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ABSTRACT

For more than a decade, researchers have measured progress in object recognition
on the ImageNet dataset along with its associated generalization benchmarks such
as ImageNet-A, -C, and -R. Recent advances in foundation models, trained on
orders of magnitude more data, have begun to saturate performance on these
benchmarks. Despite this progress, even today’s best models are brittle in practice.
As a step toward more holistic measurement of model reliability, we propose
studying performance on crowdsourced, global datasets, which contain natural
distribution shifts seen practically in deployment. We perform a comprehensive
empirical study on two crowdsourced, globally representative datasets, evaluating
nearly 100 vision models to uncover several concerning empirical trends: first, that
progress on crowdsourced, global data has significantly lagged behind standard
benchmarks, with advances on ImageNet occurring at 2.5x the rate of progress on
crowdsourced, global data. Second, we find that progress on standard benchmarks
has failed to improve or exacerbated geographic disparities: geographic disparities
between the least performant models and today’s best models have more than
tripled. We showcase the promise of using more curated and/or representative
training datasets for mitigating these trends, and emphasize curation of web-scale,
geographically representative training datasets as a critical open problem for the
research community.

1 INTRODUCTION

ImageNet (Russakovsky et al., 2015), the standard benchmark for object recognition, has set the bar
for progress in computer vision. Since its release in 2010, ImageNet along with other generalization
benchmarks such as ImageNet-A,-C and -R (Hendrycks et al., 2021b; Hendrycks and Dietterich,
2019; Hendrycks et al., 2021a) has spurred numerous advances in deep learning. Now, more than a
decade later, advances in scaling and multi-modal modeling have saturated these standard benchmarks.
Most prominently, large-scale vision-language models such as CLIP have been shown to achieve
high accuracies on in- and out-of-distribution generalization benchmarks (Radford et al., 2021; Fang
et al., 2022a; Miller et al., 2021).

Despite high performance on these benchmarks, model generalization remains an open problem —
both vision and text models, as well as state-of-the-art (SOTA) multimodal models, have been
found to lack robustness outside of standard benchmarks, even under natural distribution shifts. For
example, recent works have shown how CLIP (Radford et al., 2021) remains vulnerable to changes in
pose, background, size, position, and lighting (Ibrahim et al., 2022; Madan et al., 2021; Abbas and
Deny, 2022; Li et al., 2023a). These results highlight the limitations of commonly used ImageNet
generalization benchmarks (also referred to as Out-of-Distribution, or OOD, benchmarks), which
focus on controlled, predefined or synthetic alterations of images and do not reflect the rich diversity
of data observed during model’s deployment (Hendrycks and Dietterich, 2019; Hendrycks et al.,
2021b; Madan et al., 2020). We summarize commonly used generalization benchmarks in Table 1.

As a step toward more holistic measurement of model reliability, we propose studying performance
on crowdsourced, globally representative datasets. We argue that such datasets offer two distinct
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Figure 1: Progress rate on ImageNet generalization benchmarks is over 2.5x the progress rate on
crowdsourced, global data (Section 4). Further, geographic disparity between regions is exacerbated
with progress on standard benchmarks, tripling over our range of models (Section 5).

advantages missing from current benchmarks. First, they allow us to assess models’ performance
under naturally occurring distribution shifts without simulated environments, preselected variations,
or artificially injected transformations. Second, they enable the measurement of geographic disparities
between regions, a measure of generalization that is, by definition, relevant across the world, and a
critical component of model safety in deployment which is often hidden in the commonly reported
average accuracy.

Using these datasets, we offer an extensive empirical analysis of progress, evaluating nearly 100
vision models spanning 16 architectures, 8 distinct pretraining datasets, and a comprehensive set
of foundation models. In addition, we systematically study of the impact of common robustness
interventions as well as scaling of both model size and data. Our contributions are:

• As a step toward more holistic measurement of model reliability, we propose to measure per-
formance on globally crowdsourced datasets (Section 3), which contain natural distribution
shifts relevant to model deployment.

• We identify a significant progress gap, finding progress on ImageNet results in up to 2.5x
progress on standard benchmarks than on crowdsourced, global data (Section 4). We
illustrate this in the left part of Figure 1.

• We find, contrary to conventional wisdom, that improvements on standard benchmarks
exacerbate performance disparities across geographies: disparities in performance have
tripled between early models and today’s best models (Section 5) as shown in the right part
of Figure 1.

• We study the impact of common robustness interventions and scaling, finding these two di-
rections are not sufficient to close the progress gap. We explore curating more representative
datasets as a promising path to mitigating the trade-offs we uncover (Section 6).

We hope our work will inspire researchers to look beyond standard benchmarks to measure model
reliability. To support these efforts, we will release our model test bed and evaluation code in a
ready-to-use package, allowing researchers to run their own evaluations with just 4 lines of code.

2 RELATED WORK

Generalization benchmarks have significant limitations. Model generalization is a major chal-
lenge in deep learning. Consequently, a myriad of benchmarks were proposed to evaluate general-
ization capabilities of image classification models (Recht et al., 2019). For example, ImageNet-A
(Hendrycks et al., 2021b) was collected by intentionally mining challenging examples that fool a pre-
selected model. A complementary approach involves applying corruptions to images such as blurring,
noise, or style alterations (Hendrycks and Dietterich, 2019; Geirhos et al., 2018a). Other benchmarks
such as ImageNet-9 (Xiao et al., 2020), ImageNet-R (Hendrycks et al., 2021a), ImageNet-S (Wang
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Benchmark shift type is natural # shift types crowdsourced
ImageNet - - - ✗
ImageNet-V2 - - - ✗
ImageNet-Sketch drawing ✓ 1 ✗
ImageNet-Rendition drawing ✓ 1 ✗
ObjectNet pose, background ✓ 3 ✗
ImageNet-C corruptions ✗ 5 ✗
ImageNet-A adversarial ✓ 1 ✗
DollarStreet geographic ✓ unlimited ✓
GeoDE geographic ✓ unlimited ✓

Table 1: Crowdsourced, global data benchmarks enable measuring performance on naturally
occurring distribution shifts without simulated environments, preselected variations, or artifi-
cially injected transformations.

et al., 2019) and ObjectNet (Barbu et al., 2019) consist of images with a few predefined axes of
generalization in mind: e.g. sketches in ImageNet-S or background variations in ImageNet-9. While
being useful measures of model performance under dataset shifts, such benchmarks carry signficant
limitations in the kinds of shifts they represent, relying on artificially induced transformations or a
predefined criteria, which provide limited measures of object variation in natural settings (DeGrave
et al., 2021; Taori et al., 2020).

Foundation models and robustness interventions. Many advances from robustness interventions
to learning methods leveraging large scale data were proposed to improve generalization. Some
robustness interventions are tailored to improve specific generalization axes such as to corruptions
(Hendrycks and Dietterich, 2019), texture (Geirhos et al., 2018a), or background shift (Ryali et al.,
2021). Data augmentation is a widely used technique which improves generalization (Pinto et al.,
2023; Hendrycks et al., 2019; Yun et al., 2019; Li et al., 2023b). Recent work finds that while
robustness interventions improve generalization to the intended shift, they may degrade performance
to other shifts (Geirhos et al., 2020; Kamath et al., 2021; Moayeri et al., 2022). In parallel, self-
supervised models (Goyal et al., 2022; Shi et al., 2022) and more recent foundation models (Pan
et al., 2022) trained on much larger datasets (400M text-image pairs) show significant improvements
on standard generalization benchmarks (Bommasani et al., 2022). However, in controlled synthetic
settings, even large-scale foundation models were found to struggle with common variations in pose,
background, and scale, among others (Abbas and Deny, 2022; Ibrahim et al., 2022; Madan et al.,
2023). These results highlight that out-of-distribution generalization still remains an open challenge.

The role of geography in classification. Geography presents an important axis for measuring model
generalization, leveraging a natural distribution shift to measure the consistency of model performance.
In recent years, several classification datasets containing images from diverse geographic regions
have been developed to study the role of geography in object classification models (Gustafson et al.,
2023; Goyal et al., 2021; 2022; Rojas et al.; Ramaswamy et al., 2023).Particularly, Ramaswamy et al.
(2023) perform a last-layer retraining experiment with a ResNet50 model and a mixture of ImageNet
and GeoDE data, reporting improved performance on GeoDE and DollarStreet datasets. We perform
a similar experiment in Sec 6.3 on a ViT model, with only GeoDE data, in order to evaluate last
layer retraining as a method to improve region performance disparities. Their analysis reveals that
classification models perform much better on some regions compared to others: accuracy gaps across
regions can be as high as 20% (DeVries et al., 2019). In conjunction, Shankar et al. (2017a); Dulhanty
and Wong (2019); Birhane and Prabhu (2021); Shankar et al. (2017b) present a possible explanation
for this performance difference emphasizing over-representation of training images originating from
Western geographies. Akin to Dubey et al. (2021) Kalluri et al. (2023) Yin et al. (2023), and Prabhu
et al. (2022) which formulates geography as a benchmark for domain adaption, our work presents
classification performance gaps across geographic regions as a window into generalization progress.

Does better in-distribution performance lead to better out-of-distribution generalization?
Chan et al. (2022) shows that generalization in transformer models stems from aspects of the training
distribution such as the number and rarity of training classes. Specifically for foundation models
such as CLIP, Fang et al. (2022b); Nguyen et al. (2023) show that the main factor driving improved
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generalization is the training data quality and distribution (Shi et al., 2023). Miller et al. (2021); Baek
et al. (2022) explicitly describe the relationship between in-distribution (ID) and out-of-distribution
(OOD) performance, showing ID performance is linearly correlated with OOD generalization. Other
work casts doubt on how well ID performance can predict natural OOD generalization (Recht et al.,
2019; Teney et al., 2022). Abnar et al. (2021) show improved ID accuracy does not necessarily lead
to downstream improvements. Fang et al. (2023) show improvements on ID ImageNet classification
does not lead to improvements on non-web scraped data. Our work complements these studies by
exploring how ID advancements on ImageNet and related benchmarks have translated poorly to
crowdsourced, global data.

3 MEASURING PROGRESS ON CROWDSOURCED, GLOBAL DATA

The ImageNet dataset has been an instrumental measure of progress for object recognition (Rus-
sakovsky et al., 2015). Alongside, standard ImageNet benchmarks such as ImageNet-A, ImageNet-C,
and ObjectNet, have been developed to assess how well models generalize (see Section 2). However,
with recent advances in foundation models such as CLIP, performance on the standard ImageNet
distribution shifts benchmarks has begun to saturate (Radford et al., 2021). A key limitation of
standard generalization benchmarks is that they rely on artificially induced corruptions or predefined
criteria. While they represent important distribution shifts, we argue that crowdsourced, global data
can provide an insightful view of model consistency in a natural setting.

3.1 GEOGRAPHICALLY DIVERSE DATASETS

Recently, two datasets of household objects spanning the globe were introduced: DollarStreet (Rojas
et al.) and GeoDE (Ramaswamy et al., 2023). DollarStreet contains 38K images, with 96 classes,
and spans 54 countries and 4 regions, while GeoDE contains 61K images with 40 classes, and spans
6 regions. Both datasets are commonly used in fairness literature to study performance disparities
across images from different socioeconomic groups and regions (DeVries et al., 2019; Gustafson
et al., 2023; Rojas et al.; Goyal et al., 2021; 2022; Ramaswamy et al., 2023). To study the largest
catalogue of models possible, we use the ImageNet-1k class mappings released for DollarStreet and
generated a similar mapping for GeoDE classes. These class mappings (see Appendix A) allow us
to evaluate any vision model compatible with the original 1k ImageNet classes. Geographically
labeled datasets such as GeoDE or DollarStreet allow us to measure generalization as it occurs in the
crowdsourced data collected across geographies.

Controlling for image quality. Can performance differences be simply be attributed to a lack of
geographic representation or regional differences in image quality? As shown in Ramaswamy et al.
(2023) and Gustafson et al. (2023) both DollarStreet and GeoDE have consistent image quality and
contain roughly balanced numbers of samples per region. In both datasets, images are crowdsourced
and labeled by the households who took the photo. This process produces high-quality ground truth
class labels.

3.2 MEASURING GENERALIZATION BEYOND AVERAGE ACCURACY

The most commonly reported measure of progress for standard object recognition benchmarks is
the average classification accuracy. While using an average accuracy provides a high-level view
of model performance, a holistic understanding of model reliability requires a more fine-grained
evaluation. We show how using crowdsourced, global data offers a unique lens for evaluation through
region subgroup disparities. In this work, we complement average benchmark accuracy with two
additional metrics for assessing the rate of progress and uncovering disparities not revealed by average
accuracy.

First, we are interested in measuring the rate at which each type of benchmarks (geographical or
standard) benefit from advances in the field. Thus, we measure the accuracy increases for each
benchmark relative to ImageNet accuracy, where the rate of progress is the slope of a linear fit.
We compute the difference of progress rates between standard generalization benchmarks and
geographical shift benchmarks and consider Progress Gap defined as:
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Progress Gap := Progress Rate Standard− Progress Rate Geographical (1)

=
Standard Improvement−Geographic Improvement

ImageNet Improvement
. (2)

Progress gap indicates how much of the progress on standard benchmarks transfers to crowdsourced,
global datasets. For example, a progress gap of 2x indicates improvements on standard benchmarks
progress twice as fast as improvements on our crowdsourced benchmarks. The Progress gap measure
relies on a linear fit of the accuracy trends, which are well supported by statistically significant with
high Coefficients of Determination (R2) seen in Table 2 (details in Appendix B).

However, there is a blind spot when using average accuracy: it may conceal poor performance on
some groups relative to others (Idrissi et al., 2022). For example, a model may perform well on
average, but generalize quite poorly to some regions. Fortunately, datasets with geographic labels,
such as DollarStreet and GeoDE, offer an opportunity to reveal when such disparities arise.

To complement average accuracy, we propose measuring geographic disparity on crowdsourced
datasets as more holistic measure of model reliability. For DollarStreet and GeoDE, we do so by
measuring the maximum absolute difference in a model’s classification performance across any two
regions, which we refer to as Geographic Disparity and is defined as:

∆Disparity := max{|Pi − Pj | : i, j ∈ 1, . . . , k} (3)

where Pi indicates the performance on the ith region and k is the number of regions. This definition
can be applied broadly to any geographically labeled dataset and groupings other than regions such
as country, zip code, or continent.

Progress gap, together with geographical disparity in both GeoDE and DollarStreet datasets, gives us
a more holistic understanding of model reliability and progress in object recognition.

3.3 ASSESSING PROGRESS ON CROWDSOURCED, GLOBAL DATA

Equipped with two geographically diverse datasets and metrics of improvement, we now turn to the
question: to what extent has progress on standard ImageNet benchmarks improved generalization on
crowdsourced, global datasets? First, we compare progress rates on standard benchmarks relative to
progress based on average classification accuracy of household objects around the globe (i.e. with
Progress Gap from Equation 2). We go beyond average accuracy to probe how progress on standard
benchmarks affects generalization in terms of geographic disparities (i.e. with ∆Disparity from
Equation 3) using DollarStreet and GeoDE described in Section 3.1.

We investigate a testbed of 98 models, which spans 16 architectures and includes recent foundation
models such as CLIP, FLAVA, and DINOv2. We primarily use weights available in the Timm library
(Wightman, 2019) for ImageNet trained models, use the OpenCLIP library for CLIP models (Ilharco
et al., 2021), and use HuggingFace (Wolf et al., 2020) implementations of other foundation models.
We include a comprehensive table of testbed metadata in Appendix A. Our testbed includes models
trained on up to 2 billion images and with over 100 million parameters.

4 THERE IS A PROGRESS GAP BETWEEN STANDARD BENCHMARKS AND
CROWDSOURCED, GLOBAL DATA

Here we measure the rates of progress on standard ImageNet benchmarks, along with progress
on crowdsourced, global datasets. If standard benchmarks faithfully reflect object variation in
natural settings, we would expect both sets of benchmarks to have consistent rates of progress.
We compare the improvements on standard generalization benchmarks to crowdsourced, global
benchmarks as a function of ImageNet accuracy. As shown below, we find accuracy on standard
generalization benchmarks to improve by 62.75% on average, while progress on the geographically
diverse DollarStreet dataset only improves by 18.9% (33.5% for GeoDE).

To isolate these progress trends, we compute linear trend lines for each benchmark. We find the
trend lines are statistically significant with high Coefficients of Determination (R2) as shown in
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Table 2 (details in Appendix B). We discover a striking progress gap between standard generalization
benchmarks and crowdsourced, global data: progress on standard benchmarks is 2.5× the progress
on crowdsourced, global datasets. The progress gap is consistent for both DollarStreet and GeoDE,
despite these benchmarks containing different classes and collection procedures. This suggests the
progress gap isn’t an artifact of a particular dataset. Both the difference in progress rates, and the net
improvement values point to a substantial gap in progress between the commonly reported standard
benchmarks and crowdsourced, global datasets.

Benchmark Net Improvement (↑) Progress Rate (↑) Progress Gap R2 (↑)

DollarStreet (baseline) +18.92% 0.53 1.0x 0.93

In-Distribution
ImageNet-V2 +37.74% 1.18 2.2x 0.99

Out-Of-Distribution
ImageNet-Sketch +63.00% 1.37 2.6x 0.75
ImageNet-Rendition +73.42% 1.50 2.8x 0.74
ObjectNet +51.84% 1.46 2.8x 0.90
OOD Average +62.75% 1.44 2.7x 0.82

Table 2: There is a striking progress gap between standard ImageNet benchmarks and geo-
graphic shift benchmarks, with all benchmarks improving at over double the rate of DollarStreet.
This translates to a net improvement on average OOD datasets that is more than 3x the net improve-
ment on DollarStreet. We measure progress rate as the slope of a linear fit between ImageNet accuracy
and benchmark accuracy, and include the coefficient of determination (R2) for each.

5 PROGRESS ON STANDARD BENCHMARKS EXACERBATES PERFORMANCE
DISPARITIES

We found progress on crowdsourced, global data in terms of average accuracy lags considerably
behind progress on standard benchmarks. While useful, average accuracy can conceal large disparities
in performance indicative of poor geographic generalization. Here we address average accuracy’s
blind spots by studying performance disparities across regions. We measure performance disparity
as the top-1 accuracy difference between the best (Europe) and least (Africa) performing regions
in DollarStreet and GeoDE. We then study whether progress on standard ImageNet benchmarks
improves or exacerbates geographic disparities.

5.1 EVEN SOTA MODELS HAVE LARGE PERFORMANCE DISPARITIES BETWEEN REGIONS

We first measure the maximum performance disparity across regions. If a model generalizes well
across geographies, we would expect a small performance disparity; whereas, poor geographic
generalization would lead to large disparities. We find all models have substantial disparities between
regions, from ResNets to the largest CLIP models trained on 2 billion image-text pairs. In our study,
ResNet models have average geographic disparities of 14.5% on DollarStreet and 5.0% on GeoDE.
The best performing CLIP model actually had even more considerable disparities, with a disparity
of 17.0% on DollarStreet and 6.5% on GeoDE. These considerable geographic disparities suggest
average accuracy is concealing a crucial axis of generalization that remains unsolved by today’s best
models. Next, we study how progress on standard ImageNet benchmarks has affected geographic
disparities.

5.2 PROGRESS ON IMAGENET FAILS TO RESOLVE DISPARITIES, OFTEN EXACERBATING THEM

Has progress on standard ImageNet benchmarks improved or exacerbated geographic disparities?
To answer this question, we compare geographic disparities as a function of progress on ImageNet
and standard generalization benchmarks. Contrary to modern intuition, we discover, as shown in
Figure 2, progress on ImageNet and its generalization benchmarks not only fails to resolve geographic
disparities, but actually exacerbates disparities. We find for DollarStreet disparities between the least
performant models and today’s best models have more than tripled. We also analyze performance
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disparities in GeoDE finding that that improvements on standard benchmarks are not predictive of
any improvement in geographic disparity (see Appendix C).

Accuracy

Improvement on Standard Benchmarks Exacerbates Regional 
Accuracy Disparities on DollarStreet

In-Distribution (ImageNet V2) Out-Of-Distribution (OOD Average)

ΔDisparity
DollarStreet

Region 

Accuracy

Exploring the Widening Gap Between 
Region Accuracies on DollarStreet

ImageNet Accuracy

Δ5.4 %

Δ19.1 %

Figure 2: Model improvement on standard ID and OOD benchmarks exacerbates the region
disparity on DollarStreet, measured as the accuracy difference between Europe and Africa subsets.
Left: DollarStreet region disparity exacerbated with both ID and OOD improvements. Right: Per
region accuracy on DollarStreet as a function of ImageNet accuracy shows the exacerbated region
disparity.

5.3 EXPLORING THE WIDENING PERFORMANCE DISPARITIES BETWEEN REGIONS

To further explore the growing disparities, we isolate region performance as a function of improving
ImageNet accuracy to understand individual effect on the rate of progress in each region. In Figure 2,
we show accuracy in the best (Europe) and least (Africa) performing regions as ImageNet accuracy
improves. While overall models also improve on each region, they improve on for Europe at almost
double the rate of that for Africa, leading to a widening performance disparity between them. For
GeoDE, we see much more similar rates of improvement across regions (see Appendix C).

Our analysis indicates that progress as measured by average accuracy is an incomplete picture. We
find that models across architectures and datasets have large, meaningful disparities between regions,
and that improvement on current benchmarks fails to improve on these disparities.

6 GENERALIZATION ACROSS GEOGRAPHY: OPEN CHALLENGES AND
PROMISING DIRECTIONS

Next, we explore directions for improving the concerning empirical trends we uncover about model
failures across geographies. We investigate multiple avenues from common robustness interventions
such MixUp to scaling of both data/model size as well as forms of data curation. We find many
avenues known to improve generalization on standard benchmarks fail to address generalization to
crowdsourced, geographic shifts. Finally, we perform a last layer retraining (Kirichenko et al., 2022)
experiment to approximate the impact of training on a more geographically representative dataset.

6.1 ROBUSTNESS INTERVENTIONS OFFER LIMITED IMPROVEMENTS

We evaluate popular interventions that have been shown to improve generalization on standard
benchmarks: Deep AugMix, AugMix, Texture Debiasing, CutMix, and AntiAliasing ((Hendrycks
et al., 2019), (Geirhos et al., 2018b), (Yun et al., 2019), (Zhang, 2019)). We evaluate these techniques
using pretrained ResNet50 models. In Table 3, we show accuracy on standard benchmarks as well
as geographic disparities for DollarStreet and GeoDE for models trained with each intervention
compared to a baseline ResNet50 model (trained without any interventions). The majority of
robustness interventions improved one benchmark’s regional gap slightly, while degrading the other.
The exception is AugMix, which improved the GeoDE and DollarStreet gaps by 1.86% and 0.94%
respectively. Common robustness interventions overall offer limited improvements to geographic
disparities, indicating a need for more holistic solutions.
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Intervention ImageNet (↑) OOD Avg (↑) ∆Disparity GeoDE (↓) ∆Disparity DS (↓)
Baseline 76.34 30.28 4.96 15.16
Deep AugMix 76.73 32.92 5.22 13.53
Texture Debiased 76.73 31.13 4.70 16.20
Ant-Aliased 77.41 30.09 5.54 13.46
AugMix 77.53 32.51 3.10 14.22
CutMix 78.58 29.43 4.38 16.10

Table 3: Benchmarking Robustness Interventions. Most robustness interventions produced mixed
results, with the exception of AugMix, which provided small improvements to geographic disparities
and ImageNet accuracy. DS refers to DollarStreet.

6.2 FOUNDATION VISION MODELS AND SCALING

Model and data scaling have driven many recent advances (Radford et al., 2021). Here we study
whether scaling’s success on standard benchmarks translates to progress on crowdsourced, global
datasets. We measure geographic disparity ∆Disparity as a function of scale in terms of data (+200
million) and model size (+100 million parameters) in Figure 3. We find neither scaling data nor model
size improves geographic disparities. While error bars don’t allow us to draw any conclusive trends,
in terms of averages scaling both model and data sizes seems to exacerbate geographic disparities.
We replicate the GeoDE plots in Appendix D, which contain the same relationship. We also show the
scaling trend per architecture type in Appendix D, but did not find any promising scaling trends by
architecture.

Data Scaling, All Models Architecture Scaling, CLIP

Figure 3: Dataset and architecture scaling exacerbates region disparities on DollarStreet.

Our results suggest scaling alone is insufficient for robustness to geographic distribution shifts. Even
CLIP models have these persistent performance disparities between regions, which are not mitigated
by scaling the data or architecture size.

6.3 THE PROMISE OF CURATING REPRESENTATIVE BALANCED DATA

Finally, we explore data curation as a promising direction for addressing geographical generalization.
Prior work has highlighted data quality as a critical component of robustness improvements (Fang
et al., 2022a; Idrissi et al., 2022). Recent work has also found that careful data pruning can help
surpass existing performance scaling laws (Sorscher et al., 2022). In turn, we ask: to what extent can
curating balanced, representative training data address geographic distribution shifts? We take a first
step to answering this question by 1) analyzing the performance of DINOv2, a recent self-supervised
foundation model trained with auto-curated video data, and 2) last layer retraining (Kirichenko et al.,
2022) of ImageNet-pretrained ViT model on DollarStreet data. Both experiments approximate the
benefits of having curated representative data for pretraining or fine-tuning stages, however, we would
like to highlight that balancing web-scale data is a challenging open problem.
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DINOv2. Despite being a mid-size model at 86 million parameters, DINOv2 achieved the smallest
GeoDE region performance disparity of our testbed, with just a 2.46% accuracy difference between
Europe and Africa subsets. While the model still had a significant region disparity on DollarStreet, the
GeoDE improvement is remarkable for its size, and highlights that data curation offers a promising
path to mitigating the tradeoff between geographic performance disparity and standard benchmarks.

Last layer retraining on geographically representative data. Do we need to retrain a model from
scratch to reap the benefits of curated data? Inspired by Kirichenko et al. (2022) and Ramaswamy
et al. (2023),

we fine-tune the last linear head of a ViT model (Dosovitskiy et al., 2020) on the training split of
DollarStreet. We train the last layer for 5 epochs using Adam optimizer, learning rate 10−5 and batch
size 32. We then evaluate this model on both DollarStreet and GeoDE. For GeoDE, we evaluate
generalization and disparity on the subset of classes overlapping with DollarStreet classes (full details
in Appendix E). We find, as shown in Table 4, last layer retraining improves average accuracy and
geographic disparities on both DollarStreet and GeoDE. The average accuracy on DollarStreet’s
evaluation set improves by a dramatic 53.4% with geographic disparity also improving by 11.7%.
Remarkably, despite retraining only on DollarStreet, we observe improvements on GeoDE of 11.5%
on average accuracy and 3.2% in geographic disparities. We expand on Ramaswamy et al. (2023)
by showing how last layer retraining is not just improving total performance on geographically
diverse data, but improves geographic disparities, counter to our results on scaling and common
robustness interventions. Our results indicate careful use of more representative data holds great
promise to consistently improve both average performance and geographic disparity. We include
extensions of this experiment with varying amounts of DollarStreet data in the Appendix E, as well
as a rough approximation of western bias in a filtered version of LAION and a finetuning experiment
in Appendix H.

Motivating future work to curate geographically representative, web-scale training datasets.
Our analyses provide promising evidence that the concerning empirical trends we uncover could
be mitigated through data. While these analyses (and mitigations presented in previous work) have
shown promise, we do not present them as sufficient solutions themselves, as they are limited to
the very small number of classes available in geographically diverse datasets. Our analysis suggests
that these problems are not specific to architecture, training procedure, or even dataset scale. Rather,
we highlight geographic bias as a common problem across web-scraped datasets, and present these
analyses as motivating evidence for the field to contribute to the open research challenge of curating
geographically representative, effective, web-scale training datasets.

Average Accuracy (↑) ∆ Disparity (↓)
DollarStreet GeoDE DollarStreet GeoDE

ViT 23.46 65.44 17.12 4.86
LLR-ViT 76.84 ± 0.1 (+53.41) 76.97 ± 0.9 (+11.53) 5.47 ± 1.2 (-11.65) 1.64 ± 0.6 (-3.22)

Table 4: Last layer retraining on DollarStreet improves geographic disparity and overall
performance on both DollarStreet and GeoDE. As explained in text, we report GeoDE overlapping
with ImageNet. LLR-ViT refers to Last-Layer Retrained ViT.

7 DISCUSSION

In this work, we uncover a set of concerning empirical trends: first, that progress on crowdsourced,
global data has significantly lagged behind standard benchmarks, with advances on ImageNet
occurring at 2.5x the rate of progress on crowdsourced, global data. Second, we find that progress on
standard benchmarks has failed to improve or exacerbated geographic disparities, with geographic
disparities tripling between earliest models and today’s best. We showcase the promise of using more
curated and/or representative data for mitigating these trends, and emphasize curation of web-scale,
geographically representative training datasets as a critical open problem for the research community
(See Appendix I for discussion). Our analysis suggests that if we do not make geographic fairness an
explicit desideratum in our development and benchmarking, the systems we build will continue to
reinforce existing geographic disparities. We release our code and models to support future work.
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APPENDIX

A MEASURING GENERALIZATION ON CROWDSOURCED, GLOBAL DATA

TestBed and Evaluation Procedure: We include a list of the models in our testbed below, in-
cluding the architecture group, evaluation type, training dataset, and the library or github source
we used for model weights. For data augmentation, for all models we used the ImageNet nor-
malization available in PyTorch, resize images to 256 pixels, and center crop to 224 pixels. Our
evaluation code can be found on github at https://github.com/facebookresearch/
Geographic_Generalization.

Model Architecture Evaluation Type Dataset Source
eva-clip CLIP 1K Laion-2B Timm
convnext-base ConvNext 1K 1K Timm
convnext-large ConvNext 1K 1K Timm
convnext-small ConvNext 1K 1K Timm
dla102 DLA 1K 1K Timm
dla102x DLA 1K 1K Timm
dla169 DLA 1K 1K Timm
dla34 DLA 1K 1K Timm
dla46c DLA 1K 1K Timm
dla46xc DLA 1K 1K Timm
dla60 DLA 1K 1K Timm
dla60x DLA 1K 1K Timm
edgenet-base EdgeNext 1K 1K Timm
edgenet-s EdgeNext 1K 1K Timm
edgenet-xs EdgeNext 1K 1K Timm
edgenet-xxs EdgeNext 1K 1K Timm
hrnet18 HRNet 1K 1K Timm
hrnet18small HRNet 1K 1K Timm
hrnet30 HRNet 1K 1K Timm
hrnet32 HRNet 1K 1K Timm
hrnet40 HRNet 1K 1K Timm
hrnet44 HRNet 1K 1K Timm
hrnet48 HRNet 1K 1K Timm
hrnet64 HRNet 1K 1K Timm
lcnet100 LCNet 1K 1K Timm
lcnet50 LCNet 1K 1K Timm
lcnet75 LCNet 1K 1K Timm
mlpmixer MLP 1K 1K Timm
mlpmixerlarge MLP 1K 1K Timm
mobilenet-lamb100 MobileNet-V3 1K 1K Timm
mobilenet-lamb50 MobileNet-V3 1K 1K Timm
mobilenet-lamb75 MobileNet-V3 1K 1K Timm
regnet RegNet 1K 1K Timm
regnet120 RegNet 1K 1K Timm
regnet16 RegNet 1K 1K Timm
regnet2 RegNet 1K 1K Timm
regnet32 RegNet 1K 1K Timm
regnet320 RegNet 1K 1K Timm
regnet6 RegNet 1K 1K Timm
regnet64 RegNet 1K 1K Timm
regnet8 RegNet 1K 1K Timm
seer1280 RegNet 1K Instagram Github∗
seer320 RegNet 1K Instagram Github∗
seer640 RegNet 1K Instagram Github∗
regnet120x RegNetX 1K 1K Timm
regnet16x RegNetX 1K 1K Timm
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regnet2x RegNetX 1K 1K Timm
regnet320x RegNetX 1K 1K Timm
regnet32x RegNetX 1K 1K Timm
regnet4x RegNetX 1K 1K Timm
regnet64x RegNetX 1K 1K Timm
regnet6x RegNetX 1K 1K Timm
regnet8x RegNetX 1K 1K Timm
resnet101 ResNet 1K 1K Timm
resnet152 ResNet 1K 1K Timm
resnet18 ResNet 1K 1K Timm
resnet34 ResNet 1K 1K Timm
resnet50 ResNet 1K 1K Timm
resnet50anti ResNet 1K 1K Timm
resnet50augmix ResNet 1K 1K Timm
resnet50cutmix ResNet 1K 1K Timm
resnet50cutmixbaseline ResNet 1K 1K Timm
resnet50deepaug ResNet 1K 1K Timm
resnet50deepaugmix ResNet 1K 1K Timm
resnet50texture ResNet 1K 1K Timm
rexnet100 RexNet 1K 1K Timm
rexnet130 RexNet 1K 1K Timm
rexnet150 RexNet 1K 1K Timm
rexnet200 RexNet 1K 1K Timm
tinynet-a TinyNet 1K 1K Timm
tinynet-b TinyNet 1K 1K Timm
tinynet-c TinyNet 1K 1K Timm
tinynet-e TinyNet 1K 1K Timm
vgg-11 VGG 1K 1K Timm
vgg-13 VGG 1K 1K Timm
vgg-16 VGG 1K 1K Timm
vgg-19 VGG 1K 1K Timm
DINOv2 ViT 1K LVD-142M GitHub∗∗
vit ViT 1K 21K Timm
vitlarge ViT 1K 21K Timm
clip-convnext-laion2b CLIP Zeroshot Laion-2B OpenCLIP
clip-convnext-laion2b-a CLIP Zeroshot Laion-2B OpenCLIP
clip-convnext-laion2b-aug CLIP Zeroshot Laion-2B OpenCLIP
clip-convnextlarge-laion2b CLIP Zeroshot Laion-2B OpenCLIP
clip-r101-openai CLIP Zeroshot OpenAI OpenCLIP
clip-r101-yfcc CLIP Zeroshot YFCC OpenCLIP
clip-r50-cc12m CLIP Zeroshot CC12M OpenCLIP
clip-r50-openai CLIP Zeroshot OpenAI OpenCLIP
clip-r50-yfcc CLIP Zeroshot YFCC OpenCLIP
clip-vit14-laion2b CLIP Zeroshot Laion-2B OpenCLIP
clip-vit14-laion400m CLIP Zeroshot Laion-400M OpenCLIP
clip-vit14-openai CLIP Zeroshot OpenAI OpenCLIP
clip-vit16-laion2b CLIP Zeroshot Laion-2B OpenCLIP
clip-vit16-laion400m CLIP Zeroshot Laion-400M OpenCLIP
clip-vit16-openai CLIP Zeroshot OpenAI OpenCLIP
clip-vit32-laion400m CLIP Zeroshot Laion-400M OpenCLIP
clip-vit32-openai CLIP Zeroshot OpenAI OpenCLIP
flava PMD Zeroshot HuggingFace OpenCLIP

∗ The SEER Github can be found here: https://github.com/facebookresearch/
vissl/tree/main/projects/SEER.
∗∗The DINOv2 Github can be found here: https://github.com/facebookresearch/
dinov2.
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Class Maps For DollarStreet and GeoDE datasets, we use a class mapping to ImageNet-1K to
evalute 1K models, and use the original labels for DollarStreet and GeoDE to evalaute zero-shot
models. We use the released mapping for DollarStreet and generate mapping for GeoDE. We generate
the GeoDE mapping using the spacey model (Honnibal et al., 2020) to calculate the most similar
ImageNet classes for each GeoDE class, manually selecting the most reasonable results and correcting
as needed. We successfully create mappings for 36 of the 40 GeoDE classes. Below are the class
mappings:

DollarStreet Class ImageNet Class(es)
home manufactured home
street view street sign
tv television
washing clothes/cleaning washing machine
toilet toilet seat
kitchen sink washbasin
drinking water water bottle
stove/hob stove
salt salt shaker
bed day bed
toys toyshop
everyday shoes running shoe
plate of food plate
cooking pots skillet
social drink soda bottle
phone cellphone
place where eating dinner dining table
lock on front door padlock
wardrobe wardrobe
soap for hands and body soap dispenser
ceiling tile roof
refrigerator refrigerator
bathroom/toilet toilet seat
dish washing brush/cloth dishrag
toilet paper toilet paper
plates plate
dish washing soap soap dispenser
trash/waste trash can
dish racks plate rack
shower shower curtain
cups/mugs/glasses cup
armchair rocking chair
light sources table lamp
light source in livingroom table lamp
books bookcase
switch on/off switch
light source in kitchen table lamp
couch studio couch
sofa studio couch
roof tile roof
cutlery wooden spoon
cooking utensils spatula
medication medicine cabinet
source of cool electric fan
pen/pencils ballpoint
street detail street sign
turning lights on and off switch
music equipment speaker
tools tool kit
cleaning equipment dishrag
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bed kids day bed
table with food dining table
get water water jug
paper paper towel
radio radio
shoes running shoe
starting stove igniter
freezer icebox
source of heat space heater
computer desktop computer
jewelry necklace
knifes paper knife
wall clock wall clock
pouring water water jug
doing dishes dishwasher
guest bed day bed
mosquito protection mosquito net
bike all-terrain bike
pouring drinking water water bottle
oven stove
place where serving guests eating place
glasses or lenses dark glasses
necklaces necklace
source of light table lamp
parking lot parking meter
waste dumps trash can
eating restaurant
car passenger car
reading light table lamp
lightsources by bed table lamp
family eating eating place
arm watch digital watch
taking a teaspoon of salt salt shaker
using toilet toilet seat
sitting and watching tv television
opening and closing the freezer icebox
diapers (or baby-pants) diaper
moped/motorcycle moped
cleaning after toilet toilet paper
dishwasher dishwasher
opening and closing the refrigerator refrigerator
answering the phone mobile phone
alarm clock analog clock
wheel barrow wheelbarrow
listening to the radio radio
dinner guests eating place
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GeoDE Class ImageNet Class(es)
bag backpack, purse, punching bag, sleeping bag, plastic bag, messenger bag,

shopping basket, pencil case
hand soap soap dispenser, lotion
dustbin bucket, trash can, plastic bag, barrel
toothbrush -
toothpaste toothpowder -
hairbrush comb -
chair barber chair, folding chair, rocking chair, couch, throne
hat cowboy hat, swimming cap, football helmet, poke bonnet, sombrero

military hat (bearskin or shako), shower cap
light fixture table lamp, spotlight, lampshade, candle
light switch electrical switch
plate of food plate, tray
spices -
stove Dutch oven, stove
cooking pot frying pan, hot pot, Crock Pot, cauldron, Dutch oven, wok
cleaning equipment vacuum cleaner, washing machine, mop, broom, bucket, soap dispenser
lighter lighter
medicine pill bottle, medicine cabinet
candle candle
toy teddy bear, toy store
jug water jug, whiskey jug, water bottle, drink pitcher
streetlight lantern torch, pole
front door sliding door
tree -
house cliff dwelling, mobile home, barn, home theater, boathouse
backyard patio
truck garbage truck, semi-trailer truck, tow truck, pickup truck
waste container plastic bag, trash can, barrel, bucket
car garbage truck, recreational vehicle, semi-trailer truck, tow truck, sports car, railroad car,

minivan, station wagon, minibus, jeep, limousine, taxicab, convertible, pickup truck
moving van, police van, race car

fence chain-link fence, picket fence, split-rail fence
road sign traffic or street sign
dog Bernese Mountain Dog, Sealyham Terrier, Toy Poodle, toy terrier, African wild dog, husky,

Maltese, Beagle, Labrador Retriever, Cairn Terrier, dingo, Australian Kelpie
German Shepherd Dog, Golden Retriever, Malinois, Norwegian Elkhound, Chihuahua,
Tibetan Mastiff, Staffordshire Bull Terrier, American Staffordshire Terrier
Pembroke Welsh Corgi, Miniature Poodle, Basenji, Rhodesian Ridgeback,
Appenzeller Sennenhund, Ibizan Hound

wheelbarrow wheelbarrow
religious building mosque, church, monastery, bell tower, altar
stall -
boat motorboat, canoe, fireboat, lifeboat, sailboat, submarine, ocean

liner, trimaran, catamaran
monument triumphal arch, obelisk, stupa, pedestal, brass memorial plaque, megalith
flag flagpole
bus minibus, school bus, trolleybus
storefront grocery store, tobacco shop, bookstore, toy store, barbershop, candy store, shoe store
bicycle tricycle, mountain bike, tandem bicycle, unicycle
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Benchmark Use Our analysis relies on two benchmarks, DollarStreet and GeoDE, to characterize
geographical disparity, and our results (as with all research analyses), should be interpreted con-
sidering the datasets used. However, we emphasize that these benchmarks are reliable measures
of geographical disparities, as they are 2-6x larger than existing robustness benchmarks, and are
supported by a wealth of research use in fairness (DeVries et al., 2019; Gustafson et al., 2023; Rojas
et al.; Goyal et al., 2021; 2022; Ramaswamy et al., 2023). DollarStreet and GeoDE have 61K and
38K respectively, compared to 10K in ImageNet-A and 30K samples in ImageNet Sketch.

There are some significant differences between these benchmarks, which we discuss below: Dol-
larStreet is more diverse in terms of geography and household income. DollarStreet was curated to
explicitly capture a broad set of households, sending photographers to over 63 countries to people’s
homes, and selecting households with a variety of incomes. GeoDE was crowdsourced among internet
users from 19 countries and was designed to show the importance of crowdsourced data compared to
internet scraped data. GeoDE has a 1-to-many label mapping, whereas DollarStreet has a 1:1 label
mapping (but has several original labels). As shown below, GeoDE classes are coarser as there are
GeoDE classes that map to as many as 25 ImageNet classes, while DollarStreet has 1 ImageNet label
for each DollarStreet label. This makes GeoDE an easier dataset than DollarStreet for ImageNet
models (we also evaluate a large number of zero-shot models that use the ground truth labels, without
requiring mapping).

Despite the large differences in dataset curation and difficulty, we find very similar results on
DollarStreet and GeoDE, indicating that the problems we discover are not specific to a given dataset
curation, or labeling. We find that both datasets have large geographic disparities, even with SOTA
models. Most critically, we find for both benchmarks that disparities are not resolved by progress on
standard generalization benchmarks, dataset scaling, standard robustness interventions, or architecture
scaling.

19



Published as a conference paper at ICLR 2024

Accuracy

ImageNet Accuracy

ImageNet-V2 ImageNet-R ObjectNet

ImageNet-Sketch ImageNet-A OOD Average

Figure 4: Progress on each benchmark (blue) as a function of ImageNet, compared to DollarStreet
(orange).

Accuracy

ImageNet Accuracy

ImageNet-V2 ImageNet-R ObjectNet

ImageNet-Sketch ImageNet-A OOD Average

Figure 5: Progress on each benchmark (blue) as a function of ImageNet accuracy, compared to
GeoDE (orange).

B THE PROGRESS GAP BETWEEN STANDARD AND CROWDSOURCED,
GLOBAL GENERALIZATION DATASETS

In Figure 4 and Figure 5 we show the performance on each standard ImageNet benchmark as a
function on ImageNet performance, comparing the progress rates with DollarStreet and GeoDE
respectively.

C PERFORMANCE DISPARITIES

We show the GeoDE version of Figure 2 below in Figure 7, finding that improvement on standard
imagenet benchmarks does not significantly impact regional accuracy disparities on GeoDE. We also
show the relationships between Europe and Africa subsets of DollarStreet and GeoDE individually in
Figure 6 and Figure 8.
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Accuracy

Subset 

Accuracy, 


DollarStreet

ImageNet ImageNet-V2 ImageNet-R

ObjectNet ImageNet-Sketch ImageNet-A

Figure 6: Model improvement on both in-distribution and out-of-distribution benchmarks
exacerbates the region disparity on DollarStreet. Region disparity is measured as the accuracy
difference between Europe and Africa subsets.

Regional  
Accuracy 

Drop,  
GeoDE

Accuracy

Improvement on Standard Benchmarks Does Not Impact Regional 
Accuracy Disparities on GeoDE

In-Distribution (ImageNet V2) Out-Of-Distribution (OOD Average)

Figure 7: Model improvement on both in-distribution and out-of-distribution benchmarks fails
to improve the region disparity on GeoDE. Region disparity is measured as the accuracy difference
between Europe and Africa subsets.

DS Income Quartile Europe Acc (%) Africa Accuracy (%) Region Disparity (%)
Q3 51.9 45.2 6.6
Q2 61.1 52.5 8.7

Table 8: There are significant performance disparities across Region, when controlling for
Income Quartile in DollarStreet. Accuracy numbers from OpenAI’s ViT32 CLIP model.

D FOUNDATION MODELS AND SCALING

We replicate the plots in Figure 3 for GeoDE in Figure 10.
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Subset 

Accuracy, 


GeoDE

ImageNet ImageNet-V2 ImageNet-R

ObjectNet ImageNet-Sketch ImageNet-A

Figure 8: Model improvement on both in-distribution and out-of-distribution benchmarks does not
improve the region disparities on GeoDE.

 

Figure 9: Similar trends occur with other region subset relative to the best performing subgroup
(Europe), where there is a lower progress rate compared to the European subset.

E REPRESENTATIVE DATA

The GeoDE classes with overlapping ImageNet labels of DollarStreet include: hand soap, dustbin,
chair, light fixture, light switch, plate of food, stove, cooking pot, cleaning equipment, lighter,
medicine, toy, jug, house , waste container, car, road sign, wheelbarrow, storefront, bicycle.

F LAION CLUSTERING EXPERIMENTS

In order to estimate the regional distribution of LAION, we perform an experiment to cluster samples
by their relation to DollarStreet images in the embedding spaces. We use OpenCLIP’s model
(trained on LAION400M) to generate embeddings for DollarStreet images according to West (Europe,
Americas) and Non West (Asia, Africa) categories. We then use KNN (testing a range from k=3 to
k=113) to evaluate a filtered version of LAION. Our results approximate almost 60% of LAION
samples are from western regions, and strikingly, that Europe has 2.24X more images represented
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Data Scaling, All Models Architecture Scaling, CLIP

Figure 10: Dataset and architecture scaling fails to reduce region disparities on GeoDE.

than Africa. Our results very closely match previous work conducted on ImageNet and OpenImages
? This analysis further sheds light on the pervasiveness of western bias in large, web-scale datasets
used to train SOTA models.

G EXTENSION OF LAST LAYER RETRAINING EXPERIMENTS

DS Subset (%) DS Avg Acc (%) DS Disp. (%) GeoDE Avg Acc (%) GeoDE Disp. (%)

5 52.79±1.52 9.20±0.49 71.51±2.98 3.97±0.60

10 62.13±0.58 5.93±0.86 77.87±1.32 4.00±0.73

25 69.50±0.30 3.27±0.40 75.77±1.09 3.25±1.50

50 73.51±0.81 3.11±0.20 76.20±1.89 2.59±0.85

75 75.71±0.12 2.69±0.62 76.23±0.32 3.82±0.33

100 76.90±0.15 1.82±0.70 76.56±1.15 4.29±0.78

Table 9: Last layer fine-tuning experiment with varying amounts of DollarStreet training data.

H APPROXIMATING THE IMPACT OF WESTERN DATASET BIAS ON
PERFORMANCE DISPARITY THROUGH DOLLARSTREET FINETUNING

To explore the relationship between western training data and Europe-Africa performance disparities,
we conduct a finetuning experiment with varying proportions of Western DollarStreet data. We use
an ImageNet pretrained ViT from Timm (vit_base_patch16_224), finetuning it on the DollarStreet
training dataset that is subsampled to have increasing proportions of Western data (from 50% western,
which is balanced, to 100% western, which uses only the western subset). We control for the total
number of samples, and sample with a common random seed. Given the small size of the finetuning
dataset, we use a smaller learning rate of 0.00001, training for 30 epochs, which did not show
significant evidence of overfitting. We find in Figure 11 that increasing the Western bias in the
finetuning dataset results in significantly larger performance disparities in the resulting model. We
hope that this experiment provides more evidence that training dataset imbalance likely plays a
significant role in the performance disparities we uncover in this work.
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DollarStreet Disparity Increases With Western Dataset Bias 

in Finetuning

Figure 11: Europe-Africa Performance Disparity doubles with increasingly Western dataset
distributions during Finetuning..

I IMPLICATIONS FOR DATA SELECTION AND CURATION

Our work has several implications for dataset evaluation and benchmarking:

• Geography as an important axis of generalization. Our empirical evidence indicates
that geographical diversity is a missing axis from standard benchmarks, yet geographic
shifts remain a pervasive failure mode of existing models. Our work suggests the need for
more diverse datasets with data collected from multiple regions. The development of these
benchmarks and training datasets may require more detailed curation efforts than standard
webscraping. We hope that our empirical findings provide ample motivation for such work.

• Designing Evaluation Benchmarks: Our work provides evidence that data sources, label
curation, geographic representation, and income information should all be closely considered.
In this work, we focus on geographic representation, providing some evidence that these
disparities are data driven. As a result, we believe our work highlights the need for for
geographically diverse benchmarks, including datasets that are grounded in real-world use.
This is often a significant advantage of crowdsourced data, which can be collected to better
reflect use-cases than internet-scraped datasets.

• Designing Precise, Useful Metrics Our work also highlights the utility of analyzing sub-
groups within generalization benchmarks, and the limitations of analyzing an average
accuracy. By analyzing regional subgroups, we were able to discover disparate progress
trends in the field which are unsolved by scaling and standard robustness intereventions. We
believe that this analysis approach could similarly be used in other subgroup contexts, and
hope that our work motivates future work looking more closely at how models improved
(the kinds of accuracy gains made, improvement on which portions of data). Particularly,
we hope that our progress gap measure will be analyzed with respect to other important
subgroups in relevant datasets, which can ensure that accuracy improvements improve
reliability across groups.

Overall, we suggest that there is no one particular benchmark or tool that can perfectly measure
model reliability, but that having a comprehensive suite of measures, and by analyzing subgroups
more precisely, we can improve our understanding of model behavior and its reliability.
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J DRIVING MECHANISMS OF GEOGRAPHICAL PERFORMANCE DISPARITIES

Our work primarily focuses on highlighting geographical disparity as an understudied and open
research challenge for the community by providing comprehensive empirical evidence that this
problem is pervasive across architectures and training paradigms. While the exact underlying
mechanisms for models’ disparities across geographies (as well as a solution to this problem) is an
open question, below we outline our main hypotheses for the driving reasons behind these disparities:

• Dataset imbalance: Our work shows that the geographical disparities are persistent across
100+ models with a variety of training architectures and paradigms. This suggests that the
disparities are driven by geographical data imbalance in pretraining datasets. Moreover,
prior works showed ImageNet is heavily western biased Shankar et al. (2017a), and in
our paper Appendix F we present a kNN clustering experiment, where we analyze CLIP
embeddings of LAION and DollarStreet to approximate the regional distribution of LAION.
We find that our proxy measure indicates an extreme imbalance in LAION, which aligns
with existing work on ImageNet. Additionally, in Section 6.3 we show that fine-tuning the
last layer of a ViT model on DollarStreet improves disparities on **both** DollarStreet and
GeoDE, showing the promise of interventions using geographically diverse data.

• Distribution shifts and factors of variations between geographies: Gustafson et al
Gustafson et al. (2023) annotated factors of variation in DollarStreet and found that variations
in texture, occlusion, and lighting were among the factors most associated with performance
disparities. Models pre-trained on ImageNet may overrely on these factors and other spurious
features such as backgrounds Xiao et al. (2020) which also contributes to geographical
disparities.

• Household income: In addition to geographical labels, DollarStreet also has income group
labels, which is correlated with geography. We hypothesize that the lower income group is
underrepresented in pre-training data and also presents a distribution shift in terms of factors
of variations discussed above.

Importantly, scaling up model or dataset size as well as standard robustness interventions such as
data augmentation, while being effective on standard ImageNet OOD benchmarks, don’t lead to
improvements in geographical generalization, highlighting the unique challenges of geographical
distribution shifts. We hope that our empirical insights motivate future work into these driving
mechanisms.
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