
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMMUNICATION-EFFICIENT FEDERATED LEARNING
VIA MODEL-AGNOSTIC PROJECTION ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) enables collaborative model training across distributed
clients without centralizing sensitive raw data while benefiting from diverse data
sources. Despite recent advancements in FL, the communication overhead re-
mains a significant challenge, especially for large-scale models. Recent low-rank
adaptation (LoRA) techniques have shown promise in reducing these burdens in
FL, but they are typically applied to each layer individually and depend on the
model architecture, which limits their performance. To address these shortcom-
ings, we propose Model-Agnostic Projection Adaptation (MAPA), a novel ap-
proach that applies factorization to the entire model parameter space, which we
view as a single vector, regardless of the number of layers and model architec-
ture. MAPA factorizes the single-vector model update into a fixed reconstruction
matrix and a trainable projection vector, with the reconstruction matrix being ran-
domly initialized using a shared seed at each round. This ensures that only the
projection vectors need to be communicated to the server, thereby reducing the
communication cost. Furthermore, MAPA’s vector-based representation and re-
laxed rank constraints allow for a larger reconstruction matrix and smaller projec-
tion vector dimensions compared to LoRA, enhancing the expressiveness of model
updates while significantly reducing communication overhead. Experimental re-
sults demonstrate that MAPA outperforms existing FL methods in both commu-
nication efficiency and model performance, effectively coupling optimization and
communication efficiency in FL environments.

1 INTRODUCTION

Federated learning (FL) is a distributed machine learning framework that enables model training
across numerous devices, referred to as clients, without the need to collect or process client data on
a server. In a typical FL process, each client downloads an initialized model from the server, trains it
using local data, and then uploads the updated model back to the server. The server aggregates these
updates to refine the global model, employing techniques such as federated averaging (FedAvg)
(McMahan et al., 2017). This iterative process is repeated over multiple communication rounds,
enabling clients to improve the model collaboratively without data sharing.

Despite the notable benefits of FL, a primary challenge is the substantial communication overhead
involved in transmitting model updates between clients and the server, especially when dealing with
resource-constrained clients and large-scale models with numerous parameters. This communica-
tion overhead can become a significant bottleneck, limiting the scalability and efficiency of FL.

To address the communication burden in FL, various strategies have been developed that focus on re-
ducing either the communication frequency or the communication load per round. To decrease com-
munication frequency, methods such as performing multiple local epochs on clients (Stich, 2018)
and selecting a subset of clients to participate in each training round (Sattler et al., 2019; Li et al.,
2020) have been proposed. On the other hand, methods aiming to reduce the communication load
per round have been more extensively studied. Konečnỳ (2016) broadly classified these methods
into two categories: (i) sketched updates, where the local model is first optimized, and then the up-
date is compressed before transmission, and (ii) structured updates, where the model is optimized
in a subspace with fewer trainable parameters, which are then transmitted to reduce communication.
These strategies are complementary and can collectively contribute to enhancing the scalability and
efficiency of FL.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

MAPA

…

ΔW

1

≈

d

p

A

1

pBx

…

Δ𝑊0+𝑊0

+ Δ𝑊2𝑊2

+ Δ𝑊1𝑊1

+ Δ𝑊𝑁𝑊𝑁

x

y

ℎ1

ℎ1

LoRA

𝑊2

B0
A0

𝑊0

……

x

ℎ2

B2

A2

B1

A1
𝑊1

ℎ1

BN

AN
𝑊N

y

FA-LoRA

𝑊2

B0
A0

𝑊0

……

x

ℎ2

B2

A2

B1

A1
𝑊1

ℎ1

BN

AN
𝑊N

y

P

k

𝐵0

MAPAX

k

d

…

Δ𝑊0
′

≈

≈

≈

≈

Fixed
Trainable

Reshaping

Forward Pass

Δ𝑊1
′

Δ𝑊2
′

Δ𝑊𝑘
′

Δ𝑊′

…

Δ𝑊0+𝑊0

+ Δ𝑊2𝑊2

+ Δ𝑊1𝑊1

+ Δ𝑊𝑁𝑊𝑁

x

y

ℎ1

ℎ1

d/k

x

x

x

x

p

p

k

p

k

𝐵2

𝐵1

k

p𝐵𝑘

k

p𝐵0𝐴

𝐴

𝐴

𝐴

Figure 1: Overview of the MAPA method. Unlike existing LoRA approaches, MAPA treats the entire model
parameters as a single vector before factorization. This allows MAPA to use a larger reconstruction matrix A
and a smaller dimension for the projection vector B, leading to more efficient FL. MAPAX further generalizes
this idea by trading off communication, computation, and memory through partitioning and parallelization.

Low-rank adaptation (LoRA) (Hu et al., 2021; Ou et al., 2023; Bertsimas et al., 2023) is a popu-
lar structured update method that decomposes parameter updates for each layer independently as
∆wd1×d2

≈ Ad1×qBq×d2
, with the rank constrained by q ≤ min(d1, d2). Recently, many re-

searchers have applied LoRA in FL to enhance training efficiency Yi et al. (2023); Sun et al. (2024);
Cho et al. (2024); Kuo et al. (2024); Yang et al. (2024); Qi et al. (2024). However, the layer-wise
approach and the rank constraint in LoRA restrict the ability to fully capture the low-rank structure
of the global gradient, thereby limiting the performance of these methods.

This paper proposes Model-Agnostic Projection Adaptation (MAPA). MAPA treats the entire
model parameters as a single vector and factorizes the model update ∆Wd×1 into a fixed recon-
struction matrix Ad×p and a trainable projection vector Bp×1, where d denotes the number of model
parameters and p ≤ d is the reduced dimension. In contrast to Freeze A LoRA (FA-LoRA) methods
Sun et al. (2024); Zhang et al. (2023); Zhu et al. (2024); Hao et al. (2024), the reconstruction matrix
is initialized randomly with a shared seed on every FL round, and it is not frozen during training.
Our approach still eliminates the need to transmit A and limits the communication to the projection
vectors. Compared to LoRA-based methods, MAPA’s vector-based representation and relaxed rank
constraints allow for a larger reconstruction matrix A and smaller projection vector B dimensions,
enhancing the expressiveness of model updates while reducing communication costs.

The high compression rate of MAPA comes from its large expressive capacity by relaxing the low-
rank condition q ≤ min(d1, d2) of LoRA and factorizing the gradient signal into a single vector.
However, this incurs the overhead of generating a larger reconstruction matrix A, which results in
a higher memory and computation burden on clients. Motivated by this, we also propose an exten-
sion to MAPA called MAPAX, which mitigates this overhead and balances the trade-offs between
communication, computation, and memory costs depending on the client’s resources. Additionally,
we show that MAPAX can cover the whole space of communication-efficient factorization, bridging
the gap between various techniques and fostering a better understanding of their methods. Figure 1
visualizes the architectural differences between these methodologies in matrix manipulation forms.
Overall, we make the following key contributions:

• Introduction of MAPA. We present MAPA, a novel matrix factorization that operates indepen-
dently of the model architecture. By treating the entire model parameter as a vector, MAPA
constructs a larger reconstruction matrix, resulting in an expressive subspace that requires fewer
trainable parameters than low-rank layer-wise methods.

• Enhancement of Communication Efficiency in FL. By integrating MAPA into FL, we achieve
substantial reductions in communication by optimizing in a lower-dimensional subspace.

• Extension to MAPAX. We introduce MAPAX, an extension of MAPA, to address the computa-
tional and memory overhead associated with the larger reconstruction matrix. MAPAX creates
a trade-off between communication, computation, and memory costs, making it adaptable to
clients with varying resource constraints. We show that MAPAX bridges the gap between differ-
ent factorization techniques, offering a unified understanding and approach.

• Theoretical Analysis. We provide a thorough theoretical analysis establishing the convergence
of MAPA. We also show that MAPA outperforms LoRA-based methods in maintaining training
performance while reducing communication costs.

• Empirical Evaluation. We conduct extensive experiments on diverse datasets and model archi-
tectures, showing that MAPA surpasses SOTA methods in both communication efficiency and
model performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS AND BACKGROUND

0 25 50 75 100 125 150 175 200
Round

20

40

60

80

100

Ac
cu

ra
cy

MNIST Accuracy with 128-Parameter

MAPA
LoRA
EvoFed
Sparse
BP (Full)

0 25 50 75 100 125 150 175 200
Round

20

40

60

80

100

Ac
cu

ra
cy

MNIST Accuracy with 16-Parameter

MAPA
LoRA
EvoFed
Sparse
BP (Full)

0 25 50 75 100 125 150 175 200
Round

20

40

60

80

100

Ac
cu

ra
cy

MNIST Accuracy with 4-Parameter

MAPA
LoRA
EvoFed
Sparse
BP (Full)

0 25 50 75 100 125 150 175 200
Round

0

20

40

60

80

100

Ac
cu

ra
cy

MNIST Accuracy with 2-Parameter

MAPA
LoRA
EvoFed
Sparse
BP (Full)

Figure 2: Performance compar-
ison for various trainable param-
eters on MNIST dataset.

Among techniques introduced to alleviate the communication over-
head in FL, in this section, we first explore the sketched update
methods that project the gradient signal into a subspace, highlight-
ing the similarity of these techniques to matrix factorization so we
can argue further why a structured update can exploit a better gra-
dient signal with this formulation. Afterward, we look into struc-
tured update techniques and focus on low-rank adaptation methods
studied in communication-efficient FL to highlight the novelty and
advantages of our work compared to recent studies.

Sketched Update is a two-step method, where first, the full space
gradient is computed, and second, it is projected into a subspace. It
includes techniques such as sparsification (Konečnỳ, 2016), quan-
tization (Alistarh et al., 2017; Mao et al., 2022), and gradient sub-
space projection (Azam et al., 2021; Oh et al., 2022; Park & Choi,
2023), random subspace projection (Rahimi et al., 2024; Shi & Ery-
ilmaz, 2021). The concept of subspace projection methods is that
for a given gradient g ∈ Rd, reconstruction matrix A ∈ Rd×p, find
a projection vector B ∈ Rp, which minimize the compression error
∥g −AB∥2, where d denotes the total number of model parameters
and p≪ d is the size of projection vector.

B∗ = arg min
B∈Rk

∥g −AB∥2 ; B∗ = (A⊤A)−1A⊤g

However, solving this exact linear system can be computationally
expensive, especially when k is large as the exact solution has
O(k2n + k3) time complexity and O(k2) memory complexity.
Therefore, most works in the literature opt for approximation meth-
ods instead of solving the exact problem due to these computational
challenges:

B∗ ≈ A⊤g

Given this formulation, we notice that low-rank factorization solves
a similar problem. However, unlike subspace projection methods,
the projection vector B is computed independently of the gradient
g by training from the data:

B∗ = B + η∇BL (W +AB;Di) .

Although sketched methods benefit from accessing a high-quality gradient g, one of their short-
comings is blindness to the loss surface L(W ;D) and alternative solutions beside g that might be
more suitable for projection in their subspace. They typically perform well given a large enough
p. However, as the compression rate increases, the reconstruction of the projection vector ends
up far enough from the gradient g, leading to no convergence. In contrast, direct subspace opti-
mization leverages the complete data information to find the possible solutions within the subspace,
ultimately leading to a more effective reduction in loss, even with significantly smaller p. Figure 2
shows a simple example of MNIST training on a single node, which highlights the performance
drop of sketched update techniques such as EvoFed (Rahimi et al., 2024) and Top-k Sparsification
(Konečnỳ, 2016) compared to structured update such as FA-LoRA Sun et al. (2024); Zhang et al.
(2023); Zhu et al. (2024); Hao et al. (2024) and MAPA, as the sparsity level increases. LoRA and
MAPA can still converge, having 2 or 4 trainable parameters from space with 11274 dimensions,
which is insufficient for EvoFed and Top-k to converge.

Structured Update is a single-step method where instead of computing the full space gradient,
it restricts parameter space, reducing the number of trainable parameters needed to be calculated
and communicated, including low-rank adaptation (LoRA) (Cho et al., 2024; Sun et al., 2024; Kuo
et al., 2024; Yi et al., 2023; Yang et al., 2024; Qi et al., 2024), pruning (Luo et al., 2017; Zhang et al.,
2018), and weight-sharing (Ullrich et al., 2017).

The LoRA is a form of low-rank approximation (Liu et al., 2022; Wang et al., 2018; Jaderberg
et al., 2014; Lebedev et al., 2014; Denil et al., 2013), which is widely used because of its solid
theoretical foundation and ease of hardware implementation. The common practice for a low-rank

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

approximation is to approximate each layer’s large-weight tensors by the product of smaller ones,
reducing the rank and, consequently, the number of trainable parameters of each layer. Therefore,
this factorization is dependent on the layer’s architecture and requires a careful network design that
considers a specific factorization for each layer.

In contrast, our technique will introduce a novel black-box factorization independent of the model
architecture, not only simplifying the implementation but also performing better as it consists of
a higher representation at the same rate of communication. This factorization reshapes the entire
parameter matrix to the form of a single vector as Wt ∈ Rd×1. Therefore, the update matrix
∆W ∈ Rd×1 is computed as ∆W = AB, where A ∈ Rd×p and B ∈ Rp×1 having p≪ d.

In contrast to Freeze A LoRA methods, (Sun et al., 2024; Zhang et al., 2023; Zhu et al., 2024; Hao
et al., 2024), we initialized B = 0 and A ∼ N (0, I), at the beginning of each round, we update
model parameters W and reset B and generate A afresh and independently. This allows the explo-
ration of various subspace configurations without any communication overhead and performance
improvement (See Appendix B). The sub-optimality of having a frozen A was also discussed in Guo
et al. (2024), although we provide an alternative solution from Guo et al. (2024), which does not
require training and transmission of matrix A, thus preserving communication efficiency. The next
difference between MAPA and LoRA-based methods lies in the condition of the factorization rank.
For a given matrix W ∈ Rd1×d2 , LoRA aims to reduce the number of parameters by factorizing the
update as ∆W = AB, where A ∈ Rd1×q and B ∈ Rq×d2 , requiring the factorization rank to satisfy
q < min(d1, d2). However, since the size of the random matrix A does not add communication
overhead, we focus on keeping the projection vector B smaller than model parameters W .

To summarize, we introduce a unique matrix factorization method to reduce communication over-
head in FL. In contrast to compression techniques, our approach optimizes a low-dimensional pro-
jection vector directly in the subspace, demonstrating greater effectiveness than projecting already
computed gradients, especially in low-bandwidth scenarios. In comparison to existing low-rank
factorization techniques, MAPA enables a much larger reconstruction matrix by treating model pa-
rameters as a single vector, relaxing the low-rank condition, and employing a model-agnostic fac-
torization independent of the number of layers and their architecture. Finally, MAPA enhances the
subspace exploration by initializing the reconstruction matrix at each turn. All contributions collab-
oratively result in a more expressive subspace where less information needs to be communicated,
achieving greater flexibility, performance, and communication efficiency in FL.

3 PROPOSED METHOD

In this section, we present MAPA, MAPAX, and their application in FL. We begin by elaborating
on the MAPA factorization technique, demonstrating the theoretical basis for proving its higher
representation capacity while facilitating lower gradient dimensions. Then, we explain how MAPAX
can be seen as the general factorization form and discuss its benefits. Subsequently, we describe the
detailed process for effectively leveraging MAPA factorization within the FL framework.

3.1 MODEL-AGNOSTIC LOW-RANK ADAPTATION (MAPA)
Recent literature studied the effect of low-rank factorization on FL communication efficiency (Sun
et al., 2024; Zhang et al., 2023; Zhu et al., 2024; Hao et al., 2024). In each layer W ∈ Rd1×d2 , the
idea of LoRA is to factorize the model update as ∆W = AB, where A ∈ Rd1×q and B ∈ Rq×d2 for
q < min(d1, d2). They take advantage of freezing the reconstruction matrix A, limiting the trainable
parameters to projection matrix B, thus reducing communication. While low-rank factorization
shows a promising direction in FL, MAPA aims to answer a more general question: How can we
design a factorization that achieves higher representation capacity with lower trainable parameters?

MAPA Intuition and Description. MAPA works toward a factorization resulting in a large recon-
struction matrix and small projection matrix, leveraging the fact that random reconstruction matrices
do not need to be communicated, achieving higher representation capacity without communication
overhead, and resulting in a smaller projection matrix needed to be communicated. An analogy for
this purpose can be seeing the reconstruction matrix A as a shared vocabulary and the size of the
projection matrix B as the number of words used to communicate a message. A richer vocabu-
lary (larger A) allows for conveying complex ideas more concisely, reducing the number of words
(smaller B) needed to be communicated. To achieve this, MAPA treats the entire update of the
model as a single vector and applies a black-box factorization, regardless of the number of layers
or the network architecture. Let d denote the total number of parameters across all layers of the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

model. As illustrated in Figure 1, MAPA decomposes the universal vector ∆W ∈ Rd×1 into a
reconstruction matrix A ∈ Rd×p and a projection vector B ∈ Rp×1, where p ≤ d.

MAPA Properties. We aim to show that MAPA constructs a more expressive subspace, allowing a
smaller B to convey sufficient information for updating the model. We begin by formally defining
the communication overhead rate (COrate) and representation capacity rate (RCrate), in context of
matrix factorization in Definition 1 and 2. Based on the established definitions, Proposition 1 and 2
formulate shortcomings of traditional factorization, and as a result, we can conclude the properties
of superior factorization in the context of communication-efficiency, which finally leads to the proof
of MAPA factorization superiority as shown in Theorem 1.
Assumption 1 (Full Rank Property of Gaussian Random Matrices). Let A ∈ Rm×n be a random
matrix with entries drawn independently from a Gaussian distribution N (0, σ2). Then, A is almost
surely of full rank, i.e., rank(A) = min(m,n), as the probability of A being rank deficient is zero.
This result follows from standard properties of random matrices Vershynin (2018); Tao (2012).
Definition 1 (Communication Overhead). Let ∆W ∈ Rd1×d2 be the update matrix of a model.
Suppose a factorization operator F(.) decomposes ∆W as ∆W = AB, where A ∈ Rd1×q is a
fixed random matrix and B ∈ Rq×d2 is a trainable matrix. The communication overhead is defined
as the ratio of the size of B to the size of ∆W :

CO(∆W,F) = size(B)

size(∆W)
=

q

d1
.

Definition 2 (Representation Certainty). Using the same factorization as in Definition 1. The
representation certainty is defined as the inverse of the error rate variance. The error rate measures
the expected error of the factorization to represent the original matrix, given a full-rank matrix A
(Assumption 1). The error expectation and variance are defined as:

EA

[
∥W −AB∥22

]
=

(
1− q

d1

)
,VarA

[
∥W −AB∥22

]
=

(
2q(d1 − q)

d21(d1 + 2)

)
Therefore, given a constant communication overhead and error expectation d1

q = r we have:

RC(∆W,F) = 1

VarA[E]
=

r3q + r2

2(r − 1)
∝ q

Proposition 1 (Relaxed Low-Rank Factorization Superiority). Let ∆W ∈ Rd1×d2 be the update
matrix of one layer, factorized in low-rank as ∆W = AB, where A ∈ Rd1×q is a shared random
matrix and B ∈ Rq×d2 is the trainable matrix, with q ≤ min(d1, d2) being the factorization rank, By
reshaping ∆W into ∆W ′ ∈ R(d1d2)/k × k for some integer k < d2, the factorization of ∆W ′ can
achieve a higher representation certainty while requiring same communication overhead compared
to the conventional low-rank factorization of ∆W .
Collorary 1 (Single-Vector Factorization Superiority). Using the same factorization as in Propo-
sition 1 for k = 1. ∆W reshapes into a single-vector form ∆W ′ ∈ Rd1d2×1 and factorizing ∆W ′

can achieve a higher representation certainty while requiring the same communication overhead
than the conventional low-rank factorization of ∆W .

Proposition 2 (Layer-Independent Factorization Superiority). Let ∆Wi ∈ Rdi
1×di

2 be the update
matrix of the i-th layer of a model, and let ∆W ′

i ∈ Rdi
1d

i
2×1 be its reshaped single-vector form. In

single-vector factorization methods, ∆W ′
i is factorized as ∆W ′

i = AiBi, where Ai ∈ Rdi
1d

i
2×qi

and Bi ∈ Rqi×1, with qi ≤ di1d
i
2. By concatenating the reshaped weights ∆W ′

i into ∆W ′ ∈ Rd×1,
where d =

∑n
i=1 d

i
1d

i
2. The factorization of ∆W ′ can achieve a higher representation certainty

while requiring the same communication overhead than the conventional single-vector factorization
methods applied separately to each layer.

Theorem 1 (MAPA Factorization Superiority). Let ∆Wi ∈ Rdi
1×di

2 be the update matrix of the
i-th layer of a model, and let ∆W = vec(∆W1,∆W2, . . . ,∆Wn) ∈ Rd be the concatenation of all
∆Wi, where d =

∑n
i=1 d

i
1d

i
2. MAPA factorization can achieve a higher representation certainty

while requiring the same communication overhead than other factorizations of ∆W .

Proof. Collorary 1 is the result of Proposition 1 for k = 1. The proofs for Definitions and Proposi-
tions are given in Appendix C. Now, given MAPA is a layer-independent single-vector factorization,
the proof of Theorem 1 can directly be concluded from Proposition 2 and Collorary 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Smaller reconstruction matrix; Less memory allocation

128x4 128x4

4x4

Fixed

Trainable

MAPAX (k=1)

512x1 512x16

16x1
Δ

W A= x B

64x8 64x2

2x8

ΔW

256x8256x2

8x2

= =ΔW = =

32x16 32x1

1x16

A A A
A

B B B
Bx x x

x

MAPA

MAPAX (k=2) MAPAX (k=4) MAPAX (k=8)
MAPAX (k=16)

ΔW
ΔW

LoRA

Larger reconstruction matrix; More representation capacity

Figure 3: Illustration of MAPAXk. MAPAXk reduces to MAPA when the number of partitions is k = 1.
LoRA also becomes a special case of MAPAXk when the model is partitioned according to the layer sizes.

Thus, MAPA provides a superior representation capacity for the same communication cost. This
advantage becomes increasingly significant in models with more layers or when there is a more con-
siderable disparity between the dimensions d1 and d2, particularly beneficial for large-scale models.

3.2 MAPAXk : EXTENSION WITH k-PARTITIONING

Building upon Proposition 1 and 2, we extend MAPA to a general form, termed MAPAXk. Figure 3
illustrates the MAPAXk concept. Consider the update matrix at step t as ∆Wt ∈ Re×k, where e =⌈
d
k

⌉
and d is the total number of parameters representing the model’s current state. To accommodate

the dimensions, ∆Wt includes zero padding of size ek − d. The MAPAXk factorization of ∆W is
then given by ∆W = AB, where A ∈ Re×p and B ∈ Rp×k, with p ≤ e.

Thus, MAPA can be considered a special case of MAPAX1, maximizes the shared information in
the reconstruction matrix A, and minimizes the size of the error variance. In contrast, FedAvg
is MAPAXd and the rank of the reconstruction matrix p = 1, resulting in the projection matrix
B ∈ R1×d presenting the entire model update.

Proposition 3 states MAPAXk covers all degrees of factorization, including low-rank, resulting in a
flexible approach for balancing memory allocation and representation certainty. Collorary 2 shows
the case of a single layer model W ∈ Rd1×d2 , where MAPAXd2 is equivalent of low-rank factor-
ization. Collorary 3 shows the case of a model having n identical shaped layers, W ∈ Rd×d, where
MAPAXnd is equivalent low-rank layer-wise factorization.

Proposition 3 (MAPAX Generalization). Let ∆Wi ∈ Rdi
1×di

2 be the update matrix of the i-th layer
of a model, and let ∆W = vec(∆W1,∆W2, . . . ,∆Wn) ∈ Rd be the vectorization (concatenation)
of all ∆Wi, where d =

∑n
i=1 d

i
1d

i
2. MAPAXk factorization allocates k2 times less memory for

the same communication overhead and error rate, for the cost of k times worse representation
certainty, in other words, more k times more error rate variance.

Collorary 2 (MAPAX-LoRA Special Case Single Layer). Let ∆W ∈ Rd1×d2 be the update matrix
of the single layer model factorized in LoRA methods as ∆W = AB, where A ∈ Rd1×q and
B ∈ Rq×d2 , with q ≤ min(d1, d2) is equivalent to the MAPAXd2

.

Collorary 3 (MAPAX-LoRA Special Same Layers). Let ∆Wi ∈ Rd×d be the update matrix of the
i-th layer of a model with n layers factorized in LoRA methods as ∆Wi = AiBi, where Ai ∈ Rd×q

and Bi ∈ Rq×d, is equivalent to the MAPAXnd2
.

The proof of Proposition 3 located in Appendix C. Figure 3 illustrates this equivalency of Collo-
rary 2, while we can conclude Collorary 3 from Figure 1.

Therefore, this extension facilitates further studies to understand better how different factorizations
impact performance and total communication cost. It serves as a bridge between layer-wise or
partitioned factorizations and complete model-agnostic factorizations. Furthermore, Appendix E
shows complexity analysis and how to balance memory, communication, and performance.

3.3 APPLICATION TO COMMUNICATION-EFFICIENT FEDERATED LEARNING

This subsection explains how the factorization outlined in Section 3.1 is utilized in FL, dividing the
procedure for clarity. Figure 4 visualizes the outline of this procedure.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Client: Optimize 𝐵𝑡+1
𝑖 & share to server

Projection

Matrix 𝐵𝑡+1
𝑖

} }

𝐃𝐚𝐭𝐚𝐢

()𝑊
𝑡 A𝑡 𝐵𝑡

𝑖+ , ^
𝐵𝑡
𝑖Δ = ∇𝐵𝑡𝑖

ℒ }

TrainableFixed Fixed

𝐵𝑡
𝑖 = 0

Seed

Server: Broadcast seed (𝑟𝑡, 𝐼𝑡 , α)
1 2 Server: Aggregate Bt+1, update Global Model

& share Bt+1 to clients

3

Aggregated
B𝑡+1
-Local Model Update

= +

𝑊
𝑡+

1

𝑊
𝑡

B
𝑡+

1
-A𝑡

Global Model Update

= +

𝑊
𝑡+

1

𝑊
𝑡

B
𝑡+

1
-A𝑡

𝐵
𝑡+

1
𝑖

𝐵
𝑡+

1
1

𝐵
𝑡+

1
2

…

B
𝑡+

1
-={𝒩(0,σ) |𝑟𝑡}A𝑡

Figure 4: Application of MAPA to communication-efficient FL.

Matrix Construction and Broadcasting. To ensure consistency across the network, the server and
all clients start from an identical condition at each round. We guarantee identical model parameters
Wt and reconstruction matrix At by broadcasting a random seed rt and the aggregated projection
vector B̄t at the beginning of round t. The initial aggregated projection vector is set to B̄0 = 0.

Algorithm 1 FL with MAPA

Initialize: Global model W0 ∈ Rd×1, reconstruction ma-
trix A0 ∈ Rd×p, projection matrix B̄0 ← 0 ∈ Rp×1,
seed r0

for each communication round t = 1, . . . , T − 1 do
Server: Broadcast global B̄t−1 and rt−1

for each client i = 1, . . . , N in parallel do
Client: Receive B̄t−1 and rt−1

Update Wt = Wt−1 +At−1B̄t−1

Update At = N (0, σ)|rt−1

Initialize Bi
t ← 0 ∈ Rp×1

for each local epoch e = 1, . . . , E do:
∇Bi

t = ∇Bi
t
L(Wt +AtB

i
t,Di)

Update B̂i
t ← Bi

t − η∇Bi
t

end for
Send updated B̂i

t to server
end for
Server: Aggregate B̄t ← 1

S

∑N
i=1 biB̂

i
t

Update global model Wt+1 ←Wt +AtB̄t

update random seed rt
end for
Return: Final global model WT

In the first round (t = 0), all clients and
the server initialize the model W0 randomly.
The reconstruction matrix A0 ∈ Rd×p is gen-
erated with random Gaussian entries, and the
local projection vector Bi

0 ∈ Rp is set to zero,
where i indicated the i-th client and d de-
notes the total number of model parameters
and p≪ d is the chosen reduced dimension.

In subsequent rounds (t ≥ 1), clients up-
date their local model Wt using the previous
round’s matrix At−1, the model parameters
Wt−1, and the broadcasted projection vector
B̄t as follows:

Wt = Wt−1 +At−1B̄t. (1)

Afterwards, clients generate a new At

by sampling from a Gaussian distribution
N (0, Id×p) using the random seed rt and set
Bi

t ← 0. This ensures that At and Wt are
synchronized and updated.

Local Optimization of Projection Vector.
This step focuses on finding the optimized projection vector B̂i

t that minimizes the local loss function
L(Wt+AtB

i
t,Di), given the random matrix At. Here, the model weights are derived as Wt+AtB

i
t ,

and Di denotes client i-th local dataset. At each communication round t ≥ 1, after initializing At

and Bi
t , clients perform local training to optimize Bi

t using their local data Di. The gradient of the
projection vector is computed as:

∇Bi
t = ∇Bi

t
L(Wt +AtB

i
t,Di). (2)

The optimized projection vector B̂i
t is then updated using gradient descent:

B̂i
t ← Bi

t − η∇Bi
t, (3)

where η denotes the learning rate. After optimization, clients send their optimized projection vector
B̂i

t to the server. The low dimensionality of B̂i
t compared to Wt results in communication efficiency.

Server-Side Aggregation and Global Model Update. Upon receiving the projection vectors B̂i
t

and their corresponding weights bi (e.g., batch sizes or number of local samples) from the clients,
the server aggregates them to form the global projection vector:

B̄t =

∑N
i=1 biB̂

i
t∑N

i=1 bi
. (4)

This weighted averaging captures the collective contribution of all clients, proportional to their data
sizes. The server then broadcasts the aggregated projection vector B̄t to all clients. After receiving
B̄t, the server and all clients update their local models using the reconstruction matrix At and the
aggregated projection vector B̄t as:

Wt+1 = Wt +AtB̄t. (5)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

This update integrates the clients’ optimized directions into their local models and ensures synchro-
nization across the network. This process repeats until the global model converges. Abbreviated
pseudo-code is provided in Algorithm 1, while Appendix A offers a more detailed version.

4 CONVERGENCE ANALYSIS

We look into the convergence dynamics of FL with MAPA.

Assumption 2. For each i,Li(v) is β-smooth, i.e., ∥∇Li(u)−∇Li(v)∥ ≤ β∥u− v∥ for any u, v.

Assumption 3. Variance of the stochastic gradient of Di is bounded for each client i, i.e.,

E
[∥∥∥∇Li(W)− ∇̃Li(W)

∥∥∥2] ≤ σ2
l .

Theorem 2. Given a decreasing learning rate ηt ≤ 1−4ϵ
4β(1+ϵ) , the algorithm has the following con-

vergence bound:

1

4HT

T−1∑
t=0

ηtE
[
∥∇L(Wt)∥2

]
≤ E [L(W0)]− L∗

HT
+ 2(ϵ+ β + βϵ)σ2

l

(
1

HT

T−1∑
t=0

η2t

)

where HT =
∑T−1

t=0 ηt, ϵ is the distortion parameter from the JL Lemma, and L∗ represents the
minimum value of L(W).

The proof can be found in Section D of the Appendix. With a decreasing learning rate, as T →
∞, the upper bound converges to 0, confirming the convergence to a stationary point. As shown
above, the convergence bound of MAPA is influenced by the (3 − 2ρ) term, and we can see that
the bound becomes the tightest and achieves the highest communication efficiency when there is no
reconstruction error, i.e., when ρ = 1.

5 EXPERIMENTS

MAPA’s effectiveness is assessed on image classification datasets: FMNIST Xiao et al. (2017),
MNIST LeCun et al. (1998), CIFAR-10 and CIFAR-100 Krizhevsky et al. (2009). MNIST and
FMNIST contain 60,000 training samples and 10,000 test samples, whereas CIFAR-10 and CIFAR-
100 each comprise 50,000 training samples and 10,000 test samples. Unlike other tasks, CIFAR-100
includes 100 classes, each containing 500 training and 100 test samples. We employ a CNN model
with 11k parameters for the MNIST and FMNIST datasets, a more substantial model with 1.4M
parameters for CIFAR-10, and a ResNet model with 5.5 parameters for CIFAR-100.

We distribute the training set of each dataset among clients for model training, and the performance
of the final global model is evaluated using the original test set. Our experimental setup contains
N = 100 clients with non-IID data distribution. The non-IID distribution is created by splitting
class data into 20 shards and then randomly assigning 5 shards from all class shards to each client
by finding a permutation that uses the whole dataset while assigning two to five classes for each
client. Similarly, for CIFAR-100, we attain twenty to fifty classes for each client.

Our MAPA framework is built using JAX (Bradbury et al., 2018), which facilitates extensive paral-
lelization and, in particular, consistent random number generation across a large number of nodes
and is designed for decoupled model parameters and architectures that ease the implementation of
MAPA for factorization of parameters independent of the model architecture. MAPA is configured
with 128 trainable parameters for MNIST and FMNIST while using 1024 for CIFAR-10 and CIFAR-
100 and trains over 500 global rounds. We compare the performance of the proposed MAPA with
FedAvg, FedAvg with Sparsification (Sparse), FedAvg with Quantization (Quant), EvoFed (Rahimi
et al., 2024), as a SOTA baseline from compression techniques, Freeze A LoRA (FA-LoRA) inspired
by Sun et al. (2024); Zhang et al. (2023); Zhu et al. (2024); Hao et al. (2024), as a SOTA baseline
for factorization methods. In each scenario, we keep the same amount of trainable parameters.

Results and Discussions. We discuss the experimental results in detail and provide further insights
into the performance of MAPA. The accuracy of MAPA, compared with multiple baseline methods
and different datasets, is shown in Figure 5 (top row). MAPA’s superior reconstruction outperforms
all other methods in all tasks and delivers results comparable to FedAvg, utilizing a much smaller
number of trainable parameters. Figure 5 (bottom-row) shows each method’s minimum amount of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Rounds

20

40

60

80

100

G
lo

ba
l A

cc
ur

ac
y

MNIST Accuracy - 100 Clients

MAPA
LoRA
EvoFed
Sparse
Quant
FedAvg

0 100 200 300 400 500
Rounds

10
20
30
40
50
60
70
80
90

G
lo

ba
l A

cc
ur

ac
y

FMNIST Accuracy - 100 Clients

MAPA
LoRA
EvoFed
Sparse
Quant
FedAvg

0 100 200 300 400 500
Rounds

10

20

30

40

50

60

70

G
lo

ba
l A

cc
ur

ac
y

CIFAR10 Accuracy - 100 Clients

MAPA
LoRA
EvoFed
Sparse
Quant
FedAvg

(a) MNIST Accuracy (b) FMNIST Accuracy (c) CIFAR-10 Accuracy

0.2 0.4 0.6 0.8 1.0
Global Accuracy

10 3
10 2
10 1
100
101
102
103
104
105

lo
g 1

0
 C

om
m

un
ic

at
io

n

MNIST Communication / Accuracy
MAPA
LoRA
EvoFed
Sparse
Quant
FedAvg

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Global Accuracy

10 3

10 2

10 1

100

101

102

103

104

105

lo
g 1

0
 C

om
m

un
ic

at
io

n

FMNIST Communication/Accuracy
MAPA
LoRA
EvoFed
Sparse
Quant
FedAvg

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Global Accuracy

10 2

10 1

100

101

102

103

104

105

lo
g 1

0
 C

om
m

un
ic

at
io

n

CIFAR10 Communication/Accuracy
MAPA
LoRA
EvoFed
Sparse
Quant
FedAvg

(d) MNIST Comm. cost (e) FMNIST Comm. cost (f) CIFAR-10 Comm. cost
Figure 5: Performance comparison of MAPA and baseline methods on MNIST, FMNIST, and CIFAR-10
datasets. The top row shows the accuracy achieved by each method on the respective datasets, while the bottom
row illustrates the communication cost associated with each method.

MNIST FMNIST CIFAR-10 CIFAR-100
Com. Local Global Com. Local Global Com. Local Global Com. Local Global

Methods Cost Acc. Acc. Cost Acc. Acc. Cost Acc. Acc. Cost Acc. Acc.
FedAvg 100% 99.6% 98.9% 100% 92.7% 89.2% 100% 98.8% 69.0% 100% 42.1% 18.0%
Sparse 15.3% 97.7% 93.8% 24.1% 84.4% 81.1% 1.0% 63.1% 47.1% 7.5% 35.8% 12.1%
Quantize 31.3% 98.8% 97.6% 24.1% 83.6% 81.1% 5.0% 84.8% 67.1% 54.2% 32.1% 10.2%
EvoFed 9.4% 98.6% 98.5% 7.6% 90.4% 87.7% 1.9% 65.9% 48.9% 0.2% 36.3% 16.5%
FA-LoRA 30.2% 97.4% 97.0% 17.9% 87.9% 84.1% 1.1% 69.0% 49.2% 0.2% 34.7% 14.1%
MAPAXd/64 3.1% 98.8% 98.1% 3.4% 91.0% 87.7% 1.1% 88.7% 68.2% 0.1% 36.6% 16.8%
MAPAXd/256 3.0% 98.8% 98.2% 3.3% 91.3% 87.9% 1.0% 88.8% 68.2% 0.09% 36.6% 16.8%
MAPAXd/1024 2.9% 98.9% 98.5% 3.1% 91.2% 87.9% 1.0% 88.8% 68.2% 0.08% 36.7% 16.8%
MAPA 2.9% 98.9% 98.5% 3.1% 91.4% 88.0% 1.0% 88.9% 68.3% 0.08% 36.7% 16.8%

Table 1: Performance of different methods presented in tabular form, corresponding to Figure 5.

communication to reach a certain accuracy. It can be seen that MAPA tends to utilize significantly
less communication than other techniques, as the communication cost (y-axis) is in the log10 scale.

Table 1 summarizes each method’s communication efficiency and performance on MNIST, FM-
NIST, CIFAR-10, and CIFAR-100 datasets. It presents maximum accuracy and the communication
cost percentage compared to FedAvg. MAPA achieves significantly lower communication costs than
FedAvg while maintaining competitive accuracy levels. In MNIST and FMNIST datasets, MAPA
achieves 98.5% and 98.6% of FedAvg accuracy while having only 3% of FedAvg communication.
Similarly, in CIFAR-10 and CIFAR-100 datasets, it reaches 98.9% and 93.3% of FedAvg accuracy
with around 1.0% of FedAvg communication.

Additional Results. Additional results regarding IID distribution and client sampling have been
provided in Appendix F, while Appendix B provides empirical results regarding the matrix A ini-
tialization, and the hyperparameters and network architecture details are provided in Appendix G.

MAPAX Performance. We provide additional results to evaluate MAPAX factorizations regard-
ing their performance and communication efficiency. Figure 6 first row visualizes our theoretical
finding, providing a map to navigate through factorization space regarding our MAPAX, and the
second row presents our empirical experiments results of MAPAX accuracy for each factorization.
For clarity, the Axes of Figure 6 and values for communication and memory amount are presented
in log2 scale and denote discrete values representing matrix dimensions.

Figure 6 (a) visualizes efficient, same, over communication zones. The factorization region that
achieves communication efficiency by having fewer trainable parameters (smaller B), shown in blue,
and the over-communication zone in red, denotes the factorization with more trainable parameters
(larger B) than the original model. This figure shows that MAPAX can cover possible factorization
in the communication-efficient zone by selecting k and p accordingly.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

d1 d d2 d
log2 e (reconstruction dim)

d1

d

d2

d

lo
g 2

p
(p

ro
du

ct
 d

im
)

Same Communication
Line

Locus of LoRA Solutions

Locus of MAPA Solutions

FedAvg

Over Communication
Zone

Communication Efficient
 Zone

(MAPAX Zone)

Factorization Zones

0 2 4 6 8 10 12 14
log2 e (Reconstruction Dim)

14

12

10

8

6

4

2

0

lo
g 2

p
(P

ro
du

ct
 D

im
)

14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0

12.0 10.0 8.0 6.0 4.0 2.0 0.0 -2.0

10.0 8.0 6.0 4.0 2.0 0.0 -2.0 -4.0

8.0 6.0 4.0 2.0 0.0 -2.0 -4.0 -6.0

6.0 4.0 2.0 0.0 -2.0 -4.0 -6.0 -8.0

4.0 2.0 0.0 -2.0 -4.0 -6.0 -8.0 -10.0

2.0 0.0 -2.0 -4.0 -6.0 -8.0 -10.0-12.0

0.0 -2.0 -4.0 -6.0 -8.0 -10.0-12.0-14.0

Communication

0 2 4 6 8 10 12 14
log2 e (Reconstruction Dim)

14

12

10

8

6

4

2

0

lo
g 2

p
(P

ro
du

ct
 D

im
)

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

-2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

-4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0

-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0

-12.0-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0

-14.0-12.0-10.0 -8.0 -6.0 -4.0 -2.0 0.0

Memory

(a) Factorization Zones (MAPAX) (b) Communication Cost (c) Memory Usage

0 2 4 6 8 10 12 14
log2 e (Reconstruction Dim)

14

12

10

8

6

4

2

0

lo
g 2

p
(P

ro
du

ct
 D

im
)

99.2

99.2 99.1

99.1 99.1 99.0

99.0 99.1 98.8 98.9

98.9 99.0 98.7 98.7 96.9

98.9 98.9 98.7 98.4 96.5 92.6

98.9 98.9 98.7 98.3 96.4 90.5 87.8

98.9 98.9 98.5 98.3 96.0 86.9 72.8 61.4

Accuracy

0 2 4 6 8 10 12 14
log2 e (Reconstruction Dim)

14

12

10

8

6

4

2

0

lo
g 2

p
(P

ro
du

ct
 D

im
)

89.3

89.2 89.0

89.2 89.0 88.8

89.2 89.0 88.8 88.0

89.2 89.0 88.7 88.0 83.4

89.1 89.0 88.7 87.9 83.2 76.8

89.2 89.0 88.6 87.8 82.7 76.3 68.3

89.2 88.9 88.5 87.8 82.5 75.9 67.7 66.6

Accuracy

0 2 4 6 8 10 12 14 16 18 20
log2 e (Reconstruction Dim)

20

18

16

14

12

10

8

6

4

2

0

lo
g 2

p
(P

ro
du

ct
 D

im
)

69.4

69.3 69.2

69.3 69.2 69.1

69.2 69.2 69.1 69.0

69.1 69.0 69.1 69.0 68.5

69.1 69.0 69.1 69.0 68.5 68.3

69.1 69.0 69.1 68.9 68.5 68.3 59.6

69.2 69.0 69.1 68.8 68.5 68.2 59.5 51.6

69.1 68.8 69.0 68.9 68.3 68.1 59.3 50.3 42.4

69.0 68.9 69.0 68.8 68.3 68.1 59.1 40.1 40.1 38.4

69.0 68.9 69.0 68.7 68.3 68.0 58.8 36.6 36.6 36.6 32.5

Accuracy

(d) MNIST Accuracy (e) FMNIST Accuracy (f) CIFAR-10 Accuracy
Figure 6: Each point on the plot denotes different factorization with various sizes of reconstruction matrix and
projection vector. First row presents the theoretical findings: (a) denotes the zones regarding communication
efficiency, while (b) and (c) show a numerical example of communication burden and memory usage. Second
row provides results of each factorization accuracy on MNIST, FMNIST, and CIFAR-10 datasets.

Figure 6 (b) shows each factorization’s communication coefficient in log2 scale. Given a model
with d parameters, the communication cost will be d2c, where c is the communication coefficient
according to the table. Similarly, Figure 6 (c) shows each factorization’s memory usage coefficient
in log2 scale. Given a model with d parameters, the memory usage will be d2m, where m is the
memory usage coefficient according to the table.

Figure 6 (bottom row) shows the results of empirical experiments of possible factorization on
MNIST, FMNIST, and CIFAR-10 with non-iid distribution on 100 clients. We conducted 28 factor-
izations for MNIST and FMNIST and 55 for CIFAR-10 by adjusting p and e values. It is evident
among all tasks and confirming our theoretical analysis in Appendix E that the model accuracy is
highly correlated with communication cost. As Figure 6 (bottom row) shows, the performance drops
suddenly as communication goes to zero, while it will saturate after having an adequate amount
of communication, which suggests the existence of a low-rank structure for the neural network
gradient. As shown in Figure 6, we can have varying degrees of memory efficiency for a given
communication rate. Therefore, MAPAX takes advantage of this fact and provides memory and
computationally efficient solutions for slightly underperforming MAPA, saving quadratic order of
memory and computation. Appendix E demonstrates a complete analysis regarding MAPAX and
how parameters can be tuned considering the task’s requirements.

6 CONCLUSION

We introduced Model-Agnostic Projection Adaptation (MAPA), a novel technique for enhancing
communication efficiency in FL by treating the entire model parameter space as a single vector and
factorizing it into a fixed reconstruction matrix and a trainable projection vector. This approach
can utilize a new reconstruction matrix at each round, increasing the expressiveness of model up-
dates without additional communication costs. Our theoretical analysis established the convergence
of MAPA and demonstrated and provided MAPAX extension as a solution for high memory con-
sumption. Extensive experiments on different datasets showed that MAPA provides a significant
advancement in improving the efficiency and practicality of FL, offering a promising direction for
future research in distributed machine learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. In Advances in Neural
Information Processing Systems, pp. 1709–1720, 2017.

Sheikh Shams Azam, Seyyedali Hosseinalipour, Qiang Qiu, and Christopher Brinton. Recycling
model updates in federated learning: Are gradient subspaces low-rank? In International Confer-
ence on Learning Representations, 2021.

Dimitris Bertsimas, Ryan Cory-Wright, and Jean Pauphilet. A new perspective on low-rank opti-
mization. Mathematical Programming, 202(1):47–92, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, and Gauri Joshi. Heterogeneous low-
rank approximation for federated fine-tuning of on-device foundation models. arXiv preprint
arXiv:2401.06432, 2024.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Freitas. Predict-
ing parameters in deep learning. Advances in neural information processing systems, 26, 2013.

Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan, Feifei Wang, and Liangqiong Qu. Selec-
tive aggregation for low-rank adaptation in federated learning. arXiv preprint arXiv:2410.01463,
2024.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. arXiv preprint arXiv:2402.03293, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Jakub Konečnỳ. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Unpublished, 2009.

Kevin Kuo, Arian Raje, Kousik Rajesh, and Virginia Smith. Federated lora with sparse communi-
cation. arXiv preprint arXiv:2406.05233, 2024.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Fair resource allocation in federated learning. arXiv preprint arXiv:1905.10497, 2020.

Yipeng Liu, Jiani Liu, Zhen Long, Ce Zhu, Yipeng Liu, Jiani Liu, Zhen Long, and Ce Zhu. Tensor
decomposition in deep networks. Tensor Computation for Data Analysis, pp. 241–263, 2022.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

11

http://github.com/google/jax
http://github.com/google/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuzhu Mao, Zihao Zhao, Guangfeng Yan, Yang Liu, Tian Lan, Linqi Song, and Wenbo Ding.
Communication-efficient federated learning with adaptive quantization. ACM Transactions on
Intelligent Systems and Technology (TIST), 13(4):1–26, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-Efficient Learning of Deep Networks from Decentralized Data. In
Aarti Singh and Jerry Zhu (eds.), Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Research, pp.
1273–1282. PMLR, 20–22 Apr 2017. URL https://proceedings.mlr.press/v54/
mcmahan17a.html.

Yongjeong Oh, Yo-Seb Jeon, Mingzhe Chen, and Walid Saad. Vector quantized compressed sens-
ing for communication-efficient federated learning. In 2022 IEEE Globecom Workshops (GC
Wkshps), pp. 365–370. IEEE, 2022.

Xinwei Ou, Zhangxin Chen, Ce Zhu, and Yipeng Liu. Low rank optimization for efficient deep
learning: Making a balance between compact architecture and fast training. arXiv preprint
arXiv:2303.13635, 2023.

Sangjun Park and Wan Choi. Regulated subspace projection based local model update compression
for communication-efficient federated learning. IEEE Journal on Selected Areas in Communica-
tions, 41(4):964–976, 2023.

Jiaxing Qi, Zhongzhi Luan, Shaohan Huang, Carol Fung, Hailong Yang, and Depei Qian. Fdlora:
Personalized federated learning of large language model via dual lora tuning. arXiv preprint
arXiv:2406.07925, 2024.

Mohammad Mahdi Rahimi, Hasnain Irshad Bhatti, Younghyun Park, Humaira Kousar, Do-Yeon
Kim, and Jaekyun Moon. Evofed: leveraging evolutionary strategies for communication-efficient
federated learning. Advances in Neural Information Processing Systems, 36, 2024.

Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Robust and
communication-efficient federated learning from non-iid data. In IEEE transactions on neural
networks and learning systems, 2019.

Zai Shi and Atilla Eryilmaz. Communication-efficient subspace methods for high-dimensional fed-
erated learning. In 2021 17th International Conference on Mobility, Sensing and Networking
(MSN), pp. 543–550. IEEE, 2021.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving lora in privacy-preserving federated
learning. arXiv preprint arXiv:2403.12313, 2024.

Terence Tao. Topics in Random Matrix Theory. Graduate Studies in Mathematics, Vol. 132. Ameri-
can Mathematical Society, 2012.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compres-
sion. arXiv preprint arXiv:1702.04008, 2017.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Sci-
ence. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
1st edition, 2018.

Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide compres-
sion: Tensor ring nets. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9329–9338, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

12

https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuning Yang, Xiaohong Liu, Tianrun Gao, Xiaodong Xu, and Guangyu Wang. Sa-fedlora:
Adaptive parameter allocation for efficient federated learning with lora tuning. arXiv preprint
arXiv:2405.09394, 2024.

Liping Yi, Han Yu, Gang Wang, and Xiaoguang Liu. Fedlora: Model-heterogeneous personalized
federated learning with lora tuning. arXiv preprint arXiv:2310.13283, 2023.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023.

Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi Wang.
A systematic dnn weight pruning framework using alternating direction method of multipliers. In
Proceedings of the European conference on computer vision (ECCV), pp. 184–199, 2018.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez de Ocáriz Borde, Rickard Brüel
Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
Asymmetry in low-rank adapters of foundation models. arXiv preprint arXiv:2402.16842, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A FULL PSEUDOCODE FOR FEDERATED LEARNING WITH MAPA

Algorithm 2 FL with MAPA

1: Initialization:
2: - Initialize global model W0 ∈ Rd×1 with random seed r0 in all clients and server
3: - Initialize reconstruction matrix A0 ∈ Rd×p with random vectors
4: - Set initial global projection matrix B̄0 ← 0 ∈ Rp×1

5: for each communication round t = 1, . . . , T − 1 do
6: Server-Side:
7: - Broadcast global projection matrixB̄t−1 and PRNG seed rt−1

8: for each client i = 1, . . . , N in parallel do
9: Client-Side:

10: - Receive B̄t−1 and rt−1

11: - Update the local model by Wt = Wt−1 +At−1B̄t−1

12: - Update reconstruction matrix At = N (0, σ)|rt−1

13: - Initialize local projection matrix Bi
t ← 0 ∈ Rp×1

14: for each local epoch e = 1, . . . , E do:
15: - Compute gradient of loss w.r.t Bi

t:

∇Bi
t = ∇Bi

t
L(Wt +AtB

i
t,Di)

16: - Update Bi
t using optimizer (e.g., SGD, Adam):

B̂i
t ← Bi

t − η∇Bi
t

17: end for
18: - Send updated Bi

t to server
19: end for
20: Server-Side:
21: - Update reconstruction matrix At = N (0, σ)|rt−1

22: - Aggregate projection matrix:

B̄t ←
1

S

N∑
i=1

biB̂
i
t

23: - Update global model: Wt+1 ←Wt +AtB̄t

24: - Generate a new random seed rt given previous seed rt−1

25: end for
26: Return: Final global model WT

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B FRESH INITIALIZATION OF RECONSTRUCTION MATRIX A

The common practice of implementing matrix factorization in communication-efficient FL involves
using a fixed and frozen reconstruction matrix throughout the whole training. In contrast, we found
that having a reconstructed matrix generated fresh and independently each round outperforms this
traditional choice without any additional communication overhead. Figure 7 shows the evidence of
this improvement in the case of FMNIST training with 100 clients.

0 50 100 150 200 250 300 350 400
Rounds

50

60

70

80

G
lo

ba
l A

cc
ur

ac
y

FMNIST Accuracy - 128 Parameters

Fresh A Each Round
Frozen A

0 50 100 150 200 250 300 350 400
Rounds

10
20
30
40
50
60
70
80
90

G
lo

ba
l A

cc
ur

ac
y

FMNIST Accuracy - 256 Parameters

Fresh A Each Round
Frozen A

(A) 128 Trainable Parameter (B) 256 Trainable Parameter
Figure 7: Comparison of having a Fresh and Frozen reconstruction matrix at each round. It shows that the
Fresh reconstruction matrix outperforms the Frozen as it has stronger exploration and more chance to escape
local minima.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C PROOF OF PROPOSITIONS

C.1 DEFINITION 2: REPRESENTATION CERTAINTY

Definition 2 (Representation Certainty). Using the same factorization as in Definition 1. The
representation certainty is defined as the inverse of the error rate variance. The error rate measures
the expected error of the factorization to represent the original matrix, given a full-rank matrix A
(Assumption 1). The error expectation and variance are defined as:

EA

[
∥W −AB∥22

]
=

(
1− q

d1

)
,VarA

[
∥W −AB∥22

]
=

(
2q(d1 − q)

d21(d1 + 2)

)
Therefore, given a constant communication overhead and error expectation d1

q = r we have:

RC(∆W,F) = 1

VarA[E]
=

r3q + r2

2(r − 1)
∝ q

Let x ∈ Rd, and let A ∈ Rd×p be a random Gaussian matrix. The projection of x onto the subspace
spanned by A is PAx. The error rate E is defined as:

E =
∥x− PAx∥22
∥x∥22

.

Using the Pythagorean theorem:

∥x∥22 = ∥PAx∥22 + ∥x− PAx∥22,
we rewrite E as:

E =
∥x∥22 − ∥PAx∥22

∥x∥22
= 1− ∥PAx∥22

∥x∥22
.

The expected value of ∥PAx∥22 for a random Gaussian projection is:

E[∥PAx∥22] =
p

d
∥x∥22.

Substituting this into E:

E[E] = 1− E[∥PAx∥22]
∥x∥22

= 1−
p
d∥x∥

2
2

∥x∥22
= 1− p

d
.

Thus:
E[E] = 1− p

d
.

The variance of E is:

Var(E) =
Var(∥PAx∥22)
∥x∥42

.

For a random Gaussian projection:

Var(∥PAx∥22) = E[∥PAx∥42]−
(
E[∥PAx∥22]

)2
.

The moments are:

E[∥PAx∥42] =
p(p+ 2)

d(d+ 2)
∥x∥42,

(
E[∥PAx∥22]

)2
=

p2

d2
∥x∥42.

Thus:

Var(∥PAx∥22) =
p(p+ 2)

d(d+ 2)
∥x∥42 −

p2

d2
∥x∥42 =

2p(d− p)

d2(d+ 2)
∥x∥42.

Substituting into Var(E):

Var(E) =

2p(d−p)
d2(d+2)∥x∥

4
2

∥x∥42
=

2p(d− p)

d2(d+ 2)
.

The expected value and variance of the error rate are:

E[E] = 1− p

d
, Var(E) =

2p(d− p)

d2(d+ 2)
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.2 PROPOSITION 1: RELAXED LOW-RANK FACTORIZATION SUPERIORITY

Proposition 1 (Relaxed Low-Rank Factorization Superiority). Let ∆W ∈ Rd1×d2 be the update
matrix of one layer, factorized in low-rank as ∆W = AB, where A ∈ Rd1×q is a shared random
matrix and B ∈ Rq×d2 is the trainable matrix, with q ≤ min(d1, d2) being the factorization rank, By
reshaping ∆W into ∆W ′ ∈ R(d1d2)/k × k for some integer k < d2, the factorization of ∆W ′ can
achieve a higher representation certainty while requiring same communication overhead compared
to the conventional low-rank factorization of ∆W .

Proof. Let ∆W ∈ Rd1×d2 represent the update matrix, which is conventionally factorized as
∆W = AB, where A ∈ Rd1×q is a fixed random reconstruction matrix, and B ∈ Rq×d2 is the
trainable projection matrix. Here, q ≤ min(d1, d2) denotes the factorization rank.

According to Definitions 1 and 2, the communication overhead (CO) and representation certainty
(RC) for the conventional low-rank factorization are expressed as:

CO =
q

d1
, RC =

d21(d1 + 2)

2q(d1 − q)
.

Now, consider reshaping ∆W into ∆W ′ ∈ R(d1d2)/k×k for some integer k < d2 that divides d1d2.
Factorize ∆W ′ as ∆W ′ = A′B′, where A′ ∈ R(d1d2)/k×p is a fixed random reconstruction matrix
and B′ ∈ Rp×k is the trainable projection matrix. Following Definitions 1 and 2, the communication
overhead (CO′) and representation certainty (RC′) for this relaxed low-rank factorization are given
by:

CO′ =
pk

d1d2
, RC′ =

(
d1d2

k

)2 (d1d2

k + 2
)

2p
(
d1d2

k − p
) .

Assuming the communication overhead is the same in both cases, i.e., pk
d1d2

= q
d1

= 1
r , it follows

that:

RC =
r3q + r2

2(r − 1)
, RC′ =

r3p+ r2

2(r − 1)
.

Furthermore, given k < d2, we derive:

pk

d1d2
=

q

d1
=⇒ pk

d2
= q =⇒ p =

d2
k
q =⇒ p > q =⇒ RC′ > RC .

In conclusion, by reshaping ∆W ∈ Rd1×d2 into ∆W ′ ∈ R(d1d2)/k×k with k ≤ d2, one can select
a rank p = d2

k q, thereby achieving a higher representation certainty while maintaining the same
communication overhead. This establishes the superiority of the relaxed low-rank factorization
under the given conditions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.3 PROPOSITION 2: LAYER-INDEPENDENT FACTORIZATION SUPERIORITY

Proposition 2 (Layer-Independent Factorization Superiority). Let ∆Wi ∈ Rdi
1×di

2 be the update
matrix of the i-th layer of a model, and let ∆W ′

i ∈ Rdi
1d

i
2×1 be its reshaped single-vector form. In

single-vector factorization methods, ∆W ′
i is factorized as ∆W ′

i = AiBi, where Ai ∈ Rdi
1d

i
2×qi

and Bi ∈ Rqi×1, with qi ≤ di1d
i
2. By concatenating the reshaped weights ∆W ′

i into ∆W ′ ∈ Rd×1,
where d =

∑n
i=1 d

i
1d

i
2. The factorization of ∆W ′ can achieve a higher representation certainty

while requiring the same communication overhead than the conventional single-vector factorization
methods applied separately to each layer.

Proof. Let ∆Wi ∈ Rdi
1×di

2 be the update matrix of the i-th layer, which we reshape into its single-
vector form ∆W ′

i ∈ Rdi
1d

i
2×1. In conventional single-vector factorization methods applied sepa-

rately to each layer, ∆W ′
i is factorized as:

∆W ′
i = AiBi,

where Ai ∈ Rdi
1d

i
2×qi is a fixed random reconstruction matrix, and Bi ∈ Rqi×1 is the trainable

projection matrix, with qi ≤ di1d
i
2.

According to Definitions 1 and 2, the communication overhead and representation certainty are
given by:

CO =

∑n
i=1 qi∑n

i=1 d
i
1d

i
2

; RCi =
(di1d

i
2)

2(di1d
i
2 + 2)

2qi(di1d
i
2 − qi)

.

Now, consider concatenating the reshaped vectors ∆W ′
i from all n layers into a single vector ∆W ′ ∈

Rd×1, where:

d =

n∑
i=1

di1d
i
2.

We factorize the concatenated vector ∆W ′ as:

∆W ′ = AB,

where A ∈ Rd×q is a fixed random reconstruction matrix, and B ∈ Rq×1 is the trainable projection
matrix, with q ≤ d.

The communication overhead and representation certainty for the concatenated factorization are:

CO′ =
q

d
; RC′ =

d2(d+ 2)

2q(d− q)
.

Assuming the communication overhead is identical for both methods for some r ≥ 1, we have:

qi
di1d

i
2

=
q

d
=

1

r
=⇒ q =

d

di1d
i
2

qi.

Substituting d, di1d
i
2 into the expression for RCi and RC′:

RCi =
r3qi + r2

2(r − 1)
, RC′ =

r3q + r2

2(r − 1)
.

Furthermore, given di1d
i
2 < d, we derive:

q =
d

di1d
i
2

qi =⇒ q > qi =⇒ RC′ > RCi .

In conclusion, by concatenating the reshaped weights ∆W ′
i ∈ Rdi

1d
i
2×1 to W ′ ∈ Rd×1, where i ≥ 1

we can select the rank q = d
di
qi to achieve a higher representation certainty while reducing the

communication overhead compared to the conventional single-vector factorization methods applied
separately to each layer under given conditions.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.4 PROPOSITION 3: MAPAX GENERALIZATION

Proposition 3 (MAPAX Generalization). Let ∆Wi ∈ Rdi
1×di

2 be the update matrix of the i-th layer
of a model, and let ∆W = vec(∆W1,∆W2, . . . ,∆Wn) ∈ Rd be the vectorization (concatenation)
of all ∆Wi, where d =

∑n
i=1 d

i
1d

i
2. In comparison to MAPA, MAPAXk factorization allocates k2

times less memory for the same communication overhead and error rate, for the cost of k times
worse representation certainty, in other words, more k times more error rate variance.

Proof. Let ∆W ∈ Rd×1 be the update matrix. In MAPA factorization ∆W is factorized as:

∆W = AB,

where A ∈ Rd×p is a fixed random reconstruction matrix, and B ∈ Rp×1 is the trainable projection
matrix.

According to Definitions 1 and 2, the communication overhead and representation certainty are
given by:

CO =
p

d
; RC =

d2(d+ 2)

2p(d− p)
.

Now, consider MAPAXk reshapes update vector to ∆W ′ ∈ R d
k×k, and factorizes ∆W ′ as:

∆W ′ = A′B′,

where A′ ∈ R d
k×q is a fixed random reconstruction matrix, and B′ ∈ Rq×k is the trainable projec-

tion matrix.

The communication overhead and representation certainty for the concatenated factorization are:

CO′ =
qk

d
; RC′ =

(dk)
2((dk) + 2)

2q((dk)− q)
.

Assuming the communication overhead is identical for both methods for some r ≥ 1, we have:

qk

d
=

p

d
=

1

r
=⇒ q =

p

k
.

Substituting d into the expression for RC and RC′:

RC =
r3p+ r2

2(r − 1)
, RC′ =

r3 p
k + r2

2(r − 1)
.

Therefore, MAPAXk has k times less representation certainty compared to MAPA.

On the other hand, the memory allocation of matrix A and A′ can be computed as:

Size(A) = dp ; Size(A′) =
dp

k2
,

demonstrating that MAPAXk utilizes k2 times less memory compared to MAPA.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D PROOF OF THEOREM

D.1 ASSUMPTIONS AND PRELIMINARIES

We restate the key assumptions required for the convergence analysis.
Assumption 1 (Smoothness). For each i, Li(W) is β-smooth, i.e.,

∥∇Li(u)−∇Li(v)∥ ≤ β∥u− v∥, for all u, v.
Assumption 2 (Bounded Variance of Stochastic Gradients). The variance of the stochastic gradient

estimator ∇̃Li(Wt) is bounded, i.e., E
[∥∥∥∇̃Li(Wt)−∇Li(Wt)

∥∥∥2] ≤ σ2
l , for all clients i and

iterations t.
Lemma 1 (Johnson-Lindenstrauss Lemma). Given 0 < ϵ < 1, a set of points {x1, x2, . . . , xN} ⊂
Rd, and a target dimension k = O

(
logN
ϵ2

)
, there exists a random linear mapping P ∈ Rk×d such

that for all i, j:
(1− ϵ)∥xi − xj∥2 ≤ ∥Pxi − Pxj∥2 ≤ (1 + ϵ)∥xi − xj∥2.

In our context, the random projection matrices Bi
t and reconstruction matrices At satisfy the JL

property with high probability.

D.2 PROOF OF THEOREM 1

Theorem 1. Given a decreasing learning rate ηt ≤ 1−4ϵ
4β(1+ϵ) , the algorithm has the following con-

vergence bound:

1

4HT

T−1∑
t=0

ηtE
[
∥∇L(Wt)∥2

]
≤ E [L(W0)]− L∗

HT
+ 2(ϵ+ β + βϵ)σ2

l

(
1

HT

T−1∑
t=0

η2t

)
where HT =

∑T−1
t=0 ηt, ϵ is the distortion parameter from the JL Lemma, and L∗ represents the

minimum value of L(W).

Proof. By the β-smoothness of L(W) and taking expectation on both sides, we have

E [L(Wt+1)− L(Wt)] ≤ E [⟨∇L(Wt),Wt+1 −Wt⟩] +
β

2
E
[
∥Wt+1 −Wt∥2

]
. (6)

Using the update rule Wt+1 = Wt−ηtAtB̄t, where B̄t =
1
N

∑N
i=1 B

i
t , we can rewrite the first term

as:
E [⟨∇L(Wt),Wt+1 −Wt⟩] = −ηtE

[〈
∇L(Wt), AtB̄t

〉]
= −ηtE

[〈
∇L(Wt), At

(
1

N

N∑
i=1

Bi
t

)〉]

= −ηtE

[〈
∇L(Wt),

1

N

N∑
i=1

AtB
i
t

〉]
.

We decompose AtB
i
t as:

∇̃Li(Wt) = AtB
i
t + eit,

where eit = AtB
i
t − ∇̃Li(Wt) is the projection error.

Substituting back, we have:

E [⟨∇L(Wt),Wt+1 −Wt⟩] = −ηtE

[〈
∇L(Wt),

1

N

N∑
i=1

(
∇̃Li(Wt)− eit

)〉]

= −ηtE

[〈
∇L(Wt),

1

N

N∑
i=1

∇̃Li(Wt)

〉]
︸ ︷︷ ︸

A1

+ ηtE

[〈
∇L(Wt),

1

N

N∑
i=1

eit

〉]
︸ ︷︷ ︸

A2

.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

We will now concentrate on A1 as:

A1 = −ηtE

[〈
∇L(Wt),

1

N

N∑
i=1

∇Li(Wt)

〉]

= − ηt
N

N∑
i=1

E [⟨∇L(Wt),∇Li(Wt)⟩]

=
(a)
− ηt
2N

N∑
i=1

{
E
[
∥∇L(Wt)∥2

]
+ E

[∥∥∥∇Li(Wt)
∥∥∥2]}+

ηt
2
E

∥∥∥∇L(Wt)−

1

N

N∑
i=1

∇Li(Wt)︸ ︷︷ ︸
=0

∥∥∥2

= −ηt
2
E
[
∥∇L(Wt)∥2

]
− ηt

2N

N∑
i=1

E
[∥∥∥∇Li(Wt)

∥∥∥2]

where (a) uses ⟨a, b⟩ = 1
2{||a||

2 + ||b||2 − ||a− b||2}. We now turn our attention to A2 as:

Next, we focus on A2:

A2 = ηtE

[〈
∇L(Wt),

1

N

N∑
i=1

eit

〉]

≤
(a)

ηt
4
E
[
∥∇L(Wt)∥2

]
+ ηtE

∥∥∥∥∥ 1

N

N∑
i=1

eit

∥∥∥∥∥
2

≤
(b)

ηt
4
E
[
∥∇L(Wt)∥2

]
+

ηt
N

E

∥∥∥∥∥
N∑
i=1

eit

∥∥∥∥∥
2

≤
(c)

ηt
4
E
[
∥∇L(Wt)∥2

]
+

ϵηt
N

E

∥∥∥∥∥
N∑
i=1

∇̃Li(Wt)

∥∥∥∥∥
2

≤
(d)

ηt
4
E
[
∥∇L(Wt)∥2

]
+

2ϵηt
N

N∑
i=1

{
E
[
∥∇Li(Wt)∥2

]
+ E

[∥∥∥∇̃Li(Wt)−∇Li(Wt)
∥∥∥2]}

≤
(e)

ηt
4
E
[
∥∇L(Wt)∥2

]
+

2ϵηt
N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+ 2ϵη2t σ

2
l

where (a) uses ⟨a, b⟩ ≤ 1
4 ||a||

2 + ||b||2, and (b) follows Jensen’s inequality, (c) comes from JL
Lemma, (d) follows the inequality ||a + b||2 ≤ 2||a||2 + 2||b||2, and (e) is based on Assumption
2. On the other hand, we can also place a bound on the second term E

[
∥Wt+1 −Wt∥2

]
as shown

below:

E
[
∥Wt+1 −Wt∥2

]
= E

[∥∥ηtAtB̄t

∥∥2] = E

∥∥∥∥∥ηtAt

(
1

N

N∑
i=1

Bi
t

)∥∥∥∥∥
2

≤
(a)

2η2tE

∥∥∥∥∥ 1

N

N∑
i=1

∇̃Li(Wt)

∥∥∥∥∥
2
+ 2η2tE

∥∥∥∥∥ 1

N

N∑
i=1

{
AtB

i
t − ∇̃Li(Wt)

}∥∥∥∥∥
2

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

≤
(b)

2η2t
N

E

∥∥∥∥∥
N∑
i=1

∇̃Li(Wt)

∥∥∥∥∥
2
+

2η2t
N

E

∥∥∥∥∥
N∑
i=1

{
AtB

i
t − ∇̃Li(Wt)

}∥∥∥∥∥
2

=
2η2t
N

E

∥∥∥∥∥
N∑
i=1

∇̃Li(Wt)

∥∥∥∥∥
2
+

2η2t
N

E

∥∥∥∥∥
N∑
i=1

eit

∥∥∥∥∥
2

≤
(c)

4η2t
N

N∑
i=1

{
E
[
∥∇Li(Wt)∥2

]
+ E

[∥∥∥∇̃Li(Wt)−∇Li(Wt)
∥∥∥2]}+

2η2t
N

E

∥∥∥∥∥
N∑
i=1

eit

∥∥∥∥∥
2

≤
(d)

4η2t
N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+

2η2t
N

E

∥∥∥∥∥
N∑
i=1

eit

∥∥∥∥∥
2
+ 4η2t σ

2
l

≤
(e)

4η2t
N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+

2ϵη2t
N

E

∥∥∥∥∥
N∑
i=1

∇̃Li(Wt)

∥∥∥∥∥
2
+ 4η2t σ

2
l

≤
(f)

4η2t
N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+

4ϵη2t
N

N∑
i=1

{
E
[
∥∇Li(Wt)∥2

]
+ E

[∥∥∥∇̃Li(Wt)−∇Li(Wt)
∥∥∥2]}+ 4η2t σ

2
l

≤
(g)

4η2t
N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+

4ϵη2t
N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+ 4ϵη2t σ

2
l + 4η2t σ

2
l

=
4(1 + ϵ)η2t

N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+ 4(1 + ϵ)η2t σ

2
l

where (a), (c), and (f) are based on the inequality ||a + b||2 ≤ 2||a||2 + 2||b||2, (b) comes from
Jensen’s inequality, (d), (g) derive from Assumption 2, and (e) comes from JL Lemma.

By utilizing the previously established bounds for E [⟨∇L(Wt),Wt+1 −Wt⟩] and
E
[
∥Wt+1 −Wt∥2

]
to Equation 6, we derive the following:

E [L(Wt+1)− L(Wt)] ≤ E [⟨∇L(Wt),Wt+1 −Wt⟩] +
β

2
E
[
∥Wt+1 −Wt∥2

]
≤ −ηt

2
E
[
∥∇L(Wt)∥2

]
− ηt

2N

N∑
i=1

E
[∥∥∥∇Li(Wt)

∥∥∥2]︸ ︷︷ ︸
A1

+
ηt
4
E
[
∥∇L(Wt)∥2

]
+

2ϵηt
N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+ 2ϵη2t σ

2
l︸ ︷︷ ︸

A2

+
2β(1 + ϵ)η2t

N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+ 2β(1 + ϵ)η2t σ

2
l

= −ηt
4
E
[
∥∇L(Wt)∥2

]
+

ηt
N

{
−1

2
+ 2ϵ+ 2β(1 + ϵ)ηt

}
︸ ︷︷ ︸

≤0 if we choose ηt≤ 1−4ϵ
4β(1+ϵ)

N∑
i=1

E
[∥∥∥∇Li(Wt)

∥∥∥2]+ 2η2t (ϵ+ β + βϵ)σ2
l

≤ −ηt
4
E
[
∥∇L(Wt)∥2

]
+ 2η2t (ϵ+ β + βϵ)σ2

l

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Ultimately, by applying the telescoping sum over t = 0, 1, . . . , T − 1, we arrive at the following
result:

L∗ − E [L(W0)] ≤
T−1∑
t=0

−ηt
4
E
[
∥∇L(Wt)∥2

]
+

T−1∑
t=0

2η2t (ϵ+ β + βϵ)σ2
l

In this case, L∗ stands for the minimum of L(W).

By performing a division by HT =
∑T−1

t=0 ηt on both sides and utilizing some algebraic adjustments,
we arrive at the following expression:

1

4HT

T−1∑
t=0

ηtE
[
∥∇L(Wt)∥2

]
≤ E [L(W0)]− L∗

HT
+ 2(ϵ+ β + βϵ)σ2

l

(
1

HT

T−1∑
t=0

η2t

)
(7)

With a decreasing learning rate such as ηt = η0

t+1 , we observe that HT =
∑T−1

t=0 ηt tends towards

infinity as T grows, while
∑T−1

t=0 η2t remains bounded. Therefore, as T → ∞, the upper bound in
Equation 7 converges to 0, confirming the convergence to a stationary point.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E COMPLEXITY ANALYSIS AND TRADE-OFFS

Although the MAPA approach is advantageous for communication efficiency by having a large
matrix A, it may pose challenges for devices with limited memory and computational resources.
MAPAXk provides a trade-off that can reduce memory consumption at the expense of some commu-
nication efficiency by partitioning the update vector W and factorizing each part separately, making
it a customizable solution for resource-constrained devices. In the following, we show the com-
putation of memory, time, computation, communication, expected error rate, and error variance of
MAPAXk. Finally, we summarize the results in Table 2 and how, in practice, the MAPAXk can be
tuned to address the client constraint.

Memory Complexity: The additional memory complexity opposed by MAPAXk comes mainly
from storing a large reconstruction matrix A, as the model gradient is compressed in matrix B,
which is a reduction in memory compared to traditional FL.

Let ∆W ∈ R d
k×k be the update matrix of a model, which MAPAXk factorizes ∆W = AB, where

A ∈ R d
k×p and B ∈ Rp×k. Therefore, the additional memory overhead can be computed as:

Memory = O(
dp

k
).

Communication Overhead The communication overhead solely depends on the size of matrix B,
therefore regardless of batching for one FL round, the communication cost will be as:

Comm = O(pk)

Error Rate and Variance As the results of Definition 2 and Proposition 3, the error rate and variance
can be defined as:

E[E] = 1− pk

d
; Var[E] =

2p(dk − p)

(dk)
2(dk + 2)

=
2k2p(d− pk)

d2(d+ 2k)
.

Tuning Parameters In practice, given a model with constant d parameters, we explore the strategy
of setting the tunable parameters p and k to meet the client’s resource constraints.

First, clients should decide on a trade-off between the communication bandwidth and tolerance
for error, as both factors are related to the pk term. Therefore, setting pk = c for a constant c
is recommended. Given constant pk = c and k ≪ d, we can rewrite memory complexity and
approximate variance as:

Memory = O(
dc

sk2
)

Var[E] =
2kc(d− c)

d2(d+ 2k)
≈ 2c(d− c)

d3
k.

Therefore, clients should decide on a trade-off between memory and tolerance of error variance, as
both factors relate to the k. It is important that all clients agree on the values for p and k to ensure
the consistency of the updates during FL rounds.

Table 2: Complexity Analysis and Trade-offs for MAPAXk

Aspect Expression Description
Memory Complexity O

(
dp
k

)
Additional memory for storing matrix A.

Communication Overhead O(pk) Communication cost per FL round.
Expected Error Rate E[E] = 1− pk

d
Error rate depends on pk and d.

Error Variance Var[E] = 2k2p(d−pk)

d2(d+2k)
Variance as a function of p, k, and d.

Tunable Parameters pk = c set c based on bandwidth and error trade-offs.
Memory with pk = c O

(
dc
k2

)
Memory as a function of k.

Error Variance with pk = c Var[E] ≈ 2c(d−c)

d3
k Variance as a function of k.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

F IID AND CLIENT SAMPLING

This section includes the results of additional experiments on IID distribution and client sampling
for MNIST, FMNIST, CIFAR-10, and CIFAR-100.

MNIST Maximum Accuracy and Communication Cost
IID NON-IID

All clients 10% of clients All clients 10% of clients
Method Com. Acc Com. Acc Com. Acc Com. Acc
FedAvg 100% 99.6% 100% 99.5% 100 % 98.9% 100% 97.6%
Sparse 10.1% 97.7% 12.3% 97.5% 15.3% 93.8% 17.3% 90.2%
Quantize 9.3% 98.8% 10.5% 98.7% 31.3% 97.6% 33.1% 96.1%
EvoFed 8.5% 98.6% 8.8 % 98.3% 9.4 % 98.5% 10.3% 97.1%
FA-LoRA 20.3% 97.4% 22.2% 97.2% 30.2% 97.0% 37.3% 95.3%
MAPAXd/64 2.1% 98.8% 2.5% 98.6% 3.1% 98.1% 3.5% 97.5%
MAPAXd/256 2.0% 98.8% 2.2% 98.7% 3.0% 98.2% 3.2% 97.7%
MAPAXd/1024 1.6% 98.9% 1.9% 98.7% 2.9% 98.5% 3.0% 97.8%
MAPA (our) 1.6% 98.9% 1.9% 98.8% 2.9% 98.5% 3.0% 97.8%

Table 3: All baselines performance on MNIST dataset with IID and non-IID distribution for both client sam-
pling of 100% and 10%.

FMNIST Maximum Accuracy and Communication Cost
IID NON-IID

All clients 10% of clients All clients 10% of clients
Method Com. Acc Com. Acc Com. Acc Com. Acc
FedAvg 100% 92.7% 100% 92.2% 100% 89.2% 100% 87.3%
Sparse 16.0% 84.4% 18.4% 83.9% 24.1% 81.1% 26.3% 78.6%
Quantize 14.7% 83.6% 16.1% 83.2% 24.1% 78.7% 25.8% 79.3%
EvoFed 6.8% 90.4% 7.3% 90.0% 7.6% 87.7% 8.5% 85.9%
FA-LoRA 11.5% 87.9% 12.7% 87.5% 17.9% 84.1% 20.1% 81.5%
MAPAXd/64 2.3% 91.0% 2.7% 90.7% 3.4% 87.7% 3.8% 85.9%
MAPAXd/256 2.1% 91.3% 2.5% 91.0% 3.3% 87.9% 3.7% 86.1%
MAPAXd/1024 1.9 % 91.2 % 2.2% 91.1 % 3.1% 87.9 % 3.5 % 86.3 %
MAPA (our) 1.8% 91.4% 2.2% 91.3% 3.1% 88.0% 3.4% 86.5%

Table 4: All baselines performance on FMNIST dataset with IID and non-IID distribution for both client
sampling of 100% and 10%.

CIFAR-10 Maximum Accuracy and Communication Cost
IID NON-IID

All clients 10% of clients All clients 10% of clients
Method Com. Acc Com. Acc Com. Acc Com. Acc
FedAvg 100% 89.8% 100% 88.5% 100% 65.1% 100% 62.8%
Sparse 1.1% 63.1% 1.3% 62.6% 1.0% 47.1% 1.2% 46.5%
Quantize 6.2% 84.8% 6.7% 84.3% 5.0% 67.1% 5.4% 66.3%
EvoFed 2.0% 65.9% 2.3% 65.3% 1.9% 48.9% 2.2% 48.1%
FA-LoRA 1.3% 69.0% 1.5% 68.5% 1.1% 49.2% 1.4% 48.5%
MAPAXd/64 1.2% 88.7% 1.5% 88.2% 1.1% 68.2% 1.3% 67.6%
MAPAXd/256 1.1% 88.8% 1.4% 88.3% 1.0% 68.2% 1.2% 67.8%
MAPAXd/1024 1.0% 88.8% 1.3% 88.4% 1.0% 68.2% 1.1% 68.0%
MAPA (our) 1.0% 88.9% 1.3% 88.5% 1.0% 68.2% 1.1% 68.1%

Table 5: All baselines performance on CIFAR-10 dataset with IID and non-IID distribution for both client
sampling of 100% and 10%.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

CIFAR-100 Maximum Accuracy and Communication Cost
IID NON-IID

All clients 10% of clients All clients 10% of clients
Method Com. Acc Com. Acc Com. Acc Com. Acc
FedAvg 100% 42.1% 100% 41.6% 100% 18.0% 100% 16.2%
Sparse 7.0% 35.8% 8.5% 34.5% 7.5% 12.1% 8.1% 10.8%
Quantize 54.0% 32.1% 56.1% 31.6% 54.2% 10.2% 55.8% 9.6%
EvoFed 0.9% 36.3% 1.1% 35.9% 0.2% 16.5% 0.3% 15.6%
FA-LoRA 1.2% 34.7% 1.4% 33.9% 0.2% 14.1% 0.3% 13.5%
MAPAXd/64 0.3% 36.6% 0.4% 36.1% 0.1% 16.8% 0.2% 16.2%
MAPAXd/256 0.2% 36.6% 0.3% 36.2% 0.09% 16.8% 0.1% 16.3%
MAPAXd/1024 0.08% 36.7% 0.1% 36.5% 0.08% 16.8% 0.09% 16.4%
MAPA (our) 0.08% 36.7% 0.1% 36.5% 0.08% 16.8% 0.09% 16.4%

Table 6: All baselines performance on CIFAR-100 dataset with IID and non-IID distribution for both client
sampling of 100% and 10%.

G MODEL ARCHITECTURES AND HYPERPARAMETERS

NEURAL NETWORK ARCHITECTURE

The model configuration and training used in this work are provided in Table 7 and 8.

Parameter MNIST FMNIST CIFAR-10 CIFAR-100
Network Name CNN CNN CNN ResNet
Number of Convolutional Layers 2 2 3 2
Features in 1st Block 8 8 64 64
Features in 2nd Block 16 16 128 64
Kernel Size (Layer 1) 5x5 5x5 5x5 5x5
Kernel Size (Layer 2) 5x5 5x5 5x5 5x5
Stride (Layer 1) 1 1 1 1
Stride (Layer 2) 1 1 1 1
Number of Linear Layers 1 1 2 2
Features in Hidden Layers 1 1 256 128
Number of Output Units 10 10 10 10

Table 7: Neural Network Configuration

TRAINING HYPERPARAMETERS

The training was performed with the following key hyperparameters:

Parameter MNIST FMNIST CIFAR-10 CIFAR-100
Batch Size 32 32 32 32
Optimizer SGD SGD SGD SGD
Learning Rate 0.00594 0.00594 0.0041 0.0041
L1 Regularization 0.0003 0.0003 0.0001 0.0001
L2 Regularization 0.004 0.004 0.002 0.002

Table 8: Training Hyperparameters

26

	Introduction
	Related Works and Background
	Proposed Method
	Model-Agnostic Low-Rank Adaptation (MAPA)
	MAPAXk: Extension with k-Partitioning
	Application to Communication-Efficient Federated Learning

	Convergence Analysis
	Experiments
	Conclusion
	Full Pseudocode for Federated Learning with MAPA
	Fresh initialization of reconstruction matrix A
	Proof of Propositions
	Definition 2: Representation Certainty
	Proposition 1: Relaxed Low-Rank Factorization Superiority
	Proposition 2: Layer-Independent Factorization Superiority
	Proposition 3: MAPAX Generalization

	Proof of Theorem
	Assumptions and Preliminaries
	Proof of Theorem 1

	Complexity Analysis and Trade-offs
	IID and client Sampling
	Model Architectures and Hyperparameters

