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Abstract

Efficiently and accurately determining the symmetry is a
crucial step in the structural analysis of crystalline materi-
als. Existing methods usually mindlessly apply deep learn-
ing models while ignoring the underlying chemical rules.
More importantly, experiments show that they face a seri-
ous sub-property confusion (SPC) problem. To address the
above challenges, from a decoupled perspective, we intro-
duce the XRDecoupler framework, a problem-solving arsenal
specifically designed to tackle the SPC problem. Imitating
the thinking process of chemists, we innovatively incorpo-
rate multidimensional crystal symmetry information as super-
class guidance to ensure that the model’s prediction process
aligns with chemical intuition. We further design a hierarchi-
cal PXRD pattern learning model and a multi-objective opti-
mization approach to achieve high-quality representation and
balanced optimization. Comprehensive evaluations on three
mainstream databases (e.g., CCDC, CoREMOF, and Inor-
ganicData) demonstrate that XRDecoupler excels in perfor-
mance, interpretability, and generalization. Code is available
at https://github.com/baigeiguai/XRDecoupler.
Extended version — https://arxiv.org/abs/2511.06976

Introduction
Symmetry determination is a crucial step in powder X-ray
diffraction (PXRD) based crystal structure prediction (Al-
tomare et al. 2004; Spence and Zuo 1992). The space group
(Koster 1957) defines the symmetry characteristics of the
crystal, including rotation, reflection, and inversion opera-
tions. These symmetries are fundamental to understanding
the crystal structure and its properties (O’Keeffe and Hyde
2020; Bhagavantam and Suryanarayana 1949). Once the
space group is established, scientists can build and optimize
crystal structure models based on that symmetry (Han et al.
2025; Evans 2011). Incorrect selection of space groups can
lead to inaccurate or unreasonable structural models. There-
fore, efficiently and accurately identifying space group
types remains a significant challenge.

As an early typical approach, many researchers attempted
to apply a simple neural network for symmetry recognition
within specific ranges, advancing the application of machine
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Figure 1: The SPC problem in the space group identification.
Different colored blocks represent various symmetry classi-
fication systems, such as lattice types and point group types.
We illustrate four space groups that current methods often
confuse: I4, I4, P4, and P4. These space groups are inter-
twined and may belong to a coarser classification. We also
present four representative crystal samples, i.e., PELQUU,
OVOSOJ, TUTBUG01, and YIWTIK, demonstrating the ca-
pability of our method to decouple these confusions.

learning in this task (Park et al. 2017; Ziletti et al. 2018;
Oviedo et al. 2019; Vecsei et al. 2019; Dong et al. 2021).
However, these methods often remain limited to a single
space group or a small subset of space groups, or specific
material categories, which restricts their applicability and
prevents broader generalization across different materials
or space groups. More importantly, simply imposing deep
learning models on this task does not align with chemical
intuition. Although the latest methods attempt to enhance
model architectures from a theoretical perspective of pat-
tern (Yu et al. 2024), they still face a challenging dilemma:
models tend to mistake two crystalline materials with com-
mon sub-properties (such as lattice types) for belonging to
the same space group (as shown in Figure 1), i.e., the sub-
property confusion (SPC) problem.

To clarify the essence of SPC, we systematically
rethought existing methods and found that the causes of
SPC are multifaceted: ❶ Previous methods directly process
PXRD patterns in a conventional sequential manner, lack-
ing the necessary chemical knowledge to guide the process.
❷ The optimization direction of these models often tends



to favor latent sub-properties. ❸ The information overlap
among sub-properties makes it difficult for the model to dis-
tinguish between closely related structures. To illustrate the
SPC problem faced in space group prediction tasks more in-
tuitively, we provide a clear diagram, as shown in Figure 1.
Based on crystallography, the space groups I4, I4, P4, and
P4 are categorized into two lattice types: I (body-centered)
and P (primitive). They are also divided into two point
group types: 4 (fourfold rotation axis) and 4 (fourfold roto-
inversion axis). As a result, these four space groups share
common sub-properties, making them particularly prone to
confusion during classification. We also present the recog-
nition results of different methods on these easily confused
samples. The SOTA model (XRDMamba (Yu et al. 2024))
appears to be hindered by the SPC, while our method suc-
cessfully predicts the space group types for each crystal.

Our method, XRDecoupler, is a problem-solving arsenal
specifically designed to tackle the SPC problem in space
group prediction. We rethink SPC faced in previous research
according to the thinking process of chemists and inno-
vatively incorporate crystal systems, Bravais lattice types,
and point groups as superclasses guidance, ensuring that
the model’s predictions align with chemical rules and en-
hancing its ability to distinguish between easily confused
samples (▶ solving Cause ❶). Additionally, different su-
perclasses may focus on different aspects of the PXRD pat-
tern. To address this, we propose a hierarchical PXRD pat-
tern learning model that captures both local and global pat-
tern information inherent in PXRD patterns, enabling effi-
cient multi-superclass learning (▶ solving Cause ❸). Fur-
thermore, we utilize a multi-objective optimization approach
to ensure that the model does not favor specific superclass
tasks at the expense of others, guiding it toward an optimal
training path (▶ solving Cause ❷). To validate the effective-
ness of XRDecoupler, we conducted comprehensive exper-
imental evaluations on the well-known Cambridge Crystal-
lographic Data Centre (CCDC) database (Allen et al. 1979),
CoREMOF (Chung et al. 2019), and InorganicData (Salgado
et al. 2023). The results indicate that XRDecoupler signifi-
cantly outperforms other state-of-the-art baselines.

Our contributions are summarized as follows:

❶ Crucial Problem and Fresh Perspective: For the first
time, we rethink existing methods and analyze the SPC
problem faced in space group prediction tasks. From a
decoupled perspective, we introduce the XRDecoupler
framework to decouple it.

❷ Novel Mechanism: Imitating the thinking process of
chemists, we innovatively incorporate multidimensional
crystal symmetry information as superclasses guidance,
ensuring predictions align with chemical intuition.

❸ Reasonable Pattern Learner: We proposed a hierarchi-
cal PXRD Pattern learning model that explicitly models
the local and global pattern information in PXRD.

❹ Brilliant Performance: Evaluations on well-known
databases demonstrated the superior performance, inter-
pretability, and generalization of XRDecoupler.

Related Works
▶ Crystalline Space Group Prediction. Identifying crys-
tal space groups is vital for structure prediction. While
early work relied on computational methods (Werner, Eriks-
son, and Westdahl 1985), recent efforts have focused on
deep learning. Initial convolutional neural networks showed
promise but were often trained or tested on limited datasets
(Park et al. 2017; Ziletti et al. 2018; Oviedo et al. 2019;
Vecsei et al. 2019; Dong et al. 2021). Subsequent models
like NPCNN (Salgado et al. 2023) utilized more comprehen-
sive data but struggled with accuracy. In response, RCNet
(Chen et al. 2024) improved performance by customizing
categories and using residual structures, while XRDMamba
(Yu et al. 2024) pioneered the integration of chemical knowl-
edge and the Mamba architecture (Gu and Dao 2023; Gu
2023). However, these methods often neglect relevant chem-
ical principles and suffer from high confusion between sim-
ilar space groups. Our approach addresses this by designing
a hierarchical framework and introducing multidimensional
superclass knowledge to guide model optimization, thereby
mitigating confusion and enhancing generalization.

▶ Superclass Learning. Superclass learning improves
model performance by incorporating high-level class group-
ings as intermediate supervision. This technique has proven
effective across diverse domains, such as improving feature
differentiation in image classification (Dehkordi et al. 2022;
Wang et al. 2022), mitigating data imbalance (Zhou, Hu, and
Wang 2018; Zhao et al. 2025; Wang et al. 2024; Zhao et al.
2024), and learning high-level relationships in graph neu-
ral networks (Du et al. 2023). The benefits of this approach
are well-documented. Given the inherent hierarchical clas-
sification of space groups, we introduce superclass learning
to this task for the first time. This guides our model to learn
more detailed structural knowledge about crystals, signifi-
cantly enhancing its recognition performance. A more com-
prehensive review is provided in Supplement H.

Motivation
▶ Space Group Prediction Task. The PXRD data can be
viewed as two vectors, A and I , both of length L, repre-
senting the diffraction angles and diffraction intensities on
the PXRD pattern, respectively. In crystallography, the space
group is a description of the symmetry of crystals, with a
total of 230 theoretically existing space groups. We define
D = {Xi, Yi}i∈[n] as a crystal dataset, where Xi = (Ai, Ii)
represents the PXRD pattern data of a crystal, and Yi ∈
{0, 1, ..., 229} denotes the space group label of that crys-
tal. We represent the process of space group prediction as a
mapping relationship: f(Xi) → Yi. We provide definitions
about space groups in Supplement A.1 for understanding.

▶ Multidimensional Symmetry as Superclasses. The
superclass refers to a more general class in a hierarchical
classification structure that contains other classes (called
subclasses). For crystal structures, aside from space groups,
there are many coarse-grained partition rules (Nespolo,
Aroyo, and Souvignier 2018). For example, as shown in
Figure 1 in Supplement A, based on the symmetry of ge-



ometric morphology, crystals can be divided into 7 crys-
tal systems (O’Keeffe and Hyde 2020); based on primitive
point symmetry, they can be classified into 32 point groups
(Bradley and Cracknell 2009); according to the point sym-
metry of Bravais lattices, there are 7 lattice systems; based
on the spatial symmetry of Bravais lattices, there are 14
types of Bravais lattices (Pitteri and Zanzotto 1996); and
based on combinations of point symmetry and translational
symmetry, they can be classified into 73 algebraic crystal
classes (Wilson 1990), among others (Hahn, Shmueli, and
Arthur 1983; Prince 2004). The partition rules mentioned
above can all be viewed as superclasses of space groups,
describing only the symmetric properties of a certain part of
the crystal. We also provide an explanation of the superclass
mechanism in Supplement A.3.

Rethinking ‘Culprits’ Behind SPC
▶ Culprit 1: Lack of Chemical Knowledge. Existing
models are typically adapted directly from other deep learn-
ing tasks, predominantly utilizing rudimentary convolu-
tional neural networks. Although these models have yielded
initial results, they often fall short in enhancing performance
further. The current model setup fails to consider chemical
knowledge integral to material structure analysis, making
it challenging for the model to genuinely comprehend the
intricate details of the structural patterns within the data.
Confusion often arises when the model only captures the
coarse-grained aspects of the data. Hence, a model tailored
with integrated chemical knowledge becomes indispensable
to enhance the efficacy of space group identification.

▶ Culprit 2: Bias in Optimization. Successful space
group prediction requires accurately identifying the sam-
ple’s sub-symmetry properties (e.g., lattice, point, and trans-
lation symmetry). During optimization, supervisory signals
for each property must be transmitted to guide learning.
When the unique space group label is the sole supervisory
signal, it can cause insufficient signals and imbiased gradi-
ents across sub-properties, leading the model to learn only
some of them effectively. Consequently, the model struggles
to distinguish between samples sharing these learned sub-
properties but belonging to different space groups, causing
confusion. For example, Figure 2 shows our analysis of a
SOTA method’s misclassifications and per-sub-attribute per-
formance. The model evidently learned lattice types and
crystal systems well but performed poorly on point group
characteristics. Thus, the model exhibits significant confu-
sion with samples that share the same lattice type and crys-
tal system but differ in their point groups.

▶ Culprit 3: Information Overlap Between Labels. The
space group category serves as a fine-grained structural clas-
sification criterion, encompassing numerous sub-properties
of crystal structures. For two distinct categories, they often
share certain structural sub-properties, a phenomenon we re-
fer to as information overlaps between labels. In the follow-
ing, we will analyze how this information overlap can lead to
confusion from the perspective of information theory (Ash
2012; Batina et al. 2011).
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Figure 2: Accuracy statistics of samples with misidentified
space groups on three sub-properties (e.g., lattice type, crys-
tal system, and point group) on the SOTA method (XRD-
Mamba (Yu et al. 2024)) and our proposed XRDecoupler.

For a given sample X , we denote its true confidence label
as Ytruth and any other space group class label as Yother. In
this context, for sample X , label Yother represents an incor-
rect label.

Assumption 1. For the space group class label Y , it can
be uniquely represented by k independent structure sub-
properties, i.e., Y = (y1, y2, ..., yi, ..., yk), where yi denotes
i-th sub-properties.

Proposition 1. For Ytruth = (ytruth1 , ytruth2 , ..., ytruthk ) and
Yother = (yother1 , yother2 , ..., yotherk ), there are some same
structure sub-properties. That is, there exists s,t, such that{

ytruthpd
= yotherpd

, d = [1, 2, ..., s]

ytruthqd
̸= yotherqd

, d = [1, 2, ..., t]

s.t. s+ t = k, {[pi], [qi]} = {1, 2, 3, ..., k}
(1)

For simplicity, let M = {ytruthpd
}, d ∈ [1, 2, ..., s] rep-

resent the overlap information between Ytruth and Yother.
Let ytruth = {ytruthqd

}, d ∈ [1, 2, ..., t] and yother =

{yotherqd
}, d ∈ [1, 2, ..., t] denote the non-overlapping infor-

mation between the two labels. Then, we have Ytruth =
(M,ytruth) and Yother = (M,yother). Usually, our aim
is to have the model maximize the mutual information
I(E;Ytruth) between sample representation and truth label
during training, where E denotes the representation obtained
from the encoder.

Proposition 2. If there is significant overlap information be-
tween labels, maximizing the mutual information between
sample representation and truth label will results in the mu-
tual information of sample representation and overlap label
being maximized as well, specifically:

I(E;Ytruth) ↑ ⇒ I(E;Yother) ↑
s.t. I(M ;Ytruth) ≫ I(ytruth;Ytruth).

(2)

We provide a theoretical analysis in Supplement B.1.
Proposition 2 shows, when there is significant overlap in
information between labels, simply maximizing the mutual
information between the representation and the truth label
is insufficient. Thus, we observe the difference between the
mutual information, which serves as a reliable indicator of
the model’s confusion in executing a classification.
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Figure 3: Overview of XRDecoupler.

Definition 1 (Difference Diff in mutual information). The
difference Diff in mutual information between two labels
is equal to the mutual information of their non-overlapping
parts.

Diff = I(E;Ytruth)− I(E;Yother)

= I(E; ytruth)− I(E; yother)
(3)

We provide the corresponding proof in Supplement B.2.

XRDecoupler is A ‘Nemesis’ of SPC
Here, we propose a novel method for determining space
groups from PXRD, called XRDecoupler. This method in-
cludes a superclass-guided optimization framework (for
Culprit 2 & 3) and a hierarchical PXRD pattern learning
model (for Culprit 1), effectively addressing the significant
SPC issues associated with previous methods. An overview
of XRDecoupler is illustrated in Figure 3.

Superclass-Guided Optimization (▶ Culprit 2 & 3)
▶ Mitigating Information Overlap. Considering signifi-
cant information overlap between space group labels, we ex-
pect that the model focuses more on label-specific features
and devotes less attention to overlapping information during
the classification. Thus, we also aim to maximize Diff .
Proposition 3. The process of maximizing Diff can be in-
terpreted as maximizing the mutual information between the
sample and each structured sub-property.

Diff = I(E; ytruth)− I(E; yother)

=

t∑
i=1

[I(E; ytruthi )− I(E; yotheri )]
(4)

We provide the corresponding proof in Supplement B.3.
From this proposition, we can optimize the model’s ability

to learn each sub-property to alleviate the confusion phe-
nomenon. Let’s discuss how to optimize them.

▶ Superclass Guidance. Superclasses of space groups
describe a broad property of crystal structures, which aligns
with the idea of structured sub-property mentioned earlier.
Therefore, it is logical to introduce various superclasses of
space groups to represent the sub-properties above, and op-
timize the sub-properties in the same way as optimizing the
superclasses. Through the oversight of these superclasses,
the model’s focus on overlapping information can be mini-
mized, thereby enhancing the efficacy of space group iden-
tification. Specifically, we focus on the T types of super-
classes of space groups. We use C to represent the space
group category, CSup

i to denote the i-th type of superclass
category of space groups, yi to indicate the space group cat-
egory corresponding to the i-th sample, and y

Supj

i to rep-
resent the category of the j-th superclass corresponding to
the i-th sample. We define Yi = {yi} ∪ {ySupj

i }j∈[T ] to
represent the set of all categories to which the i-th sample
belongs. Then, we assume that the classifier for space group
classification is Cls, and the classifiers for the various su-
perclasses are denoted as {ClsSupt}t∈[T ]. Our optimization
objective is given by:

min−I(E; y)− β
∑
t∈[T ]

I(E; ySupt)

⇔ minE(X,Y )− log p(y|E)−
∑
t∈[T ]

log p(ySupt |E)

⇔ minLsp(Cls(f(X)), y) + β
∑
t∈[T ]

Lt(ClsSupt(f(X)), ySupt),

(5)
where Lsp(·) and Lt(·) are the cross-entropy loss, f is an
encoder satisfying E = f(X), and β is a hyperparameter.



▶ Example. In the confusion cases illustrated in Figure 1,
we clarify the representations of samples from the I4 & P4
categories, as well as I4 & P4, by introducing the Bravais
lattice type superclass as supervision. Additionally, we use
the point group type superclass to differentiate between I4
& I4, and P4 & P4 samples, thereby enhancing the dis-
criminative capability of these four space groups.

▶ Optimization Process. Following the introduction of
superclasses, each one provides a multitude of detailed su-
pervision signals for the model’s optimization process. Nev-
ertheless, as illustrated in Figure 4(left), Culprit 2 remains
unresolved, with a persistent skew in the optimization pro-
cess. In this process, the model’s loss on certain superclasses
initially decreases, only to be followed by the gradual opti-
mization of the remaining superclasses once these have been
refined. This skewed optimization process is detrimental to
enhancing the model’s generalization performance and also
impacts the benefits derived from the superclasses. There-
fore, we have transformed the optimization process into a
multi-objective optimization process. We consider the space
group and the T superclasses as T + 1 independent classi-
fication objectives, thereby optimizing the model’s learning
as a multi-objective optimization, i.e.,

min
W

L̂(WEnc,WSup
1 , ...,WSup

T+1)

= min
W

(L1(WEnc,WSup
1 ), ..., LT+1(WEnc,WSup

T+1))
(6)

where WEnc represents the parameters of the encoder,
WSup

t represents the parameters of the classifier for each
class and W = {WEnc}

⋃
{WSup

t }t∈[T+1] represents all
parameters. The goal of multi-objective optimization is
achieving Pareto optimality.

Definition 2 (Solution W ). A solution W dom-
inates a solution W if L̂(WEnc,WSup

t ) ≤
L̂(W

Enc
,W

Sup

t ) for all objectives t ∈ [T + 1]

and L̂(WEnc,WSup
1 ,WSup

2 , ...,WSup
T+1) ̸=

L̂(W
Enc

,W
Sup

1 ,W
Sup

2 , ...,W
Sup

T+1).

Definition 3 (Solution W ∗). A solution W ∗ is Pareto opti-
mal if there exists no solution W that dominates W ∗.

Therefore, the optimization process of space group and
superclass is transformed into finding a Pareto optimal so-
lution W ∗ = (WEnc∗ ,WSup∗

1 , ...,WSup∗

t ). Inspired by
MGDA-UB(Sener and Koltun 2018), we further transform
the optimization problem into solving a set of weights {αi}:

min
α1,α2,...,αT+1

||
T+1∑
t=1

αt∇WEncL
t(WEnc,WSup

t )||22,

s.t.
T+1∑
t=1

αt = 1, αt >= 0 ∀t.

(7)

where αt denotes the weight of the t-th objective.
Then, we use the FRANK-WOLFESOLVER algorithm

(FW) to obtain a gradient direction that improves all T + 1

classification tasks. The optimization process is as follows.

(1)WSup
t = WSup

t − η∇
W

Sup
t

L(WEnc,WSup
t )∀t ∈ [T + 1]

(2)α1, ..., αt = FW (WEnc, {WSup
t }t∈[T+1])

(3)WEnc = WEnc − η

T+1∑
t=1

αt∇WEncL
t(WEnc,WSup

t )

(8)
where η represents the learning rate.

Hierarchical PXRD Pattern Learning (▶ Culprit 1)
The introduction of superclasses brings a wealth of struc-
tural knowledge to the model, including point symmetry,
crystal structure periodicity, lattice structures, and other rich
information. This encompasses global and local information
about the crystal structure, raising the bar for the encoder to
learn more refined knowledge. As Culprit 3 mentioned, the
original models struggle to capture such fine-grained knowl-
edge and are unable to learn detailed representations that in-
corporate these specific insights.

Therefore, we propose a new hierarchical Pattern learn-
ing model tailored to the characteristics of space groups.
This model consists of two main components: (i) Local
Pattern module (LP), which captures local information be-
tween adjacent peaks in the PXRD pattern, outputting a
klocal-dimensional representation Elocal; (ii) Global Pattern
module (GP), which captures global information from the
PXRD pattern, outputting a kglobal-dimensional representa-
tion Eglobal. We combine these two representations to obtain
the final output representation of the model:

E = Concat(Eglobal, Elocal) (9)

This representation is used for the subsequent superclass-
guided optimization process.

▶ Local Pattern Module. The input vectors of the local
pattern module are A and I , which represent the diffraction
angles and intensities on the PXRD pattern, respectively.
According to Bragg’s law(Pope 1997), 2d sin(θ) = nλ, the
interplanar spacing is inversely related to sin(θ). Thus, we
replace A with sin(A) and concatenate it with the peak in-
tensity I to form an input sequence with channel = 2.

Next, we employ several residual 1D convolution blocks
(a kernel size of 3 and a stride of 1) to capture the correla-
tions between adjacent peaks in the PXRD pattern. After the
convolution process, we flatten the features and project them
to obtain the local pattern representation Elocal. Therefore,
the representation process of the local pattern module can be
formalized as:

Elocal = Projection (Flatten (ConvBlocks(sin(A) ⊕ I))) (10)

where Projection refers to a linear projection, Flatten de-
notes the flattening operation, and ConvBlock is a submod-
ule composed of convolutional layers, while ⊕ represents
the concatenation operation.

▶ Global Pattern Module. The global pattern module
first segments the peak intensity data I into Lp consecu-
tive patches of length p. Each patch Ip is then processed by



Method Accuracy (%) on MOF F1 Score (%) Recall (%)
Top-1 Top-2 Top-5

MLP 9.10 (−29.90) 15.10 (−41.30) 30.10 (−47.48) 6.43 (−16.17) 5.24 (−16.26)
CNN 39.00 (+0.00) 56.40 (+0.00) 77.58 (+0.00) 22.60 (+0.00) 21.50 (+0.00)

NoPoolCNN 38.20 (−0.80) 51.80 (−4.60) 71.12 (−6.46) 34.47 (+11.87) 31.84 (+10.34)
RCNet 59.00 (+20.00) 73.70 (+17.30) 88.37 (+10.79) 41.29 (+18.69) 40.38 (+18.80)
XRDMamba 72.20 (+33.20) 85.20 (+28.80) 93.42 (+15.84) 47.59 (+24.99) 46.00 (+24.50)

XRDecoupler 80.09 (+41.09) 90.11 (+33.71) 96.26 (+18.68) 56.72 (+34.12) 55.18 (+33.68)

Accuracy (%) on MOF-Balanced

Top-1 Top-2 Top-5

4.10 (−18.8) 5.40 (−27.00) 8.21 (−38.79)
22.90 (+0.00) 32.40 (+0.00) 47.00 (+0.00)

33.80 (+10.90) 40.70 (+8.30) 50.97 (+3.97)
44.50 (+21.60) 55.50 (+23.10) 69.12 (+22.12)
48.70 (+25.80) 61.70 (+29.3) 74.83 (+27.83)

58.87 (+35.97) 72.42 (+40.02) 85.22 (+38.22)

Table 1: Evaluation on MOF subset (left) and MOF-Balanced subset (right) of CCDC dataset with SOTA methods. Bold
indicates the best performance while underline indicates the second best. (+) and (−) indicate the the relative gain with CNN.

convolution blocks to capture local peak correlations, yield-
ing a peak intensity representation, eintensity ∈ Rkintensity .
Next, we assign a learnable feature elearnable ∈ Rklearnable

for each patch, allowing the model to adaptively learn rep-
resentations that characterize the patch. After setting the po-
sitional encoding eposition for each patch, we concatenate
the peak intensity features and the learnable features, and
then add eposition to form the final representation of the
patch. Subsequently, we use several attention modules to
learn these features, enabling the model to capture the corre-
lations between any two patches and providing more global
information. After that, we apply a global pooling layer to
obtain the final global representation Eglobal.

However, we experimentally found that some patches ob-
tained from the PXRD pattern have peak intensities that are
entirely zero. These patches hold no value for the model dur-
ing the learning process and may even have a negative effect
on other patches. Therefore, during the calculation of atten-
tion, we apply a masking process to these patches, defined
as:

emask = (max(Ip) == 0). (11)

This ensures that patches with all zero intensities do not con-
tribute to the attention calculations.

Therefore, the representation process of the global pattern
module can be formalized as:

Eglobal = GlobalPooling(AttentionBlocks(
(eintensity ⊕ elearnable) + epostion, emask))

(12)

Here, eintensity represents the peak intensity features of the
patch, elearnable denotes the learnable features for the patch,
eposition represents the positional features of the patch, and
emask indicates whether each patch is masked.

Experiments
For more detailed information, please refer to supplemen-
tary material in the extended version of our paper.

▶ Dataset and Baselines. We use the MOF dataset as
our main dataset as (Yu et al. 2024), which consists of
over 280,000 metal-organic frameworks (MOFs) (Furukawa
et al. 2013; James 2003; Zhou, Long, and Yaghi 2012)
from the Cambridge Crystallographic Data Centre (CCDC)
(Allen et al. 1979) for our experiments. Furthermore, we
were successful in acquiring two additional datasets, CoRE-
MOF (Chung et al. 2019) and InorganicData (Salgado
et al. 2023), to assist in verifying the effectiveness of our

method. We provide the details of datasets and processing
in Supplement C. To ensure fairness in the experiments, we
selected several SOTA space group prediction models as our
baselines, including MLP (Salgado et al. 2023), CNN (Sal-
gado et al. 2023), NoPoolCNN (Salgado et al. 2023), RC-
Net (Chen et al. 2024), and XRDMamba (Yu et al. 2024).
Detailed descriptions are provided in Supplement D.

▶ Benchmark Results. As shown in Table 1, we out-
perform all baselines on both the MOF (left) and MOF-
Balanced (right) test sets, surpassing the previous SOTA
(XRDMamba). These results demonstrate our method ef-
fectively alleviates SPC and establishes a new SOTA. More
results on CoREMOF and InorganicData are provided in
Supplement F.1.

▶ Effectiveness of Gradient-based Optimization. Fig-
ure 4(a) shows the loss descent curves for space group and
superclasses when the gradient-based multi-objective opti-
mization method is not employed. We can observe that the
model initially optimizes the coarse-grained Bravais lattice
types and crystal system types. Only after the losses for
these superclasses drop to a low level does the model be-
gin to optimize the space groups and point groups. Figure
4(b) presents the loss descent curves for each superclass
and space group after introducing the gradient-based multi-
objective optimization method. Here, we can see that the
optimization directions for each class become consistent, al-
lowing the model to simultaneously learn structural knowl-
edge across multiple dimensions.

▶ T-SNE Visualization Analysis of Confusion Phenom-
ena. Figure 4(right) displays the t-SNE plot of over 3,000
samples randomly sampled from 60 classes in the training
set. The figure clearly shows a distinct clustering of fea-
tures, with noticeable spacing between samples from dif-
ferent space group categories, indicating the superior per-
formance of our model on the training set. We also provide
more t-SNE visualization analysis in Supplement F.2.

▶ Dependencies between Representations and Super-
classes. To validate the roles of global and local rep-
resentations, we explored their interdependencies with su-
perclass tasks during classification. We analyzed the classi-
fier weights for space groups and each superclass, observing
the importance of different representation locations for the
classifier’s decision-making by examining the distribution
of these weights. The relevant visualizations are shown in
Figure 5. Therefore, we can conclude that in XRDecoupler,



0 10 20 30 40 50 60 70 80 90 100 110
Epoch Index

E
rr

or

Optimization Without Any Processing
Crystal System
Bravais Lattice Type
Point Group
Space Group

0 10 20 30 40 50 60 70 80 90 100 110
Epoch Index

E
rr

or

Optimization Based On Gradient
Crystal System
Bravais Lattice Type
Point Group
Space Group

10

0

20

30

40

50

Figure 4: Trend of the model’s training loss. (left) The conventional optimization process of the model on the space group and
superclass. (middle) The optimization process of the model on the space group and superclass after introducing the gradient-
based optimization method. (right) T-SNE Visualization Analysis of XRDecoupler in the training set.
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Figure 5: Visualization of the impact of global and local rep-
resentations on the decision of each superclass.

both the global and local modules play significant roles and
exhibit notable interdependencies across superclass tasks.

▶ Focus Tendency of Global & Local Pattern Modules.
To explore the roles of the global and local modules, we vi-
sualized their attention levels in Figure 6. Specifically, we
used Grad-CAM (Selvaraju et al. 2017; Zeiler 2014; Pope
et al. 2019) for the local module’s focus and analyzed the
self-attention matrix for the global module. Figure 6 shows
the local module focuses on local variations between peaks
(red dashed box), while the global module attends to patches
with high peaks (orange dashed box). Thus, the two modules
capture distinct fine-grained information from the PXRD
pattern, which is key to XRDecoupler’s ability to learn de-
tailed representations and achieve superior performance.

▶ Generalization Analysis. We conducted a generaliza-
tion test using 8,000 inorganic crystal data obtained from
(Salgado et al. 2023), which encompasses 178 space group
categories. According to the theoretical logic of symmetry
classification, inorganic crystals and MOF crystals are anal-
ogous, differing primarily in their building units, types of
chemical bonds, topological structures, and pore structures.
Therefore, inorganic crystals represent out-of-domain data
for us, and the model’s performance on this data serves as a
good measure of its generalization capability. As shown in
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Figure 6: Visualization of the attention of the global and lo-
cal pattern module to each region in the input PXRD pattern.

Method Accuracy (%)

Top-1 Top-2 F1 Score

MLP 15.50 (−14.10) 21.4 (−23.20) 8.5 (+0.8)
CNN 29.60 (+0.00) 44.60 (+0.00) 7.70 (+0.00)

NoPoolCNN 30.40 (+0.8) 41.60 (−3.00) 15.90 (+8.2)
RCNet 41.70 (+12.10) 52.40 (+7.80) 19.40 (+11.70)
XRDMamba 54.50 (+24.90) 64.70 (+20.10) 24.10 (+16.40)

XRDecoupler 60.22 (+30.62) 70.45 (+25.85) 29.09 (+21.39)

Table 2: Generalization analysis on the inorganic dataset
with SOTA methods. Bold indicates the best performance
while (+) and (−) indicate the the relative gain with CNN.

Table 2, our method outperforms the SOTA methods, which
indicates that XRDecoupler significantly enhances general-
ization performance on out-of-domain data.

▶ Further analysis. Please see Supplement F to find
more analysis, including ablation study, crystal scale adapt-
ability, and case analyses.

Conclusion
In this paper, we present the XRDecoupler framework,
which efficiently determines the symmetry of crystalline
materials. This work advances the application of deep learn-
ing in crystalline materials analysis, providing a novel
methodology for symmetry identification.
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