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ABSTRACT

Federated learning (FL) enables collaborative model training across distributed
clients without centralizing sensitive raw data while benefiting from diverse data
sources. Despite recent advancements in FL, the communication overhead re-
mains a significant challenge, especially for large-scale models. Recent low-rank
adaptation (LoRA) techniques have shown promise in reducing these burdens in
FL, but they are typically applied to each layer individually and depend on the
model architecture, which limits their performance. To address these shortcom-
ings, we propose Model-Agnostic Projection Adaptation (MAPA), a novel ap-
proach that applies factorization to the entire model parameter space, which we
view as a single vector, regardless of the number of layers and model architec-
ture. MAPA factorizes the single-vector model update into a fixed reconstruction
matrix and a trainable projection vector, with the reconstruction matrix being ran-
domly initialized using a shared seed at each round. This ensures that only the
projection vectors need to be communicated to the server, thereby reducing the
communication cost. Furthermore, MAPA’s vector-based representation and re-
laxed rank constraints allow for a larger reconstruction matrix and smaller projec-
tion vector dimensions compared to LoRA, enhancing the expressiveness of model
updates while significantly reducing communication overhead. Experimental re-
sults demonstrate that MAPA outperforms existing FL methods in both commu-
nication efficiency and model performance, effectively coupling optimization and
communication efficiency in FL environments.

1 INTRODUCTION

Federated learning (FL) is a distributed machine learning framework that enables model training
across numerous devices, referred to as clients, without the need to collect or process client data on
a server. In a typical FL process, each client downloads an initialized model from the server, trains it
using local data, and then uploads the updated model back to the server. The server aggregates these
updates to refine the global model, employing techniques such as federated averaging (FedAvg)
(McMahan et al., 2017). This iterative process is repeated over multiple communication rounds,
enabling clients to improve the model collaboratively without data sharing.

Despite the notable benefits of FL, a primary challenge is the substantial communication overhead
involved in transmitting model updates between clients and the server, especially when dealing with
resource-constrained clients and large-scale models with numerous parameters. This communica-
tion overhead can become a significant bottleneck, limiting the scalability and efficiency of FL.

To address the communication burden in FL, various strategies have been developed that focus on re-
ducing either the communication frequency or the communication load per round. To decrease com-
munication frequency, methods such as performing multiple local epochs on clients (Stich, 2018)
and selecting a subset of clients to participate in each training round (Sattler et al., 2019; Li et al.,
2020) have been proposed. On the other hand, methods aiming to reduce the communication load
per round have been more extensively studied. Konečnỳ (2016) broadly classified these methods
into two categories: (i) sketched updates, where the local model is first optimized, and then the up-
date is compressed before transmission, and (ii) structured updates, where the model is optimized
in a subspace with fewer trainable parameters, which are then transmitted to reduce communication.
These strategies are complementary and can collectively contribute to enhancing the scalability and
efficiency of FL.
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Figure 1: Overview of the MAPA method. Unlike existing LoRA approaches, MAPA treats the entire model
parameters as a single vector before factorization. This allows MAPA to use a larger reconstruction matrix A
and a smaller dimension for the projection vector B, leading to more efficient FL. MAPAX further generalizes
this idea by trading off communication, computation, and memory through partitioning and parallelization.

Low-rank adaptation (LoRA) (Hu et al., 2021; Ou et al., 2023; Bertsimas et al., 2023) is a popu-
lar structured update method that decomposes parameter updates for each layer independently as
∆wd1×d2

≈ Ad1×qBq×d2
, with the rank constrained by q ≤ min(d1, d2). Recently, many re-

searchers have applied LoRA in FL to enhance training efficiency Yi et al. (2023); Sun et al. (2024);
Cho et al. (2024); Kuo et al. (2024); Yang et al. (2024); Qi et al. (2024). However, the layer-wise
approach and the rank constraint in LoRA restrict the ability to fully capture the low-rank structure
of the global gradient, thereby limiting the performance of these methods.

This paper proposes Model-Agnostic Projection Adaptation (MAPA). MAPA treats the entire
model parameters as a single vector and factorizes the model update ∆Wd×1 into a fixed recon-
struction matrix Ad×p and a trainable projection vector Bp×1, where d denotes the number of model
parameters and p ≤ d is the reduced dimension. In contrast to Freeze A LoRA (FA-LoRA) methods
Sun et al. (2024); Zhang et al. (2023); Zhu et al. (2024); Hao et al. (2024), the reconstruction matrix
is initialized randomly with a shared seed on every FL round, and it is not frozen during training.
Our approach still eliminates the need to transmit A and limits the communication to the projection
vectors. Compared to LoRA-based methods, MAPA’s vector-based representation and relaxed rank
constraints allow for a larger reconstruction matrix A and smaller projection vector B dimensions,
enhancing the expressiveness of model updates while reducing communication costs.

The high compression rate of MAPA comes from its large expressive capacity by relaxing the low-
rank condition q ≤ min(d1, d2) of LoRA and factorizing the gradient signal into a single vector.
However, this incurs the overhead of generating a larger reconstruction matrix A, which results in
a higher memory and computation burden on clients. Motivated by this, we also propose an exten-
sion to MAPA called MAPAX, which mitigates this overhead and balances the trade-offs between
communication, computation, and memory costs depending on the client’s resources. Additionally,
we show that MAPAX can cover the whole space of communication-efficient factorization, bridging
the gap between various techniques and fostering a better understanding of their methods. Figure 1
visualizes the architectural differences between these methodologies in matrix manipulation forms.
Overall, we make the following key contributions:

• Introduction of MAPA. We present MAPA, a novel matrix factorization that operates indepen-
dently of the model architecture. By treating the entire model parameter as a vector, MAPA
constructs a larger reconstruction matrix, resulting in an expressive subspace that requires fewer
trainable parameters than low-rank layer-wise methods.

• Enhancement of Communication Efficiency in FL. By integrating MAPA into FL, we achieve
substantial reductions in communication by optimizing in a lower-dimensional subspace.

• Extension to MAPAX. We introduce MAPAX, an extension of MAPA, to address the computa-
tional and memory overhead associated with the larger reconstruction matrix. MAPAX creates
a trade-off between communication, computation, and memory costs, making it adaptable to
clients with varying resource constraints. We show that MAPAX bridges the gap between differ-
ent factorization techniques, offering a unified understanding and approach.

• Theoretical Analysis. We provide a thorough theoretical analysis establishing the convergence
of MAPA. We also show that MAPA outperforms LoRA-based methods in maintaining training
performance while reducing communication costs.

• Empirical Evaluation. We conduct extensive experiments on diverse datasets and model archi-
tectures, showing that MAPA surpasses SOTA methods in both communication efficiency and
model performance.
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2 RELATED WORKS AND BACKGROUND
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Figure 2: Performance compar-
ison for various trainable param-
eters on MNIST dataset.

Among techniques introduced to alleviate the communication over-
head in FL, in this section, we first explore the sketched update
methods that project the gradient signal into a subspace, highlight-
ing the similarity of these techniques to matrix factorization so we
can argue further why a structured update can exploit a better gra-
dient signal with this formulation. Afterward, we look into struc-
tured update techniques and focus on low-rank adaptation methods
studied in communication-efficient FL to highlight the novelty and
advantages of our work compared to recent studies.

Sketched Update is a two-step method, where first, the full space
gradient is computed, and second, it is projected into a subspace. It
includes techniques such as sparsification (Konečnỳ, 2016), quan-
tization (Alistarh et al., 2017; Mao et al., 2022), and gradient sub-
space projection (Azam et al., 2021; Oh et al., 2022; Park & Choi,
2023), random subspace projection (Rahimi et al., 2024; Shi & Ery-
ilmaz, 2021). The concept of subspace projection methods is that
for a given gradient g ∈ Rd, reconstruction matrix A ∈ Rd×p, find
a projection vector B ∈ Rp, which minimize the compression error
∥g −AB∥2, where d denotes the total number of model parameters
and p≪ d is the size of projection vector.

B∗ = arg min
B∈Rk

∥g −AB∥2 ; B∗ = (A⊤A)−1A⊤g

However, solving this exact linear system can be computationally
expensive, especially when k is large as the exact solution has
O(k2n + k3) time complexity and O(k2) memory complexity.
Therefore, most works in the literature opt for approximation meth-
ods instead of solving the exact problem due to these computational
challenges:

B∗ ≈ A⊤g

Given this formulation, we notice that low-rank factorization solves
a similar problem. However, unlike subspace projection methods,
the projection vector B is computed independently of the gradient
g by training from the data:

B∗ = B + η∇BL (W +AB;Di) .

Although sketched methods benefit from accessing a high-quality gradient g, one of their short-
comings is blindness to the loss surface L(W ;D) and alternative solutions beside g that might be
more suitable for projection in their subspace. They typically perform well given a large enough
p. However, as the compression rate increases, the reconstruction of the projection vector ends
up far enough from the gradient g, leading to no convergence. In contrast, direct subspace opti-
mization leverages the complete data information to find the possible solutions within the subspace,
ultimately leading to a more effective reduction in loss, even with significantly smaller p. Figure 2
shows a simple example of MNIST training on a single node, which highlights the performance
drop of sketched update techniques such as EvoFed (Rahimi et al., 2024) and Top-k Sparsification
(Konečnỳ, 2016) compared to structured update such as FA-LoRA Sun et al. (2024); Zhang et al.
(2023); Zhu et al. (2024); Hao et al. (2024) and MAPA, as the sparsity level increases. LoRA and
MAPA can still converge, having 2 or 4 trainable parameters from space with 11274 dimensions,
which is insufficient for EvoFed and Top-k to converge.

Structured Update is a single-step method where instead of computing the full space gradient,
it restricts parameter space, reducing the number of trainable parameters needed to be calculated
and communicated, including low-rank adaptation (LoRA) (Cho et al., 2024; Sun et al., 2024; Kuo
et al., 2024; Yi et al., 2023; Yang et al., 2024; Qi et al., 2024), pruning (Luo et al., 2017; Zhang et al.,
2018), and weight-sharing (Ullrich et al., 2017).

The LoRA is a form of low-rank approximation (Liu et al., 2022; Wang et al., 2018; Jaderberg
et al., 2014; Lebedev et al., 2014; Denil et al., 2013), which is widely used because of its solid
theoretical foundation and ease of hardware implementation. The common practice for a low-rank
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approximation is to approximate each layer’s large-weight tensors by the product of smaller ones,
reducing the rank and, consequently, the number of trainable parameters of each layer. Therefore,
this factorization is dependent on the layer’s architecture and requires a careful network design that
considers a specific factorization for each layer.

In contrast, our technique will introduce a novel black-box factorization independent of the model
architecture, not only simplifying the implementation but also performing better as it consists of
a higher representation at the same rate of communication. This factorization reshapes the entire
parameter matrix to the form of a single vector as Wt ∈ Rd×1. Therefore, the update matrix
∆W ∈ Rd×1 is computed as ∆W = AB, where A ∈ Rd×p and B ∈ Rp×1 having p≪ d.

In contrast to Freeze A LoRA methods, (Sun et al., 2024; Zhang et al., 2023; Zhu et al., 2024; Hao
et al., 2024), we initialized B = 0 and A ∼ N (0, I), at the beginning of each round, we update
model parameters W and reset B and generate A afresh and independently. This allows the explo-
ration of various subspace configurations without any communication overhead and performance
improvement (See Appendix B). The sub-optimality of having a frozen A was also discussed in Guo
et al. (2024), although we provide an alternative solution from Guo et al. (2024), which does not
require training and transmission of matrix A, thus preserving communication efficiency. The next
difference between MAPA and LoRA-based methods lies in the condition of the factorization rank.
For a given matrix W ∈ Rd1×d2 , LoRA aims to reduce the number of parameters by factorizing the
update as ∆W = AB, where A ∈ Rd1×q and B ∈ Rq×d2 , requiring the factorization rank to satisfy
q < min(d1, d2). However, since the size of the random matrix A does not add communication
overhead, we focus on keeping the projection vector B smaller than model parameters W .

To summarize, we introduce a unique matrix factorization method to reduce communication over-
head in FL. In contrast to compression techniques, our approach optimizes a low-dimensional pro-
jection vector directly in the subspace, demonstrating greater effectiveness than projecting already
computed gradients, especially in low-bandwidth scenarios. In comparison to existing low-rank
factorization techniques, MAPA enables a much larger reconstruction matrix by treating model pa-
rameters as a single vector, relaxing the low-rank condition, and employing a model-agnostic fac-
torization independent of the number of layers and their architecture. Finally, MAPA enhances the
subspace exploration by initializing the reconstruction matrix at each turn. All contributions collab-
oratively result in a more expressive subspace where less information needs to be communicated,
achieving greater flexibility, performance, and communication efficiency in FL.

3 PROPOSED METHOD

In this section, we present MAPA, MAPAX, and their application in FL. We begin by elaborating
on the MAPA factorization technique, demonstrating the theoretical basis for proving its higher
representation capacity while facilitating lower gradient dimensions. Then, we explain how MAPAX
can be seen as the general factorization form and discuss its benefits. Subsequently, we describe the
detailed process for effectively leveraging MAPA factorization within the FL framework.

3.1 MODEL-AGNOSTIC LOW-RANK ADAPTATION (MAPA)
Recent literature studied the effect of low-rank factorization on FL communication efficiency (Sun
et al., 2024; Zhang et al., 2023; Zhu et al., 2024; Hao et al., 2024). In each layer W ∈ Rd1×d2 , the
idea of LoRA is to factorize the model update as ∆W = AB, where A ∈ Rd1×q and B ∈ Rq×d2 for
q < min(d1, d2). They take advantage of freezing the reconstruction matrix A, limiting the trainable
parameters to projection matrix B, thus reducing communication. While low-rank factorization
shows a promising direction in FL, MAPA aims to answer a more general question: How can we
design a factorization that achieves higher representation capacity with lower trainable parameters?

MAPA Intuition and Description. MAPA works toward a factorization resulting in a large recon-
struction matrix and small projection matrix, leveraging the fact that random reconstruction matrices
do not need to be communicated, achieving higher representation capacity without communication
overhead, and resulting in a smaller projection matrix needed to be communicated. An analogy for
this purpose can be seeing the reconstruction matrix A as a shared vocabulary and the size of the
projection matrix B as the number of words used to communicate a message. A richer vocabu-
lary (larger A) allows for conveying complex ideas more concisely, reducing the number of words
(smaller B) needed to be communicated. To achieve this, MAPA treats the entire update of the
model as a single vector and applies a black-box factorization, regardless of the number of layers
or the network architecture. Let d denote the total number of parameters across all layers of the
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model. As illustrated in Figure 1, MAPA decomposes the universal vector ∆W ∈ Rd×1 into a
reconstruction matrix A ∈ Rd×p and a projection vector B ∈ Rp×1, where p ≤ d.

MAPA Properties. We aim to show that MAPA constructs a more expressive subspace, allowing a
smaller B to convey sufficient information for updating the model. We begin by formally defining
the communication overhead rate (COrate) and representation capacity rate (RCrate), in context of
matrix factorization in Definition 1 and 2. Based on the established definitions, Proposition 1 and 2
formulate shortcomings of traditional factorization, and as a result, we can conclude the properties
of superior factorization in the context of communication-efficiency, which finally leads to the proof
of MAPA factorization superiority as shown in Theorem 1.
Assumption 1 (Full Rank Property of Gaussian Random Matrices). Let A ∈ Rm×n be a random
matrix with entries drawn independently from a Gaussian distribution N (0, σ2). Then, A is almost
surely of full rank, i.e., rank(A) = min(m,n), as the probability of A being rank deficient is zero.
This result follows from standard properties of random matrices Vershynin (2018); Tao (2012).
Definition 1 (Communication Overhead). Let ∆W ∈ Rd1×d2 be the update matrix of a model.
Suppose a factorization operator F(.) decomposes ∆W as ∆W = AB, where A ∈ Rd1×q is a
fixed random matrix and B ∈ Rq×d2 is a trainable matrix. The communication overhead is defined
as the ratio of the size of B to the size of ∆W :

CO(∆W,F) = size(B)

size(∆W )
=

q

d1
.

Definition 2 (Representation Certainty). Using the same factorization as in Definition 1. The
representation certainty is defined as the inverse of the error rate variance. The error rate measures
the expected error of the factorization to represent the original matrix, given a full-rank matrix A
(Assumption 1). The error expectation and variance are defined as:

EA

[
∥W −AB∥22

]
=

(
1− q

d1

)
,VarA

[
∥W −AB∥22

]
=

(
2q(d1 − q)

d21(d1 + 2)

)
Therefore, given a constant communication overhead and error expectation d1

q = r we have:

RC(∆W,F) = 1

VarA[E]
=

r3q + r2

2(r − 1)
∝ q

Proposition 1 (Relaxed Low-Rank Factorization Superiority). Let ∆W ∈ Rd1×d2 be the update
matrix of one layer, factorized in low-rank as ∆W = AB, where A ∈ Rd1×q is a shared random
matrix and B ∈ Rq×d2 is the trainable matrix, with q ≤ min(d1, d2) being the factorization rank, By
reshaping ∆W into ∆W ′ ∈ R(d1d2)/k × k for some integer k < d2, the factorization of ∆W ′ can
achieve a higher representation certainty while requiring same communication overhead compared
to the conventional low-rank factorization of ∆W .
Collorary 1 (Single-Vector Factorization Superiority). Using the same factorization as in Propo-
sition 1 for k = 1. ∆W reshapes into a single-vector form ∆W ′ ∈ Rd1d2×1 and factorizing ∆W ′

can achieve a higher representation certainty while requiring the same communication overhead
than the conventional low-rank factorization of ∆W .

Proposition 2 (Layer-Independent Factorization Superiority). Let ∆Wi ∈ Rdi
1×di

2 be the update
matrix of the i-th layer of a model, and let ∆W ′

i ∈ Rdi
1d

i
2×1 be its reshaped single-vector form. In

single-vector factorization methods, ∆W ′
i is factorized as ∆W ′

i = AiBi, where Ai ∈ Rdi
1d

i
2×qi

and Bi ∈ Rqi×1, with qi ≤ di1d
i
2. By concatenating the reshaped weights ∆W ′

i into ∆W ′ ∈ Rd×1,
where d =

∑n
i=1 d

i
1d

i
2. The factorization of ∆W ′ can achieve a higher representation certainty

while requiring the same communication overhead than the conventional single-vector factorization
methods applied separately to each layer.

Theorem 1 (MAPA Factorization Superiority). Let ∆Wi ∈ Rdi
1×di

2 be the update matrix of the
i-th layer of a model, and let ∆W = vec(∆W1,∆W2, . . . ,∆Wn) ∈ Rd be the concatenation of all
∆Wi, where d =

∑n
i=1 d

i
1d

i
2. MAPA factorization can achieve a higher representation certainty

while requiring the same communication overhead than other factorizations of ∆W .

Proof. Collorary 1 is the result of Proposition 1 for k = 1. The proofs for Definitions and Proposi-
tions are given in Appendix C. Now, given MAPA is a layer-independent single-vector factorization,
the proof of Theorem 1 can directly be concluded from Proposition 2 and Collorary 1.
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Figure 3: Illustration of MAPAXk. MAPAXk reduces to MAPA when the number of partitions is k = 1.
LoRA also becomes a special case of MAPAXk when the model is partitioned according to the layer sizes.

Thus, MAPA provides a superior representation capacity for the same communication cost. This
advantage becomes increasingly significant in models with more layers or when there is a more con-
siderable disparity between the dimensions d1 and d2, particularly beneficial for large-scale models.

3.2 MAPAXk : EXTENSION WITH k-PARTITIONING

Building upon Proposition 1 and 2, we extend MAPA to a general form, termed MAPAXk. Figure 3
illustrates the MAPAXk concept. Consider the update matrix at step t as ∆Wt ∈ Re×k, where e =⌈
d
k

⌉
and d is the total number of parameters representing the model’s current state. To accommodate

the dimensions, ∆Wt includes zero padding of size ek − d. The MAPAXk factorization of ∆W is
then given by ∆W = AB, where A ∈ Re×p and B ∈ Rp×k, with p ≤ e.

Thus, MAPA can be considered a special case of MAPAX1, maximizes the shared information in
the reconstruction matrix A, and minimizes the size of the error variance. In contrast, FedAvg
is MAPAXd and the rank of the reconstruction matrix p = 1, resulting in the projection matrix
B ∈ R1×d presenting the entire model update.

Proposition 3 states MAPAXk covers all degrees of factorization, including low-rank, resulting in a
flexible approach for balancing memory allocation and representation certainty. Collorary 2 shows
the case of a single layer model W ∈ Rd1×d2 , where MAPAXd2 is equivalent of low-rank factor-
ization. Collorary 3 shows the case of a model having n identical shaped layers, W ∈ Rd×d, where
MAPAXnd is equivalent low-rank layer-wise factorization.

Proposition 3 (MAPAX Generalization). Let ∆Wi ∈ Rdi
1×di

2 be the update matrix of the i-th layer
of a model, and let ∆W = vec(∆W1,∆W2, . . . ,∆Wn) ∈ Rd be the vectorization (concatenation)
of all ∆Wi, where d =

∑n
i=1 d

i
1d

i
2. MAPAXk factorization allocates k2 times less memory for

the same communication overhead and error rate, for the cost of k times worse representation
certainty, in other words, more k times more error rate variance.

Collorary 2 (MAPAX-LoRA Special Case Single Layer). Let ∆W ∈ Rd1×d2 be the update matrix
of the single layer model factorized in LoRA methods as ∆W = AB, where A ∈ Rd1×q and
B ∈ Rq×d2 , with q ≤ min(d1, d2) is equivalent to the MAPAXd2

.

Collorary 3 (MAPAX-LoRA Special Same Layers). Let ∆Wi ∈ Rd×d be the update matrix of the
i-th layer of a model with n layers factorized in LoRA methods as ∆Wi = AiBi, where Ai ∈ Rd×q

and Bi ∈ Rq×d, is equivalent to the MAPAXnd2
.

The proof of Proposition 3 located in Appendix C. Figure 3 illustrates this equivalency of Collo-
rary 2, while we can conclude Collorary 3 from Figure 1.

Therefore, this extension facilitates further studies to understand better how different factorizations
impact performance and total communication cost. It serves as a bridge between layer-wise or
partitioned factorizations and complete model-agnostic factorizations. Furthermore, Appendix E
shows complexity analysis and how to balance memory, communication, and performance.

3.3 APPLICATION TO COMMUNICATION-EFFICIENT FEDERATED LEARNING

This subsection explains how the factorization outlined in Section 3.1 is utilized in FL, dividing the
procedure for clarity. Figure 4 visualizes the outline of this procedure.
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Figure 4: Application of MAPA to communication-efficient FL.

Matrix Construction and Broadcasting. To ensure consistency across the network, the server and
all clients start from an identical condition at each round. We guarantee identical model parameters
Wt and reconstruction matrix At by broadcasting a random seed rt and the aggregated projection
vector B̄t at the beginning of round t. The initial aggregated projection vector is set to B̄0 = 0.

Algorithm 1 FL with MAPA

Initialize: Global model W0 ∈ Rd×1, reconstruction ma-
trix A0 ∈ Rd×p, projection matrix B̄0 ← 0 ∈ Rp×1,
seed r0

for each communication round t = 1, . . . , T − 1 do
Server: Broadcast global B̄t−1 and rt−1

for each client i = 1, . . . , N in parallel do
Client: Receive B̄t−1 and rt−1

Update Wt = Wt−1 +At−1B̄t−1

Update At = N (0, σ)|rt−1

Initialize Bi
t ← 0 ∈ Rp×1

for each local epoch e = 1, . . . , E do:
∇Bi

t = ∇Bi
t
L(Wt +AtB

i
t,Di)

Update B̂i
t ← Bi

t − η∇Bi
t

end for
Send updated B̂i

t to server
end for
Server: Aggregate B̄t ← 1

S

∑N
i=1 biB̂

i
t

Update global model Wt+1 ←Wt +AtB̄t

update random seed rt
end for
Return: Final global model WT

In the first round (t = 0), all clients and
the server initialize the model W0 randomly.
The reconstruction matrix A0 ∈ Rd×p is gen-
erated with random Gaussian entries, and the
local projection vector Bi

0 ∈ Rp is set to zero,
where i indicated the i-th client and d de-
notes the total number of model parameters
and p≪ d is the chosen reduced dimension.

In subsequent rounds (t ≥ 1), clients up-
date their local model Wt using the previous
round’s matrix At−1, the model parameters
Wt−1, and the broadcasted projection vector
B̄t as follows:

Wt = Wt−1 +At−1B̄t. (1)

Afterwards, clients generate a new At

by sampling from a Gaussian distribution
N (0, Id×p) using the random seed rt and set
Bi

t ← 0. This ensures that At and Wt are
synchronized and updated.

Local Optimization of Projection Vector.
This step focuses on finding the optimized projection vector B̂i

t that minimizes the local loss function
L(Wt+AtB

i
t,Di), given the random matrix At. Here, the model weights are derived as Wt+AtB

i
t ,

and Di denotes client i-th local dataset. At each communication round t ≥ 1, after initializing At

and Bi
t , clients perform local training to optimize Bi

t using their local data Di. The gradient of the
projection vector is computed as:

∇Bi
t = ∇Bi

t
L(Wt +AtB

i
t,Di). (2)

The optimized projection vector B̂i
t is then updated using gradient descent:

B̂i
t ← Bi

t − η∇Bi
t, (3)

where η denotes the learning rate. After optimization, clients send their optimized projection vector
B̂i

t to the server. The low dimensionality of B̂i
t compared to Wt results in communication efficiency.

Server-Side Aggregation and Global Model Update. Upon receiving the projection vectors B̂i
t

and their corresponding weights bi (e.g., batch sizes or number of local samples) from the clients,
the server aggregates them to form the global projection vector:

B̄t =

∑N
i=1 biB̂

i
t∑N

i=1 bi
. (4)

This weighted averaging captures the collective contribution of all clients, proportional to their data
sizes. The server then broadcasts the aggregated projection vector B̄t to all clients. After receiving
B̄t, the server and all clients update their local models using the reconstruction matrix At and the
aggregated projection vector B̄t as:

Wt+1 = Wt +AtB̄t. (5)
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This update integrates the clients’ optimized directions into their local models and ensures synchro-
nization across the network. This process repeats until the global model converges. Abbreviated
pseudo-code is provided in Algorithm 1, while Appendix A offers a more detailed version.

4 CONVERGENCE ANALYSIS

We look into the convergence dynamics of FL with MAPA.

Assumption 2. For each i,Li(v) is β-smooth, i.e., ∥∇Li(u)−∇Li(v)∥ ≤ β∥u− v∥ for any u, v.

Assumption 3. Variance of the stochastic gradient of Di is bounded for each client i, i.e.,

E
[∥∥∥∇Li(W )− ∇̃Li(W )

∥∥∥2] ≤ σ2
l .

Theorem 2. Given a decreasing learning rate ηt ≤ 1−4ϵ
4β(1+ϵ) , the algorithm has the following con-

vergence bound:

1

4HT

T−1∑
t=0

ηtE
[
∥∇L(Wt)∥2

]
≤ E [L(W0)]− L∗

HT
+ 2(ϵ+ β + βϵ)σ2

l

(
1

HT

T−1∑
t=0

η2t

)

where HT =
∑T−1

t=0 ηt, ϵ is the distortion parameter from the JL Lemma, and L∗ represents the
minimum value of L(W ).

The proof can be found in Section D of the Appendix. With a decreasing learning rate, as T →
∞, the upper bound converges to 0, confirming the convergence to a stationary point. As shown
above, the convergence bound of MAPA is influenced by the (3 − 2ρ) term, and we can see that
the bound becomes the tightest and achieves the highest communication efficiency when there is no
reconstruction error, i.e., when ρ = 1.

5 EXPERIMENTS

MAPA’s effectiveness is assessed on image classification datasets: FMNIST Xiao et al. (2017),
MNIST LeCun et al. (1998), CIFAR-10 and CIFAR-100 Krizhevsky et al. (2009). MNIST and
FMNIST contain 60,000 training samples and 10,000 test samples, whereas CIFAR-10 and CIFAR-
100 each comprise 50,000 training samples and 10,000 test samples. Unlike other tasks, CIFAR-100
includes 100 classes, each containing 500 training and 100 test samples. We employ a CNN model
with 11k parameters for the MNIST and FMNIST datasets, a more substantial model with 1.4M
parameters for CIFAR-10, and a ResNet model with 5.5 parameters for CIFAR-100.

We distribute the training set of each dataset among clients for model training, and the performance
of the final global model is evaluated using the original test set. Our experimental setup contains
N = 100 clients with non-IID data distribution. The non-IID distribution is created by splitting
class data into 20 shards and then randomly assigning 5 shards from all class shards to each client
by finding a permutation that uses the whole dataset while assigning two to five classes for each
client. Similarly, for CIFAR-100, we attain twenty to fifty classes for each client.

Our MAPA framework is built using JAX (Bradbury et al., 2018), which facilitates extensive paral-
lelization and, in particular, consistent random number generation across a large number of nodes
and is designed for decoupled model parameters and architectures that ease the implementation of
MAPA for factorization of parameters independent of the model architecture. MAPA is configured
with 128 trainable parameters for MNIST and FMNIST while using 1024 for CIFAR-10 and CIFAR-
100 and trains over 500 global rounds. We compare the performance of the proposed MAPA with
FedAvg, FedAvg with Sparsification (Sparse), FedAvg with Quantization (Quant), EvoFed (Rahimi
et al., 2024), as a SOTA baseline from compression techniques, Freeze A LoRA (FA-LoRA) inspired
by Sun et al. (2024); Zhang et al. (2023); Zhu et al. (2024); Hao et al. (2024), as a SOTA baseline
for factorization methods. In each scenario, we keep the same amount of trainable parameters.

Results and Discussions. We discuss the experimental results in detail and provide further insights
into the performance of MAPA. The accuracy of MAPA, compared with multiple baseline methods
and different datasets, is shown in Figure 5 (top row). MAPA’s superior reconstruction outperforms
all other methods in all tasks and delivers results comparable to FedAvg, utilizing a much smaller
number of trainable parameters. Figure 5 (bottom-row) shows each method’s minimum amount of
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Figure 5: Performance comparison of MAPA and baseline methods on MNIST, FMNIST, and CIFAR-10
datasets. The top row shows the accuracy achieved by each method on the respective datasets, while the bottom
row illustrates the communication cost associated with each method.

MNIST FMNIST CIFAR-10 CIFAR-100
Com. Local Global Com. Local Global Com. Local Global Com. Local Global

Methods Cost Acc. Acc. Cost Acc. Acc. Cost Acc. Acc. Cost Acc. Acc.
FedAvg 100% 99.6% 98.9% 100% 92.7% 89.2% 100% 98.8% 69.0% 100% 42.1% 18.0%
Sparse 15.3% 97.7% 93.8% 24.1% 84.4% 81.1% 1.0% 63.1% 47.1% 7.5% 35.8% 12.1%
Quantize 31.3% 98.8% 97.6% 24.1% 83.6% 81.1% 5.0% 84.8% 67.1% 54.2% 32.1% 10.2%
EvoFed 9.4% 98.6% 98.5% 7.6% 90.4% 87.7% 1.9% 65.9% 48.9% 0.2% 36.3% 16.5%
FA-LoRA 30.2% 97.4% 97.0% 17.9% 87.9% 84.1% 1.1% 69.0% 49.2% 0.2% 34.7% 14.1%
MAPAXd/64 3.1% 98.8% 98.1% 3.4% 91.0% 87.7% 1.1% 88.7% 68.2% 0.1% 36.6% 16.8%
MAPAXd/256 3.0% 98.8% 98.2% 3.3% 91.3% 87.9% 1.0% 88.8% 68.2% 0.09% 36.6% 16.8%
MAPAXd/1024 2.9% 98.9% 98.5% 3.1% 91.2% 87.9% 1.0% 88.8% 68.2% 0.08% 36.7% 16.8%
MAPA 2.9% 98.9% 98.5% 3.1% 91.4% 88.0% 1.0% 88.9% 68.3% 0.08% 36.7% 16.8%

Table 1: Performance of different methods presented in tabular form, corresponding to Figure 5.

communication to reach a certain accuracy. It can be seen that MAPA tends to utilize significantly
less communication than other techniques, as the communication cost (y-axis) is in the log10 scale.

Table 1 summarizes each method’s communication efficiency and performance on MNIST, FM-
NIST, CIFAR-10, and CIFAR-100 datasets. It presents maximum accuracy and the communication
cost percentage compared to FedAvg. MAPA achieves significantly lower communication costs than
FedAvg while maintaining competitive accuracy levels. In MNIST and FMNIST datasets, MAPA
achieves 98.5% and 98.6% of FedAvg accuracy while having only 3% of FedAvg communication.
Similarly, in CIFAR-10 and CIFAR-100 datasets, it reaches 98.9% and 93.3% of FedAvg accuracy
with around 1.0% of FedAvg communication.

Additional Results. Additional results regarding IID distribution and client sampling have been
provided in Appendix F, while Appendix B provides empirical results regarding the matrix A ini-
tialization, and the hyperparameters and network architecture details are provided in Appendix G.

MAPAX Performance. We provide additional results to evaluate MAPAX factorizations regard-
ing their performance and communication efficiency. Figure 6 first row visualizes our theoretical
finding, providing a map to navigate through factorization space regarding our MAPAX, and the
second row presents our empirical experiments results of MAPAX accuracy for each factorization.
For clarity, the Axes of Figure 6 and values for communication and memory amount are presented
in log2 scale and denote discrete values representing matrix dimensions.

Figure 6 (a) visualizes efficient, same, over communication zones. The factorization region that
achieves communication efficiency by having fewer trainable parameters (smaller B), shown in blue,
and the over-communication zone in red, denotes the factorization with more trainable parameters
(larger B) than the original model. This figure shows that MAPAX can cover possible factorization
in the communication-efficient zone by selecting k and p accordingly.
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Figure 6: Each point on the plot denotes different factorization with various sizes of reconstruction matrix and
projection vector. First row presents the theoretical findings: (a) denotes the zones regarding communication
efficiency, while (b) and (c) show a numerical example of communication burden and memory usage. Second
row provides results of each factorization accuracy on MNIST, FMNIST, and CIFAR-10 datasets.

Figure 6 (b) shows each factorization’s communication coefficient in log2 scale. Given a model
with d parameters, the communication cost will be d2c, where c is the communication coefficient
according to the table. Similarly, Figure 6 (c) shows each factorization’s memory usage coefficient
in log2 scale. Given a model with d parameters, the memory usage will be d2m, where m is the
memory usage coefficient according to the table.

Figure 6 (bottom row) shows the results of empirical experiments of possible factorization on
MNIST, FMNIST, and CIFAR-10 with non-iid distribution on 100 clients. We conducted 28 factor-
izations for MNIST and FMNIST and 55 for CIFAR-10 by adjusting p and e values. It is evident
among all tasks and confirming our theoretical analysis in Appendix E that the model accuracy is
highly correlated with communication cost. As Figure 6 (bottom row) shows, the performance drops
suddenly as communication goes to zero, while it will saturate after having an adequate amount
of communication, which suggests the existence of a low-rank structure for the neural network
gradient. As shown in Figure 6, we can have varying degrees of memory efficiency for a given
communication rate. Therefore, MAPAX takes advantage of this fact and provides memory and
computationally efficient solutions for slightly underperforming MAPA, saving quadratic order of
memory and computation. Appendix E demonstrates a complete analysis regarding MAPAX and
how parameters can be tuned considering the task’s requirements.

6 CONCLUSION

We introduced Model-Agnostic Projection Adaptation (MAPA), a novel technique for enhancing
communication efficiency in FL by treating the entire model parameter space as a single vector and
factorizing it into a fixed reconstruction matrix and a trainable projection vector. This approach
can utilize a new reconstruction matrix at each round, increasing the expressiveness of model up-
dates without additional communication costs. Our theoretical analysis established the convergence
of MAPA and demonstrated and provided MAPAX extension as a solution for high memory con-
sumption. Extensive experiments on different datasets showed that MAPA provides a significant
advancement in improving the efficiency and practicality of FL, offering a promising direction for
future research in distributed machine learning.
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A FULL PSEUDOCODE FOR FEDERATED LEARNING WITH MAPA

Algorithm 2 FL with MAPA

1: Initialization:
2: - Initialize global model W0 ∈ Rd×1 with random seed r0 in all clients and server
3: - Initialize reconstruction matrix A0 ∈ Rd×p with random vectors
4: - Set initial global projection matrix B̄0 ← 0 ∈ Rp×1

5: for each communication round t = 1, . . . , T − 1 do
6: Server-Side:
7: - Broadcast global projection matrixB̄t−1 and PRNG seed rt−1

8: for each client i = 1, . . . , N in parallel do
9: Client-Side:

10: - Receive B̄t−1 and rt−1

11: - Update the local model by Wt = Wt−1 +At−1B̄t−1

12: - Update reconstruction matrix At = N (0, σ)|rt−1

13: - Initialize local projection matrix Bi
t ← 0 ∈ Rp×1

14: for each local epoch e = 1, . . . , E do:
15: - Compute gradient of loss w.r.t Bi

t:

∇Bi
t = ∇Bi

t
L(Wt +AtB

i
t,Di)

16: - Update Bi
t using optimizer (e.g., SGD, Adam):

B̂i
t ← Bi

t − η∇Bi
t

17: end for
18: - Send updated Bi

t to server
19: end for
20: Server-Side:
21: - Update reconstruction matrix At = N (0, σ)|rt−1

22: - Aggregate projection matrix:

B̄t ←
1

S

N∑
i=1

biB̂
i
t

23: - Update global model: Wt+1 ←Wt +AtB̄t

24: - Generate a new random seed rt given previous seed rt−1

25: end for
26: Return: Final global model WT
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B FRESH INITIALIZATION OF RECONSTRUCTION MATRIX A

The common practice of implementing matrix factorization in communication-efficient FL involves
using a fixed and frozen reconstruction matrix throughout the whole training. In contrast, we found
that having a reconstructed matrix generated fresh and independently each round outperforms this
traditional choice without any additional communication overhead. Figure 7 shows the evidence of
this improvement in the case of FMNIST training with 100 clients.
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Figure 7: Comparison of having a Fresh and Frozen reconstruction matrix at each round. It shows that the
Fresh reconstruction matrix outperforms the Frozen as it has stronger exploration and more chance to escape
local minima.
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C PROOF OF PROPOSITIONS

C.1 DEFINITION 2: REPRESENTATION CERTAINTY

Definition 2 (Representation Certainty). Using the same factorization as in Definition 1. The
representation certainty is defined as the inverse of the error rate variance. The error rate measures
the expected error of the factorization to represent the original matrix, given a full-rank matrix A
(Assumption 1). The error expectation and variance are defined as:

EA

[
∥W −AB∥22

]
=

(
1− q

d1

)
,VarA

[
∥W −AB∥22

]
=

(
2q(d1 − q)

d21(d1 + 2)

)
Therefore, given a constant communication overhead and error expectation d1

q = r we have:

RC(∆W,F) = 1

VarA[E]
=

r3q + r2

2(r − 1)
∝ q

Let x ∈ Rd, and let A ∈ Rd×p be a random Gaussian matrix. The projection of x onto the subspace
spanned by A is PAx. The error rate E is defined as:

E =
∥x− PAx∥22
∥x∥22

.

Using the Pythagorean theorem:

∥x∥22 = ∥PAx∥22 + ∥x− PAx∥22,
we rewrite E as:

E =
∥x∥22 − ∥PAx∥22

∥x∥22
= 1− ∥PAx∥22

∥x∥22
.

The expected value of ∥PAx∥22 for a random Gaussian projection is:

E[∥PAx∥22] =
p

d
∥x∥22.

Substituting this into E:

E[E] = 1− E[∥PAx∥22]
∥x∥22

= 1−
p
d∥x∥

2
2

∥x∥22
= 1− p

d
.

Thus:
E[E] = 1− p

d
.

The variance of E is:

Var(E) =
Var(∥PAx∥22)
∥x∥42

.

For a random Gaussian projection:

Var(∥PAx∥22) = E[∥PAx∥42]−
(
E[∥PAx∥22]

)2
.

The moments are:

E[∥PAx∥42] =
p(p+ 2)

d(d+ 2)
∥x∥42,

(
E[∥PAx∥22]

)2
=

p2

d2
∥x∥42.

Thus:

Var(∥PAx∥22) =
p(p+ 2)

d(d+ 2)
∥x∥42 −

p2

d2
∥x∥42 =

2p(d− p)

d2(d+ 2)
∥x∥42.

Substituting into Var(E):

Var(E) =

2p(d−p)
d2(d+2)∥x∥

4
2

∥x∥42
=

2p(d− p)

d2(d+ 2)
.

The expected value and variance of the error rate are:

E[E] = 1− p

d
, Var(E) =

2p(d− p)

d2(d+ 2)
.
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C.2 PROPOSITION 1: RELAXED LOW-RANK FACTORIZATION SUPERIORITY

Proposition 1 (Relaxed Low-Rank Factorization Superiority). Let ∆W ∈ Rd1×d2 be the update
matrix of one layer, factorized in low-rank as ∆W = AB, where A ∈ Rd1×q is a shared random
matrix and B ∈ Rq×d2 is the trainable matrix, with q ≤ min(d1, d2) being the factorization rank, By
reshaping ∆W into ∆W ′ ∈ R(d1d2)/k × k for some integer k < d2, the factorization of ∆W ′ can
achieve a higher representation certainty while requiring same communication overhead compared
to the conventional low-rank factorization of ∆W .

Proof. Let ∆W ∈ Rd1×d2 represent the update matrix, which is conventionally factorized as
∆W = AB, where A ∈ Rd1×q is a fixed random reconstruction matrix, and B ∈ Rq×d2 is the
trainable projection matrix. Here, q ≤ min(d1, d2) denotes the factorization rank.

According to Definitions 1 and 2, the communication overhead (CO) and representation certainty
(RC) for the conventional low-rank factorization are expressed as:

CO =
q

d1
, RC =

d21(d1 + 2)

2q(d1 − q)
.

Now, consider reshaping ∆W into ∆W ′ ∈ R(d1d2)/k×k for some integer k < d2 that divides d1d2.
Factorize ∆W ′ as ∆W ′ = A′B′, where A′ ∈ R(d1d2)/k×p is a fixed random reconstruction matrix
and B′ ∈ Rp×k is the trainable projection matrix. Following Definitions 1 and 2, the communication
overhead (CO′) and representation certainty (RC′) for this relaxed low-rank factorization are given
by:

CO′ =
pk

d1d2
, RC′ =

(
d1d2

k

)2 (d1d2

k + 2
)

2p
(
d1d2

k − p
) .

Assuming the communication overhead is the same in both cases, i.e., pk
d1d2

= q
d1

= 1
r , it follows

that:

RC =
r3q + r2

2(r − 1)
, RC′ =

r3p+ r2

2(r − 1)
.

Furthermore, given k < d2, we derive:

pk

d1d2
=

q

d1
=⇒ pk

d2
= q =⇒ p =

d2
k
q =⇒ p > q =⇒ RC′ > RC .

In conclusion, by reshaping ∆W ∈ Rd1×d2 into ∆W ′ ∈ R(d1d2)/k×k with k ≤ d2, one can select
a rank p = d2

k q, thereby achieving a higher representation certainty while maintaining the same
communication overhead. This establishes the superiority of the relaxed low-rank factorization
under the given conditions.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.3 PROPOSITION 2: LAYER-INDEPENDENT FACTORIZATION SUPERIORITY

Proposition 2 (Layer-Independent Factorization Superiority). Let ∆Wi ∈ Rdi
1×di

2 be the update
matrix of the i-th layer of a model, and let ∆W ′

i ∈ Rdi
1d

i
2×1 be its reshaped single-vector form. In

single-vector factorization methods, ∆W ′
i is factorized as ∆W ′

i = AiBi, where Ai ∈ Rdi
1d

i
2×qi

and Bi ∈ Rqi×1, with qi ≤ di1d
i
2. By concatenating the reshaped weights ∆W ′

i into ∆W ′ ∈ Rd×1,
where d =

∑n
i=1 d

i
1d

i
2. The factorization of ∆W ′ can achieve a higher representation certainty

while requiring the same communication overhead than the conventional single-vector factorization
methods applied separately to each layer.

Proof. Let ∆Wi ∈ Rdi
1×di

2 be the update matrix of the i-th layer, which we reshape into its single-
vector form ∆W ′

i ∈ Rdi
1d

i
2×1. In conventional single-vector factorization methods applied sepa-

rately to each layer, ∆W ′
i is factorized as:

∆W ′
i = AiBi,

where Ai ∈ Rdi
1d

i
2×qi is a fixed random reconstruction matrix, and Bi ∈ Rqi×1 is the trainable

projection matrix, with qi ≤ di1d
i
2.

According to Definitions 1 and 2, the communication overhead and representation certainty are
given by:

CO =

∑n
i=1 qi∑n

i=1 d
i
1d

i
2

; RCi =
(di1d

i
2)

2(di1d
i
2 + 2)

2qi(di1d
i
2 − qi)

.

Now, consider concatenating the reshaped vectors ∆W ′
i from all n layers into a single vector ∆W ′ ∈

Rd×1, where:

d =

n∑
i=1

di1d
i
2.

We factorize the concatenated vector ∆W ′ as:

∆W ′ = AB,

where A ∈ Rd×q is a fixed random reconstruction matrix, and B ∈ Rq×1 is the trainable projection
matrix, with q ≤ d.

The communication overhead and representation certainty for the concatenated factorization are:

CO′ =
q

d
; RC′ =

d2(d+ 2)

2q(d− q)
.

Assuming the communication overhead is identical for both methods for some r ≥ 1, we have:

qi
di1d

i
2

=
q

d
=

1

r
=⇒ q =

d

di1d
i
2

qi.

Substituting d, di1d
i
2 into the expression for RCi and RC′:

RCi =
r3qi + r2

2(r − 1)
, RC′ =

r3q + r2

2(r − 1)
.

Furthermore, given di1d
i
2 < d, we derive:

q =
d

di1d
i
2

qi =⇒ q > qi =⇒ RC′ > RCi .

In conclusion, by concatenating the reshaped weights ∆W ′
i ∈ Rdi

1d
i
2×1 to W ′ ∈ Rd×1, where i ≥ 1

we can select the rank q = d
di
qi to achieve a higher representation certainty while reducing the

communication overhead compared to the conventional single-vector factorization methods applied
separately to each layer under given conditions.
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C.4 PROPOSITION 3: MAPAX GENERALIZATION

Proposition 3 (MAPAX Generalization). Let ∆Wi ∈ Rdi
1×di

2 be the update matrix of the i-th layer
of a model, and let ∆W = vec(∆W1,∆W2, . . . ,∆Wn) ∈ Rd be the vectorization (concatenation)
of all ∆Wi, where d =

∑n
i=1 d

i
1d

i
2. In comparison to MAPA, MAPAXk factorization allocates k2

times less memory for the same communication overhead and error rate, for the cost of k times
worse representation certainty, in other words, more k times more error rate variance.

Proof. Let ∆W ∈ Rd×1 be the update matrix. In MAPA factorization ∆W is factorized as:

∆W = AB,

where A ∈ Rd×p is a fixed random reconstruction matrix, and B ∈ Rp×1 is the trainable projection
matrix.

According to Definitions 1 and 2, the communication overhead and representation certainty are
given by:

CO =
p

d
; RC =

d2(d+ 2)

2p(d− p)
.

Now, consider MAPAXk reshapes update vector to ∆W ′ ∈ R d
k×k, and factorizes ∆W ′ as:

∆W ′ = A′B′,

where A′ ∈ R d
k×q is a fixed random reconstruction matrix, and B′ ∈ Rq×k is the trainable projec-

tion matrix.

The communication overhead and representation certainty for the concatenated factorization are:

CO′ =
qk

d
; RC′ =

( dk )
2(( dk ) + 2)

2q(( dk )− q)
.

Assuming the communication overhead is identical for both methods for some r ≥ 1, we have:

qk

d
=

p

d
=

1

r
=⇒ q =

p

k
.

Substituting d into the expression for RC and RC′:

RC =
r3p+ r2

2(r − 1)
, RC′ =

r3 p
k + r2

2(r − 1)
.

Therefore, MAPAXk has k times less representation certainty compared to MAPA.

On the other hand, the memory allocation of matrix A and A′ can be computed as:

Size(A) = dp ; Size(A′) =
dp

k2
,

demonstrating that MAPAXk utilizes k2 times less memory compared to MAPA.
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D PROOF OF THEOREM

D.1 ASSUMPTIONS AND PRELIMINARIES

We restate the key assumptions required for the convergence analysis.
Assumption 1 (Smoothness). For each i, Li(W ) is β-smooth, i.e.,

∥∇Li(u)−∇Li(v)∥ ≤ β∥u− v∥, for all u, v.
Assumption 2 (Bounded Variance of Stochastic Gradients). The variance of the stochastic gradient

estimator ∇̃Li(Wt) is bounded, i.e., E
[∥∥∥∇̃Li(Wt)−∇Li(Wt)

∥∥∥2] ≤ σ2
l , for all clients i and

iterations t.
Lemma 1 (Johnson-Lindenstrauss Lemma). Given 0 < ϵ < 1, a set of points {x1, x2, . . . , xN} ⊂
Rd, and a target dimension k = O

(
logN
ϵ2

)
, there exists a random linear mapping P ∈ Rk×d such

that for all i, j:
(1− ϵ)∥xi − xj∥2 ≤ ∥Pxi − Pxj∥2 ≤ (1 + ϵ)∥xi − xj∥2.

In our context, the random projection matrices Bi
t and reconstruction matrices At satisfy the JL

property with high probability.

D.2 PROOF OF THEOREM 1

Theorem 1. Given a decreasing learning rate ηt ≤ 1−4ϵ
4β(1+ϵ) , the algorithm has the following con-

vergence bound:

1

4HT

T−1∑
t=0

ηtE
[
∥∇L(Wt)∥2

]
≤ E [L(W0)]− L∗

HT
+ 2(ϵ+ β + βϵ)σ2

l

(
1

HT

T−1∑
t=0

η2t

)
where HT =

∑T−1
t=0 ηt, ϵ is the distortion parameter from the JL Lemma, and L∗ represents the

minimum value of L(W ).

Proof. By the β-smoothness of L(W ) and taking expectation on both sides, we have

E [L(Wt+1)− L(Wt)] ≤ E [⟨∇L(Wt),Wt+1 −Wt⟩] +
β

2
E
[
∥Wt+1 −Wt∥2

]
. (6)

Using the update rule Wt+1 = Wt−ηtAtB̄t, where B̄t =
1
N

∑N
i=1 B

i
t , we can rewrite the first term

as:
E [⟨∇L(Wt),Wt+1 −Wt⟩] = −ηtE

[〈
∇L(Wt), AtB̄t

〉]
= −ηtE

[〈
∇L(Wt), At

(
1

N

N∑
i=1

Bi
t

)〉]

= −ηtE

[〈
∇L(Wt),

1

N

N∑
i=1

AtB
i
t

〉]
.

We decompose AtB
i
t as:

∇̃Li(Wt) = AtB
i
t + eit,

where eit = AtB
i
t − ∇̃Li(Wt) is the projection error.

Substituting back, we have:

E [⟨∇L(Wt),Wt+1 −Wt⟩] = −ηtE

[〈
∇L(Wt),

1

N

N∑
i=1

(
∇̃Li(Wt)− eit

)〉]

= −ηtE

[〈
∇L(Wt),

1

N

N∑
i=1

∇̃Li(Wt)

〉]
︸ ︷︷ ︸

A1

+ ηtE

[〈
∇L(Wt),

1

N

N∑
i=1

eit

〉]
︸ ︷︷ ︸

A2

.
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We will now concentrate on A1 as:

A1 = −ηtE

[〈
∇L(Wt),

1

N

N∑
i=1

∇Li(Wt)

〉]

= − ηt
N

N∑
i=1

E [⟨∇L(Wt),∇Li(Wt)⟩]

=
(a)
− ηt
2N

N∑
i=1

{
E
[
∥∇L(Wt)∥2

]
+ E

[∥∥∥∇Li(Wt)
∥∥∥2]}+

ηt
2
E


∥∥∥∇L(Wt)−

1

N

N∑
i=1

∇Li(Wt)︸ ︷︷ ︸
=0

∥∥∥2


= −ηt
2
E
[
∥∇L(Wt)∥2

]
− ηt

2N

N∑
i=1

E
[∥∥∥∇Li(Wt)

∥∥∥2]

where (a) uses ⟨a, b⟩ = 1
2{||a||

2 + ||b||2 − ||a− b||2}. We now turn our attention to A2 as:

Next, we focus on A2:

A2 = ηtE

[〈
∇L(Wt),

1

N

N∑
i=1

eit

〉]

≤
(a)

ηt
4
E
[
∥∇L(Wt)∥2

]
+ ηtE

∥∥∥∥∥ 1

N

N∑
i=1

eit

∥∥∥∥∥
2


≤
(b)

ηt
4
E
[
∥∇L(Wt)∥2

]
+

ηt
N

E

∥∥∥∥∥
N∑
i=1

eit

∥∥∥∥∥
2


≤
(c)

ηt
4
E
[
∥∇L(Wt)∥2

]
+

ϵηt
N

E

∥∥∥∥∥
N∑
i=1

∇̃Li(Wt)

∥∥∥∥∥
2


≤
(d)

ηt
4
E
[
∥∇L(Wt)∥2

]
+

2ϵηt
N

N∑
i=1

{
E
[
∥∇Li(Wt)∥2

]
+ E

[∥∥∥∇̃Li(Wt)−∇Li(Wt)
∥∥∥2]}

≤
(e)

ηt
4
E
[
∥∇L(Wt)∥2

]
+

2ϵηt
N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+ 2ϵη2t σ

2
l

where (a) uses ⟨a, b⟩ ≤ 1
4 ||a||

2 + ||b||2, and (b) follows Jensen’s inequality, (c) comes from JL
Lemma, (d) follows the inequality ||a + b||2 ≤ 2||a||2 + 2||b||2, and (e) is based on Assumption
2. On the other hand, we can also place a bound on the second term E

[
∥Wt+1 −Wt∥2

]
as shown

below:

E
[
∥Wt+1 −Wt∥2

]
= E

[∥∥ηtAtB̄t

∥∥2] = E

∥∥∥∥∥ηtAt

(
1

N

N∑
i=1

Bi
t

)∥∥∥∥∥
2


≤
(a)

2η2tE

∥∥∥∥∥ 1

N

N∑
i=1

∇̃Li(Wt)

∥∥∥∥∥
2
+ 2η2tE

∥∥∥∥∥ 1

N

N∑
i=1

{
AtB

i
t − ∇̃Li(Wt)

}∥∥∥∥∥
2
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≤
(b)

2η2t
N

E

∥∥∥∥∥
N∑
i=1

∇̃Li(Wt)

∥∥∥∥∥
2
+

2η2t
N

E

∥∥∥∥∥
N∑
i=1

{
AtB

i
t − ∇̃Li(Wt)

}∥∥∥∥∥
2


=
2η2t
N

E

∥∥∥∥∥
N∑
i=1

∇̃Li(Wt)

∥∥∥∥∥
2
+

2η2t
N

E

∥∥∥∥∥
N∑
i=1

eit

∥∥∥∥∥
2


≤
(c)

4η2t
N

N∑
i=1

{
E
[
∥∇Li(Wt)∥2

]
+ E

[∥∥∥∇̃Li(Wt)−∇Li(Wt)
∥∥∥2]}+

2η2t
N

E

∥∥∥∥∥
N∑
i=1

eit

∥∥∥∥∥
2


≤
(d)

4η2t
N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+

2η2t
N

E

∥∥∥∥∥
N∑
i=1

eit

∥∥∥∥∥
2
+ 4η2t σ

2
l

≤
(e)

4η2t
N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+

2ϵη2t
N

E

∥∥∥∥∥
N∑
i=1

∇̃Li(Wt)
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2
+ 4η2t σ

2
l

≤
(f)

4η2t
N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+

4ϵη2t
N

N∑
i=1

{
E
[
∥∇Li(Wt)∥2

]
+ E

[∥∥∥∇̃Li(Wt)−∇Li(Wt)
∥∥∥2]}+ 4η2t σ

2
l

≤
(g)

4η2t
N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+

4ϵη2t
N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+ 4ϵη2t σ

2
l + 4η2t σ

2
l

=
4(1 + ϵ)η2t

N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+ 4(1 + ϵ)η2t σ

2
l

where (a), (c), and (f) are based on the inequality ||a + b||2 ≤ 2||a||2 + 2||b||2, (b) comes from
Jensen’s inequality, (d), (g) derive from Assumption 2, and (e) comes from JL Lemma.

By utilizing the previously established bounds for E [⟨∇L(Wt),Wt+1 −Wt⟩] and
E
[
∥Wt+1 −Wt∥2

]
to Equation 6, we derive the following:

E [L(Wt+1)− L(Wt)] ≤ E [⟨∇L(Wt),Wt+1 −Wt⟩] +
β

2
E
[
∥Wt+1 −Wt∥2

]
≤ −ηt

2
E
[
∥∇L(Wt)∥2

]
− ηt

2N

N∑
i=1

E
[∥∥∥∇Li(Wt)

∥∥∥2]︸ ︷︷ ︸
A1

+
ηt
4
E
[
∥∇L(Wt)∥2

]
+

2ϵηt
N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+ 2ϵη2t σ

2
l︸ ︷︷ ︸

A2

+
2β(1 + ϵ)η2t

N

N∑
i=1

E
[
∥∇Li(Wt)∥2

]
+ 2β(1 + ϵ)η2t σ

2
l

= −ηt
4
E
[
∥∇L(Wt)∥2

]
+

ηt
N

{
−1

2
+ 2ϵ+ 2β(1 + ϵ)ηt

}
︸ ︷︷ ︸

≤0 if we choose ηt≤ 1−4ϵ
4β(1+ϵ)

N∑
i=1

E
[∥∥∥∇Li(Wt)

∥∥∥2]+ 2η2t (ϵ+ β + βϵ)σ2
l

≤ −ηt
4
E
[
∥∇L(Wt)∥2

]
+ 2η2t (ϵ+ β + βϵ)σ2

l
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Ultimately, by applying the telescoping sum over t = 0, 1, . . . , T − 1, we arrive at the following
result:

L∗ − E [L(W0)] ≤
T−1∑
t=0

−ηt
4
E
[
∥∇L(Wt)∥2

]
+

T−1∑
t=0

2η2t (ϵ+ β + βϵ)σ2
l

In this case, L∗ stands for the minimum of L(W ).

By performing a division by HT =
∑T−1

t=0 ηt on both sides and utilizing some algebraic adjustments,
we arrive at the following expression:

1

4HT

T−1∑
t=0

ηtE
[
∥∇L(Wt)∥2

]
≤ E [L(W0)]− L∗

HT
+ 2(ϵ+ β + βϵ)σ2

l

(
1

HT

T−1∑
t=0

η2t

)
(7)

With a decreasing learning rate such as ηt = η0

t+1 , we observe that HT =
∑T−1

t=0 ηt tends towards

infinity as T grows, while
∑T−1

t=0 η2t remains bounded. Therefore, as T → ∞, the upper bound in
Equation 7 converges to 0, confirming the convergence to a stationary point.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E COMPLEXITY ANALYSIS AND TRADE-OFFS

Although the MAPA approach is advantageous for communication efficiency by having a large
matrix A, it may pose challenges for devices with limited memory and computational resources.
MAPAXk provides a trade-off that can reduce memory consumption at the expense of some commu-
nication efficiency by partitioning the update vector W and factorizing each part separately, making
it a customizable solution for resource-constrained devices. In the following, we show the com-
putation of memory, time, computation, communication, expected error rate, and error variance of
MAPAXk. Finally, we summarize the results in Table 2 and how, in practice, the MAPAXk can be
tuned to address the client constraint.

Memory Complexity: The additional memory complexity opposed by MAPAXk comes mainly
from storing a large reconstruction matrix A, as the model gradient is compressed in matrix B,
which is a reduction in memory compared to traditional FL.

Let ∆W ∈ R d
k×k be the update matrix of a model, which MAPAXk factorizes ∆W = AB, where

A ∈ R d
k×p and B ∈ Rp×k. Therefore, the additional memory overhead can be computed as:

Memory = O(
dp

k
).

Communication Overhead The communication overhead solely depends on the size of matrix B,
therefore regardless of batching for one FL round, the communication cost will be as:

Comm = O(pk)

Error Rate and Variance As the results of Definition 2 and Proposition 3, the error rate and variance
can be defined as:

E[E] = 1− pk

d
; Var[E] =

2p( dk − p)

( dk )
2( dk + 2)

=
2k2p(d− pk)

d2(d+ 2k)
.

Tuning Parameters In practice, given a model with constant d parameters, we explore the strategy
of setting the tunable parameters p and k to meet the client’s resource constraints.

First, clients should decide on a trade-off between the communication bandwidth and tolerance
for error, as both factors are related to the pk term. Therefore, setting pk = c for a constant c
is recommended. Given constant pk = c and k ≪ d, we can rewrite memory complexity and
approximate variance as:

Memory = O(
dc

sk2
)

Var[E] =
2kc(d− c)

d2(d+ 2k)
≈ 2c(d− c)

d3
k.

Therefore, clients should decide on a trade-off between memory and tolerance of error variance, as
both factors relate to the k. It is important that all clients agree on the values for p and k to ensure
the consistency of the updates during FL rounds.

Table 2: Complexity Analysis and Trade-offs for MAPAXk

Aspect Expression Description
Memory Complexity O

(
dp
k

)
Additional memory for storing matrix A.

Communication Overhead O(pk) Communication cost per FL round.
Expected Error Rate E[E] = 1− pk

d
Error rate depends on pk and d.

Error Variance Var[E] = 2k2p(d−pk)

d2(d+2k)
Variance as a function of p, k, and d.

Tunable Parameters pk = c set c based on bandwidth and error trade-offs.
Memory with pk = c O

(
dc
k2

)
Memory as a function of k.

Error Variance with pk = c Var[E] ≈ 2c(d−c)

d3
k Variance as a function of k.
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F IID AND CLIENT SAMPLING

This section includes the results of additional experiments on IID distribution and client sampling
for MNIST, FMNIST, CIFAR-10, and CIFAR-100.

MNIST Maximum Accuracy and Communication Cost
IID NON-IID

All clients 10% of clients All clients 10% of clients
Method Com. Acc Com. Acc Com. Acc Com. Acc
FedAvg 100% 99.6% 100% 99.5% 100 % 98.9% 100% 97.6%
Sparse 10.1% 97.7% 12.3% 97.5% 15.3% 93.8% 17.3% 90.2%
Quantize 9.3% 98.8% 10.5% 98.7% 31.3% 97.6% 33.1% 96.1%
EvoFed 8.5% 98.6% 8.8 % 98.3% 9.4 % 98.5% 10.3% 97.1%
FA-LoRA 20.3% 97.4% 22.2% 97.2% 30.2% 97.0% 37.3% 95.3%
MAPAXd/64 2.1% 98.8% 2.5% 98.6% 3.1% 98.1% 3.5% 97.5%
MAPAXd/256 2.0% 98.8% 2.2% 98.7% 3.0% 98.2% 3.2% 97.7%
MAPAXd/1024 1.6% 98.9% 1.9% 98.7% 2.9% 98.5% 3.0% 97.8%
MAPA (our) 1.6% 98.9% 1.9% 98.8% 2.9% 98.5% 3.0% 97.8%

Table 3: All baselines performance on MNIST dataset with IID and non-IID distribution for both client sam-
pling of 100% and 10%.

FMNIST Maximum Accuracy and Communication Cost
IID NON-IID

All clients 10% of clients All clients 10% of clients
Method Com. Acc Com. Acc Com. Acc Com. Acc
FedAvg 100% 92.7% 100% 92.2% 100% 89.2% 100% 87.3%
Sparse 16.0% 84.4% 18.4% 83.9% 24.1% 81.1% 26.3% 78.6%
Quantize 14.7% 83.6% 16.1% 83.2% 24.1% 78.7% 25.8% 79.3%
EvoFed 6.8% 90.4% 7.3% 90.0% 7.6% 87.7% 8.5% 85.9%
FA-LoRA 11.5% 87.9% 12.7% 87.5% 17.9% 84.1% 20.1% 81.5%
MAPAXd/64 2.3% 91.0% 2.7% 90.7% 3.4% 87.7% 3.8% 85.9%
MAPAXd/256 2.1% 91.3% 2.5% 91.0% 3.3% 87.9% 3.7% 86.1%
MAPAXd/1024 1.9 % 91.2 % 2.2% 91.1 % 3.1% 87.9 % 3.5 % 86.3 %
MAPA (our) 1.8% 91.4% 2.2% 91.3% 3.1% 88.0% 3.4% 86.5%

Table 4: All baselines performance on FMNIST dataset with IID and non-IID distribution for both client
sampling of 100% and 10%.

CIFAR-10 Maximum Accuracy and Communication Cost
IID NON-IID

All clients 10% of clients All clients 10% of clients
Method Com. Acc Com. Acc Com. Acc Com. Acc
FedAvg 100% 89.8% 100% 88.5% 100% 65.1% 100% 62.8%
Sparse 1.1% 63.1% 1.3% 62.6% 1.0% 47.1% 1.2% 46.5%
Quantize 6.2% 84.8% 6.7% 84.3% 5.0% 67.1% 5.4% 66.3%
EvoFed 2.0% 65.9% 2.3% 65.3% 1.9% 48.9% 2.2% 48.1%
FA-LoRA 1.3% 69.0% 1.5% 68.5% 1.1% 49.2% 1.4% 48.5%
MAPAXd/64 1.2% 88.7% 1.5% 88.2% 1.1% 68.2% 1.3% 67.6%
MAPAXd/256 1.1% 88.8% 1.4% 88.3% 1.0% 68.2% 1.2% 67.8%
MAPAXd/1024 1.0% 88.8% 1.3% 88.4% 1.0% 68.2% 1.1% 68.0%
MAPA (our) 1.0% 88.9% 1.3% 88.5% 1.0% 68.2% 1.1% 68.1%

Table 5: All baselines performance on CIFAR-10 dataset with IID and non-IID distribution for both client
sampling of 100% and 10%.
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CIFAR-100 Maximum Accuracy and Communication Cost
IID NON-IID

All clients 10% of clients All clients 10% of clients
Method Com. Acc Com. Acc Com. Acc Com. Acc
FedAvg 100% 42.1% 100% 41.6% 100% 18.0% 100% 16.2%
Sparse 7.0% 35.8% 8.5% 34.5% 7.5% 12.1% 8.1% 10.8%
Quantize 54.0% 32.1% 56.1% 31.6% 54.2% 10.2% 55.8% 9.6%
EvoFed 0.9% 36.3% 1.1% 35.9% 0.2% 16.5% 0.3% 15.6%
FA-LoRA 1.2% 34.7% 1.4% 33.9% 0.2% 14.1% 0.3% 13.5%
MAPAXd/64 0.3% 36.6% 0.4% 36.1% 0.1% 16.8% 0.2% 16.2%
MAPAXd/256 0.2% 36.6% 0.3% 36.2% 0.09% 16.8% 0.1% 16.3%
MAPAXd/1024 0.08% 36.7% 0.1% 36.5% 0.08% 16.8% 0.09% 16.4%
MAPA (our) 0.08% 36.7% 0.1% 36.5% 0.08% 16.8% 0.09% 16.4%

Table 6: All baselines performance on CIFAR-100 dataset with IID and non-IID distribution for both client
sampling of 100% and 10%.

G MODEL ARCHITECTURES AND HYPERPARAMETERS

NEURAL NETWORK ARCHITECTURE

The model configuration and training used in this work are provided in Table 7 and 8.

Parameter MNIST FMNIST CIFAR-10 CIFAR-100
Network Name CNN CNN CNN ResNet
Number of Convolutional Layers 2 2 3 2
Features in 1st Block 8 8 64 64
Features in 2nd Block 16 16 128 64
Kernel Size (Layer 1) 5x5 5x5 5x5 5x5
Kernel Size (Layer 2) 5x5 5x5 5x5 5x5
Stride (Layer 1) 1 1 1 1
Stride (Layer 2) 1 1 1 1
Number of Linear Layers 1 1 2 2
Features in Hidden Layers 1 1 256 128
Number of Output Units 10 10 10 10

Table 7: Neural Network Configuration

TRAINING HYPERPARAMETERS

The training was performed with the following key hyperparameters:

Parameter MNIST FMNIST CIFAR-10 CIFAR-100
Batch Size 32 32 32 32
Optimizer SGD SGD SGD SGD
Learning Rate 0.00594 0.00594 0.0041 0.0041
L1 Regularization 0.0003 0.0003 0.0001 0.0001
L2 Regularization 0.004 0.004 0.002 0.002

Table 8: Training Hyperparameters
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