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ABSTRACT

Utilizing the sample moments of variable means within groups, we develop a
novel closed-form estimator for blockwise correlation matrix of p variables. When
the block number and group memberships of the variables are known, we demon-
strate the asymptotic normality of parameter estimators and establish the stochas-
tic convergence rate of the estimated blockwise correlation matrix and corre-
sponding estimated covariance matrix, under certain moment conditions. The
method ensures positive semi-definiteness of the estimated covariance matrix
without requiring a predetermined variable order, and can be applicable for high-
dimensional data. Moreover, to estimate the number of blocks and recover their
memberships, respectively, we employ the ridge-type ratio criterion and spectral
clustering, and establish their consistency. Based on this, we extend the afore-
mentioned properties of the asymptotic normality and stochastic convergence rate
to the scenario where the group memberships are unknown and the block num-
ber is given. Extensive simulations and an empirical study of stock returns in
the Chinese stock market are analyzed to illustrate the usefulness of our proposed
methods.

1 INTRODUCTION

The covariance matrix plays a fundamental role in machine learning and multivariate analysis. Re-
cently, with the emergence of high-dimensional data, modeling it has become a great challenge. The
main reason is that the sample covariance matrix is often singular and irreversible when the matrix
dimension surpasses the sample size (Kan & Zhoul [2007; Bai, [2008}; |[Fan et al., 2011). To tackle the
high-dimensional issue, one popular approach involves imposing a group or block structure on the
correlation matrix of p-dimensional variables to achieve dimension reduction (Tsay & Pourahmadi,
2017 |Archakov & Hansen, |2024). That is, the variables are clustered into K (K < p) groups,
and their correlation is determined based on their associated groups. This assumption is meaningful
especially for finance data, in which the stock returns of companies in the same industries often
exhibit similar correlations, while returns of firms across different industrial sectors tend to display
weaker associations. The covariance matrix with blockwise correlation structure has gained signif-
icant popularity in various fields, including but not limited to: finance and risk management (Elton
& Gruber, [1973] [Engle & Kelly, 2012; [T'say & Pourahmadi, 2017; Millington & Niranjan, [2019)),
macroeconomics (Brownlees et al., [2022), resource assessment (Schuenemeyer & Gautier, 2010;
Blondes et al.,|2013)), neuroscience and gene expression (Park et al., 2007; Wu & Smyth, 2012; Tan
et al., |2015; [Eisenach et al.| 2020; Pircalabelu & Claeskens) 2020), and computer science (Zhang &
Rao, 2013)).

Even though the covariance matrix with blockwise correlation structure is widely used and well-
motivated, its estimation poses challenges due to the inability of the maximum likelihood esti-
mation (MLE) method to ensure positive semi-definiteness (Higham) 2002} [Tsay & Pourahmadi,
2017). For illustration purpose, considering an 3 x 3 blockwise correlation matrix R = (pg,k,)
with p12 = pi13, the positive definite parameter domain for the correlation matrix R is defined as
{(plg, p23)|p2s > 2p35 — 1}. As noticed by [Tsay & Pourahmadi (2017), as the values of p12 and
p13 progressively approach the boundary of the parameter domain, the percentage of non-positive
definiteness for the correlation matrix estimator based on MLE gradually increases. To address this
issue, they proposed a method using the angle parameterization of its Cholesky factor. However, it
is computationally complex, and the Cholesky decomposition necessitates a predetermined order of
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variables, thereby limiting its applicability. Recently, |Archakov & Hansen| (2024)) derived a canoni-
cal representation for the blockwise correlation matrix and dramatically simplified the evaluation of
its maximum likelihood estimator, but it lacks rigorous theoretical justification. In addition, [Engle
& Kelly| (2012) imposed the blockwise structure on a broad class of special correlation matrices,
that is, the Dynamic Conditional Correlation models, and proved the asymptotic properties of their
maximum likelihood estimators under Gaussian distribution and fixed p. Obviously, this method
is also not universal in practice. |[Yang et al.| (2024)) proposed a closed-form covariance matrix esti-
mator based on MLE by assuming a blockwise structure for the covariance matrix. Nevertheless,
this assumption is stronger than that for a correlation matrix since homogeneous variance within
each block is required. Moreover, due to errors involved in estimation of variance, the asymptotic
distributions of parameters for the covariance matrix under the two structures are different.

In this paper, using the sample moments of variable means within groups, we propose a novel block-
wise correlation matrix estimation method (BCME) in a closed form. When the block number and
group memberships of variables are known, we derive the asymptotic normality of correlation coeffi-
cient estimators and establish the stochastic convergence rate of the estimated blockwise correlation
and covariance matrix, under certain moment conditions. Compared to the [Tsay & Pourahmadi
(2017)’s method, our approach ensures the positive semi-definiteness of the covariance matrix es-
timation and holds the invariance of variable reordering. Furthermore, we employ the ridge-type
ratio criterion and spectral clustering, to estimate the number of blocks and recover their member-
ships, respectively, and establish their consistency. Subsequently, for the scenario where the group
memberships are unknown and the block number is given, the above properties of the asymptotic
normality and stochastic convergence rate still hold. Various simulation studies and a real data anal-
ysis for portfolio allocation indicate that the proposed method outperforms the majority of existing
methods.

The rest of the article is organized as follows. Section [2]describes the blockwise correlation matrix
estimation and its asymptotic analysis when the block number and group memberships of variables
are given. Secontion [3|introduces the block number determination, group membership recovery, and
their consistency. Then, the same theoretical properties in Section |2 are extended to the scenario
where the group memberships are unknown and the block number is known in Secontion 3] Sec-
tion [ and Section [5] present Monte Carlo studies and an empirical example, respectively. A brief
discussion with some concluding remarks is given in Section [6] All technical details are relegated
to the Appendix.

2 BLOCKWISE CORRELATION MATRIX ESTIMATION

2.1 BASIC NOTATIONS AND DEFINITION

Throughout the paper, vectors are denoted by lower-case bold letters, e.g., ¢ = (11, -+ , i) € R™,
and matrices by upper-case bold, e.g.,, M = (M;;) € R™*™. Define O,,, xm, and L., xm,
as the my X mg vectors or matrices of all zeros and ones, respectively. Moreover, 0,,, x1 and
1,,, x1 are simplified as 0,,, and 1,,,, respectively. Let I,,, denote the identity matrix of dimension
m. Here, m, my, and my are any positive integers. In addition, let \; (M) be the j-th largest

eigenvalue of any generic matrix M € R™*™ for j = 1,--- ,m, || M| be the Frobenius norm of
M, ||, = (Z;"’:l |1;]")1/" be the vector v-norm or generalized matrix v-norm of generic vector
t= (11, ,tm)" € R™for1 < v < oo, and induced norms be || M|, = sup,cpm. 4o, ||f‘\f|‘f”“.

The superscript T is the transpose of a vector or matrix. 1. denotes an indicator function with
condition in parentheses.

Next, we introduce the definition of the blockwise correlation matrix. Let y; = (y,;,- - ,yip)T €
R? be independent and identically distributed p-dimensional response vector with mean E(y;) = 0,,
and covariance matrix Cov(y;) = X fori = 1,--- , n. The covariance matrix 3 can be decomposed
as X = ARA, where R = Corr(y;) is the correlation matrix of y,; and A = diag(oy, - - ,0,) with
0']2- = Var(yij) fore =1,---,nand j = 1,---,p. We assume that the p-dimensional variables
have a blockwise structure with K groups. Specifically, denote F = {1,--- ,p} as the full index
set. For any given K, [F is categorized into a total of K groups as F = Ule Sk, where Sy, collects
the indices of variables within group k, [Sk| = pi, Sk, NSk, = 0, and p = >, pi, for k1 # ko
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and k, k1,ky = 1,--- , K. Here, for any set M, [M]| is the number of elements in M. Then, without
loss of generality, the elements of y; in F have been sorted such that y; = (y;}, -+ ,y,/%) ", where
yik = (¥;; : J € Sg) € RPF forany k = 1, , K. Moreover, R can be partitioned as R = (R, ,)
with Ry, ., € RPk1*Pr2 (including the case k1 = ko), which is assumed to be blockwise, that is,

Rk = prrlpyxpr + (1 — prw) Ip, and Ry, = proy ko Ly, iy » (D

where pik, Pk, k, € [—1,1], Ri,k, = R,k - It is noteworthy that we only enforce the blockwise
structure on the correlation matrix not on the covariance matrix, since the variances of variables are
heterogeneous.

Based on this definition, we give some special notations used in this paper. Let A := (pg,k,) €
RE*E and p = vech(A) € RE(K+1)/2 pe the half-column-stacking vector of A. In addition,
define E;, = diag(0p,xpy, - > dprs * ,Oprexpr) € RPP forany k = 1,--- | K. Let @ =
(01,---,0,)" = (0,)) € RP*K be a membership matrix, where ©;;, = 1if j € Sy, and ©;, = 0
otherwise. Denote Dy, = (Dijk,k,) € RP*P, where Dk, = 1ifi € Sg, and j € Sy,, and
D k11, = 0 otherwise.

2.2 BLOCKWISE CORRELATION MATRIX ESTIMATION

Following the definition of the blockwise correlation matrix, we define y; = (¥, -+, ¥, %) =
A~ly,, then we obtain Cov(y;) = Corr(y;) = R. Let zy, = pgllgkjlik be the mean of
variables within the k-th group for k¥ = 1,---, K. Simple calculation implies that Var(z;;,) =
ok + P 2(1 — pri) and Cov(Zik,,Zik,) = Pkik, for any ki # ko. Subsequently, defining
z; = (i1 1;1, ce LK ng )T € RP, the blockwise correlation matrix R can be decomposed as

R=3;+G, )

where £; = Cov(z;) and G = diag(Gi1, -+ ,Gxx) with Gy = (1 — pei) L, — py (1 —
Pik)1p, xp, - Therefore, to estimate R, we can resort to the moments of Z;s.

Note that A is generally unknown in practice and needs to be estimated. Hence, we define A=
diag(d1,- -+ ,G,) as an estimator of A with 67 = n=' 3" | y7, for j = 1,--- ,p. Replacing A
with A, we obtain y; = (y;,:-- ,yiTK)T = A~'y; and 2 = p; "1} Fik. Then, by , the
blockwise correlation matrix estimation (BCME) for R are denoted as

% Z?:l Zigzi, — 1 o %Z?:l 1;k§’11k$’¢Tk1pk — Pk
pr— 1 pr(pe — 1)

n 1 1T o T

. 1 Z .. 7 2ict lpkl Yik1Yiko Lo,

pk1k2 = - Z’iklz’ikQ =
n i=1 pklka

Pk =

)

3)

, for k1 > ko.

Substituting (3)) into , we obtain Ry, = Prklp, xpr + (1 — prr)Ip, and Rk1k2 = Phika Lpy, xpy, -
Finally, the estimators of p, R, and X are represented as p = (pp,r,) € REETD/2 R —

(Rk1k2) € RP*? and 3 = ARA, respectively. It is noteworthy that R and 3 are naturally
positive semi-definite, since the eigenvalues of G is no less than 0.

2.3 ASYMPTOTIC ANALYSIS

To study the theoretical properties of out proposed method, we first assume the following three
technical conditions.

(C1) (i) Write y; := AR %¢; with €; = (€;1, -+ ,€i) | € RP. We assume that ¢; ;s are indepen-
dent and identically distributed (i.i.d.) with E(e;;) = 0 and Var(e;;) = 1, forany ¢ =1,--- ,n and
j = 17 LD

(i) We assume o’?- is bounded away from 0O, for any 7 = 1,---,p. In addition, there ex-

ist v1 € (0,1] and by > 0, such that for any s; > 0, ¢ = 1,---,n, and j = 1,--- ,p,
P(ly;;| > s1) < exp(—(s1/b1)").
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(C2) Assume that Q[tr(AllAl2)}K(K+1)/2><K(K+1)/2 + (u(4) — 3)‘I’T‘I’ — Qasp — oo fora

finite and positive definite matrix Q, where A; = R1/2{ — p’“}’jéi’j}:}i;’l E,+ Pk(P%c*l) Dkk}Rl/Q
whenl =k + (k — 1)K — 2’;3;10 ks, A} = Rl/Q{W(DMz + Djyi,) — pk%(iEkl +

=B, ) JRYV? when | = ky + (ke — DK = Y2 g ks forky > ky and k, ki ky = 1, K, @
is defined in Lemma and ") = E(¢};) foranyi =1,--- ;nandj=1,--- ,p.
(C3) Assume pi/p — 7 € (0,1) forany k = 1,--- | K as p — oo. In addition, K is fixed.

Condition (C1)(i) introduces the moment conditions of €;, which has been widely used in related
literature (Fan et al.,2011;|Yamada et al.l 2017; [Feng et al.|[2022}; [Zheng et al., | 2022)) and is weaker
than the distributional assumption required in [I'say & Pourahmadi| (2017) and |Yang et al.| (2024).
Condition (C1)(ii) requires the distribution of y; to have exponential-type tail, ensuring that the dis-
tribution does not have “heavy tails” (e.g., Cauchy distribution), which is necessary for the consistent
estimation of the variance of Yij (Fan et al.| 2011} |[Feng et al., [2022)). Condition (C2) is a standard
assumption to ensure the covariance matrix of the estimated parameters converges a positive definite
matrix. If Condition (C2) is invalid, then multicollinearity problems may arise. This is similar to
the condition assumed inZou et al.| (2017). In addition, its rationality is shown in Appendix[F Con-
dition (C3) indicates that the number of blocks is finite but the dimension of block submatrices is
divergent as p — oo. This condition is also employed in|Yamada et al.|(2017). Based on the above
three conditions, we obtain the asymptotic property of p given below.

Theorem 1 Under Conditions (C1)-(C3), when (logp)%/71~1 = o(n), as min{n,p} — oo, we
have that

. d
Vn(p—p) — N(Og(k+1)/2, Q).
where 1 and Q are defined in Conditions (C1) and (C2), respectively.

Theorem indicates that the convergence rate of p is y/n, which is independent of p. This results is
reasonable since o; for j = 1,--- , p need to be estimated and involve estimation errors. To ensure

the consistency of the estimators for o;s, the condition (log p)®/71~! = o(n) is required. Moreover,
Q is unknown and needs to be estimated. By Condition (C2), @ can be used as a consistent estimator
of Q to make valid inferences, where Q is calculated by replacing p in Q with p.

Based on the above TheoremE} we next provide the stochastic convergence rate of the estimated
blockwise correlation matrix R and its related covariance matrix X.

Theorem 2 Under Conditions (C1)-(C3), when (logp)®/" =1 = o(n), as min{n,p} — oo, we
have that

p IR = Rllz = 0p(n™%), pH R = R|r = Op(n~/?),

1e logp _1pe log p
P 1||23—2||2:0p(\/ . ) and p 1HE—EIIF=0p(\/T)-

3 BLOCK NUMBER DETERMINATION AND GROUP MEMBERSHIP RECOVERY

When true K and Sys forall k = 1,--- , K are given, by Theorem I} the parameters of blockwise
correlation matrix R can be estimated consistently. For a real-world application, however, the true
K and all Sis are unknown and need to be estimated correctly. Motivated by [Lam & Yaol| (2012),
Wang| (2012), |Ahn & Horenstein| (2013), and Xia et al.| (2015)), we propose a ridge-type ratio (RR)
to estimate K.

Before introducing the ridge-type ratio estimator for K, we present an additional condition and the
bounds for the eigenvalues of R with the true block number K as follows.

(C4) Assume that cl_1 < Ag(A) <--- <A (A) < ¢ for a finite constant ¢; > 0.

Proposition 1 Under Conditions (C3) and (C4), as p — oo, we have that 0;11]) <AMg(R) <+ <
A (R) < ey, pand chl < Ap(R) < -+ < Agy41(R) < cxg, for some finite constants ¢y, cx, > 0.
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Condition (C4) assumes that A is of full rank and Proposition [T| provides the order of eigenvalues
of R.

Then, the ridge-type ratio for estimating K is denoted as

Aj Ae m 0
Ty = j(R;a )+ ) j:17"'ap_1a
/\j+1(Rsam) +6

where Ryqm = n ! > y:y; with §; being defined in equation (3)) and J is a hyperparameter for

ensuring that \;(Rsqm) + 6 > 0 forany j = 1,--- , p. Consequently, the true number of blocks K
can be estimated by K' = argmax;cy; ... ,_1) ;. The consistency of K is ensured by the following
theorem.

Theorem 3 Assume 6 = o(p) and p+/logp/n = o(0). Then, under Conditions (CI), (C3), and
(C4), when (log p)®/ 71 =1 = o(n), as min{n, p} — oo, we have that P(K = K) — 1, where 7, is
defined in Condition (C1I).

Subsequently, to recover Sy, for k = 1,--- | K, we estimate the membership matrix ® by clustering
p variables when the number of blocks is predetermined. After simple calculation, R can be re-
expressed as R = @ AO T + Q, where Q is a diagonal matrix to ensure the diagonal elements of
R are 1s. Since the rank of @ AO®T is K, we can rewrite OAO® T asUVU ', where V € REXK
is a diagonal matrix consisting of the first K largest eigenvalues of @ A®', and U € RP*K
comprises the first I eigenvectors of @ A® T as columns and has K distinct rows. Therefore, we
can resort to the row clustering of U to recover the blocks’ memberships. Specifically, we eigen-
decomposite Rsam and take the first K eigenvectors of Rsam as the estimator of U, denoted as U.
Then, we can obtain the estimator of ©, o= (él, cee ,ép)T, by clustering the rows of U. Their
almost sure convergence is proven in the Theorem I1.3 of Su et al.|(2019) under mild conditions, and
demonstrated in Condition (C5).

(C5) Assume that for sufficiently large n and p, sup;<;<,, Sup1<;<, l{éﬁégj} =0,a.s..
Let pg be an estimator of p with O, we then get that

Corollary 1 Under Conditions (C1)-(C5), when (logp)®/"~=1 = o(n), as min{n,p} — oo, we
have that

~ d
Vn(pg — p) — N(Ok(k41)/2, ),
where 1 and Q are defined in Conditions (C1) and (C2), respectively.

The key of Corollary |1]is to prove pg LN p. It is straightforward with Condition (C5). For saving
space, we are not reporting the proof. Hence, when S;s are unknown, according Corollary [1} the
Theorem 2] still holds, which is also verified in simulation, see Table[§]in the Appendix [G]

Remark 1 Recently, some researchers simultaneously estimate the model parameters and group
memberships with given K (Su et al., |2016} |Liu et al., |2020; Zhu et al.| 2023, |Liu et al.| |2024).
However, their optimization functions are non-convex and require specific algorithms, which is the-
oretically complex and lacking generality. Hence, we propose the above two-step estimation (i.e.,
spectral clustering and BCME) to address this issue when K is known.

4  SIMULATION STUDIES

To evaluate the finite sample performance of our proposed method, we conduct Monte Carlo studies
with the following setting. Specifically, for the blockwise correlation matrix R defined in (T)), the
off-diagonal elements of each diagonal block are set to pgr = 0.65 — 0.05(k — 1), and elements
of each off-diagonal block are set to pg,k, = Prik; — 0.25 — 0.05(ke — ky — 1) if ky < ko and
ky is odd, and pi,k, = pr,k, — 0.3 — 0.05(ka — k1 — 1) if k1 < ko and ky is even, respectively,
for k,ky,ke = 1,--- , K. This setting is similar to that in[Wang| (2012)) and Zhao et al.| (2022)) and
assures the resulting correlation matrix is positive definite for K < 8. Moreover, each block size
is set to come from the sequence (60,90, 120, 150, 60, 90, 120, 150), that is, if K = 1, we set the
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block size p; to be 60; if K = 2, we set two respective block sizes, p; and ps, to be 60 and 90, and
so forth, which is same as|Saldana et al.[(2017) and [Hu et al.|(2020). For A, o;s are independently
and identically generated from uniform distribution ¢/(0, 1). In addition, to evaluate the robustness
of our methods against a non-normal distribution, the response vector y; is simulated by y; =
ARY?%¢; with e; = (€i1, - 752-p)T € RP, where ¢;;s are independently and identically generated
by three distributions: the standardized normal distribution A/(0, 1), mixture normal distribution
0.9M(0,5/9) + 0.1N(0,5), and standardized exponential distribution. In simulation studies, all
results are executed by 1,000 realizations with n = 200, 500, and 1, 000.

To verify the accuracy of the BCME method for estimating the blockwise correlation matrix and its
associated covariance matrix, we assume that K is known and K € {2, 4,6, 8}. In addition, we have
included three additional competitors for the sake of comparison. They are the [Tsay & Pourahmadi
(2017, TP)’s estimator (RT p and ﬁ)T p), TP estimator with variable ordering (RE:F p and f)oT p), and
traditional QMLE estimator (RQ MLE and ﬁ)Q mLE)- Then, we calculate the averages and standard
deviations of two types of estimation errors, spectral-errors (p~1|| M7 — R||2 and p~!|| M5 — X||2)
and Frobenius-errors (p~!||M; — R||r and p~'||M, — X||r), across M; = R, Ryp, R"TP,
and IA%Q vmLe and My = ﬁ) 2T P, 2% p» and ﬁ)Q MLE- Moreover, we report the proportion of
positive semi-definiteness for estimated blockwise correlation matrix and its associated covariance
matrix. The average execution time obtained through programming in Matlab using an Intel(R)
Xeon(R) CPU (2.10 GHz) is also presented to reflect the computational complexity. Due to the high
execution time intensity of the TP and QMLE approaches, we only report their results for K = 2,
and 4. Table [1]illustrates three important findings when the elements of €; follow N (0, 1). First,
both the BCME and TP methods ensure positive semi-definiteness, whereas the QMLE approach
cannot. Second, the BCME method dramatically reduces the execution time compared to the other
two methods (0.037 sec v.s. 2957.841 sec and 8640.374 sec in K = 4 and n = 1000). Third, the
BCME method addresses the requirement of a predetermined variable order in the TP method and
achieves similar asymptotic efficiency for the TP method with variable ordering when K = 2,4.
Similarly, Tables [ and [5] in the Appendix [G] yield analogous simulation results when €; follows
non-normal distributions.

Table 1: Comparison of the BCME estimators (R, ), TP estimators (R7p, 37p), TP estimators
with variable ordering (I:?,% I ﬁ)"T p), and QMLE estimators (RQ MLE> ﬁ)Q mLE) of the blockwise
correlation matrix and corresponding covariance matrix when €; follows a multivariate normal dis-
tribution NV, (0,, I,). AS and AF represent the averages of the spectral-error and Frobenius-error,
respectively. SS and SF denote the standard deviations of the spectral-error and Frobenius-error, re-
spectively. Pro. (%) is the proportion of positive semi-definiteness. Time (in seconds) is the average
execution time.

K.p) 2.150) @420) 6.570) (8.340)

n___ Measures X (R) X5p (R3p)  Xrp (Rrp)  Youie (Rouie) X (R) X7p (R3p)  Yrp (Rrp) Youre (Rouie) X (R) X (R)
AS | 0019 (0.023) 0.019(0.023) 0.038 (0.108) 0026 (0.049) | 0.014(0.025) 0.014 (0.026) 0.027(0.086) __ 0.041 (0.124) | 0.014 (0.025) | 0.010 (0.022)
ss 0.009 (0.013)  0.009 (0.013) 0.002(0.000)  0.028 (0.084) | 0.006 (0.012) 0.006 (0.012) 0.002 (0.000)  0.011(0.037) | 0.006 (0.010) | 0.004 (0.007)
200 AF | 0.020(0.025) 0.020(0.025) 0.043(0.111)  0.028(0.051) | 0.016(0.030) 0.016(0.030) 0.040(0.120)  0.052(0.158) | 0.016 (0.031) | 0.013 (0.029)
- SF | 0.008 (0.014) 0.008 (0.014) 0.004 (0.004)  0.029(0.086) | 0.005(0.012) 0.005 (0.012) 0.002 (0.005)  0.012(0.004) | 0.005 (0.010) | 0.003 (0.007)

Pro. 100.0 100.0 100.0 3 100.0 100.0 10.1 100.0 100.0

Time 0.004 12,987 20.370 30.918 0.023 2707.757 2819.685 1585.977 0.031 0.091
AS [ 0012 (0.014) 0012 (0.014) 0038 (0.108) __ 0.014(0.023) | 0.009 (0.016) 0.009 (0.016) 0.026 (0.086) __ 0.040 (0.125) | 0.009 (0.016) | 0.006 (0.014)
ss 0.006 (0.009)  0.006 (0.009) 0.000(0.000)  0.017 (0.050) | 0.004 (0.007) 0.004 (0.007) 0.000 (0.000)  0.007 (0.024) | 0.003 (0.006) | 0.002 (0.005)
00 AF | 0.013(0.016) 0.013(0.016) 0.040(0.110)  0.015(0.024) | 0.010 (0.019) 0.010(0.019) 0038 (0.119)  0.052(0.163) | 0.010 (0.020) | 0.008 (0.019)
R SF | 0.005(0.009) 0.005(0.009) 0.002(0.002)  0.018(0.051) | 0.003(0.007) 0.003 (0.007) 0.001 (0.003)  0.008 (0.026) | 0.003 (0.006) | 0.002 (0.004)

Pro. 100.0 100.0 100.0 98.0 100.0 100.0 100.0 1.8 100.0 100.0

Time 0.004 13.339 22.053 73.623 0.028 2798.561 2900.917 4033.282 0.034 0.100
AS | 0,008 (0.010) 0.008 (0.010) 0.038 (0.108) 0011 (0.017) | 0.006 (0.011) 0.006 (0.011) 0.026 (0.086) __ 0.040(0.126) | 0.006 (0.011) | 0.005 (0.010)
ss 0.004 (0.006)  0.004 (0.006) 0.000(0.000)  0.016 (0.046) | 0.003 (0.005) 0.003 (0.005) 0.000 (0.000)  0.006 (0.021) | 0.002 (0.004) | 0.002 (0.003)
1000 AF | 0.009(0.011) 0009(0.011) 0039(0.109)  0011(0.018) | 0.007(0.013) 0.007(0.013) 0.038(0.118)  0.053(0.164) | 0.007 (0.014) | 0.006 (0.013)
SF | 0.004 0.007) 0.004 (0.007) 0.001 (0.001)  0.016(0.047) | 0.002(0.005) 0.002 (0.005) 0.001 (0.003)  0.007 (0.022) | 0.002 (0.004) | 0.001 (0.003)

Pro. 100.0 100.0 100.0 98.0 100.0 100.0 100.0 0.0 100.0 100.0

Time 0.006 14.125 22518 145.669 0.037 2957.841 3106.620 8640.374 0.042 0.117

We next study the finite sample performance of the RR method. To this end, we set K &
{2,3,4,5,6,7,8} and § = 10~ 2pn—'/3. This choice of § is similar to [Xia et al.|(2015) and Wang
et al.[(2022)) and satisfies the theorem assumption defined in Theorem [3] In addition, we consider
two measures to evaluate the performance of selection: (i) Mean: the mean of the estimated number

of blocks K, and (i) CT: average percentage of the correct fit, 1 (K=K} Table |2 reports the Mean
and CT for all K when the entries of €; follow A/(0,1). It shows that, the RR method completely
restores the corresponding real block number when p < n. In addition, for p > n, the Mean of K is
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gradually close to the real block number as the sample size n increases while the CT rapidly tends
to 1. Both of the results support Theorem Similar findings can be observed when €; follows
non-normal distributions (see Tables [ and[7]in the Appendix[G]).

Table 2: Results of block number selection when €; follows a multivariate normal distribution
Np(0,,I,). CT is the average percentage of the correct fit. Mean is the mean of the estimated
number of blocks.

n = 200 n = 500 n = 1000
CT Mean CT Mean CT Mean
1.00 2.00 1.00 2.00 1.00 2.00
1.00 3.00 1.00 3.00 1.00 3.00
0.90 3.69 1.00 4.00 1.00 4.00
0.55 3.20 1.00 5.00 1.00 5.00
0.14 1.68 0.99 5.94 1.00 6.00
0.03 1.16 0.90 6.37 1.00 7.00
0.03 1.24 0.93 7.53 1.00 8.00

LR
C)O\]Gbllﬂhlkww

5 REAL DATA ANALYSIS

In this study, to demonstrate the superiority of our proposed methods, we analyze the daily returns
of p = 1076 stocks belonging to the CSI Smallcap 500 Index and CSI 1000 Index from 2017 to
2021, where the data were collected from the WIND financial database.

We assess the performance of the out-of-sample portfolio by solving the Markowitz optimization
problem (Markowitz, |1952). To this end, we estimate the covariance matrix 3 using the standard
rolling window procedure with a window length of 12 quarters (Zivot & Wang, 2006}, Zou et al.|

2017). For each quarter ¢ (t = 12, - - , 20), we obtain the estimator X%, - = A, R, A, by em-

ploying the BCME method with the estimated block number K, determined by the RR method. For
the sake of comparison, we consider two additional BCME estimators (3¢, , and X5b7nd, )
constructed based on industries (K; = 16) and sub-industries (K; = 64) of stocks, respectively. In
addition, we employ the|Tsay & Pourahmadi|(2017, TP)’s method with variable ordering under three

different block numbers mentioned above (X517, %2 $30:86nd ) e also employ the methods

of the|Ledoit & Wolf (2004, LW1) (ELWI,t)» Ledoit & Wolf (2003, LW2) (2 Lw2,t), Ledoit & Wolf

(2020, LW3) (ﬁ)ng_’t), and |Schifer & Strimmer| (2005, SS) (25570 to estimate the covariance ma-
trix. Then, for each quarter ¢, we calculate 10 minimum variance portfolio weights by minimizing
the portfolio variance, w; = arg min,,cp» w " M,w, such that lep = land w > 0,, where M;
equals to the above 10 covariance matrix estimators. Next, let Y; € RP*”t denote the daily returns
of stocks in quarter ¢, where T} is trading days at quarter {. Then, we compute the out-of-sample
portfolios at quarter ¢ + 1 by Y, 1y, across @ = WEE ) @id ) o obind, | G20 Gop

~0,5ubind ~ ~ ~ ~ ~ . .
Wrpy > WLW1,ts WLW2,t: WLW3,t, WSSt ald WBench,t, Where Wpench ¢ 18 the weight propor-

tional to ¢-th quarter market capitalization and its corresponding out-of-sample portfolio is denoted
as a benchmark.

To examine the out-of-sample portfolio performance (486 trading days from quarter 13 to quarter
20), we consider six commonly used measures: (i) the sample mean (Mean); (ii) sample standard
deviation (SD); (iii) Sharpe ratio (SR); (iv) Turnover ratio (TR); (v) risk-adjusted excess return over
the benchmark (Alpha); and (vi) Beta (the beta coefficient close to 1 indicates the out-of-sample

portfolio has almost the same volatility as the benchmark). The results are provided in Table [3]

Notably, due to the high execution time to obtain 3% and 355", we only calculate the out-

of-sample portfolio based on 2%5’?

Table[3]indicates that the mean of the portfolio return based on BCME with RR is slightly larger than
that of the portfolio return based on BCME with industries and sub-industries, as well as the portfo-
lio return based on LW1, LW2, LW3, and SS methods, although these means are marginally smaller
than that of the market portfolio return. In addition, the portfolio return based on BCME with RR ex-
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hibits lower risk, measured by SD and Beta. As a result, the Sharpe ratio of the portfolio return based
on BCME with RR is 30%, 20%, 10%,8% 5%, 5%, and 3% (e.g., 30% = {0.065 — 0.050} /0.050)
higher than that of the portfolio return based on LW?2, market portfolio return, portfolio return based
LWI1, BCME with industries, BCME with sub-industries, SS, and LW3, respectively. Finally, our
method significantly outperforms the TP method with variable ordering in terms of execution time
(0.036 sec v.s. 13415.565 sec), although both exhibit similar efficiency. This is particularly valuable
in the ever-changing stock market. In sum, although the turnover ratio based on our method is not
satisfactory, the block structure is significant for portfolio management and our proposed framework
is highly effective for portfolio analysis.

Table 3: The sample mean (Mean), sample standard deviation (SD), Sharpe ratio (SR), Turnover
ratio (TR), Alpha, and Beta calculated from 486 trading days of returns (%) in the market portfo-
lio and portfolios constructed by BCME, TP, LW1, LW2, LW3, and SS methods, respectively, from
2020 to 2021 on the Chinese stock market, and the averaged execution time (Time, in seconds) to es-
timate corresponding covariance matrices for 9 quarters. The numbers within parentheses represent
the standard errors of the alpha and beta coefficients, respectively. Dashes indicate null values or
procedures that were not executed due to prohibitively time-intensity. The superscript * * * denotes
significance levels of 1%. Both 1 and | indicate better performance.

Mean (1) SD () SR (1) TR(])  Alpha () Beta (1) Time ()

Market 0.073 1.303  0.054 0.159 0 1

BCME(RR) 0.069 1.010 0.065 0.448 0.038 (0.038) 0.429*** (0.029) 0.036
BCME(ind) 0.062 0965 0.060 0.308 0.030(0.035) 0.439*** (0.027) 0.040
BCME(subind)  0.063  0.952 0.062 0.318 0.030(0.034) 0.451*** (0.026) 0.038

TP(RR) 0069 1.010 0065 0.448 0.038(0.038) 0.429*** (0.029) 13415.565
TP(ind) : : ] - y - -

TP(subind) - - - - - - -
LWI 0.058 0921 0.059 0287 0.020(0.028) 0.518* (0.022)  3.522
LW2 0.050 0922 0.050 028 0.017(0.033) 0.440"** (0.025)  11.264
LW3 0.066 0990 0.063 0276 0.022(0.027) 0.608"** (0.021)  0.159
SS 0.061 0930 0062 0277 0.022(0.028) 0.541*** (0.021)  3.922

6 CONCLUSION AND REMARKS

We propose BCME to estimate a covariance matrix with blockwise correlation structure in high-
dimensional settings. When the block number and group memberships of variables are known, the
theoretical properties of the parameter estimators, the estimated blockwise correlation and covari-
ance matrix are established under certain moment conditions. In addition, we utilize the ridge-type
ratio criterion and spectral clustering to estimate the number of blocks and recover their member-
ships for a blockwise correlation matrix, and proved their consistency. Subsequently, we extend
the properties of the asymptotic normality and stochastic convergence rate to the scenario where
the group memberships are unknown and the block number is given. An application for analyzing
portfolio returns in the Chinese stock market and simulation studies present superior performance
of our proposed methods.

To expand the applicability of our proposed methods, we consider two major avenues for future
research. First, extend the BCME, RR, and spectral clustering methods and establish their theoretical
properties when K is divergent, including K/n € (0,00] or K/p € (0, 1]. This is reasonable and
common in ultra high-dimensional data. Second, develop general methods for estimating a quantiled
moment and choosing the number of blocks when the quantiled moment has a block structure. These
extensions would further reveal the usefulness of our proposed methods for inferences on structured
blockwise moment.
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APPENDIX

A THREE TECHNICAL LEMMAS

Lemmal Let €; = (e1,-- ,€ip) € RP fori = 1,--- ,n be independent and identically dis-
tributed random vectors, and satisfies Condition (Cl). Define
. [vecT(Ay)
np = Z vec(ee, — I,),

=1 \vec' (Ar)

where A} = (Agll)n) € RP*P js symmetric forl = 1,--- , L with L < co. Then, we have E(q,, ;) =
0y, and

Cov(qn,p) = 2n_1[tr(AllAlz)]L><L + (M(4) - 3)71—111;—'—\1;7 4

where @ = (1, -+ ,apr) € RP¥E with apy = (AL, AT e RP for 1 =1, | L. If there
exists a positive definite matrix @ € RE*L such that nCov(qyp) — Q, then, we have

n'q, , —5 N(0, Q). (5)

Proof. The equation is directly exacted from [Chen et al| (2010). To prove equation (3), by
Cramér-Wold device, it suffices to establish the asymptotic normality of & Tqmp for arbitrary vec-

tor § = (&,--,&)" > 0, € RE. Denote q.; = Y, &vec! (Ay)vec(ese] — I,). We have
E(qe;) = 0, Var(qg;) = €'{2[tr(As, Ap,)]Lxz + (™) — 3)®TWE, according to @), and
qump =n! Dy qg;- To prove the asymptotic normality of qump, it suffices to verify that the
Lindeberg condition holds, that is,

n

1
lim lim —f———— / z2dF, (x) =0, (6)
P00 N0 Zi:l Var(qgi) ;1;2>cg D oiy var(qe;) dei

i=1
where Fy_ () is the cumulative distribution function of q,; and c¢ is an arbitrary constant. Since

qg;s are i.i.d., we have

1 n
n—oo Zi:l Var(‘lgi) i—1 m2>c§ > var(qéi)
1

—tm [
n—oo Var(qfi) x2>cg 377 var(qg;)

Jc2qu§i (x)
xQqu&, (z) =0,

where the last equality is due to that the variance of q, exists and finite. Thus, @ holds, which
completes the entire proof of this lemma.

Lemma 2 Under Conditions (C1) and (C3), we have |[n=' 3" vy, — R||r = O,(p/ /).

11
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Proof. We evaluate the expectation of |[n~! Y7 | ¥,3, — R||% to prove the lemma. We obtain
n n
Eln~" Y 5] — RIz =E[ln" Yy |7 — IR,
i=1 i=1

where Elln~' 350, 73 |7 = n7'El3:3] 1% + (n — Dn ' E{te(§:, ¥/, 50, ¥4,) } for i iz, iz =
1,--- ,n. According to Lemmal[I] we have

Ely:y. |7 = 2tr(R?) + (u® = 3)tr(R o R) + tr*(R),
E{tr(¥:, ¥, ¥i.¥s,) } = tr(R?).
This, together with the Condition (C3), implies
Ellnt Y 3i9] — RI3 =0~ {te(R?) +p(u® - 3) + n*(R)}
=1
< n’l{p2 [ Yo om+2 Y mlm} +p(p - 3) + p2}
ke{l, K} k1 >ks
ki,ko€{1,-- K}
= O(p*/n),

which completes the proof.

Lemma 3 Under Condition (C1) and (log p)%/7~' = o(n), as min{n, p} — oo, we have that

logp)

max |6 — 5] = Oy (
n

{1, ,p}

Proof. By Lemma A.2 of |[Fan et al.| (2011)) and formula (1.3) of Merlevede et al.| (2011)), together
with Condition (C1) and (log p)®/7* =1 = o(n), we have that

/1
P{ max |&]2-—0]2| > cy ng}—>0
Je{l,.p} n

as min{n,p} — oo, for a finite constant ¢, > 0. Then, max;c,... 1|05 — 04[|6; + 05| =

O,{(logp/n)'/?} and max;e1,... 1|65 — oj| = Op{(logp/n)'/?}, which completes the entire
proof of this lemma.

B PROOF OF PROPOSITION ]

Recall that R = ®@A® T + Q, where Q = diag((1 — p11)Ip,, -+, (1 — pxx)Ipy ). Since the rank
of @A® T is K, we know that the last p — K eigenvalues of R are positive and finite. Then, we
consider the K eigenvalues of @ A® " to give the property of the first K eigenvalues of R. Defining
P = diag(\/p1, - ,/PK) € RE*K we have ©AOT = OP"'PAPP~ 'O, where @P!
is orthonormal. Let Un VAU { be the eigendecomposition of PA P. Then the eigenvector matrix

U of AT is equal to @ P~ 'U,. The eigenvalues of @A® T are equal to those of PAP.
Under Conditions (C3) and (C4), we have c/(llp < pAk(A) < A (PAP) < pAi(A) < ey, p, for
k € [K] and some constant ¢y, > 0, which completes the proof.

C PROOF OF THEOREM [T]

We will prove this theorem in two steps via the Delta method. In step I, we prove that p can be
approximated by its first order Taylor expansion. In step II, we demonstrate that p is asymptotical
normal.

Step I. Define Ay = diag(owk, - ,0pk) = diag(o;,j € Si) € RP:XPx, AL =
diag(61, -+, 0p,k) = diag(6;,j € Sg) € RP**Pr and T, p, = 01 Y0 | Yk, Vi, € RPFXPE,

12
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Then, formula (2.2) of the main paper can be rewritten as

1;k1A,ﬁ Akll'[kleAszkZ 1,,

ﬁkle = , for k1 > ko,
Pk Pks
. 1;k A;lAkakAkAlzllpk — Pk
Pkk =
pe(pr — 1)

We treat py, i, for k1 > ko as a function of 6? for j € Sy, USy, and Iy, k,. Employing Taylor
series expansion, we have that

ﬁklkz — Pkiks = — % Z {pc ! Zajc J'c - c)}

ce{ky,k2}

+ (pk1pk2) 1V€CT(1pk ><;Dk2 )VeC(Hklkz - RklkZ)

3
lekz Z {pclz%c ch _UJQ_C)2}

CE{kl kg}
Pky  Pko
Phiky 3 ~2 2 ~2 2
8pk Dk Z Z {00050k (5, = 050 (O — Ona) }
L2 Gi=1j42=1
1
T = (a2 2 52 2 \T
- Do Dh E {vec (Hk'lk'2 = Pkiks lpkl X Py )HC(O—lc —O01c;"" " 5 0pee Upcc) }
P2 ce{ky ko)
=Hn+Hip+ 4L + L+ 15,
where o7, is between 0. and G, B, = 1), ® diag(alg‘galc7 Lo “301c), ¢ € {k1,ko}, and

¢ # c. Here, ® is the Kronecker product. To study the asymptotic property of p, k,, we first prove

that I, I, and I3 are o,(n —1/ 2). According to Lemma 0jc and G are bounded with probability
tending to 1.

For I, we have that
V|| < Civn I{r]iax pclz 2 < Cin~Y?ogp — 0,

for some finite positive constant C'y. For I», we have that

Pky  Pko

\/ﬁ|12| S C2 pklpk2 Z Z Jlkl jlkl)(&?gkg j2k2) < CQn 1/2 logp — O

Ji=1j2=1

for some finite positive constant C'. For I3, by the Cauchy—Schwarz inequality, we have that

V| Is| <Cs(prypry) ™ 1Ty ks — Proks Lpi, xpuy |7 chax }HEcHF\/lOgP

<C3(pk,prs) ' Op(p/v/n)\/logp e |Ec|lF = Op{(logp/n)/?} — 0,

for some finite positive constant Cs. Therefore, pg,k, — Prike = Hi1 + Hiz + 0,(n~1/2) for
k1 > ko.

Employing similar techniques, we obtain that

5 ) Pkk(pk_1)+1i{a—2(&2 02}
kk — Pkk = — ————————— p (05, — 05
pk(pk — 1) — gk \"jk jk

mvecT(lm wpe )vec(Iyy — Ryy) + Op(n*1/2)
:H21 + H22 + Op(n—l/Q)’

13



Under review as a conference paper at ICLR 2025

which completes the first part of the proof.
Step II. In this step, we study the asymptotic distribution of p according to Lemma([I] We have that

1
Hy = vecT( pk1k2 Rl/2 Ekl + —Ek2 Rl/z) Zvec e, —1I,),
Hyip = veCT(ka Dh R1/2 Dk]kz + Dk2k1 R1/2) ZVGC €i€; )a
1 2
Pk (Pr — 1/2 1/2 T
H. :vecT( R/ER/) vec(e;e; —Ip),
. pr(pr — 1) g ( »)

H = VeCT (7
2 pr(pr — 1)

Then, p — p can be rewritten as

1 1
R1/2DkkR1/2> - ;vec(eie: —1I,).

B . [vec(Ay)
Anp =P — = Vec(eiej —1I)+ Op(n_l/Q)v

n
=1 \vec"(AL)

where L = K(Igﬂ) < o0, A = Rl/z{ - pk;,fz();,jli;rlEk + ( o Dkk}R1/2 when ! = k +
k—1
(k_ 1)K_Zk3:0 k3’ and Al = R1/2{ 2Pk1Pk2 (Dk'lk2 +D/€2k1) pk1k2 ( Pkq Ekl +EE’$2 }R1/2

when | = ki + (ks — 1)K — S22 ks for ky > ky and k, ky ke = 1, | K.

According to Lemma we have Cov(@y,,) = 2n tr(As, Ap)lxr + (1 — 3)n *I\IIT\II

According to Condition (C2), nCov(q, ) — Q. Thus, by Lemma , we have n'/?(p — p) -
N(0 K(K+1)/25 Q), which completes the entire proof.

D PROOF OF THEOREM

By Theorem we can obtain ||p — plla = O,(n~'/2). This, together with Lemma and Condition
(C3), imply that

. . R 1/2
IR~ R|F = [ S opeor = Drk — k) +2 D> Dk Pro(Priks — Pk1k2)2:|

ke{l,- K} k1> ko
ki,k2€{1,- K}

1/2
(PO, 3 wr2 X mema]} =000
ke{l, K} 1>k
kika€{1,- K}
Analogously, we obtain
IE-=le={ > > @G-k
ke{l, K} je{l, pr}

+2 ) > 658k (Prk — pr) + (6juk 8k — 04k sok) Prk)
ke{l, K} J1>7j2
Ji.ge€{l, - ,px}
1/2
+2 Z Z Z [6j1k16'j2k2 (ﬁklkZ - pklkz) + (6j1k16j2k2 - leklajzkz)pk1k2]2}
k1>k2 Jr€{l, - pky }G2€{1, Py }

k1,k2€{1,--- K}

< {Op(loqglp){p+p2 Z 72 4 2p? Z 7T’(”‘17%2}}1/2: 0, (p logp).

n
k€{1,~~,K} k1>ko
k1,k2€{1,-- K}
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Subsequently, by 4.67(a) in|Seber| (2008, p. 68), we have |[R — R|y < |R— R|r = OP(%) and

[ = 2|z < |2 - || = 0,(py/222), which completes the entire proof.

n

E PROOF OF THEOREM [3]

To prove this theorem, we consider the following two steps. In Step I, we prove Ag(Rsam) + 0 =

Op(p) for k < K, and A\p(Rsam) + 9 = Op(1 Vv §) for k > K + 1. In Step II, we derive the
consistency of K. Here, my V mge = max{mi, ms} for any m; and ms.

STEP 1. By the definition of R.,q, and triangle inequality, we have that

. PO LR L
| Roam — Rl = |AT'A=D 5,5/ AA™" — R||p
n i=1

S

~ 1 ~ ~ ~ ~
= HA*A(E Viyi —RAA T+ ATTARAAT — 1)+ (AT'A - I)R||p

©
Il

1
A—1 a2t S - =T A-—1 A—1
<A AHQ”EZYiYi = Rllp + [[AT AR F|AAT = Tl
i=1
+[|ATTA = L 5| R

1 n s o
= Op(ll~ Y vy = Rlr +IA7'A = L|2| Rl|r).
i=1

According to Lemmasand we have that [n=' Y7 5.5 — Rl|r = Oy(p/v/n), |A"TA —
L2 = O,(y/logp/n), and | R||p = O(p). Thus, we obtain | Rsam — R|r = Op(py/logp/n)
and || Rsqm — Rl|2 = Op(py/logp/n).
Let 6 = o(p) and p+/logp/n = o(4). Then, by the Weyl’s inequality, we have

Ae(R) = [ Rsam — Rll2 + 6 < Mo(Raam) + 6 < Me(R) + | Roam — R|2 + 6,

for k = 1,---,p. This, together with Proposition implies Ak(Rsam) +30 =0p(p) fork < K,

and Mg (Rsam) +0 = Op(1V 6) fork > K.
STEP II. As n and p are sufficiently large, we can get

maxr; = max Aj(Rfam) +9 < A1 (Baam) +0 = 0,(1),

J<K J<K )\j+1(Rsam) +46 )\K(Rsam) +9

and

Nj(Roam) +0_ Arcs1(Roam) + 6
maxr; = max it - )+ < KH{ )+ = 0p(1).

i>K 3K Njp1(Rsam) +0 — Ap(Rsam) +0

Then, similarly, as long as n and p are sufficiently large, we obtain

Ak (Rsam) + 0 _
K Boom) = Op(p N0 'p),
)\K+1(Rsam) + )

which diverges in probability towards infinity. Here, m1 Amg = min{m;y, my} for any m; and ma.
This completes the last step and the entire proof.

F RATIONALITY OF CONDITION (C2)

For illustration purpose, we set () = 3. We next give the concrete form of tr(A;, A;,) for any
li,lo =1,--- , K(K + 1)/2 in the following three cases.

15
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B (p—1)+1 1
Case L Denote Q) = —22 200, + s

and ly = ko + (ko — 1)K — Zk2 ' h, we obtain

(Al1A12) - tr(Rk2k1Qk1Rk1k2ka) — pilkz(l - pklkl)(l - pkzkz)a
forkl,kg = 1, ,K.

I)kxpk For ll = ]Cl + (kl — 1)K Zkl 1

CaseIL Since tr(A;, A;,) = tr(A;, A;, ), we only present the results of [; = k+(k—1)K—ZZ;é h
and ly = k1 + (ko — 1)K — Zk2 " h. After algebraic calculation, we obtain

1
tr(A;, Ag,) = ST tr(QrRicky iy ks Ricok + QuRicky 1y iy Ry k)
1 2
Ky koo 1 1
— Dhaks tr(— Qi Rk, Rk + — Qu Rk, Rigoc)
2 Dky Dk,

1 1
—(1— pkk){pkklpkkz - §Piklpk1k2 - ipibpklkz}’
fork,ki,ko =1,--- , K and k1 > ks.

Case IIL For I} = k; + (ky — 1)K — 372 hand Iy = k3 + (ky — 1)K — S50 h,

we obtain

1
tr(AllAlz) :7tr(R1/2(Dk1k2 + Dkzkl)R(Dkglm + Dk4k3)R1/2)
4Pk, Dy Phes Piy
1
- 42]]:3;1 tr (RI/Q(DICUW +Dk2k1)R(EEk3 + 4)R1/2)
1 2 3
1 1
45):1;1 tr (RI/Q(DI%M + Dk4k3)R(2;Ek1 + ];EkQ)Rl/2>
3 4 1 2
PkiksPkska 12, 1 1 1 1 1/2
+ ——=tr(R —FE, + —FE,. )R(—EFE,,+ —FE;,)R
4 ( (pkl bt ) (pk3 ket o k) R7)
=B 4+ By + B3 + By,
where k?l, kQ,k37k4 =1,--- ,K, k1 > ko, and ]{73 > ky.
After algebraic calculation, we obtain
1
B, = m{tr(lklxknggkg Loy iy Riaky ) + 80 (Liog xioy Ry ko Loy x by Ricykon)
1 2 3 4

+ 1 (L, koo Riokog Liog sciog Righy ) + tr(1k2xkle1k41k4xk3Rk3k2)}

1
D) (Phaks Pl ka Pk ks Paks)-
Analogously, we obtain

Pksk 1 1
By = S A {tr(ilklxszk‘gk@Rk‘gkl) + tr(illekz‘szquk@kl)
Apk, Pk, Pks ka

1 1
+ tf(ﬁlkzxklelkstgkz) + tr(ﬁlkzxklemka)}

3 4

Pksk
- - ; - (pkzkgpklk?, + szk4pk1k4)7

and B3 — — (Pk1k3pk1k4 + Pk2k4pk2k3> For By, we have

PkiksPhkska
B, = {t Ry . Ry, k., ) + tr
4 PesPes 1k3 Lk3 1) (pk2pk3

Ry i, Rik, ) + tr(
PeiPhy T Phy Py

sz k3 Rks k2 )

+ tl"( Rk2k4Rk4k2)}

PkikoPksky ; 2 2 2 2
%(pklk;{ F Pkoks T Phyks T Phioks):

Combining the above results, we immediately know that By + By + Bs + By is convergent.

Since every elements in [tr(A;, Ay, )|k (x+1)/2xK(K+1)/2 are convergent and K < oo,
[tr(A;, Ay, )] is also convergent, which implies that our Condition (C2) is sensible.
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G ADDITIONAL SIMULATION RESULTS

In this section, we present two different types of additional simulation studies. First, the simulation
settings are the same as those in Section [4] except that the elements of €; are i.i.d. from the mixture
normal distribution 0.9N(0,5/9) + 0.1N(0,5) and standardized exponential distribution. We find
that the results yield similar patterns to those in Tables[IJand 2] which demonstrates the robustness of
the BCME and RR methods, shown in Tables[@H7} Second, we demonstrate the results of the BCME
estimations with given K when the group memberships are unknown and €; follows a multivariate
normal distribution N,,(0,, I),) in Table [8] which verifies the corollary [l In addition, the similar
results are yielded when €; follows non-normal distributions, but they are not reported here to save
space.

Table 4: Comparison of the BCME estimators (R, 3), TP estimators (RT p, 37p), TP estimators
with variable ordering (RT p» 27 p), and QMLE estimators (RQ MLE> EQ mLE) of the blockwise
correlation matrix and correspondmg covariance matrix when the elements of €; follow a mixture
normal distribution 0.9A(0,5/9) + 0.1A(0,5). AS and AF represent the averages of the spectral-
error and Frobenius-error, respectively. SS and SF denote the standard deviations of the spectral-
error and Frobenius-error, respectively. Pro. (%) is the proportion of positive semi-definiteness.
Time (in seconds) is the average execution time.

K.p) 2.150) @420) 6.570) (8.340)

n___ Measures X (R) X7p (R3p)  Xrp (Rrp)  Youre (Rouie) X (R) X7p (Ryp)  Xrp (Rrp) Youie (Rouie) X (R) X (R)
AS | 0021 (0.024) 0.021 (0.024) 0.036 (0.108) __ 0.029(0.055) | 0.016 (0.026) 0.016(0.026) 0.027(0.086) _ 0.041(0.123) | 0.014 (0.025) | 0.012 (0.022)
ss 0.008 (0.014)  0.008 (0.014) 0.002(0.000)  0.028 (0.091) | 0.006 (0.011) 0.006 (0.011) 0.002 (0.000)  0.011(0.039) | 0.005 (0.010) | 0.004 (0.007)
200 AF | 0.023(0.026) 0.023(0.026) 0.042(0.112)  0.032(0.058) | 0.018(0.030) 0.018(0.030) 0.041 (0.120)  0.052(0.157) | 0.017 (0.031) | 0.015 (0.029)
- SF | 0.007 (0.014) 0.007 (0.014) 0.004 (0.004)  0.030(0.093) | 0.005(0.011) 0.005 (0.011) 0.002(0.005)  0.013(0.047) | 0.004 (0.009) | 0.003 (0.007)

Pro. 100.0 100.0 100.0 93.0 100.0 100.0 100.0 10.4 100.0 100.0

Time 0.003 12.899 20.123 31161 0.023 2681.941 2742.259 1585.685 0.031 0.092
AS | 0.013 (0.015) 0013 (0.015) 0.035 (0.108) 0019 (0.035) | 0.010 (0.016) 0.010(0.016) 0.026 (0.086) __ 0.040 (0.125) | 0.009 (0.015) | 0.008 (0.014)
ss 0.005 (0.009)  0.005 (0.009) 0.003 (0.007)  0.024 (0.076) | 0.004 (0.007) 0.004 (0.007) 0.001 (0.000)  0.005 (0.014) | 0.003 (0.006) | 0.002 (0.005)
500 AF | 0.014(0.017) 0.014(0.017) 0.038(0.110)  0.020(0.037) | 0.012(0.019) 0.012(0.019) 0039 (0.118)  0.053(0.163) | 0.011 (0.019) | 0.010 (0.019)
R SF | 0.005(0.010) 0.005(0.010) 0.003(0.008)  0.024(0.077) | 0.003 (0.007) 0.003 (0.007) 0.001 (0.003)  0.005 (0.015) | 0.002 (0.006) | 0.002 (0.004)

Pro. 100.0 100.0 100.0 95.0 100.0 100.0 100.0 0.7 100.0 100.0

Time 0.004 13.333 21.319 75.666 0.028 2781171 2896.381 4001.367 0.035 0.102
AS [ 0.009 (0.011) 0.009 (0.011) 0.035 (0.108) 0012 (0.019) | 0.007 (0.001) 0.007 (0.01T) 0.026 (0.086) __ 0.040 (0.125) | 0.006 (0.011) | 0.005 (0.010)
ss 0.004 (0.006)  0.004 (0.006) 0.000(0.000)  0.016 (0.051) | 0.002 (0.005) 0.003 (0.005) 0.000 (0.000)  0.004 (0.014) | 0.002 (0.004) | 0.002 (0.004)
00 AF ] 0010(0.012) 0010(0.012) 0037(0.109)  0013(0.020) | 0.008(0.013) 0.008 (0.013) 0.038(0.118)  0.052(0.163) | 0.008 (0.014) | 0.007 (0.013)
SF | 0.003(0.007) 0.003(0.007) 0.001(0.001) 0017 (0.052) | 0.002 (0.005) 0.002(0.005) 0.001 (0.003)  0.005(0.016) | 0.002(0.004) | 0.001 (0.003)

Pro. 100.0 100.0 100.0 97.5 100.0 100.0 100.0 0.4 100.0 100.0

Time 0.006 13.797 21.965 142390 0.037 2957.455 3086.742 8583.513 0.043 0.119

Table 5: Comparison of the BCME estimators (R, ), TP estimators (RT p, 37p), TP estimators
with variable ordering (RT I ET p), and QMLE estimators (RQ MLE> EQ mLE) of the blockwise
correlation matrix and corresponding covariance matrix when the elements of ¢€; follow a standard-
ized exponential distribution. AS and AF represent the averages of the spectral-error and Frobenius-
error, respectively. SS and SF denote the standard deviations of the spectral-error and Frobenius-
error, respectively. Pro. (%) is the proportion of positive semi-definiteness. Time (in seconds) is the
average execution time.

(K.p) (2,150) (4,420) (6,570) (8,840)

n > (R) X5p (Rip)  Yrp (Rrp)  Soumie (Roumie) X (R) X5p (Rp)  Xrp (Rrp)  Souie (Rouie) X (R) % (R)
AS 0.021 (0.024)  0.021 (0.024)  0.036 (0.108) 0.029 (0.054) 0.016 (0.025)  0.016 (0.025)  0.027 (0.086) 0.041 (0.125) 0.015 (0.025) | 0.011 (0.022)
SS 0.009 (0.014)  0.009 (0.014)  0.002 (0.000) 0.028 (0.091) 0.006 (0.012)  0.006 (0.012)  0.002 (0.000) 0.015 (0.048) 0.005 (0.010) | 0.003 (0.007)
200 AF 0.023 (0.026)  0.023 (0.026) 0.042 (0.112) 0.031 (0.057) 0.018 (0.030)  0.018 (0.030)  0.041 (0.120) 0.053 (0.159) 0.018 (0.031) | 0.014 (0.029)
SF 0.008 (0.015)  0.008 (0.015)  0.005 (0.004) 0.029 (0.093) 0.005 (0.012)  0.005 (0.012)  0.002 (0.005) 0.016 (0.055) 0.004 (0.009) | 0.003 (0.007)

Pro. 100.0 100.0 93.7 100.0 100.0 100.0 9.4 100.0 100.0

Time 0.003 12.870 20.194 31.298 0.024 2717.192 2764.434 1631.160 0.031 0.091
AS 0.013 (0.015)  0.013 (0.015)  0.035 (0.108) 0.018 (0.031) 0.010 (0.016) 0.010(0.017)  0.026 (0.086) 0.040 (0.126) 0.010 (0.016) | 0.007 (0.014)
SS 0.005 (0.009)  0.005 (0.009)  0.000 (0.000) 0.022 (0.070) 0.004 (0.008)  0.004 (0.008)  0.001 (0.000) 0.009 (0.029) 0.003 (0.007) | 0.002 (0.005)
500 AF 0.014 (0.016)  0.014 (0.016)  0.038 (0.110) 0.019 (0.033) 0.012 (0.019)  0.012(0.019)  0.039 (0.118) 0.053 (0.164) 0.011 (0.020) | 0.009 (0.019)
- SF 0.005 (0.009)  0.005 (0.009)  0.002 (0.002) 0.023 (0.072) 0.003 (0.007)  0.003 (0.007)  0.001 (0.003) 0.010 (0.031) 0.003 (0.006) | 0.002 (0.004)

Pro. 100.0 100.0 100.0 95.6 100.0 100.0 100.0 2.0 100.0 100.0

Time 0.004 13.153 21.025 74.586 0.028 2787.388 2875.737 4011.246 0.035 0.100
AS 0.009 (0.011)  0.009 (0.011)  0.035 (0.108) 0.013 (0.021) 0.007 (0.011)  0.007 (0.012)  0.026 (0.086) 0.040 (0.125) 0.007 (0.011) | 0.005 (0.010)
SS 0.004 (0.007)  0.004 (0.007)  0.002 (0.007) 0.018 (0.055) 0.002 (0.005)  0.002 (0.005)  0.000 (0.000) 0.007 (0.023) 0.002 (0.004) | 0.002 (0.003)
1000 AF 0.010 (0.012)  0.010(0.012)  0.037 (0.109) 0.014 (0.022) 0.008 (0.013)  0.008 (0.014)  0.038 (0.118) 0.052 (0.163) 0.008 (0.014) | 0.006 (0.013)
SF 0.004 (0.007)  0.004 (0.007)  0.003 (0.008) 0.018 (0.056) 0.002 (0.005)  0.002 (0.005)  0.001 (0.003) 0.008 (0.025) 0.002 (0.004) | 0.001 (0.003)

Pro. 100.0 100.0 100.0 97.4 100.0 100.0 100.0 0.6 100.0 100.0

Time 0.006 13.638 21.743 142.581 0.037 2984.105 3084.462 8654.350 0.043 0.118
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Table 6: Results of block number selection when the elements of €; follow a mixture normal dis-
tribution 0.9N(0,5/9) + 0.1N(0,5). CT is the average percentage of the correct fit. Mean is the
mean of the estimated number of blocks.

n = 200 n = 500 n = 1000

CT Mean CT Mean CT Mean
K=2 1.00 2.00 1.00 2.00 1.00 2.00
K=3 1.00 3.00 1.00 3.00 1.00 3.00
K=4 0.93 3.78 1.00 4.00 1.00 4.00
K=5 0.59 3.36 1.00 5.00 1.00 5.00
K=6 0.13 1.67 0.99 5.94 1.00 6.00
K=7 0.03 1.19 0.89 6.36 1.00 7.00
K=28 0.03 1.22 0.94 7.55 1.00 8.00

Table 7: Results of block number selection when the elements of €; follow a standardized exponen-
tial distribution. CT is the average percentage of the correct fit. Mean is the mean of the estimated
number of blocks.

n = 200 n = 500 n = 1000

CT Mean CT Mean CT Mean
K=2 1.00 2.00 1.00 2.00 1.00 2.00
K=3 1.00 3.00 1.00 3.00 1.00 3.00
K=4 0.90 3.71 1.00 4.00 1.00 4.00
K=5 0.58 3.33 1.00 5.00 1.00 5.00
K=6 0.13 1.64 0.99 5.94 1.00 6.00
K=7 0.03 1.16 0.90 6.41 1.00 7.00
K=28 0.03 1.22 0.93 7.52 1.00 8.00

Table 8: The performance of the BCME estimators (RC;), ﬁ]@) of the blockwise correlation matrix
and corresponding covariance matrix with given K when the group memberships are unknown and
€; follows a multivariate normal distribution N,(0,,I,). AS and AF represent the averages of
the spectral-error and Frobenius-error, respectively. SS and SF denote the standard deviations of
the spectral-error and Frobenius-error, respectively. Pro. (%) is the proportion of positive semi-
definiteness. Time (in seconds) is the average execution time.

&.p) ,150) @,420) 6,570) (3,840)
n__ Measures | 3 (R) o Ro) TR o Re) TR o Re) TR o Re)
AS [ 0.019(0.023) 0.019(0.027) | 0.014(0.025) 0.017 (0.031) | 0.014(0.025) 0.016(0.031) | 0.010 (0.022) 0.012 (0.030)
SS | 0.009(0.013) 0.009 (0.017) | 0.006 (0.012) 0.007 (0.018) | 0.006 (0.010) 0.006 (0.015) | 0.004 (0.007) 0.004 (0.012)
00 AF | 0020(0.025) 0021 (0.031) | 0.016(0.030) 0.019(0.036) | 0.016(0.031) 0.019 (0.037) | 0.013(0.029) 0015 (0.038)
SF | 0.008 (0.014) 0.009 (0.018) | 0.005 (0.012) 0.007 (0.019) | 0.005 (0.010) 0.006 (0.015) | 0.003 (0.007) 0.004 (0.013)
Pro. 100 100 100 100 100 100 100 100
Time 0.004 0.002 0.023 0.008 0.031 0016 0.091 0.046
AS [ 0.012(0.014) 0013 (0.017) | 0.009 (0.016) 0.011 (0.021) | 0.009 (0.016) 0.009 (0.021) | 0.006 (0.014) _0.008 (0.021)
SS | 0.006(0.009) 0.006(0.010) | 0.004 (0.007) 0.006 (0.018) | 0.003 (0.006) 0.004 (0.014) | 0.002 (0.005) 0.004 (0.012)
so0  AF | 0013(0.016) 0015(0.020) | 0.010(0.019) 0.012(0.024) | 0.010(0.020) 0.011 (0.025) | 0.008 (0.019) 0.010 (0.025)
SF | 0.005(0.009) 0.006(0.012) | 0.003 (0.007) 0.006 (0.018 | 0.003 (0.006) 0.004 (0.014) | 0.002 (0.004) 0.004 (0.012)
Pro. 100 100 100 100 100 100 100 100
Time 0.004 0.002 0.028 0.009 0.034 0018 0.100 0.050
AS [ 0,008 (0.010) 0.009 (0.011) | 0.006 (0.011) 0.008 (0.018) | 0.006 (0.011) 0.007 (0.014) | 0.005 (0.010) 0.006 (0.014)
SS | 0.004(0.006) 0.004 (0.007) | 0.003 (0.005) 0.006 (0.019) | 0.002 (0.004) 0.004 (0.012) | 0.002 (0.003) 0.003 (0.011)
00 AF | 0.009(0.011) 0009 (0.013) | 0.007(0.013) 0.009(0.020) | 0.007 (0.014) 0.008 (0.017) | 0.006 (0.013) 0.007 (0.018)
SF | 0.004(0.007) 0.004 (0.008) | 0.002 (0.005) 0.006 (0.019) | 0.002 (0.004) 0.004 (0.012) | 0.001 (0.003) 0.003 (0.011)
Pro. 100 100 100 100 100 100 100 100
Time 0.006 0.002 0.037 0012 0.042 0022 0.117 0057
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