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ABSTRACT

Batch Reinforcement Learning algorithms aim at learning the best policy from a
batch of data without interacting with the environment. Within this setting, one
difficulty is to correctly assess the value of state-action pairs far from the data set.
Indeed, the lack of information may provoke an overestimation of the value func-
tion, leading to non-desirable behaviours. A compromise between enhancing the
performance of the behaviour policy and staying close to it must be found. To alle-
viate this issue, most existing approaches introduce a regularization term to favor
state-action pairs from the data set. In this paper, we refine this idea by estimating
the density of these state-action pairs to distinguish neighbourhoods. The result-
ing regularization guides the policy toward meaningful unseen regions, improving
the learning process. We hence introduce Density Conservative Q-Learning (D-
CQL), a sound batch RL algorithm that carefully penalizes the value function
based on the information collected in the state-action space. The performance of
our approach is outlined on many classical benchmark in batch RL.

1 INTRODUCTION

Transposing recent successes of Reinforcement Learning (RL) from domains such as recommen-
dation systems (Rojanavasu et al., 2005; Zheng et al., 2018), video games (Mnih et al., 2013), go
(Silver et al., 2017), to real-world systems is not possible without facing many challenges (Dulac-
Arnold et al., 2021). One of those being that in many real-world applications, direct access to the
system is limited or even forbidden. A learning controller may incorrectly assess the implications of
its actions and damage the system. Batch (or offline) Reinforcement Learning (Lange et al., 2012;
Levine et al., 2020) provides a framework to address those RL problems when no interaction with
the system is allowed. In place, the learner is given a data set collected under a (possibly unknown)
behavioural policy and has to derive the most efficient policy out of this data set.

One of the main issue in this setting is known as the value-function over-estimation problem (Fuji-
moto et al., 2019; Levine et al., 2020; Kumar et al., 2019a; Wu et al., 2019). When the data set covers
only a small subset of the state-action space, the agent typically wrongly extrapolates the value func-
tion related to out-of-distribution (OOD) pairs far from the data set. This incorrect value estimate is
then used as a target in the learning process, leading to highly increasing estimates which may lead
to a disastrous learned policy. This problem has been extensively studied in the traditional online
Reinforcement Learning setting (Sutton & Barto, 1998). However in this case, this issue is quite
naturally alleviated: when a value function becomes high whether because the region is promising
or because of an erroneous over-optimism, it will drive the agent to visit the related state-action
pair. Therefore, the agent will have the chance to directly check the consequences of such pairs and
its estimation can be corrected if needed. Incorporating uncertainty with Ensemble Learning (van
Hasselt, 2010; van Hasselt et al., 2016; Anschel et al., 2017) can also enhance learning.

In the offline case, since no inspection can be done to investigate the accuracy of the estimates,
those methods cannot be used, and hence classical deep off-policy methods may dramatically fail
(Fujimoto et al., 2019; Levine et al., 2020). Additional approaches must thus be investigated to
build robust and efficient agents. An important family of state-of-the-art algorithms addressing this
problem focus on constraining the learned policy to stay close to the data set either by minimizing
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its distance to the behavioural policy (Siegel et al., 2020a; Wu et al., 2019; Kumar et al., 2019b) or
by penalizing unseen state-action pairs (Luo et al., 2019; Kumar et al., 2020; Yu et al., 2021). In
particular, Kumar et al. (2020) propose to use a lower bound on the value function as a proxy during
the policy optimization process. This bound should be tight when state-action pairs are contained
in the data set and loosened otherwise. Following this direction, they proposed Conservative Q-
Learning (CQL) that introduces a penalization on the value functions associated to OOD actions.
Nevertheless, given the lack of information regarding the behavioural policy, their regularization
remains abrupt and might be problematic in practice. First, the resulting lower bound is loosened
with the recommended distributions. Second, their approach does not consider neighbourhoods of
actions and could therefore over-penalize interesting regions of the action space. This problem is
particularly relevant when the data set has been gathered with a behavioural policy with medium
performances: actions close to the data set distribution leading to better results are very likely to
appear in the optimization process and they must not be too heavily penalized.

In this paper, we tackle these problems by introducing a novel penalization based on an estimation
of the probability density function of the data set instead of the behavioural policy. Besides being
easier to learn than the behavioural policy, this density is able to provide information on which
regions are near the data set and thus safe to learn from, and which are the ones far from it and prone
to over-estimation errors. We show how to integrate this penalization to refine CQL, leading to our
proposed algorithm namely Density Conservative Q-Learning (D-CQL). On top of instigating those
relevant information, we show that this new regularization leads to a more appropriate lower bound
on the value function. We finally investigate empirically the relevance of our approach.

2 PRELIMINARIES AND MOTIVATIONS

2.1 NOTATIONS AND POLICY ITERATION

The agent-environment framework is modeled as a Markov Decision Process (MDP) (S,A, r, P, γ)
defined by a state space S, an action space A, a transition kernel P : S × A → ∆(S), a reward
function r : S × A → [Rmin, Rmax] and a discount factor γ ∈]0, 1[. A policy π : S → ∆(A)
is a decision rule mapping a state over a distribution of actions. The value of a policy is measured
through the value function V π(s) = EP [

∑
t=0 γ

tr(st, at) | s0 = s, at ∼ π(·|st)] and its associated
Q-value function Qπ(s, a) = EP [

∑
t=0 γ

tr(st, at) | s0 = s, a0 = a, at ∼ π(·|st) ∀t ≥ 1]. The
goal is to find the policy maximizing these value functions.

Let r, Q be matrices associated to all state-action pairs and Pπ be the transition matrix induced
by the policy π: Pπ(s, s′) = Ea∼π(·|s) [P (s′|s, a)]. Value functions can be learned by iterat-
ing the Bellman operator defined for the Q-function as BπQ = r + γPπQ where PπQ(s, a) =
Es′∼P (·|s,a),a′∼π(·|s) [Q(s′, a′)]. This operator is a γ-contraction (Puterman, 1994), hence having a
unique fixed point Qπ . Many algorithms rely on the Policy Iteration scheme (Lillicrap et al., 2016;
Fujimoto et al., 2018; Haarnoja et al., 2018), where the agent alternates between Policy Evaluation
(PE) with the computation of Qπ and Policy Improvement (PI) by maximizing the learned Q-values:

Qk+1 ← arg min
Q
Bπ

k

Qk −Q, (policy evaluation)

πk+1 ← arg max
π

Ea∼π
[
Qk+1(·, a)

]
. (policy improvement)

This iterative process converges towards the optimal policy (Sutton & Barto, 1998; Santos & Rust,
2004). Since no knowledge is assumed on the environment, these steps are commonly solved using
samples from a data set D = {(si, ai, ri)Ni=1}. The expectation under P (·|s, a) is now estimated
using samples and leads to the empirical Bellman operator B̂. Actions that belong to the data set
distribution given a state s are denoted as in-distribution (ID) and the ones far from it are out-of-
distribution (OOD). We slightly abuse notations and considerD is also the distribution on S×A×S
induced by the data set and propose:

Qk+1 ← arg min
Q

Es,a,s′∼D
[(
B̂π

k

Qk(s, a)−Q(s, a)
)2
]
, (approximate policy evaluation)

πk+1 ← arg max
π

Es∼D,a∼π(·|s)
[
Qk+1(s, a)

]
. (approximate policy improvement)
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The Q-values and the policy π are commonly estimated using Neural Networks that are trained
with gradient optimization methods. In the approximate policy evaluation step, an important aspect
is the expectation of actions from π(·|s′) in the bootstrapped target. This is where OOD actions
may appear: extrapolation errors emerge then are back-propagated to eventually lead to highly over-
optimistic estimates. Note that there are no OOD states in the Bellman update as the empirical
operator only depends on a seen state s′. They might appear in model-based algorithms (Yu et al.,
2021) but are, for now, out of the scope of model-free algorithms.

In this work, we focus on the batch setting where the agent cannot interact with the environment. A
fixed data set has been gathered with an unknown behavioural policy πβ . No knowledge is assumed
on πβ as the data set can come from different sources: optimal control, human or a mixture of
them (Fu et al., 2020; Gülçehre et al., 2020). A major challenge is to find a good trade-off between
staying close to the data set to avoid extrapolation errors and taking some liberty to overcome the
suboptimality of the behaviour policy.

2.2 CONSERVATIVE Q-LEARNING

CQL addresses the problem of Q-value overestimation exacerbated in batch RL (Fujimoto et al.,
2019; Levine et al., 2020), caused by the back-propagation of a possibly incorrect bootstrapped
target in the policy evaluation step. The error associated to the the target may be important when the
consequences of a given state-action pair are unknown, and could lead to too optimistic estimates.
In batch RL, the data set often describes a small subset of the state-action space thus OOD actions
are likely to appear. Besides, the agent may never get the chance to visit the state-action pairs related
to high (learned) Q-values and cannot correct its wrong estimations.

Kumar et al. (2020) propose to penalize the Q-values associated to actions not described by the data
set while keeping intact actions from the data set. This greatly stabilizes learning: the Q-estimates
no longer take drastically high values, and it implicitly drives the agent to favor state-action pairs
described in the data set. This penalization translates into minimizing the Q-values on an arbitrary
distribution µ (e.g. uniform) and maximizing them on πβ formally expressed as:

Q̂k+1 ← arg min
Q

αEs∼D
[(
Ea∼µ(·|s) [Q(s, a)]− Ea∼πβ(·|s) [Q(s, a)]

)]
+Es,a,s′∼D

[(
B̂πkQ̂k(s, a)−Q(s, a)

)2
]
.

(1)

Assuming no sampling errors and that suppµ ⊂ suppπβ , this update provides a lower-bound on
the expected Q-values on the distribution µ: Ea∼µ

[
QCQL(s, a)

]
≤ Ea∼µ [Qπ(s, a)] for all s ∈ S

with α > 0. When µ is the current policy π, the lower bound is in the value function, that is
V CQL(s) ≤ V π(s). This property may be desirable on applications where we must check if the
current value function is above a certain threshold such as Constrained Policy Optimization (Achiam
et al., 2017) and Conservative Exploration (Garcelon et al., 2020). However, for the common setting
where µ is a uniform distribution over the action space, the lower bound is loosened to a uniform
expectation, and the inequality in the value function no longer holds.

Another point of attention is the maximization term relying on the knowledge of the behavioural
policy in equation 1. In the general setting, it is out of reach as the data set may be gathered in
various ways. Kumar et al. (2020) propose to use the empirical data set distribution π̂β(a|s) =∑

s′,a′∈D 1[s′=s,a′=a]∑
s′∈D 1[s′=s]

, a sum of Dirac over the data set actions. Not only does this further breaks the

assumption suppµ ⊂ supp π̂β (as in practice suppπβ 6⊂ supp π̂β), it also might be problematic
on the penalization itself: the distance between the selected actions and the data set distribution is
no longer considered explicitly. Actions not appearing in the data set will be equally penalized no
matter their distance withD. Thus, the regularization drives the agent to stay close to the behavioural
policy. We believe having a smoother regularization that considers which neighbourhoods of the data
set are relevant is important to get the best agent as possible.

3 DENSITY CONSERVATIVE Q-LEARNING

In this section, we introduce Density-CQL (D-CQL), our algorithm circumventing these issues.
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3.1 A NEW WEIGHTING SCHEME ON THE OUT-OF-DISTRIBUTION ACTIONS

The penalization of CQL pushes the learned policy of the agent to stay very close to the behavioural
policy as it penalizes any action that does not belong to the data set and thereby prevents the agent
from investigating on potential relevant areas. This problem is of high interest, for example, when
the data set is gathered with a distinctly sub-optimal policy but more efficient actions exist in the
neighborhood of the sub-optimal ones. The chances of finding a better policy would be reduced as
any action that does not belong to the data set will be equally penalized. Nevertheless, in view of
the fixed nature of the batch setting and the high sensibility of the Bellman update, we should be
cautious with respect to which regions the agent should focus on.

Bearing these complications in mind, we propose to refine the original regularization by appropri-
ately weighting the actions according to how uncertain their consequences are given D. To do so,
we quantify the distance between the data set and the (sampled) penalized actions to soften the reg-
ularization. We propose a regularization based on the joined density of state-action pairs in the data
set, denoted ρβ : S ×A → R+. This density describes how likely a state-action pair belongs to the
data set and, by extension, how uncertain its associated Q-function is. Various techniques can be
used to learn such a distribution. In fact, the literature regarding density estimation is quite abundant
(Bishop, 2007; Uria et al., 2013; Kobyzev et al., 2020), even when dealing with high dimensional
inputs such as images (Winkler et al., 2019; Papamakarios et al., 2019). Our method can also benefit
from future developments in this area.

Using this density, we build a weighting scheme ζν(a|s)1 based on how uncertain the consequences
of an action a, given s, are w.r.t. D. It is integrated as follows:

Q̂k+1 ← arg min
Q

αEs∼D,a∼µ(·|s) [ζν(a|s)Q(s, a)] + Es,a,s′∼D
[(
B̂πkQk(s, a)−Q(s, a)

)2
]
.

(2)

The weighting scheme ζν(a|s) is able to control how much the Q-value of an action a chosen under
µ(·|s) should be penalized and therefore satisfies our goal. Note that CQL corresponds to a particular
version of D-CQL where ζν(a|s) = 1− δaD (a), where δaD denotes the Dirac over aD (the actions
associated to state s in the data set). The new regularization leads to a point-wise lower bound on
the Q-values that is tight on in-distribution (ID) actions with a well-chosen ζν . It thereby follows
the classic Q-Learning procedure for ID actions, while only penalizing the Q-values associated to
OOD actions depending on their distance with respect to the data set distribution, controlled by ζν .

Theorem 1 For any µ satisfying suppµ ⊂ suppπβ and assuming the absence of sampling errors,
the Q-values obtained by iterating equation 2 are

∀s ∈ D, a ∈ suppπβ(·|s), QD-CQL(s, a) = Qπ(s, a)− α
[
(I − γPπ)

−1 µ ζν
πβ

]
(a|s) , (3)

and α > 0 leads to a point-wise lower bound on the true Q-values that becomes tight whenever
ζν(a|s) = 0.

The proof of this theorem follows closely the one in (Kumar et al., 2020, Theorem 3.1), but we still
include it in Appendix A for completeness.

3.2 CHOICE OF THE WEIGHTING SCHEME

The weighting scheme should capture the uncertainty of an action a given a state s. With aD the
action present in the data set related to the state s, we propose the following indicator:

ζν(a|s) = max

(
ν , 1− ρβ(s, a)

ρβ(s, aD)

)
. (4)

1ζν is a weighting scheme, not a density. However, we abuse notations by taking a conditional notation of
ζ on the state s to highlight that it depends only on the action given a state.
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Notice that the weighting scheme contains a few tricks on top of the density information. First,
because the density may take high values in some areas, especially when dealing with narrow dis-
tributions, we normalize the weighting scheme by ρβ(s, aD). The state-action pair (s, aD) belongs
to the data set, so its associated density is able to scale the weighting scheme well. It also frees its
dependency on the state s. Second, considering the propensity of the Q-values to take extremely
high values rapidly, the weighting scheme must be below 1. Last but not least, making a too harsh
distinction between ID and OOD actions may result in an unstable learning, hence the introduction
of the hyper-parameter ν.

Hyper-parameter ν We need ν = 0 for the lower bound of Theorem 1 to be tight. Indeed, when
ν = 0, the Q-values of ID actions are not penalized as ζν = 0. It follows the intuition of penalizing
onlyQ-values associated to OOD actions. However, since OOD actions do not appear in the Bellman
loss term of Equation (2), the minimum of their Q-values is unbounded which eventually affects the
performances of the algorithm. By setting ν > 0, the regularization term will also include ID actions
and this minimization will be counterbalanced by the Bellman loss that tends to maximize their Q-
values. In other words, the lower ν, the greater the difference between OOD and ID Q-values to
balance the objective. In practice, it is common to have knowledge on the quality of the behavioural
policy and on the system, which can help setting the right ν. For instance, if we know that an expert
has gathered the data set, we will want to stay close to it and set ν close to 0. Otherwise, if we
know that the exploration has not been good and that there is no risk of harming the system, we can
choose a bigger ν to allow the controller to consider uncertain actions. In Appendix C.2, we conduct
a detailed analysis of the effects of the OOD penalization with varying ν.

4 PRACTICAL ALGORITHM

Following the ideas expressed in (Kumar et al., 2020, Appendix A), we add an entropic regular-
ization to Equation (2) that leads to the following update for Density Conservative Q-Learning (D-
CQL):

(5)
Q̂k+1 ← arg min

Q
αEs∼D

[
log
∑
a∈A

exp (ζν(a|s)Q(s, a))

]

+
1

2
Es,a,s′∼D

[(
BπkQ̂k(s, a)−Q(s, a)

)2
]
.

The log-sum-exp operator can be seen as a soft differential maximum operator. Equation (5)
only penalizes the highestQ-values weighted by ζν . This expression exacerbate D-CQL’s behaviour
described in Section 3.2 when ν is close to zero. Same conclusion holds, the lower ν, the greater
the difference between OOD and ID Q-values to balance the objective. In practice, this operator is
computed using Importance Sampling (IS) usingM action samples from both the current policy and
the uniform distribution U(A). We describe D-CQL in Algorithm 1.

Algorithm 1 D-CQL
Learn ρβ with behavioural cloning
Initialize Qθ and πΦ

for k ∈ (1, . . . ) do
Sample a batch B from D
For each state s ∈ B sample M actions from U(A), and M actions from πΦ(·|s)
Update Qθ with gradient descent on Equation 5 using Importance Sampling
Update πΦ with gradient ascent on Equation policy improvement

end for

5 RELATED WORKS

Learning a policy from a fixed data set has been of high interest in Reinforcement Learning. A
first way to address this problem is using Behavioural Cloning. When the data set is complete and
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comes from an expert policy, it may achieve great successes as shown in special cases of autonomous
driving (Pomerleau, 1988) and flying (Sammut et al., 1992). However, when the agent finds itself
in a situation not described by the data set, it may choose catastrophic actions and its performance
can quickly degrade (Codevilla et al., 2019). Imitation Learning (Hussein et al., 2017; Ho & Ermon,
2016) aims to counter this problematic but still requires an expert policy. In real-world applications,
the data set may come from sub-optimal policies and instead of reproducing the behavioural policy,
the goal of Batch RL is to extract a better one. Recently, many algorithms have been introduced, all
relying on making sure the learned policy stays close to the behavioural one, avoiding the presence
of Out-Of-Distribution (OOD) actions (Levine et al., 2020). It can take several forms.

Many recent algorithms cope with the distributional shift by directly avoiding the selection of OOD
actions by the policy, preventing the agent to learn from highly extrapolated values. BCQ (Fujimoto
et al., 2019) explicitly parametrize the policy to stay within a parametric ball around the behavioural
policy. Similarly, SPIBB (Laroche et al., 2019) restricts the support of the learned policy to remain
in the support of the behavioural policy. Other methods - such as BRAC (Kumar et al., 2019a) and
BEAR (Wu et al., 2019) - modify the RL objective with a measure of closeness between learned and
behavioural policy. AWR (Peng et al., 2019) or ABM (Siegel et al., 2020b) build a Trust Region
around the behavioural policy. Rather than a constraint between the policies, AlgaeDICE (Nachum
et al., 2019) and OptiDICE (Lee et al., 2021) focused on the state-action stationary distributions
which provided competitive results. While successful on a variety of tasks, they do not explicitly
counter the over-estimation problem that may prevent learning (Kostrikov et al., 2021). Another
line of work is to enhance the robustness of the agent while leaving the objective unchanged. REM
(Agarwal et al., 2020) chooses to not modify the objectives, but uses Ensemble Learning to build a
mixture of targets stabilizing the updates. In practice, it rarely competes with the above methods.

More related to our work is (Dadashi et al., 2021; Rezaeifar et al., 2021) where a clever pessimistic
bonus is introduced in the rewards acting as anti-exploration. It represents the distance of the se-
lected action with the one who would be selected by the behavioural policy. The authors showed
it acted similarly than a KL-penalty between the learned and behavioural policy, linking their work
with Wu et al. (2019) and Kumar et al. (2019a). However, playing with the rewards might lead to
a completely modified goal (Ng et al., 1999) and finding an appropriate reward modification might
be complicated (Harutyunyan et al., 2015). We argue that modifying the Q-values lead to a better
policy control as the whole objective is considered. In this line of search, Kostrikov et al. (2021) aug-
mented the Q-values with the entropy of the behavioural policy and constrained them with as Fisher
divergence term. In contrast, rather than modifying the RL objective with an explicit penalty on the
data set distance, we use the density as an uncertainty surrogate in the value function estimation.

Note our data set density estimation can be combined with most presented methods. Especially,
it could replace the ”anti-exploration” bonus or be introduced to improve the Behavioural Cloning
step in (Wu et al., 2019) required to build the measures of closeness between policies.

6 EXPERIMENTS

In this section, we evaluate D-CQL on various settings. Our algorithm was designed to take the most
of data sets collected with a distinctly sub-optimal policy, where the trade-off between staying close
to the behavioural policy and discovering better actions is culminating. An ablation study on ν and
on the density estimation technique used can be found in Appendix C.2.

6.1 DATA SETS

Our algorithm is first tested on four different data sets gathered on two classic control environments
with continuous actions: Pendulum and MountainCarContinuous (Moore, 1990). For each environ-
ment, two data sets were gathered with a bad and medium policy, where the policies have been
created by running a Soft-Actor-Critic agent (Haarnoja et al., 2018) and early-stopping the training.

Pendulum is an inverted pendulum swing up problem, where the reward is a smooth function con-
tained in [−16, 0]. The goal is to is to swing it up so it stays upright for 200 time-steps. The expert
policy induces an average return of −150, and the bad and medium policies respectively induce
an average return of −1000 and −700. The data set possesses 20 thousand transitions. Mountain-
CarContinuous is also a classic environment in Reinforcement Learning. A car must drive up a hill,
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but must first drive back and forth to be able to climb it. Unlike Pendulum, the reward is sporadic: it
takes the value of +100 when the goal is reached, and −energy else. The bad data set is composed
of 1 success out of 100 trajectories, and the medium data set 4 successes out of 50. We have found
both CQL and D-CQL easily solve this environment when the number of successes is higher. The
expert policy induces an average return of 95.

Finally, we test our agents on the medium data sets from D4RL which is closer to real-world
performances. To further match a realistic setting we only consider a reduce proportion, X%, of the
data sets. Indeed, huge data collection might not be that realistic in practice (e.g. low acquisition
frequency) and learning on such huge data sets can be problematic w.r.t. computation time.

6.2 EXPERIMENTAL PROTOCOL

Learning the density D-CQL relies on an accurate density estimation step. Though any tech-
nique can be used, we propose to use a highly expressive method: Normalizing Flows (Rezende
& Mohamed, 2015; Kobyzev et al., 2020). This choice was fueled with their successes on high
dimensional distributions (Papamakarios et al., 2019) and their elegance. Indeed, they are known
to generalize and scale well from complex distributions (Winkler et al., 2019) - including images
(Kobyzev et al., 2020) - while keeping a tractable learning. We optimize the model hyper-parameters
with a grid search where each data set was split into a train and a test set. The density estimator
was then trained on the whole data set using the best selected hyper-parameters. A comparison of
different density estimation algorithms used for D-CQL can be found in Appendix C.2.

Learning the agents We compare our agents with CQL2, a state-of-the-art method that also pe-
nalizes OOD actions in the approximate policy evaluation step. Experiments on the classic control
data sets have been done with a grid search on all the hyper-parameters, including experiments with
CQL. Considering the significant length of the experiments on D4RL, the hyper-parameter search
was done on 1 million (M) gradient steps. Additional details are reported in Appendix C.1.

Metric We compare the agents’ performances using the normalized average return (NAR):

normalized score = 100 ∗ score− random score
expert score− random score

However, it is common knowledge that these methods are unstable and a decrease in performance
during learning (Aviral Kumar, 2021; Kumar et al., 2021). We thus propose to evaluate the best
agents after 10M gradient steps. Thus, once the best hyper-parameters selected on 1M gradient
steps, we further continue the learning for 9M steps for the best agent. Regarding classic control
data sets, we observed that 100k updates were sufficient to draw a relevant comparison. We report
the overall best normalized average return, i.e. the best normalized average return considering all
epochs, and the best final normalized average return in Table 1 and Table 2.

6.3 RESULTS

Results on the classic control data sets are shown in Table 1. We observe our refined regularization
improve the agent’s performance on both the overall and final metrics on 3 out of 4 tasks. The agent
was able to take the most out of the neighbourhood of the data set and extract more efficient policies.
Notice the greater variance on the MountainCarContinuous environment, explained by the sparsity
of its reward function. In any case, D-CQL was able to better take advantage of the information
provided by the data set.

Regarding the more complex D4RL’s data sets, the results are reported in Table 2. Our agent was
able to beat CQL respectively 5 and 6 times out of 9 w.r.t. the overall and final metric. On average,
it D-CQL outperforms CQL by 3% and 7.5% on the overall and final metric.

Overall, both Table 1 and Table 2 illustrate the fact that D-CQL outperforms or is comparable with
CQL. Detailed plots can be found in Appendix C.3. Furthermore note the decrease of performance
for both methods w.r.t. gradient steps emphasized by the differences between the best and final

2The results for CQL have been generated with the code https://github.com/young-geng/CQL.
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Table 1: Normalized scores between CQL and D-CQL on the classic control data sets.

DATA SET METRIC (100K) CQL D-CQL IMPROVEMENT (%)
PENDULUM-BAD BEST OVERALL 64.2± 13.4 67.7± 11.9 5.4

BEST FINAL 50.1± 6.6 58.2± 15.6 16.1

PENDULUM-MEDIUM BEST OVERALL 81.3± 9.4 88± 6.7 8.3
BEST FINAL 74.7± 23.7 83.4± 9.5 11.7

MOUNTAINCARC-BAD BEST OVERALL 40± 17.7 59.5± 36.6 48.7
BEST FINAL 34.9± 38.3 47± 29.1 34.9

MOUNTAINCARC-MEDIUM BEST OVERALL 92± 0.9 92± 0.3 0
BEST FINAL 60.3± 23.4 59.4± 27.4 −1.5

TOTAL MEAN BEST OVERALL 15.6
BEST FINAL 15.3

Table 2: Normalized scores between CQL and D-CQL on the D4RL MuJoCo medium data sets.

DATA SET METRIC (10M) CQL D-CQL IMPROVEMENT (%)
HALFCHEETAH-MEDIUM 10% BEST OVERALL 14.7± 3.2 14.4± 3.8 −2

BEST FINAL 10.3± 4.7 12.6± 4.5 22.3
WALKER2D-MEDIUM 10% BEST OVERALL 48.4± 8.4 50.4± 3.5 4.1

BEST FINAL 44± 5.4 48.2± 6.7 9.5
HOPPER-MEDIUM 10% BEST OVERALL 81.5± 9.3 80.9± 7.7 −0.7

BEST FINAL 43.7± 9.3 37.2± 13.9 −14.9

HALFCHEETAH-MEDIUM 5% BEST OVERALL 15± 3.9 15.8± 3.5 5.3
BEST FINAL 9.4± 5.5 11.1± 4.1 18.1

WALKER2D-MEDIUM 5% BEST OVERALL 40.5± 6.6 37.4± 6.3 −7.7
BEST FINAL 33.5± 8.4 31.6± 6.4 −5.4

HOPPER-MEDIUM 5% BEST OVERALL 58± 13 67.1± 8 15.7
BEST FINAL 43.6± 14.9 48.7± 13.6 11.7

HALFCHEETAH-MEDIUM 1% BEST OVERALL 18.6± 3.2 17.6± 2.8 −5.4
BEST FINAL 11.6± 5.1 15± 4.6 29.3

WALKER2D-MEDIUM 1% BEST OVERALL 24.1± 14.1 26.7± 15.4 10.8
BEST FINAL 22.9± 16.5 20.2± 8.7 −11.8

HOPPER-MEDIUM 1% BEST OVERALL 64.1± 9.7 68.4± 9.1 6.7
BEST FINAL 63± 4.7 64.4± 7.9 3.6

TOTAL MEAN BEST OVERALL 3
BEST FINAL 7.5

performances. While out of the scope of this paper, it remains an open question in off-policy al-
gorithms (Aviral Kumar, 2021; Kumar et al., 2021). Last but not least, our experiments shown that
even though the methods might prevent the over-estimation of the Q-values, agents’ performances
have still non-negligible variances.

7 CONCLUSION

In this paper we propose to introduce the use of the data set density ρβ which provides insights
to guide the agent towards meaningful areas, inducing better performances in practice. This work
focused on model-free agents that do not consider OOD states. However, the density ρβ also yields
information on OOD states which can be integrated on model-based algorithms.

In addition, our experiments highlighted two other points of interests: the decreasing effect and the
relatively high variance of the batch agents. Despite some previous works aiming to cope with these
problems, a complete understanding of these phenomenons is lacking which is crucial before batch
RL can be applied on real-world systems.
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A LOWER BOUND DETAILS

In this section, we re-state our main theorem and prove it. An additional insight is provided to handle
the sampling errors.

Theorem 2 For any µ satisfying suppµ ⊂ suppπβ and assuming there are no sampling errors,
then the Q-values obtained by iterating equation 2 are

∀s ∈ D, a ∈ suppπβ(·|s), QD-CQL(s, a) = Qπ(s, a)− α
[
(I − γPπ)

−1 µ ζν
πβ

]
(a|s) . (6)

α > 0 leads to a point-wise lower bound on the trueQ-values that becomes tight whenever ζ(a|s) =
0.

Proof 1 This proof is done assuming the true Bellman operator B has been used instead of B̂.
Setting the integrande of the derivative of 2 leads to

Qk+1(s, a) = BπQk(s, a)− αµ(a|s) ζ(a|s)
πβ(a|s)

. (7)

The interest of ζ is clearly exposed in this equation: the learned Q-values will be highly conser-
vative when associated to OOD actions. On the other hand, when ζ(a|s) ≈ 0, the update leads
to an application of the classic Bellman operator and drive ID Q-values to stay close to their real
associated Q-value.

Let µ, πβ and ζ the matrices associated to {µ(a|s)}, {πβ(a|s)} and {ζ(a|s)} for all s ∈ D and
a ∈ suppπβ(·|s). The operator associated to this update: Tζ : Q → BπQk − αµ ζπβ defined for
any function Q on defined on states belonging to D and actions belonging to suppπβ(·|s) is a
γ-contraction. Its fixed point is

QD-CQL = Qπ − α
[
(I − γPπ)

−1 µ ζ

πβ

]
. (8)

Remark 1 The sampling error can be handled using concentration inequalities and would lead to
the following lower bound, that holds with probability 1− δ:

QD-CQL ≤ Qπ − α
[
(I − γPπ)

−1 µ ζ

πβ

]
+ (I − γPπ)

−1 Cr,P,δ

(1− γ)
√
|D)|

. (9)

We refer to Appendix C of Kumar et al. (2020) for additional details.

B NORMALIZING FLOWS

We now describe the used architecture to estimate ρβ based on Normalizing Flows. They are based
on the change of variable for a diffeomorphism f : X → Y and two densities defined on X and Y

ρX(x) = ρY (f(x)) det (Jac f(x)) . (10)

We then learn a diffeomorphism f that maps the unknown distribution on X to a known distribu-
tion on Y , for example a multivariate normal distribution so that the factor ρY f(X) is efficiently
calculable.

In our case, let x = (s, a) and y its associated sample belonging to the Y distribution and let D
their dimension. Let’s assume there is only one differential mapping y = f(x), and let d < D. We
follow the architecture from RealNVP (Dinh et al., 2017) where f maps x to y as follows:
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y1:d = x1:d ,

yd+1:D = xd+1:D � exp (s(x1:d)) + t(x1:d) , (11)

where s and t are functions defined in Rd → Rm−d and � is the Hadamard product. This
transformation results in a simple formula for the Jacobian determinant: |det (Jac f) (x)| =

exp
(∑

j s(x1:d)j

)
.

This mapping is then repeated N times where each input is randomly permuted before applying
equation 11 to ensure each dimension is rightfully processed.

In all datasets, s and t are parametrized by a Neural Network with 1 layer. The number of mappings
N as well as the number of units in each layer were selected thanks to grid search on respectively
(5, 10, 20) and (64, 128, 256). Y was chosen as a Multivariate Normal distribution N (0, I).

C D-CQL EXPERIMENTS

For reproducible purposes, we now present additional details regarding the experiments. CQL’s code
was extracted from https://github.com/young-geng/CQL. On all plots, the abscissa
represents the number of epochs and the ordinate the cumulative average return over 5 seeds. For
the experiments on the classic control data sets, one epoch represents 100 gradient updates and 1000
updates for the ones on the D4RL data sets.

C.1 HYPER-PARAMETERS

We first present all the hyper-parameters used in the experiments. For the experiments on the data
sets of D4RL, most of the hyper-parameters - learning rate, size of the networks, optimizer, . . . -
were unchanged to have a proper comparison with CQL. For the experiments on the classic control
environments, the size of the hidden layers of the neural networks were minimized to 64 with the
same number of layers.

The main hyper-parameters of the algorithms are α and ν, on which we performed a grid search
for each experiment. This grid search was done on (1, 5, 10) for α and on (0.0, 0.1, 0.9, 1.0)
for ν. As mentioned in Section 6, the grid search for the classic control environments (Pendulum
and MountainCarContinuous) was done on the complete experiments, that is on the 100K gradient
updates. Regarding the experiments on the D4RL MuJoCo data sets, the grid search was performed
on only 1M gradient updates. The best hyper-parameters were then chosen and we continued this
experiment on 10M updates.

C.2 ABLATION STUDY

Study on ν First, we present an ablation study on the hyper-parameter ν on the classic control
environments. For all environments, we set α to 5 and launched experiments with a varying ν.
Considering the length of the experiments on the D4RL data sets, we performed the ablation study
on hopper-medium (1% and 5%) and on walker2d-medium (1% and 5%).

(a) pendulum-bad (b) pendulum-medium (c) mountaincarc-bad (d) mountaincarc-medium

Figure 1: Performances of the algorithm w.r.t. to the hyper-parameter ν of the weighting scheme on
the classic control data sets.
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(a) hopper-medium-1% (b) hopper-medium-5% (c) walker2d-medium-1% (d) walker2d-medium-5%

Figure 2: Performances of the algorithm w.r.t. to the hyper-parameter ν of the weighting scheme for
D4RL data sets.

The impact on the hyper-parameter ν varies according to the environment. Nevertheless, we ob-
serve the intuitive choice ν = 0 often never produce the best results which were generated with
a higher ν. We attribute this effect to the unbounded minimization of the Q-values towards mi-
nus infinity discussed in Section 3.2. This can be notably seen on pendulum-medium and
hopper-medium-1%, where the best ν is 0.9. This high number has to be put in perspective
as ζν has been introduced as a multiplicative factor and is inside the soft differential maximum
operator, both of which increase the importance of our weighting factor.

We also observe that having a distinction between ID and OOD actions in the penalization may
not be useful in some environments. For instance, data sets from the walker2d environment do
not need to make such distinction as illustrated by the results of ν = 1. Forcing the Q-values to
have a reasonable scale during learning seems to be enough for the Bellman update to work on this
environment.

Study on the density estimation technique used We continue the ablation study by testing the
robustness on the density estimation technique used. We compare the Normalizing Flows RealNVP
with two other methods: the auto-regressive algorithm RNADE (Uria et al., 2013) and a Mixture of
Gaussians (MOG). To make fair comparisons, RNADE and MOG densities have also been created
with a grid search on their hyper-parameters, that is on the number of their components, the number
and size of the layers of the Neural Network(s) used. We performed the study on data sets from
the Pendulum environment, where we can see our algorithm is robust with respect to the density
estimation technique used. It remains to be confirmed on higher dimensional environments.

(a) pendulum-bad (b) pendulum-medium

Figure 3: Performances of the algorithm w.r.t. to the density estimation technique used.

C.3 COMPARISON WITH CQL

We finally provide the plots for Table 1 and Table 2. The hyper-parameters of the experiments are
the one chosen from the final normalized average return metric.
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(a) pendulum-bad (b) pendulum-medium (c) mountaincarc-bad (d) mountaincarc-medium

Figure 4: Performances of the algorithm compared to CQL on classic control data sets.

(a) hopper-medium-1% (b) hopper-medium-5% (c) hopper-medium-10%

(d) walker2d-medium-1% (e) walker2d-medium-5% (f) walker2d-medium-10%

(g) halfcheetah-medium-1% (h) halfcheetah-medium-5% (i) halfcheetah-medium-10%

Figure 5: Performances of the algorithm compared to CQL on D4RL data sets.
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