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Abstract

We present DreamHuman, a method to generate realistic animatable 3D human
avatar models solely from textual descriptions. Recent text-to-3D methods have
made considerable strides in generation, but are still lacking in important aspects.
Control and often spatial resolution remain limited, existing methods produce
fixed rather than animated 3D human models, and anthropometric consistency for
complex structures like people remains a challenge. DreamHuman connects large
text-to-image synthesis models, neural radiance fields, and statistical human body
models in a novel modeling and optimization framework. This makes it possible
to generate dynamic 3D human avatars with high-quality textures and learned,
instance-specific, surface deformations. We demonstrate that our method is capable
to generate a wide variety of animatable, realistic 3D human models from text.
Our 3D models have diverse appearance, clothing, skin tones and body shapes,
and significantly outperform both generic text-to-3D approaches and previous
text-based 3D avatar generators in visual fidelity.

1 Introduction

The remarkable progress in Large Language Models [46, 8] has sparked considerable interest in
generating a wide variety of media modalities from text. There has been significant progress in
text-to-image [49, 50, 52, 67, 10, 34], text-to-speech [37, 41], text-to-music [2, 19] and text-to-3D
[22, 43] generation, to name a few. Key to the success of some of the popular generative image
methods conditioned on text has been diffusion models [52, 50, 55]. Recent works have shown these
text-to-image models can be combined with differentiable neural 3D scene representations [5] and
optimized to generate realistic 3D models solely from textual descriptions [22, 43].

Controllable generation of photorealistic 3D human models has been in the focus of the research
community for a long time. This is also the goal of our work; we want to generate realistic,
animatable 3D humans given only textual descriptions. Our method goes beyond static text-to-3D
generation methods, because we learn a dynamic, articulated 3D model that can be placed in different
poses, without additional training or fine-tuning. We capitalize on the recent progress in text-to-
3D generation [43], neural radiance fields [31, 5] and human body modelling [64, 3] to produce
3D human models with realistic appearance and high-quality geometry. We achieve this without
using any supervised text-to-3D data, or any image conditioning. We generate photorealistic and
animatable 3d human models by relying only on text, as can be seen in Figure 1 and Figure 2.
As impressive as general-purpose 3D generation methods [43] are, we argue these are suboptimal
for 3D human synthesis, due to limited control over generation which often results in undesirable
visual artifacts such as unrealistic body proportions, missing limbs, or the wrong number of fingers.
Such inconsistencies can be partially attributed to known problems of text-to-image networks, but
become even more apparent when considering the arguably more difficult problem of 3D generation.
Besides enabling animation capabilities, we show that geometric and kinematic human priors can
resolve anthropometric consistency problems in an effective way. Our proposed method, coined
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A man with dreadlocks

A blonde woman wearing yoga pants

Figure 1: Example of 3D models synthesized and posed by our method. DreamHuman can
produce an animatable 3D avatar given only a textual description of a human’s appearance. At test
time, our avatar can be reposed based on a set of 3D poses or a motion, without additional refinement.

DreamHuman, can become a powerful tool for professional artists and 3D animators and can automate
complex parts of the design process, with potentially transformative effects in industries such as
gaming, special effects, as well as film and content creation.

Our main contributions are:

• We present a novel method to generate 3D human models that can be placed in a variety of
poses, with realistic clothing deformations, given only a single textual description, and by
training without any supervised text-to-3D data.

• Our models incorporate 3D human body priors that are necessary for regularizing the
generation and re-posing of the resulting avatar, by using multiple losses to ensure the
quality of human structure, appearance, and deformation.

• We improve the quality of the generation by means of semantic zooming with refining
prompts to add detail in perceptually important body regions, such as the face and the hands.

2 Related Work

There is considerable work related to diffusion models [58] and their applications to image generation
[17, 35, 11, 52, 50, 55, 54] or image editing [24, 53, 16, 32]. Our focus is on text-to-3D [22, 43, 47]
and more specifically on realistic 3D human generation conditioned on text prompts. In the following
subsections we revisit some of the relevant work related to our goals.

Text-to-3D generation. CLIP-Forge [56] combines CLIP [45] text-image embeddings with a learned
3D shape prior to generate 3D objects without any labeled text-to-3D pairs. DreamFields [22]
optimizes a NeRF model given a text prompt using guidance from CLIP [45]. CLIP-Mesh [25] also
uses CLIP, but substitutes NeRF with meshes as its underlying 3D representation. DreamFusion [43]
builds on top of DreamFields and uses supervision from a diffusion-based text-to-image-model [54].
Latent-NeRF [30] uses a similar strategy with DreamFusion, but optimizes a NeRF that operates
in the space of a Latent Diffusion model [52]. TEXTure [51] takes as input both a text prompt
and a target mesh and optimizes the texture map to agree with the input prompt. Magic3D [28]
uses a 2-stage strategy that combines Neural Radiance Fields with meshes for high resolution 3D
generation. Unlike our method, all mentioned works produce a static 3D scene given a text prompt.
When queried with human related prompts, results often exhibit artifacts like missing face details,
unrealistic geometric proportions, partial body generation, or incorrect number of body parts like
legs or fingers. We generate accurate and anthropomorphically consistent results by incorporating 3D
human priors in the loop.

Text-to-3D human generation. Several methods [40, 60, 4, 26, 15] learn to generate 3D human
motions from text by leveraging text-to-MoCap datasets. MotionCLIP [59] learns to generate 3D
human motions without using any paired text-to-motion data by leveraging CLIP as supervision.
However, all these methods output 3D human motions in the form of 3D coordinates or human body
model parameters [29] and do not have the capability to generate photorealistic results. AvatarCLIP
[18] learns a NeRF in the rest pose of SMPL [29] which is then converted back to a mesh using
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A Buddhist monk An Asian man wearing a navy suit A woman wearing a short jean skirt and a cropped top

A woman wearing a wedding dress A man with blond hair wearing a brown leather jacket A young man wearing a turtleneck

A pregnant person of color A thin Marathon runner A man wearing a Christmas sweater

A senior Black person wearing a polo shirt A Karate master wearing a black belt A bodybuilder wearing a tanktop

A clown A plus-size model wearing pyjamas A chef dressed in white

A Black female surgeon An Indian bride in a traditional dress A woman wearing ski clothes

A Black woman dressed in gym clothes A farmer A Spanish flamenco dancer

A person in a diving suit A Black person in a military uniform A man wearing a bomber jacket

A track and field athlete A person dressed at the Venice Carnival A man wearing a hoodie

Figure 2: 3D human avatars generated using our method given text prompts. We render each
example in a random pose from two viewpoints, along with corresponding surface normal maps.
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Figure 3: Overview of DreamHuman. Given a text prompt, such as a woman wearing a dress,
we generate a realistic, animatable 3D avatar whose appearance and body shape match the textual
description. A key component in our pipeline is a deformable and pose-conditioned NeRF model
learned and constrained using imGHUM [3], an implicit statistical 3D human pose and shape model.
At each training step, we synthesize our avatar based on randomly sampled poses and render it from
random viewpoints. The optimisation of the avatar structure is guided by the Score Distillation
Sampling loss [43] powered by a text-to-image generation model [54]. We rely on imGHUM [3] to
add pose control and inject anthropomorphic priors in the avatar optimisation process. We also use
several other normal, mask and orientation-based losses in order to ensure coherent synthesis. NeRF,
body shape, and spherical harmonics illumination parameters (in red) are optimised.

marching cubes. However the reposing procedure depends on fixed skinning weights that limit
the overall realism of the animation. In contrast, our method learns per-instance pose-specific
geometric deformations that result in significantly more realistic clothing appearance. Concurrent
work AvatarCraft [23] produces avatars with geometry very much tied to the underlying SMPL [29]
model and thus cannot model loose-fitting clothing. Another concurrent work, DreamAvatar [9],
suffers from the fact that it to be retrained every time for a new pose, which makes it computationally
prohibitive to repose.

Deformable Neural Radiance Fields. Several methods attempt to learn Deformable NeRFs to
model dynamic content [38, 44, 61, 39, 57]. There has also been work on representing articulated
human bodies [65, 36, 63, 69, 20, 66, 27]. The method more closely related to ours is H-NeRF [65],
which combines implicit human body models with NeRFs. Compared to H-NeRF, our method uses a
simpler approach where we enforce consistency directly in 3D and not via renderings of two different
density fields. Also, while H-NeRF that uses videos for supervision, our only input is text, and we
use are not constrained by the poses and viewpoints present on the video. Thus our method can
generalize better in a variety of different poses and camera viewpoints.

3 Methodology

3.1 Architecture

We rely on Neural Radiance Fields (NeRF) [31] to represent our 3D scene as a continuous function
of its spatial coordinates [33]. We use a multi-layer perceptron (MLP) that maps each spatial point
x ∈ R3 to a tuple (c, τ) of RGB color and density values. To render a scene using NeRF, one
needs to cast rays from the camera center passing through the image pixels and then compute the
expected color C along each ray. In practice, this is done by sampling points xi on the ray and then
approximating the rendering integral [5]

C =
∑
i

wici, wi = αi
∏
j<i

(1− αj), αi = 1− exp (−τi ||xi+1 − xi||). (1)

While NeRF provides a general purpose scene representation, we aim to regularize the optimised
geometry and appearance using human structural priors. To that effect, we use imGHUM [3], which
is the implicit version of the GHUM [64] body model, and thus compatible with neural scene
representations. Given pose θ and shape β parameters, imGHUM predicts a semantic signed distance
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function S(x,θ,β) that maps a 3D spatial point x to a tuple (d, s) containing the signed distance d of
the point from the body surface together with a semantic correspondence code s ∈ R3 that associates
x with the nearest surface point on the body.

Our model architecture uses mip-NeRF 360 [5] for the NeRF backbone. An overview can be seen in
Figure 3. Specifically, we modify each of the MLPs in the standard NeRF model in order to operate in
the imGHUM [3] semantic signed distance space instead of the standard 3D coordinates. Given a 3D
point x ∈ R3 and pose and shape parameters θ and β respectively, we first encode it with imGHUM
[3] into the 4D semantic descriptor (d, s) = S(x,θ,β). We can then learn a NeRF f in this semantic
space

(c, τ) = f(Φ, d, s). (2)

where Φ represents the trainable weights for the NeRF module. Similarly with DreamFusion [43], c
models the albedo of the surface at the corresponding point, and we use this together with the learnt
geometry to produce shaded renderings.

By learning a NeRF in the semantic signed distance space of a human body model, we learn a
representation that can generalize to different human poses and body shapes. This is because the
local geometry and color are generally preserved in (d, s) for different shape and pose parameters.
One can think of the process similarly to learning a NeRF for the template pose and then warping to
new shapes and poses by leveraging the 3D correspondences from the body model [42, 6]. However,
animating the model in different poses is challenging. Clothing deformations work reasonably only
for tight-fitting clothing or for accessories that are usually moving rigidly with the body, such as
hats and glasses. For this reason, we propose to augment and modulate the NeRF input with pose
and shape parameters, thus giving it the capability to model non-rigid pose and surface dependent
effects beyond the body shape itself. By doing so, the model can learn per-instance, pose-dependent
deformations of the clothing surface, on top of what the imGHUM model can represent. Thus, our
NeRF input becomes

(c, τ) = f(Φ, d, s,θ,β). (3)

To make sure the NeRF model conforms to the underlying body geometry we propose to calculate
the final density as the maximum of the density τ computed by the NeRF MLP and the density proxy
τ̂(d) = aσ(−ad) computed from imGHUM based on the signed distance value. In the previous
equation, σ is the sigmoid function and a a positive constant that controls the sharpness of the density
field. Effectively τ̂ is a smooth scaled indicator function, with τ̂ ≈ α inside the body and τ̂ ≈ 0
outside. In this way we avoid undesirable artifacts, such as the model removing limbs or fine structure
like fingers, unless the prompt indicates so.

Shading and rendering model. We found that a diffuse reflectance model [43] does not produce
very realistic renderings of the human appearance, with results that often look cartoon-like. Hence we
rely on a spherical harmonics lighting model [48] and preserve the first 9 components. During NeRF
training, we additionally optimize for the spherical harmonics coefficients (i.e. h ∈ R1×10). However,
by using just the optimized coefficients can lead to inadequate albedo-shading disentanglement and
occasionally some geometric regions may never get highlights. Empirically, we found that sampling
random coefficients a fraction of the time during training produces better results.

Semantic zoom. One limitation in using a text-to-image diffusion model for supervision is its 64×64
pixels input resolution. As a result textures are often blurry and the geometry lacks fine details. One
way around this would be the use of super-resolution diffusion models, e.g. the 64×64→ 256×256.
However these make rendering very expensive as memory requirements increase by a factor of 16. By
using a human body model with attached semantics like imGHUM to control the NeRF, we benefit
from direct correspondences between the 3D space occupancy and the human body parts. We can
then very easily infer the location of important body parts such as the head, hands, etc. for any given
pose. Therefore, during optimization we propose to use this information to zoom in on different parts
of the body, thus increasing the effective model resolution. This can leverage both detail implicit
in the image diffusion model used, and structure in the imGHUM human body prior. Instead of
rendering a 64×64 image of the whole body, we render instead a 64×64 image of the head and some
body parts where fine details are important. In total, we define 6 semantic regions: head, upper body,
lower body, midsection, left arm, right arm. We also modify the text prompt accordingly, in order to
explicitly encode this information in the text. In contrast to AvatarCLIP that only zooms-in on the
face, zooming-in on all body parts results in much crisper textures and geometric detail throughout.
For more information please check our Supplementary Material.
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3.2 Loss functions

imGHUM density loss. To enforce that the estimated avatar follows the underlying body shape
geometry, we add anL1 loss between the NeRF density and a density proxy computed from imGHUM.
This loss encourages sparse modifications in the body geometry and is necessary to preserve important
geometric details on the body. The density loss is defined as

Lτ = ||τ − τ̂ ||1 . (4)

Predicted normal loss. Following Ref-NeRF [62], we modify the MLP to also predict the surface
normal vector n′ at each spatial location and then add a loss between the predicted normals and the
normals n obtained from the gradient of the density field. The normal loss is

Ln =
∑
i

wi ||n′ − n|| . (5)

In our case, this loss serves two purposes: it acts as a smoothness loss on the surface normals and also
helps learning the pose-dependent deformations. Regarding the first part, we noticed that for clothing
such as skirts or dresses with uniform dark texture, the resulting surface normals are often very
noisy, resulting in sub-optimal shading results. Naturally, the predicted surface normals are smoother
that the density normals because of the spectral bias of MLPs and hence this loss acts as a surface
regularizer. More importantly though, the auxiliary task of predicting the surface normals encourages
the MLP to use the pose conditioning information during optimization. The pose-dependent density
deformations are sparse and subtle since a considerable part of the work is usually handled decently
by imGHUM. Hence, it is easy for the MLP to ignore the conditioning on the pose parameters because
it has a small overall impact on the loss. Note, however, that pose conditioning is necessary in order
to predict the correct surface normals. If not used, then the predicted normal vector at a particular
point on the surface, e.g. on the arm, will be always the same, regardless of the limb orientation,
because it only depends on the canonical coordinates (d, s).

Foreground mask loss. The above density loss forces the NeRF to respect the underlying body
geometry and disentangles the subject from the background. However, we noticed that in some cases
this can result in making the clothing or hair translucent. To prevent it, we add a loss on the rendered
mask M that encourages it to be binary. The loss is defined as

Lm =
1

HW

H∑
x=1

W∑
y=1

min (logM(x, y), log(1−M(x, y)) (6)

where M(x, y) =
∑
i wi, i.e. the sum of the rendering weights for the ray through pixel (x, y).

Diffusion Models and Score Distillation Sampling. Diffusion models are a class of generative
models that learn to produce samples from a target distribution by iteratively denoising samples
coming from a tractable base distribution. They consist of a fixed forward process that gradually
transforms a sample u from the data distribution to Gaussian noise and a learnable reverse process
that approximates the inverse of the forward process.

To generate images from the data distribution given an NeRF with parameters Φ, [43] proposed to
use Score Distillation Sampling. This involves optimizing an approximation of the diffusion model
training loss. The gradient of the Score Distillation Sampling loss with respect to the NeRF is defined
as

∇Lsds = Et∼U [0,1],ε∼N (0,I)

[
ws(t) (ε̂(zt; y, t)− ε)

∂u

∂Φ

]
. (7)

where ε is the injected noise, zt the noisy rendered image and ˆepsilon the noise prediction from the
diffusion model. We use the SDS loss [43, 54] to supervise the 3D generation given the actively
modified semantic-zoom prompts.

Additional losses. We use the orientation loss Lo from Ref-NeRF [62] that penalizes ‘back-facing’
normals for points along the ray that are visible, as well as the loss on the proposal weights Lp in
mip-NeRF360 [5].

Our full loss function then becomes

L = Lsds + Lo + Lp + Lm + Ln + Lτ (8)
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A man wearing a striped shirt and white linen pants An African woman dressed in traditional clothes

Figure 4: Importance of semantic zoom. For each example, the left image shows the generated
avatar with semantic zoom, whereas the right image an avatars generated without it. Notice how the
semantic zoom allows us to reconstruct sharper, higher-quality textures.

3.3 Optimization

Body pose sampling. Previous methods like H-NeRF [65] and Human-NeRF [63] have limited
generalization capabilities because they are only trained on poses and viewpoints that are present in an
input video. Our method on the other hand does not have such constraints. At each optimization step,
we sample a random pose from a distribution [68] trained on 3D motion capture [1, 21, 12, 14, 13]
and use this to pose imGHUM. Sampling different poses is necessary for learning the dependency of
the surface geometry on the model shape and pose parameters. At the same time it helps disentangle
the generated avatar from objects in the background. Without the pose randomization strategy often
times there is not sufficient disentanglement of the avatar geometry from the background and the
final geometry includes additional objects such as the ground floor, or even the shadow of the person
around the legs

Other details. We optimize the NeRF and the imGHUM shape parameters β instead of randomly
sampling shape parameters. This is because the body shape is often explicitly or implicitly described
in the caption. We generate one avatar with an underlying body shape given all constraints coming
from the text prompt and the related losses. Similarly with DreamFusion, we randomly sample
camera positions in spherical coordinates and then augment the input prompt with view-dependent
conditioning based on the azimuth and elevation. We also randomly select the radius r from the
origin as well as the focal length of the camera. For additional details please see our Supplementary
Material.

4 Experiments

In this section we illustrate the effectiveness of our proposed method. We show how the individual
proposed components help, and how we compare to recent state-of-the-art methods. Figure 2 shows
a wide variety of generated 3d human models in different poses, so we can illustrate diverse body
shapes, skin tones and body compositions. Due to space constraints, additional results are available
in the Supplementary Material.

4.1 Ablation Study

Semantic zoom. In Figure 4, we show the importance of our semantic zoom strategy. Notice how
our method is able to generate much higher-quality textures, both for the body and the face.

Pose-dependent deformations. In Figure 5, we show examples of how we can learn realistic garment
deformations. In the example of the ballerina, one can see that the skirt deforms more naturally when
the legs move. On the other hand the baseline without non-rigid deformations struggles to capture
the skirt geometry and exhibits floating artifacts around the legs. Similar observations can be made
for the man wearing shorts. We hypothesize that our model can infer this because the text-to-image
generator has been trained on lots of images of people wearing clothes in different poses. Therefore,
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Without pose-correctivesWith pose-correctives

A ballerina A man wearing a Hawaiian shirt, sunglasses and shorts

Figure 5: Importance of pose-dependent deformations and pose sampling in the NeRF model,
f(Φ, d, s,θ,β). Our non-rigid pose-dependent deformations enable more realistic clothing when
reposing the avatar. For each of the two example prompts we show two generated avatars, with and
without pose-correctives. Notice how the skirt and the shorts move more naturally when reposing the
avatar.

our model, although not using video, or relying on a text-to-video diffusion loss, can leverage general
knowledge on how clothing drapes.

Choice of diffusion model. Our method is not tied to a particular diffusion model. To demonstrate
this, we substitute Imagen [55] with the open-source Stable Diffusion model [52]. Stable Diffusion is
a latent diffusion model, so at each training iteration we use our NeRF to render an RGB image, pass
it through the latent encoder, and then apply the SDS loss on the latent embeddings. In Figure 6, we
show qualitative results of our method trained using Stable Diffusion. Overall we observe that we are
able to generate high quality avatars, regardless of the choice of the diffusion model.

An elderly person wearing a waistcoat A man wearing a Christmas sweater A woman dressed in ski clothes

Figure 6: Generation results using Stable Diffusion.

4.2 Comparison with the state of the art

Qualitative Evaluations. In Figure 7, we show a qualitative comparison of our method with
DreamFusion. DreamFusion suffers from limited control over generation. Even though it was
prompted to generate the full body of the subject, very often it produces a 3D model of the upper body,
or the head. At the same time it cannot properly disentangle the human subject from other objects in
the scene, resulting in 3D models that contain parts of the environment. More importantly though, it
very often produces unpleasant visual artifacts, such as non-realistic body proportions, missing or
multiple limbs, as well as degenerate geometry that can be attributed to viewpoint overfitting. Our
method is able to overcome these issues by utilizing a strong 3D prior on human body geometry. For
more comparisons we refer the readers to the Supplementary Material.

Figure 8 shows a comparison between DreamHuman and AvatarCLIP. We can see that our method is
able to generate significantly better geometry and texture quality. The geometry of the reconstructed
avatars with AvatarCLIP is very close to the underlying body model geometry, with only minor
modifications. As a result, it cannot handle loose-fitting clothing, dresses, and accessories like hats.
The model textures from AvatarCLIP also have significant artifacts and do not match the realism and
overall quality of DreamHuman in all examples we tried.

Quantitative evaluation using CLIP. Following common practice, we also use CLIP to evaluate the
alignment of the rendered 3D models with the input text prompts. We use a total of 160 prompts with
descriptions of people. The results are shown in Table 1. We can see that our method consistently
outperforms DreamFusion. We also include comparisons with AvatarCLIP. However, note that
AvatarCLIP is trained using CLIP as supervision, meaning that the CLIP-based metrics are biased
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DreamFusion

1: Wrong face geometry and texture
2: Multiple arms
3: Unrealistic overall body

1

2

3

1

3

Ours

A professional boxer

DreamFusion

1: Multiple faces, no details on the face
2: Missing arms
3: Partial body generation

1

3

1

2

2

1

Ours

A policewoman

Figure 7: Comparison with DreamFusion. For each example we show the rendered 3D model as
well as the corresponding surface normals. Both methods were asked to reconstruct the full body of
the subject by prepending A DSLR full body photo to the prompt.

AvatarCLIP

Ours
Figure 8: Comparison with AvatarCLIP. We compare DreamHuman with AvatarCLIP [18]. From
left to right we used the following prompts: astronaut, construction manager, firefighter, gardener,
pilot, police officer, robot, senior citizen, soldier, teenager, warrior, witch, wizard. Notice that our
method generates much more realistic texture and geometry. All illustrations are in default A-Pose.

favorably towards AvatarCLIP. This means that a direct comparison to other methods is potentially
unfair.

Table 1: Evaluation of the rendered 3D models using CLIP. We report the R-Precision as well as
whether the true caption is in the top 3 and 5 highest-scoring captions.

Method R-Precision ↑ Top-3 ↑ Top-5 ↑
DreamFusion [43] 0.775 0.888 0.925
AvatarCLIP [18] 0.855 0.962 0.981

Ours 0.838 0.931 0.956

User study. We conducted a user study to assess the quality of our 3D avatar generation pipeline. We
used 20 text prompts from the AvatarCLIP website, selected from the General Description category.
We ran our method on those 20 text prompts and rendered the final results in the rest pose, from the
front and from the side. We did the same for the precomputed meshes that the AvatarCLIP authors
provide on their website. We then asked the users to rate the two methods on (a) the perceived
agreement between the renderings and the input text, and (b) the perceived visual quality of the
generated avatar. The ratings were on a scale from 1-5, with 1 meaning Very Bad and 5 Very Good.
The results in Table 2 show that the raters consistently preferred our method over AvatarCLIP.

4.3 Generation variability.

Here we investigate whether there is variation in our generations for the same prompt, but with
different random seeds. As originally observed in DreamFusion [43], there is limited variation in the
generations, probably because the SDS loss is mode-seeking, so it tends to latch on to specific modes
of the distribution. Our results demonstrate some level of variability, as seen on Figure 9.
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Table 2: User study on 3D avatar generation quality.
Method Agreement with text ↑ Visual quality ↑

AvatarCLIP [18] 2.96 2.49
Ours 4.45 4.16

A man wearing a Christmas sweater A woman wearing a long dress A man wearing a camel coat and a hat

A clown A cowboy An Asian woman wearing a life jacket

Figure 9: Generations using different random seeds. For each example we show the generated 3D
avatar using 2 different random seeds as initialization.

5 Conclusion

We presented DreamHuman, a novel method for generating 3D human avatars from text. Our method
leverages statistical 3D human body models and recent advances in 3D modelling and text-to-3D
generation to create animatable 3D human avatars, without any paired text-to-3D supervision. We
illustrated that our method can generate photorealistic results, with detailed geometry and outperforms
the state of the art by a large margin.

Limitations and future work. Since our model is trained without any 3D data, it sometimes draws
fine details like wrinkles using the albedo map instead of creating them based on geometry. Future
work can address this by leveraging 3D data to resolve some of the reconstruction ambiguities.
Additionally, the model sometimes cannot properly disentangle albedo from shading, resulting in
baked reflections and shadows. Current computational constraints from the diffusion models prevent
us from scaling the method to very high resolution textures and geometric detail like hair. Finally, the
realism of clothing animation can benefit from a video model.

Broader Impact. While our method does not use any additional training data, it relies in part
on text-to-image diffusion models which have been pre-trained on large-scale datasets containing
sometimes insufficiently curated images and captions [7] (N.B. the level of effective automation to
guarantee the removal of undesired content is considerable for most models we use in this paper).
Also, text-to-image generators use LLMs for the text encoder, pre-trained on uncurated internet-scale
data. Although our method uses statistical 3D human body shape models learnt using highly curated
and diverse data to remove bias, ultimately our generation process may be vulnerable to some bias in
its dependencies.

The goal of our method is to generate 3D models of people, which has the potential to be misused in
connection with fake media. However, it is important to highlight that our rendered 3D human models
are typically less realistic than their 2D-generated counterparts. Regardless, in practical settings,
safeguards should be used to prevent abuse, such as filtering the input text prompts and detecting any
unsafe content in the model renderings.

Our method has the ability to generate people with diverse body shapes, appearance, skin color and
clothing. This can enable the generation of diverse large-scale synthetic 3D datasets for human-related
tasks, and in turn may support training models with fairer outcomes across different groups.

DreamHuman can potentially augment the work of artists and other creative professionals. It could
be used as a complementary tool to boost productivity. It also has the potential to democratize 3D
content creation that currently requires specialized knowledge and expensive proprietary software.
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