with qj , effectively re-1010

solves the border-related challenge associated with1011

kj .1012

From experiments in Secton 4, with the inte-1013

grating of CoCA, now NTK can be leveraged well1014

through direct use, while PI achieved improvement1015

for direct use but still limited, which requires fur-1016

ther studies.1017

D.3 Homeomorphism of Representation1018

Space1019

Theorem 2. (Homeomorphism of representation1020

space) For any attention score defined as follows:1021

a(m,n) = Re(⟨f(qm,m), f(qm, n) ◦ tn⟩) (26)1022

where qm is the query, m is the index number of1023

query, tn is the collinear coefficient of CoCA, n is1024

the index number of key, f is the rotation operator.1025

Denote its representation space with respect to1026

qm as:1027

F (Q) = {a(m,n)|∀qm ∈ Q ⊂ Rd} (27)1028

where qm = WQxm, xm ∈ EN , m ∈ [1, N ] and1029

EN is the word embedding space, WQ is the pro-1030

jection matrix.1031

Then we have the following homeomorphism:1032

F (Q) ∼= F (Qhalf ) (28)1033

where Qhalf = Q|q2j=q2j+1,∀j∈[0,d/2−1].1034

Proof : We prove it by demonstrating the homeo-1035

morphism mapping G:1036

G : F (Q) → F (Qhalf )

F ((q0, ..., qd−1) 7→ F ((

√
q20 + q21

2
, ...,

√
q2d−2 + q2d−1

2
)

(29)1037

It consists of three parts:1038

Part I (G is a bijection): recall Equation (17), we1039

have:1040
G(X) = X, ∀X ∈ F (Q) (30)1041

which implies that G is an identity mapping, natu- 1042

rally injective. 1043

Next, we prove that G is also surjective: for 1044

any Y = F ((q0, ..., qd−1)|q2j=q2j+1) ∈ F (Qhalf ), 1045

there exists Ỹ ∈ F (Q) such that G(Ỹ ) = Y . Let 1046

Ỹ = F ((q0, ..., qd−1)|q2j=q2j+1) ∈ F (Q) (31) 1047

obviously we have G(Ỹ ) = Y . 1048

Part II (G is continuous): For any X0 ∈ F (Q), 1049

ϵ > 0, there exists δ, such that if |X − X0| < δ, 1050

then |G(X)− G(X0)| < ϵ. 1051

From Part I, G is an identity mapping, let δ = ϵ, 1052

then the continuity of G holds. 1053

Part III (G−1 is continuous): G is an identity map- 1054

ping, so is G−1. Following Part II, we immediately 1055

deduce that G−1 is continuous. 1056

D.4 Slack Position Embedding 1057

Let H be a Hilbert space, and {T (n)|n ≥ 0} ⊂ 1058

L(H) is a family of bounded linear operator on H. 1059

A is the inner-product defined on H. 1060

If it satisfies the following property, then we 1061

call {T (n)|n ≥ 0} is a relative (bounded linear) 1062

operator on H: 1063

∃ {S(m)|m ∈ Z} : H×H → C
(X,Y ) 7→ S(m)(X,Y )

is a family of semi-bilinear operator on H

s.t. S(p− q)(X,Y ) = A(T (p)(X), T (q)(Y ))

∀ p, q ∈ [0, N ], X, Y ∈ H,

(32) 1064

Additionally, if it satisfies the following property, 1065

then we call {T (n)|n ≥ 0} is a slack relative 1066

(bounded linear) operator on H: 1067

∃ {S(m)|m ∈ Z} : H×H → C
(X,Y ) 7→ S(m)(X,Y )

is a family of semi-bilinear operator on H

and H′ ⊂ H,H′ ̸= ∅
s.t. S(p− q)(X,Y ) = A(T (p)(X), T (q)(Y ))

∀ p, q ∈ [0, N ], X, Y ∈ H′,

(33) 1068

Specifically, when H represents our projection 1069

space in self-attention, and {T (n)|n ≥ 0} is a po- 1070

sition embedding on it, such as the Rotary Position 1071
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Embedding (RoPE), we refer to it as a Slack Po-1072

sition Embedding (SPE) if it satisfies the property1073

described in Equation (33).1074
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