
Under review as a conference paper at ICLR 2024

SPACED SCHEDULING ENHANCES
INSTRUCTION-PROMPTED REASONING IN
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The recent popularity of large language models has been fueled in part by ad-
vances in instruction tuning, which has helped unlock new levels of zero-shot
model performance. Much of the prior work in this area has focused on cre-
ating new datasets to improve or add specific skills (e.g., improving reasoning
via chain-of-thought prompting), or improving existing data sets by increasing
the diversity of tasks and prompting templates. However, studies have shown
that instruction tuning can sometimes lead to performance degradation, and re-
cent work has sought to overcome this issue by creating better dataset mixes (or
collections) involving laborious and careful ablation studies to find the right com-
position. In this work, we propose a novel adaptive scheduling strategy we call
spaced scheduling motivated by the spaced repetition learning method used by hu-
mans that creates an optimal curriculum (or schedule) of training examples. Our
approach aims to perform the data mix selection process online during training,
tailoring the training data composition to the chosen pre-trained model, reducing
the need for extensive studies over different compositions of training data. Our
results show that Spaced Scheduling yields better performance than random sam-
pling and other pruning and scheduling baselines and comparable results in the
worst case, using less training data and minimizing catastrophic forgetting. Fur-
ther, our proposed approach also yields more balanced performance across all
subcategories of the tested benchmarks.

1 INTRODUCTION

Spaced repetition (SR) is a learning technique from cognitive science that involves reviewing in-
formation at gradually increasing intervals over time, with early work on the subject dating back to
Ebbinghaus (1885), and the well-known Ebbinghaus model of the forgetting curve. The spaced rep-
etition methodology capitalizes on the spacing effect (Hintzman, 1974), a psychological principle
that posits that our brains retain information more effectively when we learn in multiple, spread-out
sessions. When applied to acquiring multiple skills, spaced repetition can be particularly effective.
By revisiting different skills intermittently, learners can ensure that each skill gets the refreshed at-
tention it requires just as memories start to fade. This not only aids in the retention of individual
skills but also facilitates the integration of multiple skills, as the interplay between them during the
learning phase can create more robust neural pathways and richer contexts. The result is improved
mastery and recall, making the learner more adept and versatile across various skills.

Prior work (Amiri et al., 2017) explored applying SR to Deep Learning (DL) training and showed
that the latter is affected by the same factors controlling human learning (i.e., difficulty, spacing,
and memory strength). Their proposed algorithm can match the performance of standard training
while using less training data, yielding a shorter training time. Whereas Amiri et al. (2017) focused
on previous-generation DL models (e.g., MLP (Joulin et al., 2017), LSTM (Sutskever et al., 2014)),
trained on simple (by today’s standard) tasks, such as sentiment analysis in a single task-tuning set-
ting, we are interested here in determining if some of these concepts can be adapted and applied to
tune modern pre-trained LLMs on instruction data (Ouyang et al., 2022; Mishra et al., 2022) in a
large-scale (1k+ tasks (Longpre et al., 2023)) multitask set up. As one uses SR to schedule the train-
ing examples based on a given complexity or difficulty measure, the notion of curriculum naturally

1

Under review as a conference paper at ICLR 2024

arises. The seminal work of Bengio et al. (2009) on curriculum learning (CL) further developed and
formalized the strategy of using a curriculum in machine learning—based on ordering sequences
of training examples, in a manner inspired by the ordering of tasks into increasing complexity in
human education. In contrast to CL, here we propose and examine a strategy that is particularly
well-suited to modern LLMs. We also explore how these strategies affect catastrophic forgetting
(CE) since studies (Luo et al., 2023) that the tuning process can erase the knowledge acquired dur-
ing pre-training. Existing data pruning work (Marion et al., 2023; Attendu & Corbeil, 2023) shows
that training data can be reduced while keeping or outperforming the non-pruned counterparts, but
highlights that the success of any pruning strategy depends on the goodness of the chosen pruning
metric (Sorscher et al., 2022). Here, we are interested in exploring how SR and data-pruning strate-
gies can work together in an online and dynamic way to optimize the instruction finetuning (IFT)
process of pre-trained LLMs, especially the ones with significant zero-shot performance.

In this work, we introduce a novel DL training approach that we call Spaced Scheduled Training
(SST) which extends prior work using SR to modern LLMs supplemented by a dynamic data pruning
strategy where elements of CL arise as a consequence of scheduling or skipping problem examples
or examples that the learner has already mastered. Our approach requires no additional analysis of
task complexity to predetermine a curriculum or schedule; one starts with a standard randomized
set of examples. With our approach, a model will see examples of all types of difficulty in the first
epoch of training but will adaptively avoid expending computation on “easy”, currently too “hard”,
and inherently ambiguous examples in the future.

Our contributions can be summarized as follows:

• We introduce a novel training strategy we call spaced scheduling training motivated by spaced
repetition used by humans for optimal learning.

• Extensive empirical evaluation and careful statistical analysis show that spaced scheduling reliably
increases the performance of instruction-tuned LLMs, especially on reasoning tasks.

2 RELATED WORK

Spaced Repetition is an efficient learning technique used by humans to enhance long-term informa-
tion retention. This approach relies on a repeated review of content using active recall—recalling the
information without looking at the material (e.g., flashcards). The reviews are temporarily spaced
following a schedule based on how well one recalls the information. The spacing is usually calcu-
lated by an algorithm (e.g., SuperMemo (Wharton, 1994), MEMORIZE (Tabibian et al., 2019)) tak-
ing into account additional aspects such as the number of successful consecutive recalls. This tech-
nique was initially introduced by psychologists in the 1930s (Spitzer, 1939), and since then, there
have been multiple studies exploring the approach and showing its benefits (Yuan, 2022; Karpicke
& Roediger, 2008) on both the memory strength and concept-understanding abilities. Other studies
showed that it is also beneficial when forming long-term memory in other species (e.g., in drosophila
(Jacob & Waddell, 2020)), demonstrating that the neurological mechanisms on which this approach
relies extend beyond human learning. Early human psychology study (Ebbinghaus, 2013) explored
a simple but fundamental memory model–a theoretical framework that explains how human mem-
ory processes information, called exponential forgetting curve which states that the probability of
recalling learned information if not reviewed, decays exponentially. This decay is a function of the
time since the last review and the memory strength, where the latter improves as a function of the
number of reviews and spacing between these reviews. Later study (Reddy et al., 2016), showed
that the difficulty is also an important factor affecting the recall probability that can be written as

Pr(recall) = exp(−difficulty × delay

strength
) (1)

Amiri et al. (2017) was the first to apply SR to training DL models, they showed that DL training
is affected by the same three factors as human memory and introduced an algorithm called Repeat
before Forgetting (RbF) that aims to focus on difficult examples. Their single-task finetuning results
on sentiment classification, image categorization, and arithmetic addition, showed that RbF can
reduce the data usage by up to 66% per epoch, leading to 2.9 times faster training. More importantly,
this work also showed empirically that the factors affecting the recall probability in humans (i.e., the

2

Under review as a conference paper at ICLR 2024

difficulty of the example, the delay since the last review, and the memory strength) are also affecting
DL models, motivating the use of SR in DL training.

Data Pruning is the process of filtering the training dataset of a DL model. This approach aims
to remove non-useful or possibly harmful examples (e.g., mislabelled examples) without affecting
the final performance which also reduces the compute requirement. For example, Marion et al.
(2023) used a perplexity-based (PPL) offline method to filter the pre-training dataset of LLMs. Their
proposed method uses PPL computed using an external reference model to prune examples with
low values—-higher probability text. The authors showed that the simple PPL metric performs
better than more complex metrics (e.g., Error L2-Norm (EL2N)). Their results showed that they can
achieve the non-pruned performance with only 30% of the data. In computer vision, Sorscher et al.
(2022) explored static pruning using the example’s proximity to the decision boundary as a difficulty
measure, where harder examples are closer the the boundary. Their approach relies on the size of
the initial dataset to choose between selecting harder or easier examples. The author showed that
the pruning helps perform and suggests ”hints” of exponential scaling. They highlighted that the
success of the pruning relies on finding an adequate difficulty metric. In NLU, Attendu & Corbeil
(2023) experimented with a dynamic pruning method for finetuning encoder-only models for joint
intent and classification tasks. Their approach consists of a periodic evaluation (spaced by a given
number of epochs) that uses the EL2N to assign an importance score to each sample, that model
is trained on the most important samples. Their results show that their approach can half the data
requirement and prune up to 80% if tolerating a 1% drop in performance.

Curriculum Learning is a training approach that aims to improve data utilization by identifying
an optimal sequence of training examples. It was initially motivated by the work of Elman (1993)
which was an early example of combining ideas from cognitive science with machine learning.
It showed that restricting resources (i.e., the data and the memory) early in training and gradually
expanding them improves the generalization performance of gradient-based learning. The influential
work of Bengio et al. (2009) experimented with small neural LMs and found that CL empirically
improved generalization performance. However, recent work has shown the approach used by early
CL work is not optimal where it relies on simple handcrafted methods (e.g., the sequence length)
to build curricula. Further, these curricula are usually static, not affected by the state of the learner
during training. Later studies focused on addressing the aforementioned limitation by dynamically,
creating the curriculum during training. For example, Kreutzer et al. (2021) used a vanilla EXP3
algorithm (Auer et al., 2002) that uses the model’s loss to guide the data selection process (or learn
the curriculum) to train a machine translation (MT) method. Xu et al. (2020) introduced a dynamic
approach that uses the changes in the loss or negative log-likelihood as a difficulty measure. Their
approach estimates a model competency value to help choose the easiest examples first.

3 SPACED SCHEDULING TRAINING

In this section, we describe our Spaced Scheduling Training (SST) algorithm for general deep learn-
ing (DL) training and our proposed implementation for tuning LLMs. Our method adapts existing
spaced repetition algorithms widely used by humans to optimize learning and long-term retention,
such as SuperMemo (Wozniak & Gorzelańczyk, 1994). It aims to modulate the intervals at which
the learner (in our case, a DL model) trains on a specific example based on how well the information
is recalled. The scheduling algorithm uses these scores to estimate a potentially optimal interval for
each example. The increase (or decrease) of the interval lengths (or spacing) calculation depends
on the scheduling algorithm. Still, it is generally affected by the score where a low score shortens
the interval and the number of successful consecutive reviews that act as a multiplier. From a DL
perspective, our method is motivated by optimal compute allocation. Given a fixed computing bud-
get, an optimal learning algorithm should use this budget on examples that contribute positively to
performance and avoid ones with minimal or negative impact.

3.1 CONCEPTS

We classify each training example throughout the learning process in the categories below to either
use a given example for training in the current or future iteration or drop it altogether.

3

Under review as a conference paper at ICLR 2024

Trivial examples represent instances that a model performs well on when seen for the first time.
They are defined by a score zi > zmin and repetition count ri = 0. This distinction is crucial when
tuning an LLM with significant zero-shot performance.

Learned examples represent instances that the model trained on successfully over multiple consec-
utive repetitions si. They are defined by si > st and the number of consecutive reviews with a score
zi > zmin where st is a hyper-parameter.

Currently difficult examples represent instances that are hard for the current model but might be
learned later in training and are defined by a score zi > zt.

Intractable examples represent instances that a given model cannot learn after multiple attempts,
such as ones with complexity beyond the true model’s capacity or which are mislabelled; they are,
in effect, intractable from the trained model lens. For instance, it might be intractable for an LLM
trained only on natural language to generate a Python function whereas a same-sized code model
would find it trivial. They are defined by a score zi < zmin and the total repetition count ri > st.

Useful examples are instances selected for training in a given iteration. They represent the examples
with zi ≤ zt, where zt is the current score threshold based on the current model competency κ.

Our proposed algorithm uses useful examples at each training iteration, delays the currently difficult
examples, and drops all the other examples described above. The goal of this mechanism is to keep
the most useful training examples–used to update the model parameters. It tries to mimic human
learning behavior, where optimal learning is correlated with choosing the right level of complexity
at the right time. The complete algorithm of the dropping process is shown in Algorithm 3.

3.2 ALGORITHM

Our SST algorithm shown in Algorithm 1 follows a two-phase process:

Phase 1: Warm-up. The model is trained using random sampling on a subset of the dataset D,
defined by ρ0, the warm-up ratio. The examples are sampled from D with replacement using SAM-
PLEWITHREPLACEMENT, randomly or stratified by a data category if available. The algorithm can
use any metadata that can cluster the data. For example, using a task ID in a multitask setting, the
data language (e.g., English, French, etc.), or the task type (e.g., code generation, reading compre-
hension, etc.). The stratification ensures the model sees all possible categories during warm-up. In
summary, this phase aims to delay the spaced scheduled training until the model starts producing
acceptable outputs to get meaningful scores. The positive effect of this stage is further increased
when stratified sampling is used

Phase 2: Spaced Scheduled Training. At each epoch e, the algorithm performs a series of
evaluate-train iterations n. The evaluation consists of scoring the set of candidate examples Cnew to
determine whether to use it in the current or future interaction or drop it altogether. The examples are
drawn from Due

, where Du0
= D, similar to phase 1, but using sampling without replacement in-

stead and ρnew the new samples ratio. The algorithm uses COMPUTESCORES to compute a discrete
score z ∈ {0, . . . , zmax} for each example (SuperMemo2 uses zmax = 5), reflecting the quality
of the prediction, where z = zmax means a perfect output. Then feeds the score to SUPERMEMO
(the implementation of SuperMemo2 (Wozniak & Gorzelańczyk, 1994) shown in Algorithm 2) to
schedule each example in its respective target iteration nt, or drops the example following the sam-
ple dropping procedure described below. The model is trained on the examples with nt = ncurrent

and the previously scheduled examples. The algorithm keeps track of the examples used for training
Due

that will replace the training dataset in the next epoch. Therefore, once an example is dropped,
the model never sees it again. The training epoch finishes when the new examples are exhausted
and the schedule is empty. SST then sets Due

← Due−1
and restart the process describe above.

Throughout all the epochs, SST keeps an updated model competency value κ (initialized by κ0

for the first epoch) consisting of the scores’ running average, used to compute the minimum score
threshold zt ← zmax − κ − 1 to place the candidates with a score lower than κ by 1 in Due

since
they represent examples currently hard for the model.

4

Under review as a conference paper at ICLR 2024

Algorithm 1 Spaced Scheduling Training algorithm using the SuperMemo2 algorithm defined in
Algorithm 2 and drop function defined in Algorithm 3

1: Input: Model parameters θ, Training data D, Data categories Λ, Initial competency κ0, Warm-
up ratio ρ0, New samples ratio ρnew, min correct score zmin, success repetition threshold st,
max training iteration T

2: Phase 1: Warm-up
3: D0 ← SAMPLEWITHREPLACEMENT(D,Λ, κ0)
4: θ ← TRAINMODEL(θ,D0)
5: Phase 2: SST
6: e← 1, κ← κ0, zmax = 5, t = 0, P ← ∅, Du0 = D ▷ Initialization
7: reviews← Empty dictionary, schedule← Empty dictionary
8: done← false
9: for e = 1 to emax do

10: n← 1
11: while true do
12: Cnew ← SAMPLEWITHOUREPLACEMENT(Due−1

,Λ, ρnew)
13: if Cnew ̸= ∅ then
14: z ← COMPUTESCORES(θ, Cnew)
15: κ← z̄, zt ← zmax − κ− 1 ▷ Minimum score threshold
16: Cnew,Due ← DROPEXAMPLES(Cnew,Due , zmin, zt)
17: else if schedule[x] = ∅∀x > n & Due−1 = ∅ then
18: done← true ▷ Early stopping
19: break
20: else if schedule[n] = ∅ & ∃x > n schedule[x] ̸= ∅ then
21: n← n+ 1 continue ▷ Future iterations contain scheduled examples
22: end if
23: θ ← TRAINMODEL(θ, Cnew ∪ schedule[e])
24: n← n+ 1
25: end while
26: if done = true then break
27: end if
28: end for
29: Output: Trained model parameters θ

3.3 COMPUTATION OVERHEAD

Since our proposed approach adds an evaluation process during training, it is essential to understand
the compute overhead induced by the extra processing. However, under some conditions, the pruning
mechanism used by SST can offset the overhead induced by the evaluation. In this section, we
provide the equation that governs the efficiency of our approach. Using Algorithm 1 and estimations
from Kaplan et al. (2020), we can write the ratio between the evaluation compute Ce and compute
required to train (forward and backward pass) a single example Cs as follows (See Appendix A.6
for details):

Ce

Cs
≤ ΣN−1

n=0 dn

N − ρ0 − ΣN−2
n=0 dn

(2)

where dn is the pruning ratio and N the number of training epoch. Empirical results can use this
equation and the measured Ce and dn to determine the efficiency of SST.

3.4 USING SST WITH OTHER MODALITIES AND FUTURE WORK

Later in this work, we show that SST improves the performance of LLM IFT on many evaluation
benchmarks. However, the proposed method is not limited to LLMs or text data only but instead can
be applied to any type of learner or data modality. Applying SST to another model architecture or
data type simply involves choosing the right scoring function that maps an output to a discrete score
from 0 to 5 that introduces the least amount of compute overhead. We believe that SST will provide

5

Under review as a conference paper at ICLR 2024

benefits to training models on other modalities since the underlying idea of selecting the right train-
ing examples has been shown to successfully work for images (Sorscher et al., 2022). However, we
leave the experimentation to validate this hypothesis to future work. Finally, our method can be used
with any spaced repetition algorithm to compute the review intervals. One interesting future direc-
tion is to try including the model competency as part of the interval calculation and possibly extract
the current competency from the model internals (.e.g., activations, or internal representations).

4 EXPERIMENTAL SETUP

4.1 SST IMPLEMENTATION FOR LLM IFT

Our implementation uses a Python version of the SuperMemo2 1 spaced repetition algorithm to
compute the review intervals. We set the minimal correct score to 3, the κ0 = 2 and set both zmin

and st to 3following the original SuperMemo work (Wozniak & Gorzelańczyk, 1994). Further, we
set ρ0 = 15%, ρnew = 10% that we identify with ablation studies. As for the data, we define the
data category as the source dataset’s name. Finally, we introduced a variation of the edit distance
that we call token edit distance as a scoring mechanism that we describe below.

Token Edit Distance is a variation of the edit distance adapted for a generative model output
(i.e., tokens). The original score, also called Levinstein distance, computes the number of single-
character edits required to transform one string to another. Instead, our proposed variation computes
the edits at the token level since it is the smallest atomic output unit of an LLM. Further, choosing
a token-level edit distance aligns well with the next token prediction objective function used to train
causal LMs. For faster computation, we use a Python wrapper of a C implementation of the edit
distance 2. The choice of this scoring function was also motivated by the compute overhead the
score calculation induces. The full implementation is available in our code repository.

4.2 DATASET

We use the Tulu V23 IFT dataset collection, the latest version of the one initially introduced by
Wang et al. (2023), totaling nine datasets. See Appendix A.4 for additional details on the exact
dataset list and how the latest version differs from the one introduced in the original work (Wang
et al., 2023). Our method aims to alleviate the need to select the datasets or their composition. Thus,
the choice was mainly motivated by finding a collection that contains: (1) the most datasets, (2)
a mix of human and model-generated datasets, and (3) recent and widely used datasets. The Tulu
collection Wang et al. (2023) covers all these aspects. Further, we create a validation set containing
5% of each dataset in the collection. This validation set is only used by the RbF baseline to estimate
the model strength during training, which is necessary for its workings.

4.3 TRAINING AND EVALUATION

We follow the same training setup including hyper-parameters as Wang et al. (2023) and base our
training code and data processing on their publicly available code4. We set the maximum sequence
length to 4096. All the models in this work except the vanilla LLAMA models are trained for
3 epochs (or equivalent by setting the maximum training iterations) using LoRa (Hu et al., 2021)
unless stated otherwise. The complete training configuration can be found on our public repository5.
All experiments were run on 8 A100 Nvidia GPUs. We also follow the same data processing setup
as Wang et al. (2023) and use chatbot-style prompts (i.e., assistant and user) to handle the datasets
with more than one turn (e.g., ShareGPT) and system messages when available (e.g., Open-Orca).

For a comprehensive evaluation, we follow the setup proposed by Touvron et al. (2023) where each
model is tested on five capabilities: code, commonsense reasoning, word knowledge, reading com-
prehension, and math. Each capability score represents an average over multiple tasks. Further, the

1https://github.com/alankan886/SuperMemo2
2https://github.com/maxbachmann/python-Levenshtein/
3Available in the authors’ official code repository: https://github.com/allenai/open-instruct
4https://github.com/allenai/open-instruct/
5Available after the blind review period.

6

Under review as a conference paper at ICLR 2024

models are tested on two popular benchmarks: Massive Massive Multitask Language Understanding
(MMLU) (Hendrycks et al., 2020) and Big Bench Hard (BBH) (Suzgun et al., 2022). When eval-
uating the vanilla LLAMA-2 we use the non-chat prompt suggested by the original work (Touvron
et al., 2023). It is worth noting Touvron et al. (2023) used proprietary evaluation code and the results
we show in this work are reproduced using the BigCode LM-eval-harness for code capability6 and
EleutherAI LM-eval-harness (Gao et al., 2021) 7 for the rest. Therefore, our results might differ
from the original work Touvron et al. (2023). Nonetheless, since all the baselines and our approach
are evaluated with the same method, the findings of our experiments remain valid.

4.4 BASELINES

We train the following baselines to compare and contrast our method (SST) to existing ones and
other naive baselines. All trained models are based on LLAMA-2 (Touvron et al., 2023) and are
trained on the full TULU V2 described above, unless stated otherwise. Further, we train 7B and 13B
model sizes for each baseline.

◦ SSTrand (ours): Training using SST with random scores.
◦ LLAMA-2: The vanilla LLAMA-2 pre-trained model.
◦ RANDOM: Training using random sampling–The most widely used sampling strategy.
◦ STATICppl: Training on a dataset pruned offline using perplexity Marion et al. (2023), using the
vanilla model as reference model.
◦ RbF: Training using Repeat before Forgetting (RbF) (Amiri et al., 2017) (See A.5.2).
◦ DATA DIET: Training using our adaptation of the pruning algorithm proposed by Attendu &
Corbeil (2023) for sequence outputs (See A.5.1).

5 RESULTS

5.1 SPACED SCHEDULING TRAINING PERFORMANCE

Table 1 shows the results of our main experiment highlighting the performance improvements of
SST compared to baselines described above on the set of capabilities and benchmarks described in
the evaluation section.

Table 1: Performance of Spaced Scheduling on LLM capabilities. We report the performance dif-
ference between each tuned model and the base pre-trained model of the same size in parentheses.

Size Model Code Commonsense
Reasoning

World
Knowledge

Reading
Comprehension Math MMLU BBH

LLAMA-2 16.8 64.8 63.2 67.2 8.6 42.9 35.6
STATICppl 18.1 65.8 60.1 67.0 15.8 41.2 34.3
RANDOM 18.7 65.4 60.8 67.2 20.8 42.1 35.9

7B DATA DIET 17.0 64.2 60.3 66.9 7.1 42.3 33.1
RBF 13.4 61.2 60.1 64.9 5.7 42.9 32.6
SSTrand 17.2 64.1 59.1 67.0 9.3 42.7 34.1
⋆ SST 21.2 66.0 62.7 68.0 23.9 42.2 36.8

LLAMA-2 24.5 67.1 71.8 75.9 16.3 52.9 40.7
STATICppl 27.0 67.5 74.0 73.9 29.9 52.6 42.4
RANDOM 29.2 67.8 73.5 73.9 29.5 52.6 42.2

13B DATA DIET 25.9 66.1 67.3 72.6 10.6 51.9 40.0
RBF 23.1 63.1 67.7 71.0 14.0 52.8 39.9
SSTrand 26.1 66.5 68.4 73.0 17.9 52.8 41.3
⋆ SST 32.8 68.3 70.9 74.1 31.6 52.8 43.3

SST improves the overall performance (4/7 evaluations) for both model sizes compared to all the
baselines. The results show that our approach significantly improves the reasoning capability, as

6https://github.com/bigcode-project/bigcode-evaluation-harness
7https://github.com/EleutherAI/lm-evaluation-harness

7

Under review as a conference paper at ICLR 2024

demonstrated by improved code, commonsense reasoning, MATH, and BBH performance. When
analyzing the schedule followed by SST, we can clearly see that it focuses on examples with short
targets (e.g., Flan V2), and then switches to longer ones (e.g., ShareGPT or OpenOrca). Using
the findings of Mukherjee et al. (2023), showing that the sentence length correlates with example
complexity, we can induce that SST focuses initially on easier examples. However, our qualitative
analysis showed that the length is not always an adequate proxy for the sample complexity. For
example, both model sizes struggle with world knowledge targets containing a single word (e.g.,
the model predicts “Miami Beach” instead of “Miami” even after seeing the example more than
3 times). The same behavior occurs for logic or arithmetic targets especially when input context
length is short. These findings might explain to low scores on world knowledge and MMLU. When
comparing the 7B and 13B variants, we noticed that the transition to longer examples happens earlier
for the 13B model showing that the model size affects the schedule, showing the necessity of using
online scheduling and pruning algorithms. Interestingly, STATICppl shows better and random results
in more than one category for the 13B model, matching the finding of Marion et al. (2023) that
showed that larger models perform better as a reference model suggesting that perplexity might
useful as online pruning metric. However, we leave this future work. The results show that RBF
performs poorly even compared to the vanilla model. Our analysis showed that this is due to the
scaling of the loss value introduced by IFT since it is performed in a multitask learning (MTL)
setting with model targets varying in lengths (e.g., Flan V2 and ShareGPT have an average target
length of 30 tokens and 350 tokens, respectively). The scaling affects RBF’s performance since it
uses the example loss to compute the schedule. This issue is even more amplified since this method
uses the average validation loss to estimate the current model strength used to calculate the schedule.
Therefore, this measure also suffers from the loss scaling. Further, when using RBF, the composition
of the validation set becomes crucial since it needs to provide a good overview of the model strength
on each task in the MTL setup and the simple stratified sampling by dataset we used to create the
validation set might not be enough. However, it is worth noting that original work Amiri et al.
(2017) was intended for simple classification tasks in a single-task learning setting which explains
why RBF is not suitable for the IFT setup we are interested in. DATA DIET also shows a poor
performance, where the pruning process removes valuable examples at every epoch, preventing the
model from seeing them throughout the training process. We performed a quick experiment where
we forced the examples that SST deemed valuable but not DATA DIET and we noticed a performance
improvement, pointing to the pruning metric. However, the reason might be related to the EL2N
adaptation to sequence data since the original work was intended for a classification task. The work
of Marion et al. (2023) showed a similar behavior where the pruning of pre-train data where the
data format and learning objective is similar to IFT performs worse than random pruning. To ensure
the statistical significance of our results, we performed a paired t-test of SST and SSTrandom for
GSM8k and MATH results in every category8. We found that the 95% confidence intervals (CI) for
the performance difference in favor of SST are (0.140 − 0.0312) and (0.020 − 0.0294) for the 7B
and 13B models for the MATH, and found the 95% CI are (0.024− 0.044) and (0.020− 0.029) for
the 7B and 13B models for GSM8K, respectively.

When using the token edit score, the compute required to evaluate a single example can be estimated
as Ce = Cf +Ctds + ϵ, where Cf represents the compute required to perform a forward pass, Ctds

is compute required to get a score using the token edit distance, and ϵ is extra compute used call the
super memo algorithm. For a 7B+ LLM, we can safely assume for the given implementation that
Cf >> Ctds + ϵ since the target is at most 400 tokens. Thus Ce = Cf . Using equation 2, we can
write Ce/Cs = Cf/3Cf = 1/3. Knowing that the 7B variant yielded Σ3−1

0 dn = 0.16+ 0.3+ 0.33
(3 is the number of epochs), we can compute that for this experiment, SST is as efficient as random
sampling (0.3333 < 0.3361). However, the 13B variant with Σ3−1

0 dn = 0.15 + 0.25 + 0.26 is
considerably more efficient with Σ3−1

0 dn = 0.19 + 0.37 + 0.40.

Finally, we performed an ablation study to show the benefit of each main component of our SST
algorithm. We show the results in Table 2 on the GSM8K (Hendrycks et al., 2021) and MATH
(Cobbe et al., 2021) tasks (represent the tasks in the math capability used by (Touvron et al., 2023))
using our 7B variant as they require enhanced reasoning ability that shows cases one of the main
benefits of our approach.

8For MATH we used the original categories (e.g., algebra, pre-calculus), and for GSM8K we clustered the
examples into 10 equal-size bucket based on example length

8

Under review as a conference paper at ICLR 2024

Table 2: Effect of each component of the SST al-
gorithm using LLAMA-2 7B

Method GSM8k MATH

Space Scheduling 32.9 1.9
+ Stratified warm-up 34.5 2.4
+ Example dropping 37.8 5.6
+ Competency threshold 40.0 7.7

The results show that each component con-
tributes positively to the performance increas-
ing the GSM8k test score by 7.1 points and
MATH by 5.8.

5.2 SPACED SCHEDULING
REDUCES CATASTROPHIC FORGETTING

While IFT improves the instruction-following
performance of LLMs, studies (Wang et al.,
2023) have shown that it can lead to catas-
trophic forgetting where the tuning process erases the knowledge acquired during pre-training. The
results in Table 1 show that in all cases where the performance of the vanilla pre-trained model
performs better than the tuned models, Spaced Scheduling reduces the gap of performance by an
average of 62% on the tested tasks. We hypothesize that our sample-dropping mechanism makes
the learning process focus on useful and learnable examples. However, we leave further analysis
of how Space Scheduling conserves valuable internal representation for future work. Further, the
results show that our method also improves the performance on most of the test capabilities and
benchmarks.

6 DISCUSSION, CONCLUSIONS, AND LIMITATIONS

Our work shows that scheduling and modulating the complexity during the IFT process yields better
performance, particularly in reasoning ability. This implies that an optimal scheduling might exist
when training LLMs and that DL training can still benefit from insight into how humans learn,
prompting future work. Another interesting future direction is to better understand why reasoning
benefits from the scheduling effect using the model’s intrinsic characteristics, such as a probe-based
analysis of the learned representations. We show that dropping intractable samples is also beneficial
since the model capacity puts an upper bound on the number and complexity of skills the model can
learn. For example, Wei et al. (2022) has shown that the ability to generate complex CoT reasoning
is a property that emerges with the model size. Therefore, our dropping mechanism saves compute
budget since in this example a small model will not be able to generate the desired CoT regardless
of the number of training epochs. This mechanism is in contrast with traditional Active Learning
work (Lewis, 1995), where the hardest example is prioritized. It can also avoid using mislabeled
examples, especially with the number of model-generated datasets that are not curated which affects
the optimization process as highlighted by Sorscher et al. (2022). The dropping mechanism is also
tailored to the model being trained. For example, Figure 1 shows a case where a model trained on
Python code could find the example trivial as opposed to a model trained on language only such as
LLAMA-2. Finally, we would like to highlight some limitations of our proposed approach that we
believe will spark future work. First, the evaluation process that is performed before every learning
epoch can induce an important compute overhead. In our experimentation, this overhead is offset
by the number of training samples we dropped (e.g., 37.5% for the 13B model). However, this
amount is a function of the quality of the training data where in the extreme case all the data can
be useful, making the evaluation step pointless. Second, we noticed an interplay between the warm-
up phase of SST and learning rate scheduling and we disabled the latter for all our experiments.
We only tested our approach on models with at most 13B parameters and it is not clear if larger
models such as LLAMA-2 70B would benefit from such an approach. Lastly, we dealing with a
large set of IFT datasets, and the issue of the negative impact of some datasets arises. We believe
that including an evaluation signal in the dropping mechanism might alleviate this issue but we leave
such experimentation for future work.

REFERENCES

Hadi Amiri, Timothy Miller, and Guergana Savova. Repeat before forgetting: Spaced repetition
for efficient and effective training of neural networks. In Martha Palmer, Rebecca Hwa, and
Sebastian Riedel (eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 2401–2410, Copenhagen, Denmark, September 2017. Association for

9

Under review as a conference paper at ICLR 2024

Computational Linguistics. doi: 10.18653/v1/D17-1255. URL https://aclanthology.
org/D17-1255.

Jean-michel Attendu and Jean-philippe Corbeil. NLU on data diets: Dynamic data subset selection
for NLP classification tasks. In Nafise Sadat Moosavi, Iryna Gurevych, Yufang Hou, Gyuwan
Kim, Young Jin Kim, Tal Schuster, and Ameeta Agrawal (eds.), Proceedings of The Fourth Work-
shop on Simple and Efficient Natural Language Processing (SustaiNLP), pp. 129–146, Toronto,
Canada (Hybrid), July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
sustainlp-1.9. URL https://aclanthology.org/2023.sustainlp-1.9.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
instruction-tuned llm, 2023. URL https://www.databricks.com/blog/2023/04/
12/dolly-first-open-commercially-viable-instruction-tuned-llm.

Hermann Ebbinghaus. Memory: a contribution to experimental psychology, 1885.

Hermann Ebbinghaus. Memory: A contribution to experimental psychology. Annals of neuro-
sciences, 20(4):155, 2013.

Jeffrey L. Elman. Learning and development in neural networks: The importance of starting small.
Cognition, 48(1):71–99, July 1993. ISSN 00100277. doi: 10.1016/0010-0277(93)90058-4.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot lan-
guage model evaluation, September 2021. URL https://doi.org/10.5281/zenodo.
5371628.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

D.L. Hintzman. Theoretical implications of the spacing effect. In Theories in Cognitive Psychology,
The Loyola Symposium, pp. 77–99. Lawrence Erlbaum Associates, 1974.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Pedro F. Jacob and Scott Waddell. Spaced training forms complementary long-term memories
of opposite valence in drosophila. Neuron, 106(6):977–991.e4, 2020. ISSN 0896-6273. doi:
https://doi.org/10.1016/j.neuron.2020.03.013. URL https://www.sciencedirect.com/
science/article/pii/S0896627320302208.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient
text classification. In Mirella Lapata, Phil Blunsom, and Alexander Koller (eds.), Proceedings of
the 15th Conference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, pp. 427–431, Valencia, Spain, April 2017. Association for Computational
Linguistics. URL https://aclanthology.org/E17-2068.

10

https://aclanthology.org/D17-1255
https://aclanthology.org/D17-1255
https://aclanthology.org/2023.sustainlp-1.9
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://www.sciencedirect.com/science/article/pii/S0896627320302208
https://www.sciencedirect.com/science/article/pii/S0896627320302208
https://aclanthology.org/E17-2068

Under review as a conference paper at ICLR 2024

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Jeffrey D. Karpicke and Henry L. Roediger. The critical importance of retrieval
for learning. Science, 319(5865):966–968, 2008. doi: 10.1126/science.1152408.
URL https://www.science.org/doi/abs/10.1126/science.1152408. eprint:
https://www.science.org/doi/pdf/10.1126/science.1152408.

Julia Kreutzer, David Vilar, and Artem Sokolov. Bandits don’t follow rules: Balancing multi-facet
machine translation with multi-armed bandits. In Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih (eds.), Findings of the Association for Computational Linguistics:
EMNLP 2021, pp. 3190–3204, Punta Cana, Dominican Republic, November 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.274. URL https://
aclanthology.org/2021.findings-emnlp.274.

David D Lewis. A sequential algorithm for training text classifiers: Corrigendum and additional
data. In Acm Sigir Forum, volume 29, pp. 13–19. ACM New York, NY, USA, 1995.

Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and ”Teknium”.
Openorca: An open dataset of gpt augmented flan reasoning traces. https://https://
huggingface.co/Open-Orca/OpenOrca, 2023.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V.
Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods
for effective instruction tuning, 2023.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
of catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023.

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.
When less is more: Investigating data pruning for pretraining llms at scale. arXiv preprint
arXiv:2309.04564, 2023.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. In ACL, 2022.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 27730–27744. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Siddharth Reddy, Igor Labutov, Siddhartha Banerjee, and Thorsten Joachims. Unbounded human
learning: Optimal scheduling for spaced repetition. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 1815–1824, 2016.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neu-
ral scaling laws: beating power law scaling via data pruning. Advances in Neural Information
Processing Systems, 35:19523–19536, 2022.

Herbert F Spitzer. Studies in retention. Journal of Educational Psychology, 30(9):641, 1939.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

11

https://www.science.org/doi/abs/10.1126/science.1152408
https://aclanthology.org/2021.findings-emnlp.274
https://aclanthology.org/2021.findings-emnlp.274
https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/OpenOrca
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

Under review as a conference paper at ICLR 2024

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Behzad Tabibian, Utkarsh Upadhyay, Abir De, Ali Zarezade, Bernhard Schölkopf, and Manuel
Gomez-Rodriguez. Enhancing human learning via spaced repetition optimization. Proceedings
of the National Academy of Sciences, 116(10):3988–3993, 2019. doi: 10.1073/pnas.1815156116.
URL https://www.pnas.org/doi/abs/10.1073/pnas.1815156116.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-
following model. Stanford Center for Research on Foundation Models. https://crfm. stanford.
edu/2023/03/13/alpaca. html, 3(6):7, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi
Chandu, David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi.
How far can camels go? exploring the state of instruction tuning on open resources, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Charlotte Wharton. Supermemo, 1994.

Piotr Wozniak and E Gorzelańczyk. Optimization of repetition spacing in the practice of learning.
Acta neurobiologiae experimentalis, 54:59–62, 02 1994.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023a.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. arXiv preprint arXiv:2304.01196, 2023b.

Chen Xu, Bojie Hu, Yufan Jiang, Kai Feng, Zeyang Wang, Shen Huang, Qi Ju, Tong Xiao, and
Jingbo Zhu. Dynamic curriculum learning for low-resource neural machine translation. arXiv
preprint arXiv:2011.14608, 2020.

Xuechen Yuan. Evidence of the spacing effect and influences on perceptions of learning and science
curricula. Cureus, 14(1):e21201, January 2022.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. arXiv preprint arXiv:2305.11206, 2023.

Jingbo Zhu, Huizhen Wang, Tianshun Yao, and Benjamin K Tsou. Active learning with sampling
by uncertainty and density for word sense disambiguation and text classification. In 22nd Inter-
national Conference on Computational Linguistics, Coling 2008, pp. 1137–1144, 2008.

12

https://www.pnas.org/doi/abs/10.1073/pnas.1815156116

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 SUPERMEMO ALGORITHM

Algorithm 2 SuperMemo SM2 Algorithm Wozniak & Gorzelańczyk (1994)
1: function SUPERMEMO(review, z)
2: review.repetitions← review.repetitions
3: if z ≥ 3 then
4: if review.success success repetitions = 0 then
5: review.interval← 1
6: else if review.success repetitions = 1 then
7: review.interval← 6
8: else
9: review.interval← review.interval × review.ease

10: end if
11: review.success repetitions← review.success repetitions+ 1
12: else
13: review.success repetitions← 0
14: review.interval← 1
15: end if
16: review.ease← review.ease+ 0.1− (5− z)× (0.08 + (5− z)× 0.02)
17: return review
18: end function

A.2 DROPPING MECHANISM

Algorithm 3 SST dropping Algorithm
1: function DROPEXAMPLES(Cnew, Due , zmin, zt)
2: for i, c in Enumerate(Cnew) do
3: si ← reviews[c].success repetitions
4: ri ← reviews[c].repetitions ▷ Dropping prorecess
5: if c /∈ reviews & zi > zmin then
6: Cnew ← Cnew − c ▷ Trivial example
7: continue
8: else if c ∈ reviews & (zi < zmin & ri > st)) then
9: Cnew ← Cnew − c ▷ Intractable examples

10: continue
11: else if c ∈ reviews & (zi > zmin & si > st)) then
12: Cnew ← Cnew − c ▷ Learned examples
13: continue
14: else if zi < zt then
15: Cnew ← Cnew − c, Due

← Due
+ c ▷ Currently difficult example

16: continue
17: end if
18: end for
19: return Cnew, Due

20: end function

A.3 IFT FOLLOWS A CURRICULUM

One of the main underlying ideas of our approach is that optimal IFT follows a curriculum. To
evaluate this hypothesis we compared the results of a LLAMA 2 7B trained using our method to
three variations:

◦ Variation 1: Select the hardest examples beyond the model competency at every training step.
◦ Variation 2: Like Variation 1 for the first half of the training, then uses SST for the second half.

13

Under review as a conference paper at ICLR 2024

◦ Variation 3: Similar to Variation 2, but uses random sampling in the second half of training.

Table 3: Effect of examples difficulty schedul-
ing on performance.

Method GSM8k MATH

Spaced Scheduling 36.7 5.9
Variation 1 27.2 3.1
Variation 2 32.6 3.9
Variation 3 31.8 3.3

Here, the models are tuned on Tulu V2-Medium
for a total of 5k training samples. We evaluate the
models on the GSM8k and MATH datasets since
they show this phenomenon better due to the low
zero-shot on these tasks. The results of this exper-
iment are shown in Table 3.

The results of Variation 1 show that the perfor-
mance drops drastically when selecting the most
difficult examples at each training step, showing that the difficulty order affects performance, sug-
gesting that there exists an optimal curriculum for IFT or LLM learning in general. This is different
from traditional Active Learning (Lewis, 1995; Zhu et al., 2008) work where the most difficult ex-
amples (e.g., examples with high entropy) as selected first. Our findings are similar to the one from
a recent study (Mukherjee et al., 2023), where they show that a LLaMa 13B model performs better
when it is trained on easy examples generated from ChatGPT followed by ones generated by GPT-4
that contain longer, more elaborate reasoning and CoT examples. Further, the results of variations
2 and 3 show that using a non-optimal schedule early in training can also be non-reversible acting
similar to a bad model initialization. Both random sampling and Spaced Scheduling were not able
to recover the performance. However, our approach reduces the performance gap better.

A.4 DATASET

We use the Tulu V2 dataset collection available in the authors’ code repository. At the moment of
releasing our work, the latest version of the Tulu V2 collection9 contains the following modifications
on top the initial version introduced by Wang et al. (2023):

◦ Adds Open-Orca (Lian et al., 2023): Augmented version of FLAN V2 (Longpre et al., 2023) 10.
◦ Adds Evolve-Instruct V2 (Xu et al., 2023a): An augmented version of Alpaca (Taori et al., 2023).
◦ Adds LIMA (Zhou et al., 2023): A collection of 1k highly curated examples from various sources.
◦ Down sampled FLAN V2 (Longpre et al., 2023) to 50k examples.
◦ Removes Alpaca Taori et al. (2023).
◦ Removes Dolly Conover et al. (2023).

A.5 BASELINES IMPLEMENTATION DETAILS

A.5.1 DATA DIET ALGORITHM

During our evaluation, we compared the performance of our algorithm against the Data Diet ap-
proached introduced by Attendu & Corbeil (2023). This method used the EL2N to compute an
importance value used to prune the data. The original implementation was introduced for the joint
intent classification and slot extraction. However, due to the generative nature of the tasks used in
work, we adapt this algorithm following Marion et al. (2023), in which the authors define EL2N
score for text sequences as the L2 norm of the error vector as follows:

EL2N(zi) =
1

t
Σt

i ∥ ŷt − yt ∥2 (3)

A.5.2 RBF ALGORITHM

We use the best-performing hyper-parameters when evaluating using the RbF algorithm as shown in
the original work Amiri et al. (2017). Precisely, we set the recall confidence value η = 0.5 and use
the Cosine scheduler. Further, we use a validation set that contains examples from all the datasets
which is used to estimate the model strength during training.

9https://github.com/allenai/open-instruct/commit/4a2e9dd0c1236f8cc0cdd15e5316e7c371a16624
10This dataset is the open implementation of Orca (Mukherjee et al., 2023)

14

Under review as a conference paper at ICLR 2024

Figure 1: An ambiguous training example from Baize dataset (Xu et al., 2023b), filtered by our
dropping mechanism. Note also that our base model was also not trained extensively on code.

A.6 COMPUTATION OVERHEAD

In this section, we provide the equations that describe the compute requirement of our proposed SST
algorithm. Using the equations below we can provide efficiency bounds for our method.

The compute Cr required to train a transformer-based model on a dataset D for a N epochs using
random sampling can be written as:

Cr ≈ N |D|Cs ≈ NCr0 (4)

Where Cs ≈ 3Cf is the compute required to train on a single example, and Cr0 is the compute
required for a single epoch. Cf is the compute required for a forward pass. Here, we are using
the approximation that Cb ≈ 2Cf , where Cb is the backward pass compute requirement, following
Kaplan et al. (2020).

Using SST, the compute requirement CSST can be written as:

CSST = CSST0
+ΣN−1

n=1 CSSTn
(5)

CSST0 = (ρ0Cr) + ((1− ρ0)|D|Ce + (1− d0)Cr0) (6)

CSSTn
= ((1− dn−1)|D|Ce) + (1− dn)Cr0) (7)

where CSST0
and CSSTn

are the compute requirements of the first epoch and the subsequent epochs,
respectively. For the first epoch, the compute requirement (first term) consists of the warm-up on
a subset of the dataset defined by ρ0, followed by an evaluation and train interaction (second term)
where Ce is the compute required to evaluate and score a single example and d0 is the ratio of
dropped example during the evaluation process. Here, the model is trained on the remaining exam-
ples 1− d0 with a cost equivalent to training using random sampling Cr0 . After the first epoch, the
evaluation is performed only on non-dropped examples of the previous epoch. Therefore, we can
write:

CSST = (ρ0Cr0)+((1−ρ0)|D|Ce+(1−d0)Cr0)+ΣN−1
n=1 ((1−dn−1)|D|Ce)+(1−dn)Cr0) (8)

Compared to random sampling, CSST contains an overhead induced by the evaluation process
Coverhead, and the compute saved by dropping examples Cdrop (skipping training). Using Equation
8, we summarize both quantities as follows:

Coverhead = (1− ρ0)|D|Ce + |D|CeΣ
N−1
n=1 (1− dn−1) (9)

Cdrop = d0Cr0 +ΣN−1
n=1 dnCr0 = Cr0Σ

N−1
n=0 dn = |D|CeΣ

N−1
n=0 dn (10)

In order for SST to avoid inducing any additional compute overhead when compared to random
sampling, Cdrop must be greater or equal to Coverhead. The latter depends on two quantities: (1)
Ce, the cost to evaluate and compute a single example’s score, and dn, the ratio of dropped examples
at each epoch. One way to study the relationship between Cdrop and Coverhead is to quantify Ce/Cs,

15

Under review as a conference paper at ICLR 2024

the ratio between the cost to evaluate and train a single example. This ratio can be written as follows
based on Equations 9 and 10:

Ce

Cs
≤ ΣN−1

n=0 dn

N − ρ0 − ΣN−2
n=0 dn

(11)

Using Equation 11, we can obtain an upper bound on the ratio Ce/Cr by using the best-case scenario
where SST drops all the examples (the case where a model is fully trained or over-fitted on the data),
that is dn = 1∀n. Using Equation 11, we find

Ce

Cs
≤ N

1− ρ0
(12)

16

	Introduction
	Related Work
	Spaced Scheduling Training
	Concepts
	Algorithm
	Computation Overhead
	Using SST With Other Modalities and Future Work

	Experimental Setup
	SST Implementation for LLM IFT
	Dataset
	Training and Evaluation
	Baselines

	Results
	Spaced Scheduling Training Performance
	Spaced Scheduling Reduces Catastrophic Forgetting

	Discussion, Conclusions, and Limitations
	Appendix
	SuperMemo Algorithm
	Dropping mechanism
	IFT follows a curriculum
	Dataset
	Baselines Implementation Details
	Data Diet Algorithm
	RbF Algorithm

	Computation overhead

