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Abstract001

Large language models (LLMs) are introduc-002
ing a paradigm shift in molecular discovery by003
enabling text-guided interaction with chemical004
spaces through natural language and symbolic005
notations, with emerging extensions to incorpo-006
rate multi-modal inputs. To advance this emerg-007
ing field, this survey provides an up-to-date and008
forward-looking review of the emerging use009
of LLMs for two central tasks: molecule gen-010
eration and molecule optimization. We orga-011
nize our survey around four fundamental chal-012
lenges that have emerged as critical evaluation013
dimensions in recent studies: ensuring valid-014
ity, enhancing synthesizability, achieving pre-015
cise property control, and maximizing diversity.016
Based on this, we systematically analyze how017
current LLM learning paradigms are applied018
to tackle each challenge, revealing the distinct019
capabilities and inherent limitations of each ap-020
proach. In addition, we include the commonly021
used datasets and evaluation protocols aligned022
with these challenges. We conclude by dis-023
cussing future directions, positioning this sur-024
vey as a resource for researchers working at the025
intersection of LLMs and molecular science. A026
continuously updated reading list is available027
at https://anonymous.4open.science/r/028
LLM-Centric-Molecular-Discovery.029

1 Introduction030

Molecular design and optimization are fundamen-031

tal to multiple scientific disciplines, including032

drug discovery (Zheng et al., 2024), materials sci-033

ence (Grandi et al., 2025), and synthetic chem-034

istry (Lu et al., 2024; Wang et al., 2025). However,035

these tasks present significant challenges due to036

the vast and complex chemical spaces that must037

be navigated to discover novel compounds with038

desirable properties while maintaining chemical039

validity and structural plausibility (Zheng et al.,040

2024; Yu et al., 2025). Over the years, a range041

of computational approaches has been developed042

to achieve these goals, from Variational Autoen- 043

coders (Gómez-Bombarelli et al., 2018) and Gen- 044

erative Adversarial Networks (De Cao and Kipf, 045

2018) to Transformers (Edwards et al., 2022). De- 046

spite significant progress, these methods often 047

struggle with generating high-quality, diverse, and 048

synthesizable molecules (Ramos et al., 2025; Sun 049

et al., 2025). 050

More recently, large language models (LLMs) have 051

emerged as particularly powerful tools for tackling 052

these challenges, drawing increasing research at- 053

tention (Zheng et al., 2024). These foundation 054

models, characterized by billions of parameters, 055

exhibit emergent capabilities such as advanced 056

reasoning, instruction following, and in-context 057

learning, enabled by extensive pre-training on di- 058

verse datasets (Brown et al., 2020; Wei et al., 059

2022a). Thus, LLMs can leverage their extensive 060

pre-training knowledge to generalize across chem- 061

ical problems and can be further adapted to spe- 062

cialized tasks through fine-tuning. These unique 063

capabilities have established LLMs as a powerful 064

new paradigm for exploring chemical space and 065

accelerating molecular discovery. 066

Despite the growing interest in applying LLMs 067

to molecular discovery tasks, existing literature 068

reviews fail to provide a comprehensive analy- 069

sis of this specific intersection. Most earlier sur- 070

veys (Cheng et al., 2021; Zeng et al., 2022; Tang 071

et al., 2024; Yang et al., 2024b) focus broadly on 072

general deep generative AI approaches rather than 073

specifically examining LLMs’ unique contribu- 074

tions. Other reviews that do mention LLMs (Ramos 075

et al., 2025; Zhang et al., 2025; Guo et al., 2025; 076

AbuNasser, 2024; Janakarajan et al., 2024; Liao 077

et al., 2024) either primarily focus on the general 078

chemical domain or include smaller language mod- 079

els (< 1B parameters) that lack the emergent capa- 080

bilities of the LLMs central to this survey. 081

1

https://anonymous.4open.science/r/LLM-Centric-Molecular-Discovery
https://anonymous.4open.science/r/LLM-Centric-Molecular-Discovery
https://anonymous.4open.science/r/LLM-Centric-Molecular-Discovery


Our survey addresses this critical gap by providing082

the first overview specifically focused on LLMs083

in molecular discovery, with particular emphasis084

on two central tasks: molecule generation and085

molecule optimization. We focus on foundation-086

scale models (>1B parameters) and adopt a multi-087

dimensional assessment framework based on re-088

cent benchmarking studies (Brown et al., 2019;089

Polykovskiy et al., 2020; Thomas et al., 2024).090

We organize our survey around four fundamen-091

tal challenges: validity (whether molecules are092

chemically feasible), synthesizability (whether093

they can be practically synthesized), property con-094

trol (whether they meet desired objectives), and095

diversity (whether they explore chemical space096

broadly). Unlike prior surveys that categorize stud-097

ies based on model architectures (AbuNasser, 2024;098

Janakarajan et al., 2024), we introduce a taxonomy099

centered on learning paradigms—distinguishing be-100

tween approaches without LLM tuning (Zero-Shot101

Prompting and In-Context Learning) and those with102

LLM tuning (Supervised Fine-Tuning and Prefer-103

ence Tuning), as illustrated in Fig. 1. To summarize,104

our main contributions are as follows:105

• We introduce a new taxonomy based on learning106

paradigms, revealing how different approaches107

address the four fundamental chemical chal-108

lenges and their respective limitations.109

• We provide a systematic summary of commonly110

used datasets, benchmarks, and evaluation met-111

rics, offering a comprehensive reference for re-112

searchers in the field.113

• We identify critical challenges and outline114

promising future research directions to further115

advance this rapidly evolving domain of LLM-116

centric molecular discovery.117

2 Preliminaries118

2.1 Large Language Models119

LLMs distinguish themselves from earlier Pre-120

trained Language Models (PLMs) like BERT (De-121

vlin et al., 2019) primarily through their mas-122

sive scale—billions versus millions of parame-123

ters—and the resultant emergent capabilities (Zhao124

et al., 2023; Yang et al., 2023). Pre-trained on125

vast text corpora using autoregressive objectives,126

LLMs exhibit capabilities such as in-context learn-127

ing (Brown et al., 2020), chain-of-thought reason-128

ing (Wei et al., 2022b), and powerful zero-shot129

generalization that are not consistently observed in130

smaller models (Wei et al., 2022a). These emer- 131

gent capabilities make LLMs uniquely suited for 132

complex chemical applications like molecule gener- 133

ation and optimization tasks central to this survey. 134

2.2 Problem Definition and Scope 135

This survey focuses on LLM-centric approaches to 136

molecular discovery, with two key inclusion crite- 137

ria: (1) models must have at least 1B parameters 138

to ensure emergent capabilities, and (2) LLMs must 139

serve as molecular generators rather than auxil- 140

iary components like feature extraction (Liu et al., 141

2023) or control (Liu et al., 2024a). Under this 142

scope, we examine two central tasks: 143

Problem Definition 1 (LLM-centric Molecule 144

Generation). This task leverages LLMs for the de 145

novo design of novel molecular structures based 146

on specified input instructions. 147

Problem Definition 2 (LLM-centric Molecule 148

Optimization). This task leverages LLMs to mod- 149

ify or edit a given input molecule, aiming to en- 150

hance one or more of its properties while often 151

preserving essential structural characteristics. 152

As illustrated in Fig. 2, for both tasks, the input 153

prompt provided to the LLM typically comprises 154

three key components: (1) Instruction (I): A tex- 155

tual component that defines the primary guidance 156

and objectives of the task. (2) Few-Shot Exam- 157

ples (Efs) (Optional): A small set of input-output 158

examples relevant to the task, provided to facili- 159

tate in-context learning. (3) Property Constraints 160

(Cp) (Optional): Explicit desired values, ranges, or 161

thresholds for specific molecular properties. 162

2.3 Challenges in Molecular Discovery 163

Based on recent research studies and estab- 164

lished evaluation practices (Brown et al., 2019; 165

Polykovskiy et al., 2020; Thomas et al., 2024), 166

we identify four fundamental challenges that com- 167

prehensively capture the unique requirements of 168

molecular discovery. These challenges form a 169

multi-dimensional framework for evaluating LLM- 170

based approaches, as they collectively represent the 171

critical aspects that distinguish chemical generation 172

from general text generation: 173

• Validity: Generated molecules must adhere to 174

fundamental chemical rules (e.g., valency) to be 175

structurally meaningful. Unlike grammatically 176

incorrect sentences, an invalid molecule is physi- 177

cally impossible and unusable (Jin et al., 2018). 178
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Generation

w/o Tuning In-Context Learning LLM4GraphGen (Yao et al., 2024), MolReGPT (Li et al., 2024c),
FrontierX (Srinivas and Runkana, 2024)

w/ Tuning

Supervised Fine-Tuning

Mol-instructions (Fang et al., 2023), LlaSMol (Yu et al., 2024a),
ChemLLM (Zhang et al., 2024a), ICMA (Li et al., 2024b),
MolReFlect (Li et al., 2024d), ChatMol (Fan et al., 2025),
PEIT-LLM (Lin et al., 2025), NatureLM (Xia et al., 2025),
SynLlama (Sun et al., 2025), TOMG-Bench (Li et al., 2024a),
UniMoT (Zhang et al., 2024b)

Preference Tuning
Div-SFT (Jang et al., 2024), Mol-MOE (Calanzone et al., 2025),
SmileyLLama (Cavanagh et al., 2024), ALMol (Gkoumas, 2024),
Less for More (Gkoumas and Liakata, 2024), Mol-LLM (Lee et al., 2025)

Optimization

w/o Tuning

Zero-Shot Prompting LLM-MDE (Bhattacharya et al., 2024), MOLLEO (Wang et al., 2025)

In-Context Learning
CIDD (Gao et al., 2025), LLM-EO (Lu et al., 2024),
MOLLM (Ran et al., 2025), ChatDrug (Liu et al., 2024c),
Re2DF (Le and Chawla, 2024), BOPRO (Agarwal et al., 2025)

w/ Tuning

Supervised Fine-Tuning

MultiMol (Yu et al., 2025), DrugAssist (Ye et al., 2025),
GeLLM3O (Dey et al., 2025), DrugLLM (Liu et al., 2024d),
LLM-Enhanced GA (Bedrosian et al., 2024),
Molx-Enhanced LLM (Le et al., 2024), TOMG-Bench (Li et al., 2024a)

Preference Tuning NatureLM (Xia et al., 2025)

Figure 1: A Taxonomy of LLM-Centric Molecular Discovery.

• Synthesizability: A valid molecule must also be179

practically synthesizable. This requires consider-180

ing the feasibility and complexity, as a theoreti-181

cally valid structure may be impossible to create182

in a lab (Gao and Coley, 2020).183

• Property Control: The design process must pre-184

cisely steer molecules toward desired properties,185

often requiring the simultaneous optimization of186

multiple, competing objectives (You et al., 2018).187

• Diversity: To effectively explore the vast chem-188

ical space, generated molecules must be struc-189

turally diverse, avoiding minor variations of190

known compounds (Zhavoronkov et al., 2019).191

These challenges are interconnected and often con-192

flicting (Gao and Coley, 2020), forming a compre-193

hensive evaluation framework that tests multiple194

dimensions of LLMs’ capabilities in molecular dis-195

covery. Throughout this survey, we systematically196

analyze how different learning paradigms address197

these competing objectives, revealing their respec-198

tive strengths and limitations in tackling the full199

spectrum of molecular design requirements.200

2.4 Learning Paradigms201

The application of LLMs to molecular discovery202

tasks, as depicted in the taxonomy in Fig. 2, can be203

broadly categorized based on whether the model’s204

parameters are updated for the specific task. This205

distinction defines two primary learning paradigms:206

Without LLM Tuning: These methods utilize pre-207

trained LLMs directly, guiding their behavior solely208

through the input prompt I without modifying the209

model’s weights. This paradigm primarily encom-210

passes strategies like Zero-Shot Prompting, where 211

the LLM operates based on instructions alone, and 212

In-Context Learning (ICL), where few-shot exam- 213

ples provided within the prompt guide the model’s 214

responses. These approaches avoid computational 215

training but rely heavily on the LLM’s inherent 216

capabilities and effective prompt engineering. 217

With LLM Tuning: These methods involve adapt- 218

ing the pre-trained LLM by further training and 219

updating its parameters to specialize it for molecu- 220

lar tasks or align its outputs with desired objec- 221

tives. This typically includes Supervised Fine- 222

Tuning (SFT), where the model learns from labeled 223

task-specific datasets, and subsequent Preference 224

Tuning (or Alignment), where the model is refined 225

based on feedback. While tuning can significantly 226

enhance performance, it requires curated data and 227

computational resources. 228

3 Molecule Generation 229

Molecule generation, the computational creation of 230

novel molecular structures, is a cornerstone of mod- 231

ern drug discovery and materials science (Elton 232

et al., 2019). This section reviews recent advances 233

in LLM-centric molecule generation, analyzing 234

how different learning paradigms address the four 235

fundamental challenges while creating molecules 236

from scratch. 237

3.1 Molecule Generation without Tuning 238

3.1.1 In-Context Learning 239

Property Control: Since Zero-Shot Prompting 240

is challenging for general-purpose LLMs due to 241

their lack of specialized chemical knowledge, most 242
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Instruction

Query: Help me modify the molecule 
CC(C)C(=O)O to increase 
hydrophobicity while keeping it similar to 
the input molecule?

Few-Shot Examples

Query:  Modify COc1ccccc1 to increase 
hydrophobicity while maintaining 
similarity.
Response: CCOc1ccccc1

Property Constrains

Required Tanimoto Similairy ≥ 0.6

Instruction

In-Context
Examples

 Frozen LLM

Supervised Fine-Tuning

 Trained LLM
Instruction

Dataset Instruction

Preference Tuning

Property 
Constrains

 Trained LLM

Instruction

Feedback

Reward

Molecule Generation

Instruction

Query: The molecule is a threonic acid. 
It is a conjugate acid of a D-threonate. It 
is an enantiomer of a L-threonic acid.

Few-Shot Examples

Query: The molecule is the D-enantiomer 
of glyceric acid.
Response: C([C@H](C(=O)O)O)O

Property Constrains

Calculated LogP (cLogP): 2.0 - 3.5
Drug-likeness (QED): > 0.9

Molecule Optimization Prompting & Tuning Strategies

Zero-Shot Prompting & In-Context Learning

Figure 2: Overview of LLM-Centric Molecular Discovery. Left: Typical input components (Instruction, Few-Shot
Examples, Property Constraints) for molecule generation and optimization. Right: Core learning paradigms for
applying LLMs to Zero-Shot Prompting & In-Context Learning, Supervised Fine-Tuning and Preference Tuning.

successful applications in this paradigm rely on In-243

Context Learning (ICL). This approach primarily244

addresses the challenge of Property Control by pro-245

viding high-quality examples to guide generation,246

as demonstrated in works like FrontierX (Srini-247

vas and Runkana, 2024) and LLM4GraphGen (Yao248

et al., 2024). Recognizing that example quality249

is paramount, a key technical advance is the use250

of Retrieval-Augmented Generation (RAG). For251

instance, MolReGPT (Li et al., 2024c) incorpo-252

rates RAG to dynamically retrieve the most relevant253

molecule-caption pairs, creating a more effective254

context and significantly boosting performance.255

In summary, ICL excels at providing guidance for256

property control. However, it struggles with va-257

lidity, synthesizability, and diversity—limitations258

stemming from its reliance on pattern matching259

rather than learning chemical principles.260

3.2 Molecule Generation with Tuning261

3.2.1 Supervised Fine-Tuning262

While non-tuning methods leverage pre-trained263

knowledge, their capabilities are often limited for264

specialized generation tasks. SFT addresses this265

by adapting a pre-trained LLM on labeled datasets,266

typically pairs of textual instructions and target267

molecular representations. This approach moves268

beyond the capabilities of smaller models like Mol-269

GPT (Bagal et al., 2021) and MolT5 (Edwards270

et al., 2022) by harnessing the power of large foun-271

dation models.272

Validity: SFT is the primary paradigm for instill-273

ing foundational chemical knowledge into LLMs,274

making it highly effective for ensuring validity.275

By fine-tuning on millions of valid molecular276

structures, the LLM learns the complex "gram- 277

mar" of chemical representations like SMILES. 278

This foundational training is the focus of sev- 279

eral large-scale instruction-tuning efforts, such 280

as LlaSMol (Yu et al., 2024a) with its SMolIn- 281

struct dataset, ChemLLM (Zhang et al., 2024a) 282

with ChemData, Mol-Instructions (Fang et al., 283

2023), and the OpenMolIns dataset from TOMG- 284

Bench (Li et al., 2024a). To further improve struc- 285

tural understanding, multi-modal SFT approaches 286

like UniMoT (Zhang et al., 2024b) incorporate 2D 287

graph information directly into the training pro- 288

cess by converting molecular graphs into discrete 289

"molecule tokens," enhancing the model’s ability 290

to generate valid and complex molecules. 291

Property Control: SFT enables LLMs to learn the 292

intricate mapping between desired properties and 293

molecular structures. This is where instruction tun- 294

ing truly shines. For instance, ChatMol (Fan et al., 295

2025) directly tackles the need for precise numer- 296

ical control by using an enhancement technique 297

to improve the model’s fidelity to specific quan- 298

titative property values. Addressing the need for 299

multi-property optimization, PEIT-LLM (Lin et al., 300

2025) proposes a two-step framework to fine-tune 301

LLMs for multi-constraint generation. To improve 302

the quality of guidance during training, other inno- 303

vative strategies integrate retrieval directly into the 304

fine-tuning process. ICMA (Li et al., 2024b) and 305

MolReFlect (Li et al., 2024d), for example, propose 306

In-Context Molecule Tuning (ICMT), which fine- 307

tunes the LLM using relevant retrieved examples 308

to better align outputs with complex instructions. 309

Synthesizability: SFT is beginning to address syn- 310

thesizability. SynLlama (Sun et al., 2025) was 311
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developed to specifically tackle synthetic feasibil-312

ity by fine-tuning the model to generate not just313

molecules, but also complete synthetic pathways.314

In summary, SFT excels at validity through ex-315

tensive training on chemical structures, provides316

strong property control via instruction tuning, and317

shows emerging capabilities in synthesizability as-318

sessment. However, its reliance on training data dis-319

tributions limits diversity, often causing mode col-320

lapse where models generate variations of known321

scaffolds.322

3.2.2 Preference Tuning323

Following SFT, which teaches models to mimic324

static datasets, Preference Tuning techniques offer325

further refinement by employing feedback-driven326

learning to shape LLM outputs towards desired327

characteristics. This is achieved either through RL-328

based methods (Sutton et al., 1998) that optimize a329

policy against a reward signal, or offline methods330

like Direct Preference Optimization (DPO) that331

learn from "chosen" vs. "rejected" pairs.332

Diversity: Preference Tuning directly addresses333

the primary limitation of SFT by excelling at en-334

hancing diversity. By explicitly rewarding novel335

and varied molecular structures, it encourages336

exploration of underrepresented chemical spaces.337

Div-SFT (Jang et al., 2024), for example, employs338

RL with a reward function specifically designed to339

maximize structural diversity, effectively mitigat-340

ing SFT’s tendency toward mode collapse.341

Property Control: Preference-based methods also342

significantly improve multi-property optimization.343

SmileyLlama (Cavanagh et al., 2024) utilizes DPO344

to improve adherence to property constraints by345

learning from preferences between correct and in-346

correct molecules. Mol-MoE (Calanzone et al.,347

2025) uses a preference objective to train a Mixture-348

of-Experts router, enabling specialization for dif-349

ferent property requirements. Contrastive methods350

like CPO (Xu et al., 2024) also refine molecule351

quality by learning from comparative data (Gk-352

oumas, 2024; Gkoumas and Liakata, 2024).353

Validity: Beyond text-based approaches, prefer-354

ence tuning can enhance validity by improving355

how models utilize structural information. Mol-356

LLM (Lee et al., 2025) addresses the "graph bypass357

phenomenon" where models ignore 2D structural358

inputs. Through Molecular Structure Preference359

Optimization (MolPO), it trains the model to dis-360

tinguish between correct and perturbed molecular 361

graphs, forcing deeper engagement with structural 362

information and thereby improving the validity. 363

In summary, Preference Tuning excels at diversity 364

by explicitly rewarding novelty, provides refined 365

multi-property control through comparative learn- 366

ing, and can enhance validity in multi-modal set- 367

tings. However, it offers no direct improvement 368

to synthesizability and requires substantial effort 369

to obtain high-quality preference data or design 370

appropriate reward functions. 371

4 Molecule Optimization 372

Molecule optimization is the task of refining molec- 373

ular structures to improve one or more desired 374

properties, such as solubility, binding affinity, or 375

synthetic accessibility. Unlike molecule genera- 376

tion, optimization starts with an initial molecule 377

and proposes targeted structural modifications to 378

achieve specific goals. This section summarizes 379

LLM-centric molecule optimization methods, an- 380

alyzing how different learning paradigms address 381

the four fundamental challenges in this more con- 382

strained but equally important task. 383

4.1 Molecule Optimization without Tuning 384

4.1.1 Zero-Shot Prompting 385

Property Control: Zero-Shot Prompting lever- 386

ages the pre-trained knowledge of LLMs to per- 387

form edits based on natural language instructions 388

alone. This paradigm enables flexible property 389

modification through natural language specifica- 390

tions. For example, LLM-MDE (Bhattacharya et al., 391

2024) uses detailed prompts to specify desired prop- 392

erty changes and structural constraints, enabling 393

controlled modifications. MOLLEO (Wang et al., 394

2025) integrates LLMs into evolutionary frame- 395

works, using prompt-based sampling to perform 396

mutations and crossovers. 397

In summary, zero-shot prompting excels at express- 398

ing diverse optimization goals flexibly, but its re- 399

liance on general pre-trained knowledge results in 400

limited precision for property control and poor per- 401

formance on validity and synthesizability. 402

4.1.2 In-Context Learning 403

Property Control: ICL enhances property control 404

by providing examples of successful molecular ed- 405

its within the prompt. This allows the LLM to learn 406

optimization patterns from context. CIDD (Gao 407

et al., 2025) implements a multi-step pipeline of 408
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interaction analysis, design, and reflection, feed-409

ing previous designs back into the context. LLM-410

EO (Lu et al., 2024) and MOLLM (Ran et al.,411

2025) integrate LLMs into evolutionary algorithms,412

where historical data from previous generations413

serves as in-context examples. BOPRO (Agarwal414

et al., 2025) combines ICL with Bayesian optimiza-415

tion for more sophisticated example selection.416

Validity: To improve validity, retrieval-augmented417

methods enhance example quality. Chat-418

Drug (Liu et al., 2024c) retrieves structurally419

similar molecules to inform proposals, while420

Re2DF (Le and Chawla, 2024) incorporates va-421

lidity feedback from RDKit (Landrum et al., 2013)422

directly into the prompt to guide the model toward423

valid outputs.424

In summary, ICL offers more guided and iterative425

control than zero-shot methods through example-426

based learning, improving both property control427

and validity. However, its effectiveness depends428

heavily on example quality, and it still provides429

limited solutions for ensuring synthesizability or430

enhancing diversity.431

4.2 Molecule Optimization with Tuning432

4.2.1 Supervised Fine-Tuning433

SFT adapts pre-trained LLMs for molecule opti-434

mization by training them on curated datasets of435

input molecules paired with their corresponding op-436

timized outputs. This supervision allows the model437

to learn how to perform controlled structural edits438

based on specific objectives.439

Property Control: While smaller Transformer-440

based chemical language models have shown po-441

tential for optimization tasks (Ross et al., 2022,442

2024; Wu et al., 2024b; Dai et al., 2025; Liu et al.,443

2025c), foundation-scale LLMs enable more ad-444

vanced capabilities through SFT. By training on445

instruction datasets, models learn precise single-446

and multi-property optimization. DrugAssist (Ye447

et al., 2025) fine-tunes LLaMA-2-7B-Chat on448

the MolOpt-Instructions dataset for single/dual-449

property tasks. GeLLM3O (Dey et al., 2025)450

extends this to multi-property optimization with451

strong out-of-distribution generalization. Multi-452

Mol (Yu et al., 2025) employs a collaborative frame-453

work where a fine-tuned worker generates candi-454

dates and a research agent (GPT-4o) ranks them us-455

ing literature-derived knowledge. DrugLLM (Liu456

et al., 2024d) introduces group-based molecular457

representation (GMR) to better align structure and 458

semantics for controlled modifications. 459

Diversity: SFT enables population-based optimiza- 460

tion that balances property improvement with diver- 461

sity. LLM-Enhanced GA (Bedrosian et al., 2024) 462

replaces traditional genetic operators with prompt- 463

based sampling from high-performing molecules, 464

incorporating explicit oracle modeling through SFT 465

when performance stagnates to progressively refine 466

understanding of the property landscape. 467

Validity: Multi-modal SFT approaches enhance 468

validity by incorporating richer structural informa- 469

tion (Zhang et al., 2024c; Lin et al., 2024; Naka- 470

mura et al., 2025). Molx-Enhanced LLM (Le et al., 471

2024) integrates SMILES, 2D graphs, and finger- 472

prints into a unified embedding. Through fine- 473

tuning the multi-modal MolX module, the model 474

captures both global topology and local substruc- 475

tures essential for chemically valid modifications. 476

In summary, SFT excels at precise property con- 477

trol through explicit instruction-based training and 478

shows promise for diversity in population-based 479

frameworks. Multi-modal SFT further enhances 480

validity by leveraging structural information. How- 481

ever, its effectiveness remains tied to training data 482

quality, with limited inherent capabilities for as- 483

sessing synthesizability. 484

4.2.2 Preference Tuning 485

Preference Tuning refines tuned LLMs by aligning 486

them with task-specific goals or preferences (Park 487

et al., 2025; Chen et al., 2025). While RL- 488

based alignment techniques built on smaller Trans- 489

former architectures have shown promise (Liu 490

et al., 2025b,d), the application of offline prefer- 491

ence methods to large foundation models has en- 492

abled more scalable optimization. 493

Property Control: Preference tuning excels at 494

multi-property optimization through comparative 495

learning. NatureLM (Xia et al., 2025) exempli- 496

fies this approach by augmenting its post-trained 497

8B model using Direct Preference Optimization 498

(DPO). Instead of training on absolute labels or 499

scalar rewards, the model learns from 179.5k 500

prompt-response pairs, where each instance con- 501

tains a "preferred" and "rejected" molecular output 502

for the same optimization goal. By learning from 503

these comparative preferences, NatureLM demon- 504

strates improved alignment across nine pharmaco- 505

logically relevant properties, showcasing DPO’s 506
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Datasets

Pretraining-Only
ZINC (Irwin et al., 2012), PubChem (Kim et al., 2016, 2019, 2025),
ChemData (Zhang et al., 2024a), MuMOInstruct (Dey et al., 2025),
Mol-Instructions (Fang et al., 2023)

Benchmark-Only MoleculeNet (Wu et al., 2018), ChemBench (Mirza et al., 2024a),
MOSES (Polykovskiy et al., 2020), TOMG-Bench (Li et al., 2024a)

Pretraining & Benchmark

ChEMBL (Gaulton et al., 2012), ChEBI-20 (Edwards et al., 2021), QM9 (Pinheiro et al., 2020),
CrossDocked2020 (Francoeur et al., 2020), Dockstring (García-Ortegón et al., 2022),
MolOpt-Instructions (Ye et al., 2025), L+M-24 (Edwards et al., 2024),
SMolInstruct (Yu et al., 2024b), OGBG-MolHIV (Hu et al., 2020)

Metrics

Validity
Validity Rate (Polykovskiy et al., 2020), EM (Rajpurkar et al., 2016),
BLEU (Papineni et al., 2002), Levenshtein (Levenshtein, 1966),
Chemical Correctness (RDKit) (Landrum et al., 2013)

Synthesizability SA Score (Ertl and Schuffenhauer, 2009), SCScore (Coley et al., 2018),
Retrosynthetic Accessibility (Genheden et al., 2020)

Property Control
LogP (Hansch et al., 1968), QED (Bickerton et al., 2012), TPSA (Ertl et al., 2000),
MW, HBD/HBA, Success Rate (Jin et al., 2020),
Pareto Optimality (Pareto, 1919), Composite Score (Jin et al., 2020)

Diversity

Uniqueness (Unique@1k (Wang et al., 2023), @10k (Bagal et al., 2021)),
Novelty Rate (Brown et al., 2019), IntDiv (Benhenda, 2017),
NCircle (Jang et al., 2024), Scaffold Diversity,
FTS (MACCS, Morgan, RDK) (Durant et al., 2002; Morgan, 1965; Landrum et al., 2013)

Figure 3: A Taxonomy of Benchmarking & Evaluation in Molecule Discovery.

ability to generalize preference-guided optimiza-507

tion across diverse chemical objectives.508

In summary, Preference Tuning, particularly509

through DPO, provides a powerful and scalable510

solution for multi-objective property control in op-511

timization tasks. However, it requires significant512

effort to curate high-quality preference datasets,513

and its application to other chemical challenges514

(validity, synthesizability, diversity) remains lim-515

ited in the optimization domain.516

5 Benchmarking and Evaluation517

Rigorous benchmarking and comprehensive evalu-518

ation are crucial for tracking the progress of LLM-519

centric molecular discovery. This section provides520

an overview of the evaluation ecosystem, organized521

around our four fundamental challenges, with com-522

prehensive details available in the appendices.523

5.1 Datasets524

Molecular datasets serve distinct purposes in LLM525

development, ranging from large-scale pretraining526

to targeted evaluation. Pretraining-Only Datasets527

like ZINC (Irwin et al., 2012) provide vast chem-528

ical structures, while instruction collections like529

ChemData (Zhang et al., 2024a) offer domain-530

specific knowledge for teaching chemical reason-531

ing. Benchmark-Only Datasets include TOMG-532

Bench (Li et al., 2024a) for text-guided generation533

and MOSES (Polykovskiy et al., 2020) for distri-534

bution learning. Dual-Purpose Datasets such as535

ChEMBL (Gaulton et al., 2012) support both train-536

ing and evaluation, enabling consistent benchmark-537

ing across different stages of model development.538

See Appendix B for detailed comparisons 539

5.2 Metrics 540

Evaluation metrics directly address our four fun- 541

damental challenges. Validity Metrics include 542

SMILES parsing, uniqueness rates (Unique@1k, 543

Unique@10k), and chemical correctness checks. 544

Synthesizability Metrics employ SA Score (Ertl 545

and Schuffenhauer, 2009) and SCScore (Coley 546

et al., 2018) for complexity prediction. Property 547

Control Metrics span single-property evaluations 548

(QED (Bickerton et al., 2012), LogP (Hansch et al., 549

1968), TPSA (Ertl et al., 2000)) and multi-property 550

optimization via success rates and Pareto optimal- 551

ity. Diversity Metrics assess chemical space ex- 552

ploration through novelty rate, internal diversity 553

(IntDiv) (Benhenda, 2017), and scaffold analysis. 554

Mathematical definitions and implementation de- 555

tails are provided in Appendix C. 556

5.3 External Tools 557

Evaluation requires diverse computational tools 558

that bridge chemistry and machine learning. Gen- 559

eral cheminformatics relies on RDKit (Landrum 560

et al., 2013) for property calculation and validation, 561

OpenBabel (O’Boyle et al., 2011) for format con- 562

version, and CDK (Willighagen et al., 2017) for 563

Java environments. Synthesizability assessment 564

employs AiZynthFinder (Genheden et al., 2020) 565

and ASKCOS (Coley et al., 2019) for retrosyn- 566

thetic planning. LLM-specific tools like Chem- 567

Crow (M. Bran et al., 2024) integrate language 568

models with chemistry tools. Detailed usage guide- 569

lines are in Appendix D. 570
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5.4 Evaluation Frameworks571

Standardized frameworks have evolved from572

classic to LLM-specific approaches. Gua-573

caMol (Brown et al., 2019) pioneered dual574

evaluation via distribution learning and goal-575

directed tasks, while MOSES (Polykovskiy et al.,576

2020) focused on comprehensive distribution met-577

rics. Recent frameworks address modern needs:578

MolScore (Thomas et al., 2024) unifies previous579

benchmarks with modular scoring, TDC (Huang580

et al., 2021) provides continuously updated leader-581

boards, and LLM-specific benchmarks like TOMG-582

Bench (Li et al., 2024a) evaluate instruction-583

following capabilities. However, all frameworks584

rely on computational validation without experi-585

mental verification—a critical limitation discussed586

in Appendix E.587

6 Conclusion and Future Work588

This survey presents the first comprehensive re-589

view of recent advances in LLM-centric molec-590

ular discovery, covering both generation and op-591

timization tasks. We introduced a novel taxon-592

omy that categorizes approaches based on their593

learning paradigms—distinguishing between meth-594

ods without LLM tuning (zero-shot prompting595

and in-context learning) and those with LLM596

tuning (supervised fine-tuning and preference597

tuning). Through systematic analysis of how598

these approaches address four fundamental chal-599

lenges—validity, synthesizability, property control,600

and diversity—we uncovered key patterns in the601

current landscape.602

Key Insights: Our analysis reveals that no sin-603

gle approach dominates across all challenges, with604

each exhibiting distinct trade-offs. Zero-Shot605

prompting offers unmatched flexibility for diverse606

tasks but struggles with chemical validity and pre-607

cise property control. ICL improves guidance608

through carefully selected examples but remains609

fundamentally limited by example quality and610

lacks a systematic understanding of chemical prin-611

ciples. SFT excels at ensuring validity through612

large-scale chemical training and enables precise613

property control via instruction tuning, yet often614

suffers from limited diversity due to mode col-615

lapse. Preference tuning emerges as the primary616

solution for diversity through reward-based explo-617

ration while maintaining multi-property optimiza-618

tion capabilities. However, across all methods, syn-619

thesizability remains the most poorly addressed620

challenge—current approaches generate molecules 621

that are computationally valid but often practically 622

impossible to synthesize, representing a critical 623

bottleneck for real-world deployment. 624

Based on these insights and current limitations, we 625

identify three priority areas for advancing the field: 626

Prioritizing Synthesizability in Generation: As 627

illustrated in recent analyses (Walters, 2024), cur- 628

rent LLMs frequently produce molecules through 629

string manipulation rather than chemical under- 630

standing, resulting in theoretically valid but syn- 631

thetically inaccessible structures. Future work must 632

move beyond post-hoc SA Score filtering to in- 633

corporate synthesizability as a primary constraint 634

during generation. This includes: (i) training on 635

datasets of successfully synthesized molecules; (ii) 636

integrating retrosynthetic planning directly into the 637

generation process; (iii) developing reward func- 638

tions that explicitly penalize synthetic complexity 639

during preference tuning. 640

Multi-Modal Molecular Understanding: Cur- 641

rent LLM approaches predominantly operate on 642

SMILES strings, missing crucial structural informa- 643

tion. Future architectures should jointly encode and 644

reason over multiple representations—SMILES 645

strings, 2D molecular graphs, 3D conformations, 646

and quantum chemical properties (Lu et al., 2023; 647

Pirnay et al., 2025). This requires developing uni- 648

fied tokenization schemes that preserve chemical 649

semantics across modalities while enabling effi- 650

cient transformer processing. 651

Unified Benchmarks for LLM-Based Molecu- 652

lar Design: Current frameworks like MOSES and 653

GuacaMol were designed for traditional generative 654

models and lack standardization for LLM evalua- 655

tion. We urgently need a unified benchmark with: 656

(i) standardized train/validation/test splits specifi- 657

cally curated for LLMs, preventing data leakage 658

and ensuring fair comparison across models; (ii) 659

comprehensive evaluation metrics that go beyond 660

traditional measures to include LLM-specific ca- 661

pabilities such as instruction-following accuracy, 662

multi-step reasoning ability, and robustness to rep- 663

resentation variations (SMILES, IUPAC, natural 664

language); (iii) a continuously updated leaderboard 665

tracking progress in LLM-based molecular design. 666

Such a unified benchmark would provide the com- 667

munity with a clear view of where we stand and 668

where we need to improve in applying LLMs to 669

molecular discovery. 670
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7 Limitations671

This survey focuses on the use of large language672

models for two core tasks in text-guided molecu-673

lar discovery: molecule generation and molecule674

optimization. These tasks represent the most di-675

rect applications of LLMs in molecular design and676

are the primary scope of current research. We ac-677

knowledge that LLMs can also significantly impact678

other important areas of molecular science, such as679

reaction prediction, retrosynthesis, protein-ligand680

modeling, and automated experimentation (Zhang681

et al., 2024d; Liu et al., 2024b, 2025a). Addition-682

ally, while we focus on models with > 1B param-683

eters to ensure emergent capabilities, specialized684

chemical language models below this threshold re-685

main valuable for specific applications. Given the686

broad and rapidly evolving landscape, we leave a687

systematic review of these additional directions to688

future work. By maintaining this focused scope, we689

provide a detailed resource for researchers working690

on LLM-driven molecular generation and optimiza-691

tion, while recognizing that experimental validation692

of computationally generated molecules remains693

a critical challenge beyond the scope of computa-694

tional metrics discussed here.695
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A Data Modalities for Molecular LLMs1351

LLMs used for molecular generation and optimiza-1352

tion interface with structured molecular data in1353

various modalities. Each modality offers distinct1354

structural or physicochemical information, with1355

different implications for model performance and1356

capabilities. As shown in Fig. 4, commonly used1357

molecular representations can be categorized into1358

the following three formats:1359

• 1D Sequence Representations (S): These are1360

linear string encodings of molecular structures.1361

Common formats include:1362

– SMILES (Simplified Molecular Input Line1363

Entry System) (Weininger, 1988): Most1364

widely used due to direct compatibility with1365

LLM tokenizers, but sensitive to representa-1366

tion choices (canonical vs. randomized)1367

– SELFIES (Self-Referencing Embedded1368

Strings) (Krenn et al., 2020): Guarantees1369

validity through constrained grammar but at1370

the cost of longer sequences1371

– IUPAC nomenclature (Favre and Powell,1372

2014): Systematic chemical names used as1373

auxiliary representations1374

Advantages: Direct LLM compatibility, com-1375

pact representation, human-readable1376

Limitations: Loss of spatial information, multi-1377

ple valid representations for same molecule, dif-1378

ficulty capturing stereochemistry1379

• 2D Graph Representations (G): A molecule1380

is represented as a graph G = (V,E), where1381

nodes v ∈ V correspond to atoms and edges1382

e ∈ E correspond to chemical bonds. Node and1383

edge features encode atom types, bond orders,1384

aromaticity, and other topological attributes.1385

– Integration approaches include: hybrid1386

LLM-GNN architectures (e.g., Uni-1387

MoT (Zhang et al., 2024b)), graph1388

serialization methods, and cross-attention1389

mechanisms (e.g., MvMRL)1390

– Recent work shows significant improvement1391

in molecular discovery when combining1392

graphs with SMILES (Zhang et al., 2024b)1393

Advantages: Captures topological connectivity,1394

invariant to atom ordering, explicit bond infor-1395

mation1396

Limitations: Requires specialized architectures, 1397

computational overhead, potential "graph bypass 1398

phenomenon" where LLMs ignore structural in- 1399

formation (Lee et al., 2025) 1400

• 3D Geometric Representations (X): These rep- 1401

resentations capture atomic coordinates in three- 1402

dimensional space. Formally, X = {(ai, r⃗i)}Ni=1, 1403

where ai denotes the atomic species and r⃗i ∈ R3 1404

specifies the Cartesian coordinates of atom i. 1405

– Critical for: stereochemistry determination, 1406

conformational analysis, binding affinity 1407

prediction 1408

– Integration methods: learned 3D embed- 1409

dings, auxiliary conformer generation mod- 1410

els (e.g., RDKit), geometric deep learning 1411

approaches 1412

Advantages: Captures spatial relationships, es- 1413

sential for stereochemistry, enables interaction 1414

modeling 1415

Limitations: High computational cost, multiple 1416

conformers per molecule, challenging to tokenize 1417

for LLMs 1418

B Datasets 1419

Datasets are crucial resources for advancing LLM- 1420

centric molecule design, serving extensively in 1421

both the training and evaluation phases of model 1422

development. Table 1 provides a comprehensive 1423

summary of commonly utilized molecule datasets, 1424

detailing their key features. For each dataset listed, 1425

the table specifies its Last Update year, approxi- 1426

mate Scale (number of entries), whether it includes 1427

natural language Instruction components, and its 1428

suitability for Pretraining LLMs or as a Bench- 1429

mark for evaluation. Furthermore, the table in- 1430

dicates the types of Molecule Representations 1431

available within each dataset, such as SMILES, IU- 1432

PAC names, ready-to-dock formats (Dock), graph 1433

structures (Graph), 3D coordinates (3D), or for- 1434

mal chemical ontologies (Ontology). Finally, it 1435

highlights whether a dataset supports Generation 1436

or Optimization tasks, lists Other Tasks it is com- 1437

monly used for (e.g., property prediction, transla- 1438

tion), and provides a Link to access the resource. 1439

The subsequent subsections categorize these 1440

datasets based on their primary application focus, 1441

aligning with the classification used in Section 5 of 1442

the main text. 1443
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Figure 4: Illustration of an example molecule and its representation in different data modalities. From left to
right following the 2D chemical structure diagram: its 1D SMILES string representation, a simplified 2D graph
view, and its 3D ball-and-stick model.

B.1 Pretraining-Only Datasets1444

Pretraining-only datasets typically contain diverse1445

molecular structures and associated property in-1446

formation, designed to support broad generaliza-1447

tion capabilities when pretraining LLMs for down-1448

stream tasks. These datasets generally do not in-1449

clude explicit natural language instructions or task-1450

specific labels for direct supervised learning of spe-1451

cific generation or optimization objectives.1452

• ZINC: ZINC (Irwin et al., 2012) is a public and1453

comprehensive database containing over 20 mil-1454

lion commercially available molecules presented1455

in biologically relevant representations. These1456

molecules can be downloaded in popular ready-1457

to-dock formats and various subsets, making1458

ZINC widely used for distribution learning-based1459

and goal-oriented molecule generation tasks.1460

• PubChem: PubChem (Kim et al., 2016, 2019,1461

2025) serves as a vast public chemical informa-1462

tion repository, holding over 750 million records.1463

It covers a wide array of data, including chemi-1464

cal structures, identifiers, bioactivity outcomes,1465

genes, proteins, and patents, and is organized1466

into three interlinked databases: Substance (con-1467

tributed chemical information), Compound (stan-1468

dardized unique structures), and BioAssay (bio-1469

logical experiment details).1470

• ChemData: ChemData (Zhang et al., 2024a)1471

is a large-scale dataset specifically curated for1472

fine-tuning chemical LLMs, containing 7 million1473

instruction query-response pairs. Derived from1474

various online structural datasets like PubChem1475

and ChEMBL, it encompasses a broad range of1476

chemical domain knowledge and is frequently1477

used for tasks in molecule understanding, chemi-1478

cal process reasoning, and other domain-specific1479

applications.1480

• Mol-Instructions: Mol-Instructions (Fang et al.,1481

2023) is a large-scale, diverse, and high-1482

quality dataset designed for the biomolecular do-1483

main, featuring over 2 million carefully curated1484

biomolecular instructions. It is structured around 1485

three core components: molecule-oriented in- 1486

structions (148.4K across six tasks focusing 1487

on properties, reactions, and design), protein- 1488

oriented instructions (505K samples across five 1489

task categories related to protein structure, func- 1490

tion, and design), and biomolecular text instruc- 1491

tions (53K for bioinformatics and chemoinfor- 1492

matics NLP tasks like information extraction and 1493

question answering). 1494

• MuMOInstruct: MuMOInstruct (Dey et al., 1495

2025) is presented as the first high-quality 1496

instruction-tuning dataset focused on complex, 1497

multi-property molecular optimization tasks. Un- 1498

like datasets such as MolOpt-Instruction (Ye 1499

et al., 2025) that primarily target single- or dual- 1500

property tasks, MuMOInstruct emphasizes tasks 1501

involving at least three properties, facilitating 1502

the evaluation of LLMs in both in-domain and 1503

out-of-domain settings. 1504

B.2 Benchmark-Only Datasets 1505

Benchmark-only datasets are specifically curated 1506

for the evaluation of models, particularly in genera- 1507

tive molecular tasks. These datasets often feature 1508

structured input-output pairs, such as instruction- 1509

molecule pairings, and are typically smaller in 1510

scale, manually verified, and tailored to specific 1511

evaluative purposes. 1512

• MoleculeNet: A large-scale benchmark com- 1513

pendium, MoleculeNet (Wu et al., 2018) is de- 1514

rived from multiple public databases. It com- 1515

prises 17 curated datasets with over 700,000 com- 1516

pounds, represented textually (e.g., SMILES) 1517

and in 3D formats. Covering a wide array of 1518

properties categorized into quantum mechanics, 1519

physical chemistry, biophysics, and physiology, 1520

it serves as a standard for evaluating molecular 1521

property prediction models. 1522

• ChemBench: ChemBench (Mirza et al., 2024a) 1523

offers a comprehensive framework for bench- 1524

marking the chemical knowledge and reasoning 1525
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Table 1: Summary of commonly used molecule datasets and their features. Dock denotes the "ready-to-dock"
format; Ontology denotes the structured representation of the molecule; Captioning denotes molecule captioning
task; Docking denotes molecule docking (a way to find correct molecule binds for proteins); Translation denotes
the translation from textual knowledge to molecular features; Conversion denotes the translation between different
representations of a molecule’s identity; Prediction denotes property prediction, forward reaction prediction and
retrosynthesis tasks; QM denotes hybrid quantum mechanics.

Datasets Last
Update Scale Instruc-

tion
Pretrain-

ing
Bench
-mark

Molecule Representations Genera-
tion

Optimi-
zation Other Tasks Link

SMILES IUPAC Dock Graph 3D Ontology

PubChem
(Kim et al., 2016, 2019, 2025) 2025 119M ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ Property Prediction & Biology Domain Link

ChEMBL
(Gaulton et al., 2012) 2024 >20M ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ Prediction & ML Benchmark Link

CrossDocked2020
(Francoeur et al., 2020) 2024 22.5M ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ Docking Datasets Link

ZINC
(Irwin et al., 2012) 2023 >980M ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ Ligand Discovery Link

Dockstring
(García-Ortegón et al., 2022) 2022 >260k ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ Virtual Screening Link

ChEBI-20
(Edwards et al., 2021) 2021 33k ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ Translation & Classification & Captioning Link

OGBG-MolHIV
(Hu et al., 2020) 2020 ∼41k ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ Graph Property Prediction Link

MOSES
(Polykovskiy et al., 2020) 2020 ∼1.9M ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ De novo Design Link

MoleculeNet
(Wu et al., 2018) 2019 700k ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ML Benchmark Link

QM9
(Pinheiro et al., 2020) 2014 134k ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ Hybrid QM/ML Modeling Link

TOMG-Bench
(Li et al., 2024a) 2025 5k ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ Molecule Editing Link

MuMOInstruct
(Dey et al., 2025) 2025 873k ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ — Link

ChemData
(Zhang et al., 2024a) 2024 7M ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ Conversion & Prediction & Reaction Link

ChemBench
(Mirza et al., 2024a) 2024 4k ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ Reaction Benchmark & Virtual Screening Link

Mol-Instructions
(Fang et al., 2023) 2024 2M ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ Translation, Retrosynthesis Link

MolOpt-Instructions
(Ye et al., 2025) 2024 1M ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ — Link

L +M-24
(Edwards et al., 2024) 2024 148k ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ Captioning Link

SMolInstruct
(Yu et al., 2024b) 2024 3.3M ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ Captioning & Prediction Link

abilities of LLMs. It consists of thousands of1526

manually curated question-answer pairs from di-1527

verse sources, focusing on three core aspects:1528

Calculation, Reasoning, and Knowledge.1529

• TOMG-Bench: As the first benchmark dedi-1530

cated to the open-domain molecule generation1531

capabilities of LLMs, TOMG-Bench (Text-based1532

Open Molecule Generation Benchmark) (Li et al.,1533

2024a) contains 45,000 samples. It is structured1534

around three primary tasks: molecule editing1535

(MolEdit), molecule optimization (MolOpt), and1536

customized molecule generation (MolCustom).1537

• MOSES: MOSES (Molecular Sets)1538

(Polykovskiy et al., 2020) is a task-specific1539

resource designed for both training and bench-1540

marking molecule generation models in drug1541

discovery. Containing approximately 1.9 million1542

molecules in SMILES format derived from the1543

ZINC Clean Leads dataset, it also furnishes1544

training, testing, and scaffold-split subsets, along1545

with built-in evaluation metrics.1546

B.3 Datasets for Pretraining & Benchmark 1547

Applications 1548

A distinct category of datasets offers the flexibil- 1549

ity to be used for both pretraining LLMs and for 1550

subsequent benchmarking. These resources often 1551

combine substantial scale with features amenable 1552

to diverse evaluation scenarios. 1553

• ChEMBL: ChEMBL (Gaulton et al., 2012) is 1554

a manually curated, open-access database focus- 1555

ing on drug-like bioactive molecules. It houses 1556

5.4 million bioactivity measurements for over 1 1557

million compounds and 5,200 protein targets, ef- 1558

fectively integrating chemical, bioactivity, and 1559

genomic data to support drug discovery and the 1560

translation of genomic insights into therapeutics. 1561

• ChEBI-20: ChEBI-20 (Edwards et al., 2021), 1562

derived from the ChEBI database, is a freely 1563

available, manually curated dictionary of molec- 1564

ular entities concentrated on small chemical com- 1565

pounds. It includes over 20,000 molecules rep- 1566

resented by SMILES strings, natural language 1567

descriptions, and ontology terms, widely em- 1568

18

https://pubchem.ncbi.nlm.nih.gov/docs/downloads
https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_35/
https://github.com/gnina/models/tree/master/data/CrossDocked2020
https://wiki.docking.org/index.php?title=ZINC15:Getting_started#Downloading_SMILES
https://figshare.com/articles/dataset/dockstring_dataset/16511577
https://github.com/cnedwards/text2mol/tree/master/data
https://ogb.stanford.edu/docs/graphprop/#ogbg-mol
https://github.com/molecularsets/moses
https://github.com/deepchem/deepchem
https://figshare.com/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/978904/5
https://github.com/phenixace/TOMG-Bench
https://huggingface.co/datasets/NingLab/MuMOInstruct
https://huggingface.co/datasets/AI4Chem/ChemData700K
https://huggingface.co/datasets/jablonkagroup/ChemBench
https://huggingface.co/collections/zjunlp/mol-instructions-662e0b9435ab6df9593e8ea0
https://huggingface.co/datasets/blazerye/MolOpt-Instructions
https://github.com/language-plus-molecules/LPM-24-Dataset
https://huggingface.co/datasets/osunlp/SMolInstruct/tree/main


ployed in molecule generation and instruction-1569

based tasks requiring chemical understanding.1570

• CrossDocked2020: CrossDocked2020 (Fran-1571

coeur et al., 2020) is a large-scale dataset specifi-1572

cally geared towards structure-based drug design1573

(SBDD). It features over 22 million 3D docked1574

poses of protein-ligand pairs, making it a valu-1575

able resource for tasks like pocket-conditioned1576

3D molecule generation.1577

• Dockstring: Dockstring (García-Ortegón et al.,1578

2022) provides a large-scale, well-curated dataset1579

for molecular docking. It encompasses an exten-1580

sive collection of docking scores and poses for1581

more than 260,000 ligands against 58 medically1582

relevant targets, and includes pharmaceutically1583

relevant benchmark tasks such as virtual screen-1584

ing and the de novo design of selective kinase1585

inhibitors.1586

• QM9: QM9(The Quantum Mechanics 9)1587

dataset (Pinheiro et al., 2020) is a public quantum1588

chemistry resource containing approximately1589

134,000 small organic molecules (composed of1590

H, C, N, O, F; up to nine non-hydrogen atoms).1591

It provides SMILES representations, 3D geome-1592

tries, and quantum chemical properties, widely1593

utilized for training and evaluating molecular1594

property prediction models.1595

• SMolInstruct: SMolInstruct (Yu et al., 2024b)1596

is a large-scale, comprehensive, and high-quality1597

dataset for instruction tuning LLMs in chemistry.1598

It consists of 3.3 million language-molecule pairs1599

and 1.6 million distinct molecules, covering four1600

types of molecular representations and 14 differ-1601

ent tasks, with molecules represented in SMILES1602

or SELFIES format.1603

• OGBG-MolHIV: OGBG-MolHIV (Hu et al.,1604

2020), part of the Open Graph Benchmark, is1605

an open-access, task-specific dataset for binary1606

molecular property prediction, specifically for1607

classifying HIV inhibition. It contains 41,1271608

unique molecules in graph format, where nodes1609

(atoms) have 9 numerical features and edges1610

(bonds) have 3-dimensional features (type, stere-1611

ochemistry, conjugation). It is derived from1612

MoleculeNet and preprocessed using RDKit.1613

• MolOpt-Instructions: MolOpt-Instructions (Ye1614

et al., 2025) is an instruction-based dataset tai-1615

lored for molecule optimization, containing over1616

1 million molecule-molecule pairs. It was con-1617

Molecule Discovery
Molecule Generation
Query: Build a molecule that meets the requirement: The molecule is 
a phenolate anion obtained by deprotonation of the 7-hydroxy group 
of noreugenin. It is the major microspecies at pH 7.3 (according to 
Marvin v 6.2.0.). It has a role as a plant metabolite. It is a conjugate 
base of a noreugenin.
Response: Here is a potential molecule:
CC1=CC(=O)C2=C([O-])C=C(O)C=C2O

Molecule Optimization
Query: Help me increase the water solubility value of the molecule
Cc1cc(C(COCc2ccccc2)sc(C)(C)C)sn1 
Response: Here is a potential molecule:
Cc1cc(C(N)COCc2ccccc2)sn1

Figure 5: Visualization of the Instruction dataset of
molecule generation and optimization task.

structed by selecting molecules from ZINC and 1618

using MMPDB to generate and filter for highly 1619

similar pairs, covering six molecular properties 1620

including solubility, BBBP, and hERG inhibition. 1621

• L+M-24: L+M-24 (Language + Molecules 24 1622

Tasks) (Edwards et al., 2024) is a large-scale, 1623

multi-task instruction dataset designed to lever- 1624

age the benefits of natural language (composition- 1625

ality, functionality, abstraction) in molecule de- 1626

sign. Derived from PubChem and other sources, 1627

it contains over 148,000 language-molecule pairs 1628

spanning 24 distinct molecule design tasks across 1629

various application domains. 1630

C Evaluation Metrics 1631

Evaluation metrics for LLM-centric molecular dis- 1632

covery are organized around the four fundamental 1633

challenges identified in our survey. Each category 1634

of metrics addresses specific aspects of molecular 1635

generation and optimization quality, reflecting the 1636

unique requirements of chemical tasks compared 1637

to general text generation. 1638

C.1 Validity Metrics 1639

Validity metrics assess whether generated 1640

molecules adhere to fundamental chemical rules 1641

and structural constraints. Unlike grammatically 1642

incorrect text, invalid molecules are physically 1643

impossible and unusable. 1644

• Validity Rate (Polykovskiy et al., 2020): Frac- 1645

tion of generated molecules that are chemically 1646

valid (parsable by RDKit). High validity rates 1647

(>90%) indicate successful learning of chemical 1648

grammar. 1649
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• Exact Match (EM) (Rajpurkar et al., 2016):1650

Measures perfect sequence matching between1651

generated and target molecules. Critical for tasks1652

requiring precise molecular replication.1653

• BLEU Score (Papineni et al., 2002): Adapted1654

from NLP, measures n-gram overlap between1655

generated and reference SMILES. Higher scores1656

indicate better sequence-level fidelity.1657

• Levenshtein Distance (Levenshtein, 1966): Min-1658

imum edit distance between molecular strings.1659

Lower values indicate closer structural similarity.1660

• Chemical Correctness (Landrum et al., 2013):1661

RDKit-based validation checking valency rules,1662

ring systems, and aromatic systems. Essential for1663

filtering chemically impossible structures.1664

Performance Benchmarks: State-of-the-art1665

LLMs achieve 85-95% validity on standard bench-1666

marks, with multi-modal approaches reaching1667

95-99%. However, validity alone is insuffi-1668

cient—many valid molecules are practically use-1669

less.1670

C.2 Synthesizability Metrics1671

Synthesizability metrics evaluate whether valid1672

molecules can be practically synthesized in a lab-1673

oratory setting. This addresses the critical gap be-1674

tween theoretical validity and practical utility.1675

• SA Score (Ertl and Schuffenhauer, 2009): Syn-1676

thetic Accessibility score (1-10 scale, lower is1677

better) based on molecular complexity and frag-1678

ment contributions. Molecules with SA > 6 are1679

typically considered difficult to synthesize.1680

• SCScore (Coley et al., 2018): Synthetic Com-1681

plexity score learned from reaction databases.1682

More accurate than SA Score but computation-1683

ally intensive.1684

• Retrosynthetic Accessibility (Genheden et al.,1685

2020): Evaluates synthesizability through auto-1686

mated retrosynthetic planning. Molecules with1687

viable synthetic routes are considered accessible.1688

Current Limitations: Most LLM-generated1689

molecules have poor synthesizability (average SA1690

Score > 4.5), highlighting a major gap in current ap-1691

proaches. Only specialized models like SynLlama1692

directly address this challenge.1693

C.3 Property Control Metrics 1694

Property control metrics assess the model’s ability 1695

to generate molecules with desired physicochemi- 1696

cal or biological properties, often requiring multi- 1697

objective optimization. 1698

C.3.1 Single-Property Metrics 1699

• LogP (Hansch et al., 1968): Octanol-water parti- 1700

tion coefficient, indicating hydrophobicity. Tar- 1701

get ranges vary by application (e.g., -0.4 to 5.6 1702

for oral drugs). 1703

• QED (Bickerton et al., 2012): Quantitative Es- 1704

timate of Drug-likeness (0-1 scale). Combines 1705

multiple properties; scores > 0.67 indicate drug- 1706

like molecules. 1707

• TPSA (Ertl et al., 2000): Topological Polar Sur- 1708

face Area. Values < 140 Ų correlate with oral 1709

bioavailability. 1710

• Molecular Weight (MW), HBD/HBA: Basic 1711

descriptors for drug-likeness (Lipinski’s Rule of 1712

Five). 1713

C.3.2 Multi-Property Metrics 1714

• Success Rate (Jin et al., 2020): Fraction of 1715

molecules meeting all specified property con- 1716

straints. Typical success rates: 60-80% for single 1717

properties, 20-40% for multiple properties. 1718

• Pareto Optimality (Pareto, 1919): Identifies so- 1719

lutions optimal across multiple objectives. Essen- 1720

tial for understanding trade-offs between compet- 1721

ing properties. 1722

• Composite Score (Jin et al., 2020): Weighted 1723

combination of multiple properties. Allows 1724

single-objective optimization of multi-property 1725

goals. 1726

Benchmarking Insights: Instruction-tuned mod- 1727

els show 15-25% improvement in property con- 1728

trol over base models. Multi-property optimization 1729

remains challenging, with success rates dropping 1730

exponentially with constraint count. 1731

C.4 Diversity Metrics 1732

Diversity metrics evaluate the breadth of chemi- 1733

cal space explored, preventing mode collapse and 1734

encouraging novel discoveries. 1735

• Uniqueness (Wang et al., 2023; Bagal et al., 1736

2021): Fraction of non-duplicate valid molecules. 1737

20



Measured at different scales:1738

– Unique@1k: Short-term diversity (typical:1739

95-99%)1740

– Unique@10k: Long-term diversity (typical:1741

85-95%)1742

• Novelty Rate (Brown et al., 2019): Fraction of1743

generated molecules not in training set. Low1744

novelty (<50%) indicates overfitting.1745

• Internal Diversity (IntDiv) (Benhenda, 2017):1746

Average pairwise dissimilarity within generated1747

set:1748

IntDivp(S) = 1−

 1

|S|2
∑

si,sj∈S
T (si, sj)

p

 1
p

1749

• NCircle (Jang et al., 2024): Largest subset with1750

pairwise Tanimoto similarity below threshold.1751

Higher values indicate better structural diversity.1752

• Scaffold Diversity: Number of unique Bemis-1753

Murcko scaffolds. Critical for avoiding "decora-1754

tion" of known structures.1755

• Fingerprint Tanimoto Similarity (FTS): Struc-1756

tural similarity using various fingerprints:1757

– MACCS keys (Durant et al., 2002): 166-bit1758

structural keys1759

– Morgan fingerprints (Morgan, 1965): Circu-1760

lar fingerprints1761

– RDKit fingerprints (Landrum et al., 2013):1762

Topological fingerprints1763

Key Findings: Supervised fine-tuning often re-1764

duces diversity (IntDiv drops 20-30%). Preference1765

tuning methods like Div-SFT successfully restore1766

diversity while maintaining other properties.1767

C.5 Integrated Evaluation Framework1768

No single metric captures all aspects of molecular1769

quality. We recommend:1770

1. Minimum requirements: Validity > 90%,1771

Uniqueness@1k > 95%1772

2. Task-specific priorities: Weight metrics1773

based on application (e.g., prioritize synthe-1774

sizability for lead optimization)1775

3. Multi-metric reporting: Always report all1776

four categories to reveal trade-offs1777

4. Baseline comparisons: Compare against both 1778

random generation and domain-specific base- 1779

lines 1780

D External Tools 1781

The evaluation of molecular generation and opti- 1782

mization models relies on a comprehensive ecosys- 1783

tem of computational tools that bridge chem- 1784

istry, machine learning, and specialized assessment 1785

frameworks. These tools can be categorized into 1786

three main groups based on their primary functions. 1787

D.1 General Cheminformatics Libraries 1788

RDKit (Landrum et al., 2013) has become the 1789

de facto standard in the field, providing extensive 1790

functionality for molecular representation, prop- 1791

erty calculation, and structure validation. It han- 1792

dles SMILES parsing, canonicalization, and valida- 1793

tion; calculates physicochemical properties includ- 1794

ing logP, molecular weight, TPSA, and hydrogen 1795

bond donors/acceptors; generates various molec- 1796

ular fingerprints (Morgan/ECFP, MACCS, RDK 1797

topological); performs substructure searching and 1798

Bemis-Murcko scaffold extraction; and validates 1799

chemical structures including aromatic system de- 1800

tection. Nearly all major benchmarks including 1801

MOSES and GuacaMol rely heavily on RDKit for 1802

their metric calculations. 1803

OpenBabel (O’Boyle et al., 2011) serves as the 1804

"universal translator" of chemical file formats, sup- 1805

porting over 110 formats and providing critical 1806

interoperability between different computational 1807

chemistry software. While it also offers descrip- 1808

tor calculation and structure manipulation, its pri- 1809

mary strength lies in format conversion, accessible 1810

through the PyBel Python interface. This capability 1811

is essential when integrating diverse chemical data 1812

sources or connecting different software tools in 1813

evaluation pipelines. 1814

CDK (Chemistry Development Kit) (Willighagen 1815

et al., 2017) provides a comprehensive Java-based 1816

cheminformatics library with mature graph algo- 1817

rithms for structural analysis and 3D molecular 1818

modeling. Its Java foundation makes it particularly 1819

suitable for integration into enterprise-level appli- 1820

cations, offering robust APIs for custom chemical 1821

informatics solutions. 1822

D.2 Synthesizability Assessment Tools 1823

Given that computational validity does not guar- 1824

antee practical synthesizability, specialized tools 1825
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have emerged to bridge this critical gap.1826

AiZynthFinder (Genheden et al., 2020) employs1827

neural network-guided Monte Carlo tree search1828

for retrosynthetic planning. It evaluates synthe-1829

sizability by attempting to find viable synthetic1830

routes from commercially available starting materi-1831

als, providing both binary feasibility assessments1832

and synthetic accessibility scores. The tool has be-1833

come increasingly important as the field recognizes1834

that many computationally valid molecules remain1835

synthetically inaccessible.1836

ASKCOS (Coley et al., 2019) (Automated System1837

for Knowledge-based Continuous Organic Synthe-1838

sis) offers a comprehensive platform that integrates1839

multiple machine learning models for forward reac-1840

tion prediction, retrosynthetic route planning, con-1841

dition recommendation, and synthetic complexity1842

evaluation. This unified approach provides more re-1843

liable synthesizability assessments by considering1844

multiple aspects of the synthetic process simultane-1845

ously.1846

D.3 LLM-Specific Integration Tools1847

The emergence of LLMs has necessitated new tools1848

that bridge natural language processing with chem-1849

ical computation.1850

ChemCrow (M. Bran et al., 2024) represents1851

a paradigm shift by augmenting LLMs with 171852

expert-designed chemistry tools. It enables LLMs1853

to execute chemical calculations they cannot per-1854

form natively, access real-time chemical databases,1855

perform safety checks on generated molecules,1856

and plan and evaluate synthetic routes. This tool-1857

augmented approach addresses the fundamental1858

limitation that LLMs, while excellent at pattern1859

recognition, lack the ability to perform precise1860

chemical calculations or access up-to-date chemi-1861

cal information.1862

ChemBench Package (Mirza et al., 2024b) pro-1863

vides a modular, extensible framework specifically1864

designed for benchmarking LLM performance on1865

chemical tasks. It offers standardized evaluation1866

pipelines through automated model querying, an-1867

swer parsing, and report generation, significantly1868

simplifying the process of evaluating LLMs on1869

chemical reasoning and generation tasks.1870

E Evaluation Frameworks 1871

The evolution of evaluation frameworks in molec- 1872

ular generation reflects the field’s progression 1873

from statistical distribution matching to instruction- 1874

following and multi-objective optimization. Each 1875

framework addresses specific limitations of its 1876

predecessors while introducing new evaluation 1877

paradigms. 1878

E.1 Classical Generation Frameworks 1879

MOSES (Molecular Sets) (Polykovskiy et al., 1880

2020) established the foundation for standardized 1881

evaluation by providing a carefully filtered dataset 1882

of 1.9M drug-like molecules from ZINC, a com- 1883

prehensive metric suite including validity, unique- 1884

ness, novelty, FCD, and fragment/scaffold similar- 1885

ity, baseline implementations of multiple architec- 1886

tures (CharRNN, VAE, AAE, ORGAN, JT-VAE), 1887

and standardized train/test splits to ensure fair com- 1888

parison. MOSES primarily focuses on distribu- 1889

tion learning—the ability of models to replicate 1890

the statistical properties of the training set. Its key 1891

contribution was creating a unified, reproducible 1892

testing ground for comparing different generative 1893

architectures. 1894

GuacaMol (Brown et al., 2019) significantly ex- 1895

panded the evaluation scope by introducing both 1896

distribution learning tasks using KL divergence 1897

and Fréchet ChemNet Distance, and goal-directed 1898

benchmarks comprising 20 tasks ranging from 1899

simple property maximization to complex multi- 1900

parameter optimization (MPO). These tasks were 1901

specifically designed to mirror real drug discov- 1902

ery scenarios, such as generating molecules similar 1903

to celecoxib but with improved properties. This 1904

dual approach better reflects the practical needs 1905

of molecular design, where both exploration (dis- 1906

tribution learning) and exploitation (goal-directed 1907

optimization) are crucial. 1908

E.2 Modern Unified Frameworks 1909

MolScore (Thomas et al., 2024) addresses the frag- 1910

mentation issue in molecular optimization evalua- 1911

tion through its modular architecture supporting 1912

over 40 scoring functions, unified interface for 1913

diverse molecular optimization algorithms, flex- 1914

ible aggregation methods for multi-objective opti- 1915

mization, and extensive configuration options via 1916

JSON/YAML. Its key innovation lies in decoupling 1917

scoring from optimization, allowing researchers to 1918

mix and match components freely while maintain- 1919

22



ing consistent evaluation protocols.1920

TDC (Therapeutics Data Commons) (Huang1921

et al., 2021) takes a community-driven approach by1922

providing 66+ datasets across 22+ therapeutic tasks,1923

continuously updated leaderboards with standard-1924

ized evaluation protocols, and realistic data splits1925

(scaffold-based, temporal, and combination splits)1926

that better reflect real-world deployment scenar-1927

ios. The framework’s APIs enable easy integration1928

and benchmarking, making it particularly valuable1929

for researchers seeking to evaluate their methods1930

against established baselines on therapeutically rel-1931

evant tasks.1932

E.3 LLM-Specific Evaluation Frameworks1933

The emergence of LLMs necessitated entirely1934

new evaluation paradigms that assess instruction-1935

following and reasoning capabilities rather than1936

just statistical properties.1937

TOMG-Bench (Li et al., 2024a) pioneered open-1938

domain molecule generation evaluation with three1939

task categories: MolEdit for component manipu-1940

lation (adding, removing, or replacing functional1941

groups), MolOpt for property optimization (LogP,1942

QED, molecular refractivity), and MolCustom1943

for constrained generation based on specific re-1944

quirements. The framework provides 45,000 test1945

samples with diverse instructions and employs1946

weighted accuracy metrics that combine task suc-1947

cess with chemical similarity or novelty scores.1948

Its automated evaluation system directly assesses1949

whether generated molecules adhere to the given1950

instructions while maintaining chemical validity.1951

ChemBench (Mirza et al., 2024b) focuses on eval-1952

uating chemical reasoning capabilities through a1953

question-answering format covering calculation1954

tasks, chemical reasoning, and factual knowledge.1955

The framework enables direct comparison with hu-1956

man expert performance, includes safety evaluation1957

components to assess potentially harmful outputs,1958

and supports multi-modal queries involving both1959

text and molecular structures. This comprehensive1960

approach reveals that while LLMs can match or1961

exceed human experts on certain knowledge tasks,1962

they still struggle with deep chemical reasoning1963

requiring multi-step inference.1964

AMORE (Augmented Molecular Retrieval) (Ga-1965

neeva et al., 2024) further probes the robustness1966

of chemical language models by assessing if they1967

truly understand the underlying molecular struc-1968

ture rather than memorizing textual patterns. This 1969

zero-shot framework evaluates a model’s chemical 1970

awareness through a retrieval task based on molec- 1971

ular augmentations that preserve chemical identity, 1972

such as canonicalization, explicit hydrogen addi- 1973

tion, kekulization, and cycle renumbering. The 1974

model is tasked with matching the embedding of 1975

an original SMILES string to the embedding of its 1976

chemically equivalent but textually different aug- 1977

mentation. Key findings reveal that many LLMs are 1978

not robust to these variations, showing significant 1979

performance degradation on both the retrieval task 1980

and downstream property prediction tasks when 1981

presented with augmented inputs. This indicates 1982

that models often overfit to specific string represen- 1983

tations, highlighting a critical gap in their chemical 1984

understanding. 1985

E.4 Recommendations for Framework 1986

Selection 1987

For researchers navigating this landscape, frame- 1988

work selection should align with specific evaluation 1989

needs. MOSES provides the most standardized 1990

comparison for distribution learning tasks. Gua- 1991

caMol or MolScore offer comprehensive evalua- 1992

tion for goal-directed optimization, with MolScore 1993

providing greater flexibility for custom objec- 1994

tives. TDC excels when therapeutic relevance is 1995

paramount, offering realistic data splits that better 1996

predict real-world performance. For LLM evalua- 1997

tion, TOMG-Bench effectively assesses generation 1998

capabilities while ChemBench evaluates reasoning 1999

and knowledge. Comprehensive evaluation often 2000

requires combining multiple frameworks to capture 2001

different aspects of model performance. 2002

F Qualitative and Quantitative Analysis 2003

To synthesize the discussions from previous sec- 2004

tions, we present a qualitative and quantitative anal- 2005

ysis of the different learning paradigms. We first 2006

offer a qualitative summary of how each paradigm 2007

addresses the core challenges, visualized in a com- 2008

parative radar chart. Subsequently, to ground these 2009

observations in empirical data, we leverage a recent 2010

benchmark (Li et al., 2024a) as a quantitative case 2011

study, focusing on its insights into property control 2012

and model fine-tuning. 2013

F.1 Qualitative Comparison of Learning 2014

Paradigms 2015

Based on our survey of existing literature, the 2016

strengths and weaknesses of the primary learn- 2017
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Table 2: Performance of various LLMs on the Molecule Optimization (MolOpt) task.

Models
LogP MR QED

SR Similarity Validity SR Similarity Validity SR Similarity Validity

GPT-4o (Achiam et al., 2023) 0.7190 0.6586 0.8796 0.6864 0.6420 0.8352 0.3952 0.6180 0.8570
GPT-4-turbo (Achiam et al., 2023) 0.7662 0.6984 0.9048 0.7388 0.6821 0.8848 0.3946 0.6587 0.9050

GPT-3.5-turbo (Achiam et al., 2023) 0.4048 0.6327 0.8540 0.4120 0.6263 0.8486 0.3316 0.5635 0.8354
Claude-3.5 (Anthropic, 2024b) 0.7970 0.7124 0.9422 0.6962 0.7112 0.9110 0.5361 0.7042 0.8604
Claude-3 (Anthropic, 2024a) 0.7984 0.6067 0.9096 0.6094 0.6398 0.9062 0.4678 0.5855 0.9044

Gemini-1.5-pro (Deepmind, 2024) 0.7712 0.7022 0.9274 0.7876 0.6744 0.8926 0.4704 0.6077 0.9484

Llama3-70B-Instruct (Int4) (Dubey et al., 2024) 0.5984 0.6028 0.6482 0.5684 0.6032 0.6272 0.2774 0.4828 0.6340
Llama3-8B-Instruct (Dubey et al., 2024) 0.4642 0.3658 0.6086 0.4332 0.4793 0.5704 0.2568 0.4547 0.6112

Llama3.1-8B-Instruct (Dubey et al., 2024) 0.3990 0.4235 0.5122 0.4336 0.5257 0.5910 0.2655 0.4499 0.6158
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) 0.2220 0.4501 0.2802 0.1908 0.2578 0.3795 0.1210 0.3244 0.2532

Qwen2-7B-Instruct (Yang et al., 2024a) 0.0000 0.2923 0.0004 0.0002 0.4123 0.0004 0.0000 0.0000 0.0000
Yi-1.5-9B (Young et al., 2024) 0.2884 0.5461 0.4927 0.2050 0.3724 0.4126 0.1064 0.6596 0.4526

Chatglm-9B (GLM et al., 2024) 0.3666 0.6902 0.4736 0.3514 0.6820 0.5000 0.1832 0.6506 0.4342
Llama-3.2-1B-Instruct (Dubey et al., 2024) 0.0644 0.5055 0.1664 0.0822 0.4410 0.1604 0.0714 0.4757 0.1796

MolT5-small (Edwards et al., 2022) 0.2158 0.1052 0.4302 0.2316 0.1011 0.4420 0.2214 0.1031 0.4326
MolT5-base (Edwards et al., 2022) 0.2074 0.1051 0.4168 0.1856 0.1073 0.3796 0.2358 0.1054 0.4536
MolT5-large (Edwards et al., 2022) 0.4244 0.1015 0.8156 0.4496 0.1072 0.8678 0.4654 0.1190 0.9214

BioT5-base (Pei et al., 2024) 0.5158 0.1526 1.0000 0.5060 0.1597 1.0000 0.5068 0.1580 1.0000

Llama-3.2-1B (OpenMolIns-large) 0.2898 0.5951 0.3850 0.2644 0.5956 0.3678 0.1996 0.5849 0.3490
Llama-3.1-8B (OpenMolIns-large) 0.8054 0.6678 0.8720 0.7122 0.6548 0.8514 0.5224 0.6398 0.8802

Galactica-125M (OpenMolIns-light) 0.3202 0.6547 0.6416 0.3508 0.6435 0.6358 0.2690 0.6521 0.6380
Galactica-125M (OpenMolIns-small) 0.4172 0.6420 0.5568 0.3958 0.6452 0.5338 0.2956 0.6385 0.5376

Galactica-125M (OpenMolIns-medium) 0.5904 0.5812 0.7890 0.5874 0.5873 0.7384 0.4608 0.5859 0.7768
Galactica-125M (OpenMolIns-large) 0.6454 0.5927 0.8198 0.6388 0.5973 0.8028 0.4950 0.5962 0.8100

Galactica-125M (OpenMolIns-xlarge) 0.7362 0.5744 0.8902 0.7124 0.5697 0.8612 0.5786 0.5677 0.8626

Property Control

Validity

Synthesiz.Diversity

Zero-Shot ICL SFT PT

Figure 6: A qualitative comparison of learning
paradigms. Abbreviations: Supervised Fine-Tuning
(SFT), Preference Tuning (PT), and In-Context Learning
(ICL). Each paradigm demonstrates distinct trade-offs
in addressing the challenges of molecular discovery.

ing paradigms can be qualitatively summarized as2018

shown in Figure 6.2019

The radar chart illustrates the distinct trade-offs:2020

• Supervised Fine-Tuning (SFT) is highly effec-2021

tive for instilling foundational chemical knowl-2022

edge, leading to high Validity and precise Prop-2023

erty Control, but often at the cost of reduced2024

Diversity.2025

• Preference Tuning (PT) directly addresses the 2026

limitations of SFT by rewarding novelty, making 2027

it the strongest paradigm for enhancing Diver- 2028

sity. It also maintains excellent Property Con- 2029

trol through feedback-driven learning. 2030

• Both In-Context Learning (ICL) and Zero- 2031

Shot prompting offer tuning-free application but 2032

provide limited guarantees. ICL’s performance is 2033

highly dependent on example quality, while Zero- 2034

Shot methods struggle with chemical nuances. 2035

• Critically, Synthesizability remains the most 2036

significant unresolved challenge across all 2037

paradigms, indicating a crucial area for future 2038

research. 2039

F.2 Quantitative Insights 2040

To validate these qualitative observations with con- 2041

crete data, we analyze results from the Molecule 2042

Optimization (MolOpt) task of a recent benchmark 2043

TOMG-Bench (Li et al., 2024a). This task eval- 2044

uates an LLM’s ability to modify molecules ac- 2045

cording to textual instructions, using metrics like 2046

Success Rate (SR) for property control and Validity 2047

for chemical correctness. The benchmark also pro- 2048

vides a domain-specific instruction dataset, Open- 2049

MolIns, enabling a direct comparison between 2050

general-purpose and specialized models. 2051
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F.2.1 Key Findings2052

The detailed results for the MolOpt task, presented2053

in Table 3, reveal several critical findings that quan-2054

titatively support our qualitative analysis.2055

1. Baseline Performance of General-Purpose2056

LLMs: Without task-specific fine-tuning, lead-2057

ing proprietary models like GPT-4o and Claude-2058

3.5 already demonstrate strong baseline capa-2059

bilities. For instance, Claude-3.5 achieves a2060

high Success Rate (SR) of 0.7970 on LogP opti-2061

mization, showcasing the powerful out-of-the-2062

box reasoning and instruction-following abili-2063

ties of state-of-the-art LLMs for property con-2064

trol. However, open-source generalist models2065

tend to lag behind, indicating that while power-2066

ful, zero-shot performance is not guaranteed.2067

2. Significant Performance Gains from SFT:2068

The data provides striking evidence for the ef-2069

fectiveness of Supervised Fine-Tuning (SFT)2070

with domain-specific data. The general-purpose2071

Llama-3.1-8B-Instruct model achieves a2072

modest SR of 0.3990 on LogP optimization.2073

However, after being fine-tuned on the domain-2074

specific OpenMolIns dataset, the same model’s2075

SR more than doubles to 0.8054, outperforming2076

many larger, proprietary models. This quanti-2077

tatively demonstrates that SFT is a crucial step2078

for elevating a generalist model to an expert-2079

level performer, enabling high-fidelity property2080

control.2081

In summary, the quantitative results strongly cor-2082

roborate our qualitative assessment. They con-2083

firm that while powerful generalist models pro-2084

vide a strong baseline via zero-shot or few-shot2085

prompting, achieving state-of-the-art performance2086

in molecular tasks requires dedicated, domain-2087

specific tuning (SFT).2088

G Distribution Shift and2089

Out-of-Distribution Generalization2090

A critical challenge in molecular discovery is dis-2091

tribution shift, where models trained on known2092

molecules fail to generalize to novel, out-of-2093

distribution (OOD) compounds necessary for true2094

innovation. Recent benchmarks reveal that molec-2095

ular ML models exhibit OOD errors 3× larger2096

than in-distribution performance (Antoniuk et al.,2097

2025), with performance degradations of 20-60%2098

in real-world scenarios (Tossou et al., 2024). This2099

problem is a primary cause of “mode collapse” and 2100

directly limits the Diversity discussed in the main 2101

text (Tossou et al., 2024). Effectively navigating 2102

this shift is essential for moving beyond rediscov- 2103

ery to genuine design. 2104

To address this, machine learning models have de- 2105

veloped distinct strategies. Traditional methods 2106

like GNNs and VAEs often focus on learning invari- 2107

ant representations, for instance, through Mixture- 2108

of-Experts (MoE) architectures that handle specific 2109

data domains (Wu et al., 2024a) or by disentangling 2110

molecules into “causal” and “spurious” substruc- 2111

tures to improve robustness (Yang et al., 2022). 2112

However, these approaches often require substan- 2113

tial data to avoid spurious correlations. 2114

LLMs leverage different learning paradigms with 2115

unique advantages. While standard Supervised 2116

Fine-Tuning (SFT) can overfit to the training dis- 2117

tribution, Preference Tuning (PT) directly en- 2118

courages OOD exploration by explicitly reward- 2119

ing novelty and diversity, as exemplified by mod- 2120

els like Div-SFT (Jang et al., 2024). Furthermore, 2121

advanced Instruction Tuning on complex, multi- 2122

property tasks (using datasets like MuMOInstruct) 2123

enables the model to learn more generalizable 2124

chemical reasoning for unseen tasks. 2125

Test-time adaptation represents a particularly 2126

promising direction, with methods like TAIP 2127

achieving 30% error reduction through self- 2128

supervised learning during inference (Kreiman and 2129

Krishnapriyan, 2025). Finally, Agentic frame- 2130

works like MultiMol (Liu et al., 2022) contribute 2131

by incorporating external, out-of-distribution 2132

knowledge from scientific literature to guide the 2133

generation process. Together, these LLM-centric 2134

techniques represent a key frontier in developing 2135

models that can truly innovate, though significant 2136

challenges remain in ensuring synthesizability and 2137

practical utility of OOD-generated molecules. 2138

H Method Summary 2139

This section provides a consolidated overview of 2140

representative LLM-based methods for molecular 2141

discovery, as detailed in Table 3. The table orga- 2142

nizes these approaches primarily by the two core 2143

task categories central to this survey: molecule 2144

generation and molecule optimization. Within each 2145

task, methods are further sub-categorized by their 2146

primary learning Strategy (referred to as "Cate- 2147

gory" and "Technique" in the table), encompassing 2148
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approaches without LLM tuning (such as zero-shot2149

prompting and in-context learning) and those with2150

LLM tuning (supervised fine-tuning and preference2151

tuning).2152

Table 3 details several key aspects for each listed2153

Method:2154

• Venue: The publication venue or preprint archive2155

where the method was reported.2156

• Input Type: Specifies the primary format of2157

molecular data and instructions provided to the2158

LLM (e.g., SMILES strings, textual instructions,2159

few-shot examples, or multi-modal inputs like2160

graphs).2161

• Base Model: Indicates the foundational LLM2162

architecture (e.g., GPT-4, LLaMA variants, Mis-2163

tral) upon which the method is built or applied.2164

• Dataset: Lists the key molecular corpora or2165

benchmarks used for training the model (if appli-2166

cable) or for its evaluation in the context of the2167

reported work.2168

• Repository: Provides a link to the public code2169

or resource repository, if available.2170

This structured presentation aims to offer a clear2171

comparative landscape of the current methodolo-2172

gies in the field.2173
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Table 3: Summary of LLM-based methods for molecule generation and optimization. Each row corresponds to a
method, organized by Task (generation or optimization), and Technique. Input Type denotes the molecular data
format provided to the model. Base Model denotes the large language model architecture used. Dataset denotes the
molecular corpus or benchmark used for training or evaluation.

Task Category Technique Method Venue Input
Type

Base
Model Dataset Repository

M
ol

ec
ul

e
G

en
er

at
io

n

w/o
Tuning

ICL

LLM4GraphGen
(Yao et al., 2024)

Arxiv
Instruction +

Few shot
GPT-4 OGBG-MolHIV Link

MolReGPT
(Li et al., 2024c)

TKDE
Instruction +

Few shot
GPT-3.5-turbo/

GPT-4
ChEBI-20 Link

FrontierX
(Srinivas and Runkana, 2024)

Arxiv Instruction GPT-3.5 ChEBI-20 N/A

w/
Tuning

SFT

Mol-instructions
(Fang et al., 2023)

ICLR Instruction LLaMA-7B Mol-Instructions Link

LlaSMol
(Yu et al., 2024a)

COLM Instruction
Galactica 6.7B/
LLaMA-2-7B/

Mistral-7B
SMolInstruct Link

ChemLLM
(Zhang et al., 2024a)

Arxiv Instruction
InternLM2-

7B-Base
ChemData N/A

ICMA
(Li et al., 2024b)

TKDE
Instruction +

Few shot
Mistral-7B

PubChem &
ChEBI-20

N/A

MolReFlect (Li et al., 2024d) Arxiv
Instruction +

Few shot
Mistral-7B ChEBI-20 Link

ChatMol
(Fan et al., 2025)

Arxiv Instruction LLaMA-3-8B ZINC Link

PEIT-LLM
(Lin et al., 2025)

Arxiv Instruction
LLaMA-3.1-8B/

Qwen2.5-7B
ChEBI-20 Link

NatureLM
(Xia et al., 2025)

Arxiv
SMILES +
Instruction

NatureLM-8B
ChEMBL &
MoleculeNet

Link

SynLlama
(Sun et al., 2025)

Arxiv Instruction
LLaMA-3.1-8B /
LLaMA-3.2-1B

ChEMBL Link

TOMG-Bench
(Li et al., 2024a)

Arxiv Instruction LLaMa-3.1-8B TOMG-Bench N/A

UniMoT
(Zhang et al., 2024b)

Arxiv Instruction LLaMA-2-7B Mol-Instructions Link

Preference
Tuning

Div-SFT
(Jang et al., 2024)

Arxiv Instruction LLaMA-7B ChEBI-20 N/A

Mol-MOE
(Calanzone et al., 2025)

Arxiv Instruction LLaMA-3.2-1B
ChEMBL &

ZINC &
MOSES

Link

SmileyLLama
(Cavanagh et al., 2024)

NeurIPS Workshop Instruction LLaMA-3.1-8B ChEMBL N/A

ALMol
(Gkoumas, 2024)

ACL Workshop Instruction Meditron-7B L+M-24 N/A

Less for More
(Gkoumas and Liakata, 2024)

Arxiv Instruction Meditron-7B L+M-24 N/A

Mol-LLM
(Lee et al., 2025)

Arxiv Instruction Mistral-7B ChEBI-20 N/A

M
ol

ec
ul

e
O

pt
im

iz
at

io
n

w/o
Tuning

Zero-Shot
Prompting

LLM-MDE
(Bhattacharya et al., 2024)

JCIM
SMILES +
Instruction

Claude 3 Opus ZINC N/A

MOLLEO
(Wang et al., 2025)

ICLR
SMILES +
Instruction

GPT-4 ZINC Link

ICL

CIDD
(Gao et al., 2025)

Arxiv
SMILES +

Interaction report
GPT-4o CrossDocked2020 N/A

LLM-EO
(Lu et al., 2024)

Arxiv
SMILES +

Ligands Pool
Claude 3.5 Sonnet /
OpenAI o1-preview

TMC dataset Link

MOLLM
(Ran et al., 2025)

Arxiv
SMILES +
Instruction

GPT-4o ZINC N/A

ChatDrug
(Liu et al., 2024c)

ICLR
SMILES +
Instruction

Galactica /
LLaMA-2 /
ChatGPT

ZINC Link

Re2DF
(Le and Chawla, 2024)

Arxiv
SMILES +
Instruction

LLaMA-3.1-8B/
LLaMA-3.1-70B

ZINC Link

BOPRO
(Agarwal et al., 2025)

ICLR
SMILES +
Instruction

Mistral-Large-Instruct-2407 Dockstring Link

w/
Tuning

SFT

MultiMol
(Yu et al., 2025)

Arxiv
SMILES +
Instruction

Qwen2.5-7B /
LLaMA-3.1-8B /
Galactica 6.7B

PubChem Link

DrugAssist
(Ye et al., 2025)

Brief Bioinform
SMILES +
Instruction

LLaMA-2-7B-Chat MolOpt-Instructions Link

GeLLM3O
(Dey et al., 2025)

Arxiv
SMILES +
Instruction

Mistral-7B-Instruct /
LLaMA-3.1-8B-Instruct

MuMOInstruct Link

DrugLLM
(Liu et al., 2024d)

Arxiv
Group-based

Molecular Representation
LLaMA-2-7B

ZINC &
ChEMBL

N/A

TOMG-Bench
(Li et al., 2024a)

Arxiv Instruction LLaMa-3.1-8B TOMG-Bench N/A

LLM-Enhanced GA
(Bedrosian et al., 2024)

NeurIPS Workshop JSON Objects
Chemma /

Chemlactica
PubChem Link

Molx-Enhanced LLM
(Le et al., 2024)

Arxiv
SMILES +

Graph +
Instruction

LLaMA-2-7B PubChem N/A

Preference
Tuning

NatureLM
(Xia et al., 2025)

Arxiv
SMILES +
Instruction

NatureLM-8B
ChEMBL &
MoleculeNet

N/A
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https://github.com/SitaoLuan/LLM4Graph
https://github.com/phenixace/MolReGPT
https://github.com/zjunlp/Mol-Instructions
https://osu-nlp-group.github.io/LLM4Chem/
https://github.com/vllm-project/vllm
https://github.com/ChatMol/ChatMol
https://github.com/
https://naturelm.github.io/
https://github.com/THGLab/SynLlama
https://uni-mot.github.io/
https://github.com/ddidacus/mol-moe
https://github.com/zoom-wang112358/MOLLEO
https://github.com/deepprinciple/llmeo
https://github.com/chao1224/ChatDrug
https://github.com/lhkhiem28/Re2DF
https://github.com/amazon-science/BOPRO-ICLR-2025
https://github.com/jiajunyu1999/LLM4Drug
https://github.com/blazerye/DrugAssist
https://github.com/ninglab/GeLLMO
https://github.com/yerevann/chemlactica
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