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ABSTRACT

Utilizing the sample moments of variable means within groups, we develop a
novel closed-form estimator for blockwise correlation matrix of p variables. When
the block number and group memberships of the variables are known, we demon-
strate the asymptotic normality of parameter estimators and establish the stochas-
tic convergence rate of the estimated blockwise correlation matrix and corre-
sponding estimated covariance matrix, under certain moment conditions. The
method ensures positive semi-definiteness of the estimated covariance matrix
without requiring a predetermined variable order, and can be applicable for high-
dimensional data. Moreover, to estimate the number of blocks and recover their
memberships, respectively, we employ the ridge-type ratio criterion and spectral
clustering, and establish their consistency. Based on this, we extend the afore-
mentioned properties of the asymptotic normality and stochastic convergence rate
to the scenario where the group memberships are unknown and the block num-
ber is given. Extensive simulations and an empirical study of stock returns in
the Chinese stock market are analyzed to illustrate the usefulness of our proposed
methods.

1 INTRODUCTION

The covariance matrix plays a fundamental role in machine learning and multivariate analysis. Re-
cently, with the emergence of high-dimensional data, modeling it has become a great challenge. The
main reason is that the sample covariance matrix is often singular and irreversible when the matrix
dimension surpasses the sample size (Kan & Zhou, 2007; Bai, 2008; Fan et al., 2011). To tackle the
high-dimensional issue, one popular approach involves imposing a group or block structure on the
correlation matrix of p-dimensional variables to achieve dimension reduction (Tsay & Pourahmadi,
2017; Archakov & Hansen, 2024). That is, the variables are clustered into K (K ≪ p) groups,
and their correlation is determined based on their associated groups. This assumption is meaningful
especially for finance data, in which the stock returns of companies in the same industries often
exhibit similar correlations, while returns of firms across different industrial sectors tend to display
weaker associations. The covariance matrix with blockwise correlation structure has gained signif-
icant popularity in various fields, including but not limited to: finance and risk management (Elton
& Gruber, 1973; Engle & Kelly, 2012; Tsay & Pourahmadi, 2017; Millington & Niranjan, 2019),
macroeconomics (Brownlees et al., 2022), resource assessment (Schuenemeyer & Gautier, 2010;
Blondes et al., 2013), neuroscience and gene expression (Park et al., 2007; Wu & Smyth, 2012; Tan
et al., 2015; Eisenach et al., 2020; Pircalabelu & Claeskens, 2020), and computer science (Zhang &
Rao, 2013).

Even though the covariance matrix with blockwise correlation structure is widely used and well-
motivated, its estimation poses challenges due to the inability of the maximum likelihood esti-
mation (MLE) method to ensure positive semi-definiteness (Higham, 2002; Tsay & Pourahmadi,
2017). For illustration purpose, considering an 3 × 3 blockwise correlation matrix R = (ρk1k2

)
with ρ12 = ρ13, the positive definite parameter domain for the correlation matrix R is defined as{
(ρ12, ρ23)|ρ23 > 2ρ212 − 1

}
. As noticed by Tsay & Pourahmadi (2017), as the values of ρ12 and

ρ13 progressively approach the boundary of the parameter domain, the percentage of non-positive
definiteness for the correlation matrix estimator based on MLE gradually increases. To address this
issue, they proposed a method using the angle parameterization of its Cholesky factor. However, it
is computationally complex, and the Cholesky decomposition necessitates a predetermined order of
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variables, thereby limiting its applicability. Recently, Archakov & Hansen (2024) derived a canoni-
cal representation for the blockwise correlation matrix and dramatically simplified the evaluation of
its maximum likelihood estimator, but it lacks rigorous theoretical justification. In addition, Engle
& Kelly (2012) imposed the blockwise structure on a broad class of special correlation matrices,
that is, the Dynamic Conditional Correlation models, and proved the asymptotic properties of their
maximum likelihood estimators under Gaussian distribution and fixed p. Obviously, this method
is also not universal in practice. Yang et al. (2024) proposed a closed-form covariance matrix esti-
mator based on MLE by assuming a blockwise structure for the covariance matrix. Nevertheless,
this assumption is stronger than that for a correlation matrix since homogeneous variance within
each block is required. Moreover, due to errors involved in estimation of variance, the asymptotic
distributions of parameters for the covariance matrix under the two structures are different.

In this paper, using the sample moments of variable means within groups, we propose a novel block-
wise correlation matrix estimation method (BCME) in a closed form. When the block number and
group memberships of variables are known, we derive the asymptotic normality of correlation coeffi-
cient estimators and establish the stochastic convergence rate of the estimated blockwise correlation
and covariance matrix, under certain moment conditions. Compared to the Tsay & Pourahmadi
(2017)’s method, our approach ensures the positive semi-definiteness of the covariance matrix es-
timation and holds the invariance of variable reordering. Furthermore, we employ the ridge-type
ratio criterion and spectral clustering, to estimate the number of blocks and recover their member-
ships, respectively, and establish their consistency. Subsequently, for the scenario where the group
memberships are unknown and the block number is given, the above properties of the asymptotic
normality and stochastic convergence rate still hold. Various simulation studies and a real data anal-
ysis for portfolio allocation indicate that the proposed method outperforms the majority of existing
methods.

The rest of the article is organized as follows. Section 2 describes the blockwise correlation matrix
estimation and its asymptotic analysis when the block number and group memberships of variables
are given. Secontion 3 introduces the block number determination, group membership recovery, and
their consistency. Then, the same theoretical properties in Section 2 are extended to the scenario
where the group memberships are unknown and the block number is known in Secontion 3. Sec-
tion 4 and Section 5 present Monte Carlo studies and an empirical example, respectively. A brief
discussion with some concluding remarks is given in Section 6. All technical details are relegated
to the Appendix.

2 BLOCKWISE CORRELATION MATRIX ESTIMATION

2.1 BASIC NOTATIONS AND DEFINITION

Throughout the paper, vectors are denoted by lower-case bold letters, e.g., ι = (ι1, · · · , ιm)⊤ ∈ Rm,
and matrices by upper-case bold, e.g., M = (Mij) ∈ Rm×m. Define 0m1×m2

and 1m1×m2

as the m1 × m2 vectors or matrices of all zeros and ones, respectively. Moreover, 0m1×1 and
1m1×1 are simplified as 0m1

and 1m1
, respectively. Let Im denote the identity matrix of dimension

m. Here, m, m1, and m2 are any positive integers. In addition, let λj(M) be the j-th largest
eigenvalue of any generic matrix M ∈ Rm×m for j = 1, · · · ,m, ∥M∥F be the Frobenius norm of
M , ∥ι∥v = (

∑m
j=1 |ιj |v)1/v be the vector v-norm or generalized matrix v-norm of generic vector

ι = (ι1, · · · , ιm)⊤ ∈ Rm for 1 ≤ v ≤ ∞, and induced norms be ∥M∥v = supι∈Rm:ι ̸=0m

∥Mι∥v

∥ι∥v
.

The superscript ⊤ is the transpose of a vector or matrix. 1{·} denotes an indicator function with
condition in parentheses.

Next, we introduce the definition of the blockwise correlation matrix. Let yi = (yi1, · · · , yip)
⊤ ∈

Rp be independent and identically distributed p-dimensional response vector with mean E(yi) = 0p

and covariance matrix Cov(yi) = Σ for i = 1, · · · , n. The covariance matrix Σ can be decomposed
as Σ = ΛRΛ, whereR = Corr(yi) is the correlation matrix of yi and Λ = diag(σ1, · · · , σp) with
σ2
j = Var(yij) for i = 1, · · · , n and j = 1, · · · , p. We assume that the p-dimensional variables

have a blockwise structure with K groups. Specifically, denote F = {1, · · · , p} as the full index
set. For any given K, F is categorized into a total of K groups as F =

⋃K
k=1 Sk, where Sk collects

the indices of variables within group k, |Sk| = pk, Sk1 ∩ Sk2 = ∅, and p =
∑

k pk, for k1 ̸= k2
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and k, k1, k2 = 1, · · · ,K. Here, for any set M, |M| is the number of elements in M. Then, without
loss of generality, the elements of yi in F have been sorted such that yi = (y⊤

i1, · · · ,y⊤
iK)⊤, where

yik = (yij : j ∈ Sk) ∈ Rpk for any k = 1, · · · ,K. Moreover,R can be partitioned asR = (Rk1k2
)

withRk1k2
∈ Rpk1

×pk2 (including the case k1 = k2), which is assumed to be blockwise, that is,

Rkk = ρkk1pk×pk
+ (1− ρkk)Ipk

andRk1k2 = ρk1k21pk1
×pk2

, (1)

where ρkk, ρk1k2 ∈ [−1, 1], Rk1k2 = Rk2k1 . It is noteworthy that we only enforce the blockwise
structure on the correlation matrix not on the covariance matrix, since the variances of variables are
heterogeneous.

Based on this definition, we give some special notations used in this paper. Let ∆ := (ρk1k2
) ∈

RK×K and ρ = vech(∆) ∈ RK(K+1)/2 be the half-column-stacking vector of ∆. In addition,
define Ek = diag(0p1×p1 , · · · , Ipk

, · · · ,0pK×pK
) ∈ Rp×p for any k = 1, · · · ,K. Let Θ =

(θ1, · · · ,θp)⊤ = (Θjk) ∈ Rp×K be a membership matrix, where Θjk = 1 if j ∈ Sk and Θjk = 0
otherwise. Denote Dk1k2 = (Dij,k1k2) ∈ Rp×p, where Dij,k1k2 = 1 if i ∈ Sk1 and j ∈ Sk2 , and
Dij,k1k2 = 0 otherwise.

2.2 BLOCKWISE CORRELATION MATRIX ESTIMATION

Following the definition of the blockwise correlation matrix, we define ỹi = (ỹ⊤
i1, · · · , ỹ⊤

iK)⊤ :=

Λ−1yi, then we obtain Cov(ỹi) = Corr(ỹi) = R. Let z̃ik = p−1
k 1⊤

pk
ỹik be the mean of

variables within the k-th group for k = 1, · · · ,K. Simple calculation implies that Var(z̃ik) =
ρkk + pk

−1(1 − ρkk) and Cov(z̃ik1
, z̃ik2

) = ρk1k2
for any k1 ̸= k2. Subsequently, defining

z̃i = (z̃i11⊤
p1
, · · · , z̃iK1⊤

pK
)⊤ ∈ Rp, the blockwise correlation matrixR can be decomposed as

R = Σz̃ +G, (2)

where Σz̃ = Cov(z̃i) and G = diag(G11, · · · ,GKK) with Gkk = (1 − ρkk)Ipk
− p−1

k (1 −
ρkk)1pk×pk

. Therefore, to estimateR, we can resort to the moments of z̃iks.

Note that Λ is generally unknown in practice and needs to be estimated. Hence, we define Λ̂ =
diag(σ̂1, · · · , σ̂p) as an estimator of Λ with σ̂2

j = n−1
∑n

i=1 y2ij for j = 1, · · · , p. Replacing Λ

with Λ̂, we obtain ŷi = (ŷ⊤
i1, · · · , ŷ⊤

iK)⊤ := Λ̂−1yi and ẑik = p−1
k 1⊤

pk
ŷik. Then, by (2), the

blockwise correlation matrix estimation (BCME) forR are denoted as

ρ̂kk =
pk

n

∑n
i=1 ẑik ẑik − 1

pk − 1
=

1
n

∑n
i=1 1

⊤
pk
ŷikŷ

⊤
ik1pk

− pk

pk(pk − 1)
,

ρ̂k1k2 =
1

n

n∑
i=1

ẑik1 ẑik2 =

1
n

∑n
i=1 1

⊤
pk1

ŷik1
ŷ⊤
ik2

1pk2

pk1pk2

, for k1 > k2.

(3)

Substituting (3) into (1), we obtain R̂kk = ρ̂kk1pk×pk
+(1− ρ̂kk)Ipk

and R̂k1k2
= ρ̂k1k2

1pk1
×pk2

.
Finally, the estimators of ρ, R, and Σ are represented as ρ̂ = (ρ̂k1k2

) ∈ RK(K+1)/2, R̂ =

(R̂k1k2) ∈ Rp×p, and Σ̂ = Λ̂R̂Λ̂, respectively. It is noteworthy that R̂ and Σ̂ are naturally
positive semi-definite, since the eigenvalues ofG is no less than 0.

2.3 ASYMPTOTIC ANALYSIS

To study the theoretical properties of out proposed method, we first assume the following three
technical conditions.

(C1) (i) Write yi := ΛR1/2ϵi with ϵi = (ϵi1, · · · , ϵip)⊤ ∈ Rp. We assume that ϵijs are indepen-
dent and identically distributed (i.i.d.) with E(ϵij) = 0 and Var(ϵij) = 1, for any i = 1, · · · , n and
j = 1, · · · , p.
(ii) We assume σ2

j is bounded away from 0, for any j = 1, · · · , p. In addition, there ex-
ist γ1 ∈ (0, 1] and b1 > 0, such that for any s1 > 0, i = 1, · · · , n, and j = 1, · · · , p,
P (|yij | > s1) ≤ exp(−(s1/b1)

γ1).
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(C2) Assume that 2[tr(Al1Al2)]K(K+1)/2×K(K+1)/2 + (µ(4) − 3)Ψ⊤Ψ → Q as p → ∞ for a

finite and positive definite matrix Q, whereAl = R
1/2

{
− ρkk(pk−1)+1

pk(pk−1) Ek +
1

pk(pk−1)Dkk

}
R1/2

when l = k + (k − 1)K −
∑k−1

k3=0 k3, Al = R1/2
{

1
2pk1

pk2
(Dk1k2

+Dk2k1
) − ρk1k2

2 ( 1
pk1
Ek1

+

1
pk2
Ek2)

}
R1/2 when l = k1 + (k2 − 1)K −

∑k2−1
k3=0 k3 for k1 > k2 and k, k1, k2 = 1, · · · ,K, Ψ

is defined in Lemma 1, and µ(4) = E(ϵ4ij) for any i = 1, · · · , n and j = 1, · · · , p.

(C3) Assume pk/p → πk ∈ (0, 1) for any k = 1, · · · ,K as p → ∞. In addition, K is fixed.

Condition (C1)(i) introduces the moment conditions of ϵi, which has been widely used in related
literature (Fan et al., 2011; Yamada et al., 2017; Feng et al., 2022; Zheng et al., 2022) and is weaker
than the distributional assumption required in Tsay & Pourahmadi (2017) and Yang et al. (2024).
Condition (C1)(ii) requires the distribution of yi to have exponential-type tail, ensuring that the dis-
tribution does not have “heavy tails” (e.g., Cauchy distribution), which is necessary for the consistent
estimation of the variance of yij (Fan et al., 2011; Feng et al., 2022). Condition (C2) is a standard
assumption to ensure the covariance matrix of the estimated parameters converges a positive definite
matrix. If Condition (C2) is invalid, then multicollinearity problems may arise. This is similar to
the condition assumed in Zou et al. (2017). In addition, its rationality is shown in Appendix F. Con-
dition (C3) indicates that the number of blocks is finite but the dimension of block submatrices is
divergent as p → ∞. This condition is also employed in Yamada et al. (2017). Based on the above
three conditions, we obtain the asymptotic property of ρ̂ given below.

Theorem 1 Under Conditions (C1)-(C3), when (log p)6/γ1−1 = o(n), as min{n, p} → ∞, we
have that √

n(ρ̂− ρ) d−→ N (0K(K+1)/2,Q),

where γ1 and Q are defined in Conditions (C1) and (C2), respectively.

Theorem 1 indicates that the convergence rate of ρ̂ is
√
n, which is independent of p. This results is

reasonable since σj for j = 1, · · · , p need to be estimated and involve estimation errors. To ensure
the consistency of the estimators for σjs, the condition (log p)6/γ1−1 = o(n) is required. Moreover,
Q is unknown and needs to be estimated. By Condition (C2), Q̂ can be used as a consistent estimator
of Q to make valid inferences, where Q̂ is calculated by replacing ρ in Q with ρ̂.

Based on the above Theorem 1, we next provide the stochastic convergence rate of the estimated
blockwise correlation matrix R̂ and its related covariance matrix Σ̂.

Theorem 2 Under Conditions (C1)-(C3), when (log p)6/γ1−1 = o(n), as min{n, p} → ∞, we
have that

p−1∥R̂−R∥2 = Op(n
−1/2), p−1∥R̂−R∥F = Op(n

−1/2),

p−1∥Σ̂−Σ∥2 = Op(

√
log p

n
) and p−1∥Σ̂−Σ∥F = Op(

√
log p

n
).

3 BLOCK NUMBER DETERMINATION AND GROUP MEMBERSHIP RECOVERY

When true K and Sks for all k = 1, · · · ,K are given, by Theorem 1, the parameters of blockwise
correlation matrix R can be estimated consistently. For a real-world application, however, the true
K and all Sks are unknown and need to be estimated correctly. Motivated by Lam & Yao (2012),
Wang (2012), Ahn & Horenstein (2013), and Xia et al. (2015), we propose a ridge-type ratio (RR)
to estimate K.

Before introducing the ridge-type ratio estimator for K, we present an additional condition and the
bounds for the eigenvalues ofR with the true block number K as follows.

(C4) Assume that c−1
1 < λK(∆) ≤ · · · ≤ λ1(∆) < c1 for a finite constant c1 > 0.

Proposition 1 Under Conditions (C3) and (C4), as p → ∞, we have that c−1
λ1

p ≤ λK(R) ≤ · · · ≤
λ1(R) ≤ cλ1p and c−1

λ2
≤ λp(R) ≤ · · · ≤ λK+1(R) ≤ cλ2, for some finite constants cλ1 , cλ2 > 0.

4
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Condition (C4) assumes that ∆ is of full rank and Proposition 1 provides the order of eigenvalues
ofR.

Then, the ridge-type ratio for estimating K is denoted as

rj =
λj(R̂sam) + δ

λj+1(R̂sam) + δ
, j = 1, · · · , p− 1,

where R̂sam = n−1
∑n

i=1 ŷiŷ
⊤
i with ŷi being defined in equation (3) and δ is a hyperparameter for

ensuring that λj(R̂sam) + δ > 0 for any j = 1, · · · , p. Consequently, the true number of blocks K
can be estimated by K̂ = argmaxj∈{1,··· ,p−1} rj . The consistency of K̂ is ensured by the following
theorem.

Theorem 3 Assume δ = o(p) and p
√

log p/n = o(δ). Then, under Conditions (C1), (C3), and
(C4), when (log p)6/γ1−1 = o(n), as min{n, p} → ∞, we have that P (K̂ = K) → 1, where γ1 is
defined in Condition (C1).

Subsequently, to recover Sk for k = 1, · · · ,K, we estimate the membership matrix Θ by clustering
p variables when the number of blocks is predetermined. After simple calculation, R can be re-
expressed as R = Θ∆Θ⊤ +Ω, where Ω is a diagonal matrix to ensure the diagonal elements of
R are 1s. Since the rank of Θ∆Θ⊤ is K, we can rewrite Θ∆Θ⊤ as UV U⊤, where V ∈ RK×K

is a diagonal matrix consisting of the first K largest eigenvalues of Θ∆Θ⊤, and U ∈ Rp×K

comprises the first K eigenvectors of Θ∆Θ⊤ as columns and has K distinct rows. Therefore, we
can resort to the row clustering of U to recover the blocks’ memberships. Specifically, we eigen-
decomposite R̂sam and take the first K eigenvectors of R̂sam as the estimator of U , denoted as Û .
Then, we can obtain the estimator of Θ, Θ̂ = (θ̂1, · · · , θ̂p)⊤, by clustering the rows of Û . Their
almost sure convergence is proven in the Theorem II.3 of Su et al. (2019) under mild conditions, and
demonstrated in Condition (C5).

(C5) Assume that for sufficiently large n and p, sup1≤i≤n sup1≤j≤p 1{θ̂j ̸=θj} = 0, a.s..

Let ρ̂Θ̂ be an estimator of ρ with Θ̂, we then get that

Corollary 1 Under Conditions (C1)-(C5), when (log p)6/γ1−1 = o(n), as min{n, p} → ∞, we
have that √

n(ρ̂Θ̂ − ρ) d−→ N (0K(K+1)/2,Q),

where γ1 and Q are defined in Conditions (C1) and (C2), respectively.

The key of Corollary 1 is to prove ρ̂Θ̂
p→ ρ̂. It is straightforward with Condition (C5). For saving

space, we are not reporting the proof. Hence, when Sks are unknown, according Corollary 1, the
Theorem 2 still holds, which is also verified in simulation, see Table 8 in the Appendix G.

Remark 1 Recently, some researchers simultaneously estimate the model parameters and group
memberships with given K (Su et al., 2016; Liu et al., 2020; Zhu et al., 2023; Liu et al., 2024).
However, their optimization functions are non-convex and require specific algorithms, which is the-
oretically complex and lacking generality. Hence, we propose the above two-step estimation (i.e.,
spectral clustering and BCME) to address this issue when K is known.

4 SIMULATION STUDIES

To evaluate the finite sample performance of our proposed method, we conduct Monte Carlo studies
with the following setting. Specifically, for the blockwise correlation matrix R defined in (1), the
off-diagonal elements of each diagonal block are set to ρkk = 0.65 − 0.05(k − 1), and elements
of each off-diagonal block are set to ρk1k2

= ρk1k1
− 0.25 − 0.05(k2 − k1 − 1) if k1 < k2 and

k1 is odd, and ρk1k2
= ρk1k1

− 0.3 − 0.05(k2 − k1 − 1) if k1 < k2 and k1 is even, respectively,
for k, k1, k2 = 1, · · · ,K. This setting is similar to that in Wang (2012) and Zhao et al. (2022) and
assures the resulting correlation matrix is positive definite for K ≤ 8. Moreover, each block size
is set to come from the sequence (60, 90, 120, 150, 60, 90, 120, 150), that is, if K = 1, we set the

5
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block size p1 to be 60; if K = 2, we set two respective block sizes, p1 and p2, to be 60 and 90, and
so forth, which is same as Saldana et al. (2017) and Hu et al. (2020). For Λ, σjs are independently
and identically generated from uniform distribution U(0, 1). In addition, to evaluate the robustness
of our methods against a non-normal distribution, the response vector yi is simulated by yi =
ΛR1/2εi with εi = (εi1, · · · , εip)⊤ ∈ Rp, where εijs are independently and identically generated
by three distributions: the standardized normal distribution N (0, 1), mixture normal distribution
0.9N (0, 5/9) + 0.1N (0, 5), and standardized exponential distribution. In simulation studies, all
results are executed by 1,000 realizations with n = 200, 500, and 1, 000.

To verify the accuracy of the BCME method for estimating the blockwise correlation matrix and its
associated covariance matrix, we assume that K is known and K ∈ {2, 4, 6, 8}. In addition, we have
included three additional competitors for the sake of comparison. They are the Tsay & Pourahmadi
(2017, TP)’s estimator (R̂TP and Σ̂TP ), TP estimator with variable ordering (R̂o

TP and Σ̂o
TP ), and

traditional QMLE estimator (R̂QMLE and Σ̂QMLE). Then, we calculate the averages and standard
deviations of two types of estimation errors, spectral-errors (p−1||M1 −R||2 and p−1||M2 −Σ||2)
and Frobenius-errors (p−1||M1 − R||F and p−1||M2 − Σ||F ), across M1 = R̂, R̂TP , R̂o

TP ,
and R̂QMLE and M2 = Σ̂, Σ̂TP , Σ̂o

TP , and Σ̂QMLE . Moreover, we report the proportion of
positive semi-definiteness for estimated blockwise correlation matrix and its associated covariance
matrix. The average execution time obtained through programming in Matlab using an Intel(R)
Xeon(R) CPU (2.10 GHz) is also presented to reflect the computational complexity. Due to the high
execution time intensity of the TP and QMLE approaches, we only report their results for K = 2,
and 4. Table 1 illustrates three important findings when the elements of ϵi follow N (0, 1). First,
both the BCME and TP methods ensure positive semi-definiteness, whereas the QMLE approach
cannot. Second, the BCME method dramatically reduces the execution time compared to the other
two methods (0.037 sec v.s. 2957.841 sec and 8640.374 sec in K = 4 and n = 1000). Third, the
BCME method addresses the requirement of a predetermined variable order in the TP method and
achieves similar asymptotic efficiency for the TP method with variable ordering when K = 2, 4.
Similarly, Tables 4 and 5 in the Appendix G yield analogous simulation results when ϵi follows
non-normal distributions.

Table 1: Comparison of the BCME estimators (R̂, Σ̂), TP estimators (R̂TP , Σ̂TP ), TP estimators
with variable ordering (R̂o

TP , Σ̂o
TP ), and QMLE estimators (R̂QMLE , Σ̂QMLE) of the blockwise

correlation matrix and corresponding covariance matrix when ϵi follows a multivariate normal dis-
tribution Np(0p, Ip). AS and AF represent the averages of the spectral-error and Frobenius-error,
respectively. SS and SF denote the standard deviations of the spectral-error and Frobenius-error, re-
spectively. Pro. (%) is the proportion of positive semi-definiteness. Time (in seconds) is the average
execution time.

(K, p) (2,150) (4,420) (6,570) (8,840)
n Measures Σ̂ (R̂) Σ̂o

TP (R̂o
TP ) Σ̂TP (R̂TP ) Σ̂QMLE (R̂QMLE) Σ̂ (R̂) Σ̂o

TP (R̂o
TP ) Σ̂TP (R̂TP ) Σ̂QMLE (R̂QMLE) Σ̂ (R̂) Σ̂ (R̂)

200

AS 0.019 (0.023) 0.019 (0.023) 0.038 (0.108) 0.026 (0.049) 0.014 (0.025) 0.014 (0.026) 0.027 (0.086) 0.041 (0.124) 0.014 (0.025) 0.010 (0.022)
SS 0.009 (0.013) 0.009 (0.013) 0.002 (0.000) 0.028 (0.084) 0.006 (0.012) 0.006 (0.012) 0.002 (0.000) 0.011 (0.037) 0.006 (0.010) 0.004 (0.007)
AF 0.020 (0.025) 0.020 (0.025) 0.043 (0.111) 0.028 (0.051) 0.016 (0.030) 0.016 (0.030) 0.040 (0.120) 0.052 (0.158) 0.016 (0.031) 0.013 (0.029)
SF 0.008 (0.014) 0.008 (0.014) 0.004 (0.004) 0.029 (0.086) 0.005 (0.012) 0.005 (0.012) 0.002 (0.005) 0.012 (0.004) 0.005 (0.010) 0.003 (0.007)

Pro. 100.0 100.0 100.0 94.3 100.0 100.0 100.0 10.1 100.0 100.0
Time 0.004 12.987 20.370 30.918 0.023 2707.757 2819.685 1585.977 0.031 0.091

500

AS 0.012 (0.014) 0.012 (0.014) 0.038 (0.108) 0.014 (0.023) 0.009 (0.016) 0.009 (0.016) 0.026 (0.086) 0.040 (0.125) 0.009 (0.016) 0.006 (0.014)
SS 0.006 (0.009) 0.006 (0.009) 0.000 (0.000) 0.017 (0.050) 0.004 (0.007) 0.004 (0.007) 0.000 (0.000) 0.007 (0.024) 0.003 (0.006) 0.002 (0.005)
AF 0.013 (0.016) 0.013 (0.016) 0.040 (0.110) 0.015 (0.024) 0.010 (0.019) 0.010 (0.019) 0.038 (0.119) 0.052 (0.163) 0.010 (0.020) 0.008 (0.019)
SF 0.005 (0.009) 0.005 (0.009) 0.002 (0.002) 0.018 (0.051) 0.003 (0.007) 0.003 (0.007) 0.001 (0.003) 0.008 (0.026) 0.003 (0.006) 0.002 (0.004)

Pro. 100.0 100.0 100.0 98.0 100.0 100.0 100.0 1.8 100.0 100.0
Time 0.004 13.339 22.053 73.623 0.028 2798.561 2900.917 4033.282 0.034 0.100

1000

AS 0.008 (0.010) 0.008 (0.010) 0.038 (0.108) 0.011 (0.017) 0.006 (0.011) 0.006 (0.011) 0.026 (0.086) 0.040 (0.126) 0.006 (0.011) 0.005 (0.010)
SS 0.004 (0.006) 0.004 (0.006) 0.000 (0.000) 0.016 (0.046) 0.003 (0.005) 0.003 (0.005) 0.000 (0.000) 0.006 (0.021) 0.002 (0.004) 0.002 (0.003)
AF 0.009 (0.011) 0.009 (0.011) 0.039 (0.109) 0.011 (0.018) 0.007 (0.013) 0.007 (0.013) 0.038 (0.118) 0.053 (0.164) 0.007 (0.014) 0.006 (0.013)
SF 0.004 (0.007) 0.004 (0.007) 0.001 (0.001) 0.016 (0.047) 0.002 (0.005) 0.002 (0.005) 0.001 (0.003) 0.007 (0.022) 0.002 (0.004) 0.001 (0.003)

Pro. 100.0 100.0 100.0 98.0 100.0 100.0 100.0 0.0 100.0 100.0
Time 0.006 14.125 22.518 145.669 0.037 2957.841 3106.620 8640.374 0.042 0.117

We next study the finite sample performance of the RR method. To this end, we set K ∈
{2, 3, 4, 5, 6, 7, 8} and δ = 10−2pn−1/3. This choice of δ is similar to Xia et al. (2015) and Wang
et al. (2022) and satisfies the theorem assumption defined in Theorem 3. In addition, we consider
two measures to evaluate the performance of selection: (i) Mean: the mean of the estimated number
of blocks K̂, and (ii) CT: average percentage of the correct fit, 1{K̂=K}. Table 2 reports the Mean
and CT for all K when the entries of ϵi follow N (0, 1). It shows that, the RR method completely
restores the corresponding real block number when p < n. In addition, for p > n, the Mean of K̂ is
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gradually close to the real block number as the sample size n increases while the CT rapidly tends
to 1. Both of the results support Theorem 3. Similar findings can be observed when ϵi follows
non-normal distributions (see Tables 6 and 7 in the Appendix G).

Table 2: Results of block number selection when ϵi follows a multivariate normal distribution
Np(0p, Ip). CT is the average percentage of the correct fit. Mean is the mean of the estimated
number of blocks.

n = 200 n = 500 n = 1000
CT Mean CT Mean CT Mean

K = 2 1.00 2.00 1.00 2.00 1.00 2.00
K = 3 1.00 3.00 1.00 3.00 1.00 3.00
K = 4 0.90 3.69 1.00 4.00 1.00 4.00
K = 5 0.55 3.20 1.00 5.00 1.00 5.00
K = 6 0.14 1.68 0.99 5.94 1.00 6.00
K = 7 0.03 1.16 0.90 6.37 1.00 7.00
K = 8 0.03 1.24 0.93 7.53 1.00 8.00

5 REAL DATA ANALYSIS

In this study, to demonstrate the superiority of our proposed methods, we analyze the daily returns
of p = 1076 stocks belonging to the CSI Smallcap 500 Index and CSI 1000 Index from 2017 to
2021, where the data were collected from the WIND financial database.

We assess the performance of the out-of-sample portfolio by solving the Markowitz optimization
problem (Markowitz, 1952). To this end, we estimate the covariance matrix Σ using the standard
rolling window procedure with a window length of 12 quarters (Zivot & Wang, 2006; Zou et al.,
2017). For each quarter t (t = 12, · · · , 20), we obtain the estimator Σ̂RR

BCME,t = Λ̂tR̂tΛ̂t by em-
ploying the BCME method with the estimated block number K̂t determined by the RR method. For
the sake of comparison, we consider two additional BCME estimators (Σ̂ind

BCME,t and Σ̂subind
BCME,t)

constructed based on industries (Kt = 16) and sub-industries (Kt = 64) of stocks, respectively. In
addition, we employ the Tsay & Pourahmadi (2017, TP)’s method with variable ordering under three
different block numbers mentioned above (Σ̂o,RR

TP,t , Σ̂o,ind
TP,t , Σ̂o,subind

TP,t ). We also employ the methods
of the Ledoit & Wolf (2004, LW1) (Σ̂LW1,t), Ledoit & Wolf (2003, LW2) (Σ̂LW2,t), Ledoit & Wolf
(2020, LW3) (Σ̂LW3,t), and Schäfer & Strimmer (2005, SS) (Σ̂SS,t) to estimate the covariance ma-
trix. Then, for each quarter t, we calculate 10 minimum variance portfolio weights by minimizing
the portfolio variance, ω̂t = argminω∈Rp ω⊤Mtω, such that ω⊤1p = 1 and ω ≥ 0p, where Mt

equals to the above 10 covariance matrix estimators. Next, let Yt ∈ Rp×Tt denote the daily returns
of stocks in quarter t, where Tt is trading days at quarter t. Then, we compute the out-of-sample
portfolios at quarter t+1 by Y ⊤

t+1ω̂t, across ω̂t = ω̂
RR
BCME,t, ω̂

ind
BCME,t, ω̂

subind
BCME,t, ω̂

o,RR
TP,t , ω̂o,ind

TP,t ,
ω̂o,subind

TP,t , ω̂LW1,t, ω̂LW2,t, ω̂LW3,t, ω̂SS,t, and ω̂Bench,t, where ω̂Bench,t is the weight propor-
tional to t-th quarter market capitalization and its corresponding out-of-sample portfolio is denoted
as a benchmark.

To examine the out-of-sample portfolio performance (486 trading days from quarter 13 to quarter
20), we consider six commonly used measures: (i) the sample mean (Mean); (ii) sample standard
deviation (SD); (iii) Sharpe ratio (SR); (iv) Turnover ratio (TR); (v) risk-adjusted excess return over
the benchmark (Alpha); and (vi) Beta (the beta coefficient close to 1 indicates the out-of-sample
portfolio has almost the same volatility as the benchmark). The results are provided in Table 3.
Notably, due to the high execution time to obtain Σ̂o,ind

TP,t and Σ̂o,subind
TP,t , we only calculate the out-

of-sample portfolio based on Σ̂o,RR
TP,t .

Table 3 indicates that the mean of the portfolio return based on BCME with RR is slightly larger than
that of the portfolio return based on BCME with industries and sub-industries, as well as the portfo-
lio return based on LW1, LW2, LW3, and SS methods, although these means are marginally smaller
than that of the market portfolio return. In addition, the portfolio return based on BCME with RR ex-
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hibits lower risk, measured by SD and Beta. As a result, the Sharpe ratio of the portfolio return based
on BCME with RR is 30%, 20%, 10%,8% 5%, 5%, and 3% (e.g., 30% = {0.065− 0.050}/0.050)
higher than that of the portfolio return based on LW2, market portfolio return, portfolio return based
LW1, BCME with industries, BCME with sub-industries, SS, and LW3, respectively. Finally, our
method significantly outperforms the TP method with variable ordering in terms of execution time
(0.036 sec v.s. 13415.565 sec), although both exhibit similar efficiency. This is particularly valuable
in the ever-changing stock market. In sum, although the turnover ratio based on our method is not
satisfactory, the block structure is significant for portfolio management and our proposed framework
is highly effective for portfolio analysis.

Table 3: The sample mean (Mean), sample standard deviation (SD), Sharpe ratio (SR), Turnover
ratio (TR), Alpha, and Beta calculated from 486 trading days of returns (%) in the market portfo-
lio and portfolios constructed by BCME, TP, LW1, LW2, LW3, and SS methods, respectively, from
2020 to 2021 on the Chinese stock market, and the averaged execution time (Time, in seconds) to es-
timate corresponding covariance matrices for 9 quarters. The numbers within parentheses represent
the standard errors of the alpha and beta coefficients, respectively. Dashes indicate null values or
procedures that were not executed due to prohibitively time-intensity. The superscript ∗ ∗ ∗ denotes
significance levels of 1%. Both ↑ and ↓ indicate better performance.

Mean (↑) SD (↓) SR (↑) TR (↓) Alpha (↑) Beta (↓) Time (↓)
Market 0.073 1.303 0.054 0.159 0 1 -

BCME(RR) 0.069 1.010 0.065 0.448 0.038 (0.038) 0.429∗∗∗ (0.029) 0.036
BCME(ind) 0.062 0.965 0.060 0.308 0.030 (0.035) 0.439∗∗∗ (0.027) 0.040

BCME(subind) 0.063 0.952 0.062 0.318 0.030 (0.034) 0.451∗∗∗ (0.026) 0.038
TP(RR) 0.069 1.010 0.065 0.448 0.038 (0.038) 0.429∗∗∗ (0.029) 13415.565
TP(ind) - - - - - - -

TP(subind) - - - - - - -
LW1 0.058 0.921 0.059 0.287 0.020 (0.028) 0.518∗∗∗ (0.022) 3.522
LW2 0.050 0.922 0.050 0.286 0.017 (0.033) 0.440∗∗∗ (0.025) 11.264
LW3 0.066 0.990 0.063 0.276 0.022 (0.027) 0.608∗∗∗ (0.021) 0.159
SS 0.061 0.930 0.062 0.277 0.022 (0.028) 0.541∗∗∗ (0.021) 3.922

6 CONCLUSION AND REMARKS

We propose BCME to estimate a covariance matrix with blockwise correlation structure in high-
dimensional settings. When the block number and group memberships of variables are known, the
theoretical properties of the parameter estimators, the estimated blockwise correlation and covari-
ance matrix are established under certain moment conditions. In addition, we utilize the ridge-type
ratio criterion and spectral clustering to estimate the number of blocks and recover their member-
ships for a blockwise correlation matrix, and proved their consistency. Subsequently, we extend
the properties of the asymptotic normality and stochastic convergence rate to the scenario where
the group memberships are unknown and the block number is given. An application for analyzing
portfolio returns in the Chinese stock market and simulation studies present superior performance
of our proposed methods.

To expand the applicability of our proposed methods, we consider two major avenues for future
research. First, extend the BCME, RR, and spectral clustering methods and establish their theoretical
properties when K is divergent, including K/n ∈ (0,∞] or K/p ∈ (0, 1]. This is reasonable and
common in ultra high-dimensional data. Second, develop general methods for estimating a quantiled
moment and choosing the number of blocks when the quantiled moment has a block structure. These
extensions would further reveal the usefulness of our proposed methods for inferences on structured
blockwise moment.
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APPENDIX

A THREE TECHNICAL LEMMAS

Lemma 1 Let ϵi = (ϵi1, · · · , ϵip)⊤ ∈ Rp for i = 1, · · · , n be independent and identically dis-
tributed random vectors, and satisfies Condition (C1). Define

qn,p =
1

n

n∑
i=1

vec⊤(A1)
...

vec⊤(AL)

 vec(ϵiϵ
⊤
i − Ip),

whereAl = (A
(l)
j1j2

) ∈ Rp×p is symmetric for l = 1, · · · , L with L < ∞. Then, we have E(qn,p) =
0L, and

Cov(qn,p) = 2n−1[tr(Al1Al2)]L×L + (µ(4) − 3)n−1Ψ⊤Ψ, (4)

where Ψ = (ψ1, · · · ,ψL) ∈ Rp×L with ψl := (A
(l)
11 , · · · , A

(l)
pp)⊤ ∈ Rp for l = 1, · · · , L. If there

exists a positive definite matrix Q ∈ RL×L such that nCov(qn,p) → Q, then, we have

n1/2qn,p
d−→ N (0,Q). (5)

Proof. The equation (4) is directly exacted from Chen et al. (2010). To prove equation (5), by
Cramér-Wold device, it suffices to establish the asymptotic normality of ξ⊤qn,p for arbitrary vec-
tor ξ = (ξ1, · · · , ξL)⊤ > 0L ∈ RL. Denote qξi =

∑
l ξlvec

⊤(Al)vec(ϵiϵ
⊤
i − Ip). We have

E(qξi) = 0, Var(qξi) = ξ⊤{2[tr(Al1Al2)]L×L + (µ(4) − 3)Ψ⊤Ψ}ξ, according to (4), and
ξ⊤qn,p = n−1

∑n
i=1 qξi. To prove the asymptotic normality of ξ⊤qn,p, it suffices to verify that the

Lindeberg condition holds, that is,

lim
p→∞

lim
n→∞

1∑n
i=1 Var(qξi)

n∑
i=1

∫
x2>c2ξ

∑n
i=1 var(qξi)

x2dFqξi(x) = 0, (6)

where Fqξi(x) is the cumulative distribution function of qξi and cξ is an arbitrary constant. Since
qξis are i.i.d., we have

lim
n→∞

1∑n
i=1 var(qξi)

n∑
i=1

∫
x2>c2ξ

∑n
i=1 var(qξi)

x2dFqξi(x)

= lim
n→∞

1

var(qξi)

∫
x2>c2ξ

∑n
i=1 var(qξi)

x2dFqξi(x) = 0,

where the last equality is due to that the variance of qξi exists and finite. Thus, (6) holds, which
completes the entire proof of this lemma.

Lemma 2 Under Conditions (C1) and (C3), we have ∥n−1
∑n

i=1 ỹiỹ
⊤
i −R∥F = Op(p/

√
n).
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Proof. We evaluate the expectation of ∥n−1
∑n

i=1 ỹiỹ
⊤
i −R∥2F to prove the lemma. We obtain

E∥n−1
n∑

i=1

ỹiỹ
⊤
i −R∥2F = E∥n−1

n∑
i=1

ỹiỹ
⊤
i ∥2F − ∥R∥2F ,

where E∥n−1
∑n

i=1 ỹiỹ
⊤
i ∥2F = n−1E∥ỹiỹ

⊤
i ∥2F + (n − 1)n−1E

{
tr(ỹi1 ỹ

⊤
i1
ỹi2 ỹ

⊤
i2
)
}

for i, i1, i2 =
1, · · · , n. According to Lemma 1, we have

E∥ỹiỹ
⊤
i ∥2F = 2tr(R2) + (µ(4) − 3)tr(R ◦R) + tr2(R),

E
{
tr(ỹi1 ỹ

⊤
i1 ỹi2 ỹ

⊤
i2)

}
= tr(R2).

This, together with the Condition (C3), implies

E∥n−1
n∑

i=1

ỹiỹ
⊤
i −R∥2F = n−1{tr(R2) + p(µ(4) − 3) + tr2(R)}

≤ n−1
{
p2
[ ∑
k∈{1,··· ,K}

π2
k + 2

∑
k1>k2

k1,k2∈{1,··· ,K}

πk1πk2

]
+p(µ(4) − 3) + p2

}
= O(p2/n),

which completes the proof.

Lemma 3 Under Condition (C1) and (log p)6/γ1−1 = o(n), as min{n, p} → ∞, we have that

max
j∈{1,··· ,p}

|σ̂j − σj | = Op

(√ log p

n

)
.

Proof. By Lemma A.2 of Fan et al. (2011) and formula (1.3) of Merlevède et al. (2011), together
with Condition (C1) and (log p)6/γ1−1 = o(n), we have that

P
{

max
j∈{1,··· ,p}

|σ̂2
j − σ2

j | ≥ cσ

√
log p

n

}
→ 0

as min{n, p} → ∞, for a finite constant cσ > 0. Then, maxj∈{1,··· ,p}|σ̂j − σj ||σ̂j + σj | =

Op

{
(log p/n)1/2

}
and maxj∈{1,··· ,p}|σ̂j − σj | = Op

{
(log p/n)1/2

}
, which completes the entire

proof of this lemma.

B PROOF OF PROPOSITION 1

Recall thatR = Θ∆Θ⊤ +Ω, where Ω = diag((1− ρ11)Ip1 , · · · , (1− ρKK)IpK
). Since the rank

of Θ∆Θ⊤ is K, we know that the last p − K eigenvalues of R are positive and finite. Then, we
consider the K eigenvalues of Θ∆Θ⊤ to give the property of the first K eigenvalues ofR. Defining
P = diag(

√
p1, · · · ,

√
pK) ∈ RK×K , we have Θ∆Θ⊤ = ΘP−1P∆PP−1Θ⊤, where ΘP−1

is orthonormal. Let U∆V∆U
⊤
∆ be the eigendecomposition of P∆P . Then the eigenvector matrix

U of Θ∆Θ⊤ is equal to ΘP−1U∆. The eigenvalues of Θ∆Θ⊤ are equal to those of P∆P .
Under Conditions (C3) and (C4), we have c−1

λ1
p ≤ pλK(∆) ≤ λk(P∆P ) ≤ pλ1(∆) ≤ cλ1

p, for
k ∈ [K] and some constant cλ1

> 0, which completes the proof.

C PROOF OF THEOREM 1

We will prove this theorem in two steps via the Delta method. In step I, we prove that ρ̂ can be
approximated by its first order Taylor expansion. In step II, we demonstrate that ρ̂ is asymptotical
normal.

Step I. Define Λk = diag(σ1k, · · · , σpkk) := diag(σj , j ∈ Sk) ∈ Rpk×pk , Λ̂k =
diag(σ̂1k, · · · , σ̂pkk) := diag(σ̂j , j ∈ Sk) ∈ Rpk×pk , and Πk1k2 = n−1

∑n
i=1 ỹik1 ỹ

⊤
ik2

∈ Rpk×pk .

12
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Then, formula (2.2) of the main paper can be rewritten as

ρ̂k1k2
=

1⊤
pk1

Λ̂−1
k1

Λk1
Πk1k2

Λk2
Λ̂−1

k2
1pk

pk1
pk2

, for k1 > k2,

ρ̂kk =
1⊤
pk
Λ̂−1

k ΛkΠkkΛkΛ̂
−1
k 1pk

− pk

pk(pk − 1)
.

We treat ρ̂k1k2
for k1 > k2 as a function of σ̂2

j for j ∈ Sk1
∪ Sk2

and Πk1k2
. Employing Taylor

series expansion, we have that

ρ̂k1k2
− ρk1k2

=− ρk1k2

2

∑
c∈{k1,k2}

{
p−1
c

pc∑
j=1

σ−2
jc (σ̂2

jc − σ2
jc)

}
+ (pk1pk2)

−1vec⊤(1pk1
×pk2

)vec(Πk1k2 −Rk1k2)

+
3ρk1k2

8

∑
c∈{k1,k2}

{
p−1
c

pc∑
j=1

σ∗−5
jc σjc(σ̂

2
jc − σ2

jc)
2
}

+
ρk1k2

8pk1
pk2

pk1∑
j1=1

pk2∑
j2=1

{
σ∗−3
j1k1

σj1k1σ
∗−3
j2k2

σj2k2(σ̂
2
j1k1

− σ2
j1k1

)(σ̂2
j2k2

− σ2
j2k2

)
}

− 1

pk1pk2

∑
c∈{k1,k2}

{
vec⊤(Πk1k2 − ρk1k21pk1

×pk2
)Ξc(σ̂

2
1c − σ2

1c, · · · , σ̂2
pcc − σ2

pcc)
⊤}

=H11 +H12 + I1 + I2 + I3,

where σ∗
jc is between σjc and σ̂jc, Ξc = 1pc̃

⊗ diag(σ∗−3
1c σ1c, · · · , σ∗−3

pcc σ1c), c̃ ∈ {k1, k2}, and
c̃ ̸= c. Here, ⊗ is the Kronecker product. To study the asymptotic property of ρ̂k1k2

, we first prove
that I1, I2, and I3 are op(n−1/2). According to Lemma 3, σjc and σ̂jc are bounded with probability
tending to 1.

For I1, we have that

√
n|I1| ≤ C1

√
n max

c∈{k1,k2}
p−1
c

pc∑
j=1

(σ̂2
jc − σ2

jc)
2 ≤ C1n

−1/2log p → 0,

for some finite positive constant C1. For I2, we have that

√
n|I2| ≤ C2

√
n(pk1

pk2
)−1

pk1∑
j1=1

pk2∑
j2=1

(σ̂2
j1k1

− σ2
j1k1

)(σ̂2
j2k2

− σ2
j2k2

) ≤ C2n
−1/2 log p → 0,

for some finite positive constant C2. For I3, by the Cauchy–Schwarz inequality, we have that
√
n|I3| ≤C3(pk1

pk2
)−1∥Πk1k2

− ρk1k2
1pk1

×pk2
∥F max

c∈{k1,k2}
∥Ξc∥F

√
log p

≤C3(pk1
pk2

)−1Op(p/
√
n)
√

log p max
c∈{k1,k2}

∥Ξc∥F = Op

{
(log p/n)1/2

}
→ 0,

for some finite positive constant C3. Therefore, ρ̂k1k2
− ρk1k2

= H11 + H12 + op(n
−1/2) for

k1 > k2.

Employing similar techniques, we obtain that

ρ̂kk − ρkk =− ρkk(pk − 1) + 1

pk(pk − 1)

pk∑
j=1

{
σ−2
jk (σ̂2

jk − σ2
jk)

}
+

1

pk(pk − 1)
vec⊤(1pk×pk

)vec(Πkk −Rkk) + op(n
−1/2)

=H21 +H22 + op(n
−1/2),

13
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which completes the first part of the proof.

Step II. In this step, we study the asymptotic distribution of ρ̂ according to Lemma 1. We have that

H11 = vec⊤
(
−ρk1k2

2
R1/2(

1

pk1

Ek1
+

1

pk2

Ek2
)R1/2

) 1

n

n∑
i=1

vec(ϵiϵ
⊤
i − Ip),

H12 = vec⊤
( 1

2pk1pk2

R1/2(Dk1k2
+Dk2k1

)R1/2
) 1

n

n∑
i=1

vec(ϵiϵ
⊤
i − Ip),

H21 = vec⊤
(
−ρkk(pk − 1) + 1

pk(pk − 1)
R1/2EkR

1/2
) 1

n

n∑
i=1

vec(ϵiϵ
⊤
i − Ip),

H22 = vec⊤
( 1

pk(pk − 1)
R1/2DkkR

1/2
) 1

n

n∑
i=1

vec(ϵiϵ
⊤
i − Ip).

Then, ρ̂− ρ can be rewritten as

q̃n,p := ρ̂− ρ =
1

n

n∑
i=1

vec⊤(A1)
...

vec⊤(AL)

 vec(ϵiϵ
⊤
i − Ip) + op(n

−1/2),

where L = K(K+1)
2 < ∞, Al = R1/2

{
− ρkk(pk−1)+1

pk(pk−1) Ek + 1
pk(pk−1)Dkk

}
R1/2 when l = k +

(k−1)K−
∑k−1

k3=0 k3, andAl = R
1/2

{
1

2pk1
pk2

(Dk1k2
+Dk2k1

)− ρk1k2

2 ( 1
pk1
Ek1

+ 1
pk2
Ek2

)
}
R1/2

when l = k1 + (k2 − 1)K −
∑k2−1

k3=0 k3 for k1 > k2 and k, k1, k2 = 1, · · · ,K.

According to Lemma 1, we have Cov(q̃n,p) = 2n−1[tr(Al1Al2)]L×L + (µ(4) − 3)n−1Ψ⊤Ψ.

According to Condition (C2), nCov(q̃n,p) → Q. Thus, by Lemma 1, we have n1/2(ρ̂ − ρ) d−→
N (0K(K+1)/2,Q), which completes the entire proof.

D PROOF OF THEOREM 2

By Theorem 1, we can obtain ∥ρ̂− ρ∥2 = Op(n
−1/2). This, together with Lemma 3 and Condition

(C3), imply that

∥R̂−R∥F =
[ ∑
k∈{1,··· ,K}

pk(pk − 1)(ρ̂kk − ρkk)
2 + 2

∑
k1>k2

k1,k2∈{1,··· ,K}

pk1
pk2

(ρ̂k1k2
− ρk1k2

)2
]1/2

≤
{
p2Op(n

−1)
[ ∑
k∈{1,··· ,K}

π2
k + 2

∑
k1>k2

k1,k2∈{1,··· ,K}

πk1
πk2

]}1/2

= Op(
p√
n
).

Analogously, we obtain

∥Σ̂−Σ∥F =
{ ∑
k∈{1,··· ,K}

∑
j∈{1,··· ,pk}

(σ̂2
jk − σ2

jk)
2

+ 2
∑

k∈{1,··· ,K}

∑
j1>j2

j1,j2∈{1,··· ,pk}

[σ̂j1kσ̂j2k(ρ̂kk − ρkk) + (σ̂j1kσ̂j2k − σj1kσj2k)ρkk]
2

+ 2
∑

k1>k2

k1,k2∈{1,··· ,K}

∑
j1∈{1,··· ,pk1

}

∑
j2∈{1,··· ,pk2

}

[σ̂j1k1 σ̂j2k2(ρ̂k1k2 − ρk1k2) + (σ̂j1k1 σ̂j2k2 − σj1k1σj2k2)ρk1k2 ]
2
}1/2

≤
{
Op(

log p

n
)
[
p+ p2

∑
k∈{1,··· ,K}

π2
k + 2p2

∑
k1>k2

k1,k2∈{1,··· ,K}

πk1πk2

]}1/2

= Op(p

√
log p

n
).
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Subsequently, by 4.67(a) in Seber (2008, p. 68), we have ∥R̂−R∥2 ≤ ∥R̂−R∥F = Op(
p√
n
) and

∥Σ̂−Σ∥2 ≤ ∥Σ̂−Σ∥F = Op(p
√

log p
n ), which completes the entire proof.

E PROOF OF THEOREM 3

To prove this theorem, we consider the following two steps. In Step I, we prove λk(R̂sam) + δ =

Op(p) for k ≤ K, and λk(R̂sam) + δ = Op(1 ∨ δ) for k ≥ K + 1. In Step II, we derive the
consistency of K̂. Here, m1 ∨m2 = max{m1,m2} for any m1 and m2.

STEP I. By the definition of R̂sam and triangle inequality, we have that

∥R̂sam −R∥F = ∥Λ̂−1Λ
1

n

n∑
i=1

ỹiỹ
⊤
i ΛΛ̂−1 −R∥F

= ∥Λ̂−1Λ(
1

n

n∑
i=1

ỹiỹ
⊤
i −R)ΛΛ̂−1 + Λ̂−1ΛR(ΛΛ̂−1 − Ip) + (Λ̂−1Λ− Ip)R∥F

≤ ∥Λ̂−1Λ∥22∥
1

n

n∑
i=1

ỹiỹ
⊤
i −R∥F + ∥Λ̂−1Λ∥2∥R∥F ∥ΛΛ̂−1 − Ip∥2

+ ∥Λ̂−1Λ− Ip∥2∥R∥F

= Op(∥
1

n

n∑
i=1

ỹiỹ
⊤
i −R∥F + ∥Λ̂−1Λ− Ip∥2∥R∥F ).

According to Lemmas 2 and 3, we have that ∥n−1
∑n

i=1 ỹiỹ
⊤
i − R∥F = Op(p/

√
n), ∥Λ̂−1Λ −

Ip∥2 = Op(
√
log p/n), and ∥R∥F = O(p). Thus, we obtain ∥R̂sam −R∥F = Op(p

√
log p/n)

and ∥R̂sam −R∥2 = Op(p
√

log p/n).

Let δ = o(p) and p
√

log p/n = o(δ). Then, by the Weyl’s inequality, we have

λk(R)− ∥R̂sam −R∥2 + δ ≤ λk(R̂sam) + δ ≤ λk(R) + ∥R̂sam −R∥2 + δ,

for k = 1, · · · , p. This, together with Proposition 1, implies λk(R̂sam) + δ = Op(p) for k ≤ K,
and λk(R̂sam) + δ = Op(1 ∨ δ) for k > K.

STEP II. As n and p are sufficiently large, we can get

max
j<K

rj = max
j<K

λj(R̂sam) + δ

λj+1(R̂sam) + δ
≤ λ1(R̂sam) + δ

λK(R̂sam) + δ
= Op(1),

and

max
j>K

rj = max
j>K

λj(R̂sam) + δ

λj+1(R̂sam) + δ
≤ λK+1(R̂sam) + δ

λp(R̂sam) + δ
= Op(1).

Then, similarly, as long as n and p are sufficiently large, we obtain

λK(R̂sam) + δ

λK+1(R̂sam) + δ
= Op(p ∧ δ−1p),

which diverges in probability towards infinity. Here, m1∧m2 = min{m1,m2} for any m1 and m2.
This completes the last step and the entire proof.

F RATIONALITY OF CONDITION (C2)

For illustration purpose, we set µ(4) = 3. We next give the concrete form of tr(Al1Al2) for any
l1, l2 = 1, · · · ,K(K + 1)/2 in the following three cases.
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Case I. DenoteQk = −ρkk(pk−1)+1
pk(pk−1) Ipk

+ 1
pk(pk−1)1pk×pk

. For l1 = k1 + (k1 − 1)K −
∑k1−1

h=0 h

and l2 = k2 + (k2 − 1)K −
∑k2−1

h=0 h, we obtain
tr(Al1Al2) = tr(Rk2k1

Qk1
Rk1k2

Qk2
) → ρ2k1k2

(1− ρk1k1
)(1− ρk2k2

),

for k1, k2 = 1, · · · ,K.

Case II. Since tr(Al1Al2) = tr(Al2Al1), we only present the results of l1 = k+(k−1)K−
∑k−1

h=0 h

and l2 = k1 + (k2 − 1)K −
∑k2−1

h=0 h. After algebraic calculation, we obtain

tr(Al1Al2) =
1

2pk1
pk2

tr(QkRkk1
1k1×k2

Rk2k +QkRkk2
1k2×k1

Rk1k)

− ρk1k2

2
tr(

1

pk1

QkRkk1
Rk1k +

1

pk2

QkRkk2
Rk2k)

→(1− ρkk)
{
ρkk1ρkk2 −

1

2
ρ2kk1

ρk1k2 −
1

2
ρ2kk2

ρk1k2

}
,

for k, k1, k2 = 1, · · · ,K and k1 > k2.

Case III. For l1 = k1 + (k2 − 1)K −
∑k2−1

h=0 h and l2 = k3 + (k4 − 1)K −
∑k4−1

h=0 h,

we obtain

tr(Al1Al2) =
1

4pk1
pk2

pk3
pk4

tr(R1/2(Dk1k2
+Dk2k1

)R(Dk3k4
+Dk4k3

)R1/2)

− ρk3k4

4pk1
pk2

tr(R1/2(Dk1k2
+Dk2k1

)R(
1

pk3

Ek3
+

1

pk4

Ek4
)R1/2)

− ρk1k2

4pk3pk4

tr(R1/2(Dk3k4 +Dk4k3)R(
1

pk1

Ek1 +
1

pk2

Ek2)R
1/2)

+
ρk1k2ρk3k4

4
tr(R1/2(

1

pk1

Ek1 +
1

pk2

Ek2)R(
1

pk3

Ek3 +
1

pk4

Ek4)R
1/2)

=B1 +B2 +B3 +B4,

where k1, k2, k3, k4 = 1, · · · ,K, k1 > k2, and k3 > k4.

After algebraic calculation, we obtain

B1 =
1

4pk1
pk2

pk3
pk4

{
tr(1k1×k2

Rk2k3
1k3×k4

Rk4k1
) + tr(1k2×k1

Rk1k3
1k3×k4

Rk4k2
)

+ tr(1k1×k2Rk2k41k4×k3Rk3k1) + tr(1k2×k1Rk1k41k4×k3Rk3k2)
}

→ 1

2
(ρk2k3ρk1k4+ρk1k3ρk2k4).

Analogously, we obtain

B2 = − ρk3k4

4pk1
pk2

{
tr(

1

pk3

1k1×k2
Rk2k3

Rk3k1
) + tr(

1

pk4

1k1×k2
Rk2k4

Rk4k1
)

+ tr(
1

pk3

1k2×k1
Rk1k3

Rk3k2
) + tr(

1

pk4

1k2×k1
Rk1k4

Rk4k2
)
}

→ −ρk3k4

2
(ρk2k3ρk1k3 + ρk2k4ρk1k4),

and B3 → −ρk1k2

2 (ρk1k3ρk1k4 + ρk2k4ρk2k3). For B4, we have

B4 =
ρk1k2

ρk3k4

4

{
tr(

1

pk1pk3

Rk1k3
Rk3k1

) + tr(
1

pk2pk3

Rk2k3
Rk3k2

)

+ tr(
1

pk1pk4

Rk1k4Rk4k1) + tr(
1

pk2pk4

Rk2k4Rk4k2)
}

→ ρk1k2ρk3k4

4
(ρ2k1k3

+ ρ2k2k3
+ ρ2k1k4

+ ρ2k2k4
).

Combining the above results, we immediately know that B1 +B2 +B3 +B4 is convergent.

Since every elements in [tr(Al1Al2)]K(K+1)/2×K(K+1)/2 are convergent and K < ∞,
[tr(Al1Al2)] is also convergent, which implies that our Condition (C2) is sensible.
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G ADDITIONAL SIMULATION RESULTS

In this section, we present two different types of additional simulation studies. First, the simulation
settings are the same as those in Section 4, except that the elements of ϵi are i.i.d. from the mixture
normal distribution 0.9N (0, 5/9) + 0.1N (0, 5) and standardized exponential distribution. We find
that the results yield similar patterns to those in Tables 1 and 2, which demonstrates the robustness of
the BCME and RR methods, shown in Tables 4–7. Second, we demonstrate the results of the BCME
estimations with given K when the group memberships are unknown and ϵi follows a multivariate
normal distribution Np(0p, Ip) in Table 8, which verifies the corollary 1. In addition, the similar
results are yielded when ϵi follows non-normal distributions, but they are not reported here to save
space.

Table 4: Comparison of the BCME estimators (R̂, Σ̂), TP estimators (R̂TP , Σ̂TP ), TP estimators
with variable ordering (R̂o

TP , Σ̂o
TP ), and QMLE estimators (R̂QMLE , Σ̂QMLE) of the blockwise

correlation matrix and corresponding covariance matrix when the elements of ϵi follow a mixture
normal distribution 0.9N (0, 5/9) + 0.1N (0, 5). AS and AF represent the averages of the spectral-
error and Frobenius-error, respectively. SS and SF denote the standard deviations of the spectral-
error and Frobenius-error, respectively. Pro. (%) is the proportion of positive semi-definiteness.
Time (in seconds) is the average execution time.

(K, p) (2,150) (4,420) (6,570) (8,840)
n Measures Σ̂ (R̂) Σ̂o

TP (R̂o
TP ) Σ̂TP (R̂TP ) Σ̂QMLE (R̂QMLE) Σ̂ (R̂) Σ̂o

TP (R̂o
TP ) Σ̂TP (R̂TP ) Σ̂QMLE (R̂QMLE) Σ̂ (R̂) Σ̂ (R̂)

200

AS 0.021 (0.024) 0.021 (0.024) 0.036 (0.108) 0.029 (0.055) 0.016 (0.026) 0.016 (0.026) 0.027 (0.086) 0.041 (0.123) 0.014 (0.025) 0.012 (0.022)
SS 0.008 (0.014) 0.008 (0.014) 0.002 (0.000) 0.028 (0.091) 0.006 (0.011) 0.006 (0.011) 0.002 (0.000) 0.011 (0.039) 0.005 (0.010) 0.004 (0.007)
AF 0.023 (0.026) 0.023 (0.026) 0.042 (0.112) 0.032 (0.058) 0.018 (0.030) 0.018 (0.030) 0.041 (0.120) 0.052 (0.157) 0.017 (0.031) 0.015 (0.029)
SF 0.007 (0.014) 0.007 (0.014) 0.004 (0.004) 0.030 (0.093) 0.005 (0.011) 0.005 (0.011) 0.002 (0.005) 0.013 (0.047) 0.004 (0.009) 0.003 (0.007)

Pro. 100.0 100.0 100.0 93.0 100.0 100.0 100.0 10.4 100.0 100.0
Time 0.003 12.899 20.123 31.161 0.023 2681.941 2742.259 1585.685 0.031 0.092

500

AS 0.013 (0.015) 0.013 (0.015) 0.035 (0.108) 0.019 (0.035) 0.010 (0.016) 0.010 (0.016) 0.026 (0.086) 0.040 (0.125) 0.009 (0.015) 0.008 (0.014)
SS 0.005 (0.009) 0.005 (0.009) 0.003 (0.007) 0.024 (0.076) 0.004 (0.007) 0.004 (0.007) 0.001 (0.000) 0.005 (0.014) 0.003 (0.006) 0.002 (0.005)
AF 0.014 (0.017) 0.014 (0.017) 0.038 (0.110) 0.020 (0.037) 0.012 (0.019) 0.012 (0.019) 0.039 (0.118) 0.053 (0.163) 0.011 (0.019) 0.010 (0.019)
SF 0.005 (0.010) 0.005 (0.010) 0.003 (0.008) 0.024 (0.077) 0.003 (0.007) 0.003 (0.007) 0.001 (0.003) 0.005 (0.015) 0.002 (0.006) 0.002 (0.004)

Pro. 100.0 100.0 100.0 95.0 100.0 100.0 100.0 0.7 100.0 100.0
Time 0.004 13.333 21.319 75.666 0.028 2781.171 2896.381 4001.367 0.035 0.102

1000

AS 0.009 (0.011) 0.009 (0.011) 0.035 (0.108) 0.012 (0.019) 0.007 (0.011) 0.007 (0.011) 0.026 (0.086) 0.040 (0.125) 0.006 (0.011) 0.005 (0.010)
SS 0.004 (0.006) 0.004 (0.006) 0.000 (0.000) 0.016 (0.051) 0.002 (0.005) 0.003 (0.005) 0.000 (0.000) 0.004 (0.014) 0.002 (0.004) 0.002 (0.004)
AF 0.010 (0.012) 0.010 (0.012) 0.037 (0.109) 0.013 (0.020) 0.008 (0.013) 0.008 (0.013) 0.038 (0.118) 0.052 (0.163) 0.008 (0.014) 0.007 (0.013)
SF 0.003 (0.007) 0.003 (0.007) 0.001 (0.001) 0.017 (0.052) 0.002 (0.005) 0.002 (0.005) 0.001 (0.003) 0.005 (0.016) 0.002 (0.004) 0.001 (0.003)

Pro. 100.0 100.0 100.0 97.5 100.0 100.0 100.0 0.4 100.0 100.0
Time 0.006 13.797 21.965 142.390 0.037 2957.455 3086.742 8583.513 0.043 0.119

Table 5: Comparison of the BCME estimators (R̂, Σ̂), TP estimators (R̂TP , Σ̂TP ), TP estimators
with variable ordering (R̂o

TP , Σ̂o
TP ), and QMLE estimators (R̂QMLE , Σ̂QMLE) of the blockwise

correlation matrix and corresponding covariance matrix when the elements of ϵi follow a standard-
ized exponential distribution. AS and AF represent the averages of the spectral-error and Frobenius-
error, respectively. SS and SF denote the standard deviations of the spectral-error and Frobenius-
error, respectively. Pro. (%) is the proportion of positive semi-definiteness. Time (in seconds) is the
average execution time.

(K, p) (2,150) (4,420) (6,570) (8,840)
n Measures Σ̂ (R̂) Σ̂o

TP (R̂o
TP ) Σ̂TP (R̂TP ) Σ̂QMLE (R̂QMLE) Σ̂ (R̂) Σ̂o

TP (R̂o
TP ) Σ̂TP (R̂TP ) Σ̂QMLE (R̂QMLE) Σ̂ (R̂) Σ̂ (R̂)

200

AS 0.021 (0.024) 0.021 (0.024) 0.036 (0.108) 0.029 (0.054) 0.016 (0.025) 0.016 (0.025) 0.027 (0.086) 0.041 (0.125) 0.015 (0.025) 0.011 (0.022)
SS 0.009 (0.014) 0.009 (0.014) 0.002 (0.000) 0.028 (0.091) 0.006 (0.012) 0.006 (0.012) 0.002 (0.000) 0.015 (0.048) 0.005 (0.010) 0.003 (0.007)
AF 0.023 (0.026) 0.023 (0.026) 0.042 (0.112) 0.031 (0.057) 0.018 (0.030) 0.018 (0.030) 0.041 (0.120) 0.053 (0.159) 0.018 (0.031) 0.014 (0.029)
SF 0.008 (0.015) 0.008 (0.015) 0.005 (0.004) 0.029 (0.093) 0.005 (0.012) 0.005 (0.012) 0.002 (0.005) 0.016 (0.055) 0.004 (0.009) 0.003 (0.007)

Pro. 100.0 100.0 100.0 93.7 100.0 100.0 100.0 9.4 100.0 100.0
Time 0.003 12.870 20.194 31.298 0.024 2717.192 2764.434 1631.160 0.031 0.091

500

AS 0.013 (0.015) 0.013 (0.015) 0.035 (0.108) 0.018 (0.031) 0.010 (0.016) 0.010 (0.017) 0.026 (0.086) 0.040 (0.126) 0.010 (0.016) 0.007 (0.014)
SS 0.005 (0.009) 0.005 (0.009) 0.000 (0.000) 0.022 (0.070) 0.004 (0.008) 0.004 (0.008) 0.001 (0.000) 0.009 (0.029) 0.003 (0.007) 0.002 (0.005)
AF 0.014 (0.016) 0.014 (0.016) 0.038 (0.110) 0.019 (0.033) 0.012 (0.019) 0.012 (0.019) 0.039 (0.118) 0.053 (0.164) 0.011 (0.020) 0.009 (0.019)
SF 0.005 (0.009) 0.005 (0.009) 0.002 (0.002) 0.023 (0.072) 0.003 (0.007) 0.003 (0.007) 0.001 (0.003) 0.010 (0.031) 0.003 (0.006) 0.002 (0.004)

Pro. 100.0 100.0 100.0 95.6 100.0 100.0 100.0 2.0 100.0 100.0
Time 0.004 13.153 21.025 74.586 0.028 2787.388 2875.737 4011.246 0.035 0.100

1000

AS 0.009 (0.011) 0.009 (0.011) 0.035 (0.108) 0.013 (0.021) 0.007 (0.011) 0.007 (0.012) 0.026 (0.086) 0.040 (0.125) 0.007 (0.011) 0.005 (0.010)
SS 0.004 (0.007) 0.004 (0.007) 0.002 (0.007) 0.018 (0.055) 0.002 (0.005) 0.002 (0.005) 0.000 (0.000) 0.007 (0.023) 0.002 (0.004) 0.002 (0.003)
AF 0.010 (0.012) 0.010 (0.012) 0.037 (0.109) 0.014 (0.022) 0.008 (0.013) 0.008 (0.014) 0.038 (0.118) 0.052 (0.163) 0.008 (0.014) 0.006 (0.013)
SF 0.004 (0.007) 0.004 (0.007) 0.003 (0.008) 0.018 (0.056) 0.002 (0.005) 0.002 (0.005) 0.001 (0.003) 0.008 (0.025) 0.002 (0.004) 0.001 (0.003)

Pro. 100.0 100.0 100.0 97.4 100.0 100.0 100.0 0.6 100.0 100.0
Time 0.006 13.638 21.743 142.581 0.037 2984.105 3084.462 8654.350 0.043 0.118
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Table 6: Results of block number selection when the elements of ϵi follow a mixture normal dis-
tribution 0.9N (0, 5/9) + 0.1N (0, 5). CT is the average percentage of the correct fit. Mean is the
mean of the estimated number of blocks.

n = 200 n = 500 n = 1000
CT Mean CT Mean CT Mean

K = 2 1.00 2.00 1.00 2.00 1.00 2.00
K = 3 1.00 3.00 1.00 3.00 1.00 3.00
K = 4 0.93 3.78 1.00 4.00 1.00 4.00
K = 5 0.59 3.36 1.00 5.00 1.00 5.00
K = 6 0.13 1.67 0.99 5.94 1.00 6.00
K = 7 0.03 1.19 0.89 6.36 1.00 7.00
K = 8 0.03 1.22 0.94 7.55 1.00 8.00

Table 7: Results of block number selection when the elements of ϵi follow a standardized exponen-
tial distribution. CT is the average percentage of the correct fit. Mean is the mean of the estimated
number of blocks.

n = 200 n = 500 n = 1000
CT Mean CT Mean CT Mean

K = 2 1.00 2.00 1.00 2.00 1.00 2.00
K = 3 1.00 3.00 1.00 3.00 1.00 3.00
K = 4 0.90 3.71 1.00 4.00 1.00 4.00
K = 5 0.58 3.33 1.00 5.00 1.00 5.00
K = 6 0.13 1.64 0.99 5.94 1.00 6.00
K = 7 0.03 1.16 0.90 6.41 1.00 7.00
K = 8 0.03 1.22 0.93 7.52 1.00 8.00

Table 8: The performance of the BCME estimators (R̂Θ̂, Σ̂Θ̂) of the blockwise correlation matrix
and corresponding covariance matrix with given K when the group memberships are unknown and
ϵi follows a multivariate normal distribution Np(0p, Ip). AS and AF represent the averages of
the spectral-error and Frobenius-error, respectively. SS and SF denote the standard deviations of
the spectral-error and Frobenius-error, respectively. Pro. (%) is the proportion of positive semi-
definiteness. Time (in seconds) is the average execution time.

(K, p) (2,150) (4,420) (6,570) (8,840)
n Measures Σ̂ (R̂) Σ̂Θ̂ (R̂Θ̂) Σ̂ (R̂) Σ̂Θ̂ (R̂Θ̂) Σ̂ (R̂) Σ̂Θ̂ (R̂Θ̂) Σ̂ (R̂) Σ̂Θ̂ (R̂Θ̂)

200

AS 0.019 (0.023) 0.019 (0.027) 0.014 (0.025) 0.017 (0.031) 0.014 (0.025) 0.016 (0.031) 0.010 (0.022) 0.012 (0.030)
SS 0.009 (0.013) 0.009 (0.017) 0.006 (0.012) 0.007 (0.018) 0.006 (0.010) 0.006 (0.015) 0.004 (0.007) 0.004 (0.012)
AF 0.020 (0.025) 0.021 (0.031) 0.016 (0.030) 0.019 (0.036) 0.016 (0.031) 0.019 (0.037) 0.013 (0.029) 0.015 (0.038)
SF 0.008 (0.014) 0.009 (0.018) 0.005 (0.012) 0.007 (0.019) 0.005 (0.010) 0.006 (0.015) 0.003 (0.007) 0.004 (0.013)

Pro. 100 100 100 100 100 100 100 100
Time 0.004 0.002 0.023 0.008 0.031 0.016 0.091 0.046

500

AS 0.012 (0.014) 0.013 (0.017) 0.009 (0.016) 0.011 (0.021) 0.009 (0.016) 0.009 (0.021) 0.006 (0.014) 0.008 (0.021)
SS 0.006 (0.009) 0.006 (0.010) 0.004 (0.007) 0.006 (0.018) 0.003 (0.006) 0.004 (0.014) 0.002 (0.005) 0.004 (0.012)
AF 0.013 (0.016) 0.015 (0.020) 0.010 (0.019) 0.012 (0.024) 0.010 (0.020) 0.011 (0.025) 0.008 (0.019) 0.010 (0.025)
SF 0.005 (0.009) 0.006 (0.012) 0.003 (0.007) 0.006 (0.018 0.003 (0.006) 0.004 (0.014) 0.002 (0.004) 0.004 (0.012)

Pro. 100 100 100 100 100 100 100 100
Time 0.004 0.002 0.028 0.009 0.034 0.018 0.100 0.050

1000

AS 0.008 (0.010) 0.009 (0.011) 0.006 (0.011) 0.008 (0.018) 0.006 (0.011) 0.007 (0.014) 0.005 (0.010) 0.006 (0.014)
SS 0.004 (0.006) 0.004 (0.007) 0.003 (0.005) 0.006 (0.019) 0.002 (0.004) 0.004 (0.012) 0.002 (0.003) 0.003 (0.011)
AF 0.009 (0.011) 0.009 (0.013) 0.007 (0.013) 0.009 (0.020) 0.007 (0.014) 0.008 (0.017) 0.006 (0.013) 0.007 (0.018)
SF 0.004 (0.007) 0.004 (0.008) 0.002 (0.005) 0.006 (0.019) 0.002 (0.004) 0.004 (0.012) 0.001 (0.003) 0.003 (0.011)

Pro. 100 100 100 100 100 100 100 100
Time 0.006 0.002 0.037 0.012 0.042 0.022 0.117 0.057
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