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Figure 1. A comparison of three methods: DSG, a diffusion-based co-speech gesture generation method using DDPM (stiff limbs, slow
inference, physically unnatural); EMAGE, an autoregressive generation method using VAE (motion artifacts, global flipping, physically
unnatural); and our proposed generation method (rich movements, lively fingers, physically natural). The transition from past frames to
the current frame (every 10 frames) is represented by the gradient in virtual human color, from light to dark.

Abstract

Animating virtual characters with holistic co-speech
gestures is a challenging but critical task. Previous sys-
tems have primarily focused on the weak correlation be-
tween audio and gestures, leading to physically unnatural
outcomes that degrade the user experience. To address this
problem, we introduce HoleGest, a novel neural network
framework based on decoupled diffusion and motion pri-
ors for the automatic generation of high-quality, expressive
co-speech gestures. Our system leverages large-scale hu-
man motion datasets to learn a robust prior with low au-
dio dependency and high motion reliance, enabling stable
global motion and detailed finger movements. To improve
the generation efficiency of diffusion-based models, we in-
tegrate implicit joint constraints with explicit geometric and
conditional constraints, capturing complex motion distribu-
tions between large strides. This integration significantly
enhances generation speed while maintaining high-quality
motion. Furthermore, we design a shared embedding space

for gesture-transcription text alignment, enabling the gen-
eration of semantically correct gesture actions. Extensive
experiments and user feedback demonstrate the effective-
ness and potential applications of our model, with our
method achieving a level of realism close to the ground
truth, providing an immersive user experience.

1. Introduction

Animating virtual characters with holistic co-speech ges-
tures is a challenging but critical task in various fields such
as entertainment, education, and telecommunication. These
gestures play a vital role in enhancing the naturalness and
appeal of virtual characters, as they convey non-verbal in-
formation and improve the overall communication experi-
ence. However, generating holistic co-speech gestures that
accurately represent the complex interplay between audio
and body motion remains a challenging task, primarily due
to the weak correlation between audio and both global mo-



tion trajectory and finger movements. This weak correlation
often leads to physically unnatural outcomes, such as jitter-
ing in the global motion trajectory and poor expressiveness
of finger motions, significantly reducing the effect of virtual
characters.

Previous co-speech gesture generation methods can be
divided into two categories: VAE-based or VQ-VAE-based
generation systems [18, 20] and diffusion-based genera-
tion systems [34, 42]. The former maps weakly corre-
lated gesture-audio pairs to a low-dimensional latent space
and learns a continuous probability distribution, from which
new latent vectors are sampled and decoded to obtain co-
speech gestures. However, due to the VAE’s reconstruc-
tion loss [16] based on joint-level errors and the ambigu-
ity in the latent space, the generated gestures often appear
overly smooth or unnatural. In contrast, diffusion-based
methods model gesture generation as a gradual diffusion
process, where the mapping relationship between audio and
gestures is gradually established through a series of noise
diffusion steps. Compared to VAE, this method can gen-
erate gesture sequences with rich details while maintaining
audio synchrony. However, the high computational density
and the resulting time cost limit the further development of
diffusion methods. Furthermore, both approaches lack con-
sideration of prior knowledge in motion, focusing only on
the weakly correlated mapping between audio and upper-
body gestures, and neglecting the physical laws of over-
all movement, such as continuity, stability, and rationality.
Therefore, the generated holistic gestures may exhibit un-
natural sliding, hovering phenomena, and monotonous fin-
ger movement, leading to a lack of overall naturalness and
expressiveness, as shown in Figure 1.

To address these challenges, we introduce HoloGest,
a novel diffusion-based framework for automatically syn-
thesizing high-fidelity holistic co-speech gesture sequences
from audio. Our system posits that in holistic co-speech
gestures, limb movements are correlated with audio, global
trajectories are related to limbs and independent of audio,
and fingers are associated with both arm movements and au-
dio information. Based on this, we learn a global trajectory
diffusion generative prior model guided by limb movements
on a large-scale human motion dataset. Simultaneously, we
learn a finger diffusion generative prior model guided by the
arms on a mixed sign language and gesture dataset, leav-
ing audio and semantic features blank for subsequent fine-
tuning. The former provides our system with strong loco-
motion prior, overcoming long-standing issues of unnatu-
ral sliding and jittering, while the latter offers more diverse
finger movements, assisting in generating more vivid and
high-fidelity gesture results.

Unlike previous methods that model the denoising pro-
cess of the whole body as a single distribution, our sys-
tem decouples the upper limbs, lower body, and fingers

into three smaller and simpler subproblems, breaking down
holistic co-speech gestures. During the denoising process,
each sub-model focuses more on the distribution of spe-
cific body parts, thereby improving the generation quality
of each part. However, the parallel diffusion denoising pro-
cesses for the three parts further reduce the generation ef-
ficiency. To break free from this constraint, we employ a
semi-implicit constraint [31], modeling large-stride com-
plex multimodal distributions between adjacent denoising
steps to significantly reduce the required number of denois-
ing steps, thus achieving acceleration.

Predicting gestures from speech is a challenging mul-
timodal mapping task. A single speech segment can cor-
respond to multiple gestures, making the association be-
tween the semantics intended to be conveyed in speech and
gestures non-intuitive. Our system adopts the JEPA strat-
egy [6, 10] to learn a gesture-speech joint embedding space.
We first introduce wav2vec2 [5] for text transcription, then
extract textual features and map them with gestures to a
shared low-dimensional space based on a variational au-
toencoder. Finally, we introduce a predictor layer to fur-
ther extract semantic features, aligning these abstract se-
mantic features with the low-dimensional latent variables
of gestures in this space. This approach maintains semantic
alignment while generating natural gestures closely related
to speech.

To demonstrate the inspirational value of motion priors
in our system for the human motion generation domain,
we further fine-tune our framework on the music-to-dance
task, addressing the physical naturalness of generated re-
sults and showcasing its powerful generalization capabili-
ties. To the best of our knowledge, our system represents
the first audio-whole body gesture generation model con-
sidering motion priors, capable of generating high-fidelity,
diverse, and physically natural holistic co-speech gesture
sequences based on arbitrary user-provided audio (speech
or music). We showcase our approach on multiple pub-
licly available audio-motion datasets, and extensive experi-
mental results indicate that, compared to VAE systems, our
method generates more diverse and higher-quality results,
while maintaining the naturalness of overall motion com-
pared to diffusion systems, significantly reducing time costs
and providing users with a novel experience. The impor-
tance of algorithmic design is also validated through abla-
tion experiments.

2. Related Work
Audio-to-motion Generation. Initial data-driven meth-
ods ( [12, 20]) aimed to learn gesture matching from hu-
man demonstrations but lacked diversity. Subsequent works
( [12, 30, 35]) improved model diversity and introduced
unique, expressive gestures. Some studies ( [1, 3, 32])
trained unified models for multiple speakers, embedding



styles or applying style transfer techniques. Other re-
search ( [13, 41]) utilized motion matching for gesture se-
quences, despite requiring complex rules. Audio-driven an-
imation has gained attention, with virtual speaker animation
advancements attributed to high-quality gesture datasets
ZeroEGGs [11] and BEATX [19]. Talkshow [35] and
EMAGE [19] improved user experience by incorporating
facial and expression parameters in virtual speaker genera-
tion. However, these methods face unnatural holistic ges-
ture issues, and models lacking human motion knowledge
struggle with physical problems like jittering, foot slid-
ing, and floating, hindering the field’s development. Some
works are limited to the human upper body. HoloGest in-
novatively introduces a motion prior model to address these
physical unnatural problems in gesture generation, provid-
ing a more engaging user experience.
Diffusion Generative Models have achieved remarkable
results across various domains [8, 24, 25], especially in hu-
man motion generation. Motion Diffuse [40] first applied
diffusion models to text-conditioned human motion genera-
tion, offering fine-grained control of body parts. MDM [27]
is a milestone work using a motion diffusion model to ma-
nipulate motion representation based on input text control
conditions. DSG [33] generates well-matched results with
speech using an attention mechanism. However, due to the
high dimensionality and interactivity of diffusion models,
motion generation based on the original diffusion model
DDPM [14] suffers from time overhead. MLD [8] intro-
duces latent diffusion to motion generation, reducing com-
putational resources and employing DDIM [26] to enhance
inference speed. Nevertheless, this two-stage method is
non-end-to-end, and DDIM’s noise step stacking and de-
noising step discarding result in artifacts. HoloGest ad-
dresses these issues by being the first method in gesture gen-
eration to use GAN [29] for accelerating diffusion model
inference speed. By increasing denoising step size and re-
ducing denoising steps, it maintains high-quality diffusion
model advantages while enabling rapid generation.

3. Method

3.1. System Overview

Our system synthesizes vivid, physically natural, and holis-
tic co-speech gestures using only audio input. It is built on
the human motion diffusion model (MDM) framework, em-
ploying the Diffusion Model to model adjacent denoising
step distributions and supervising human geometric con-
straints for motion quality. The system structure, shown
in Figure 2, comprises two core components: (a) an end-
to-end decoupled diffusion generative model that accepts
audio input and denoises human joint sequences in paral-
lel, and (b) a motion prior optimizer pre-trained on a large-
scale human dataset, re-optimizing global motion and fin-

ger actions based on generated joint cues for natural and
vivid virtual speakers. We also transcribe text and utilize
the JEPA [4] strategy to extract semantic cues, enhancing
result richness. To address DDPM denoising inefficiency, a
semi-implicit denoising process is introduced for faster gen-
eration. In subsequent sections, we detail the system’s key
components.

3.2. Decoupled Diffusion Denoiser

Brief overview of MDM. Unlike traditional diffusion
model-based methods, MDM [27] considers the inherent
physical constraints of the three-dimensional human body
by predicting the original human motion representation in-
stead of predicting noise, deviating from the DDPM process
in conventional image generation. Therefore, at each step of
the denoising process, MDM reconstructs the original rep-
resentation from pure Gaussian noise, and ultimately gen-
erate the final result through the iterative process of noise
addition and denoising:

x̂0 = ϵθt (xt|c) , xt−1 =
1− αt−1 +

√
αt−1x̂0

1− αtx̂0
+σtzt, (1)

where c is the control signal.
Decoupled Denoiser Structure. We construct our denoiser
framework on MDM, tailoring it for the audio-to-gesture
task with conditions including noise step , seed pose, audio
information, and semantic latent code. The noise step and
seed pose are projected to the same dimension via MLP and
linear layers, respectively, and subsequently added together.
Audio is encoded using WavLM and time-dimension inter-
polated to align with gesture frames.

Although the denoising probability model generates sat-
isfactory gestures, finger motion differs from limb motion.
Limb movements exhibit larger amplitudes and correlate
with melody, while finger movements are smaller, more pre-
cise, and semantically matched. Holistic modeling priori-
tizes body data matching over finger movements, reducing
overall gesture expressiveness.

To address this, we decouple the human body into up-
per limbs, lower limbs, and fingers, denoising these parts in
parallel. However, the absence of global associations can
result in unnatural motion, such as sudden orientation flips.
To alleviate this, we concatenate the three-part features and
map them to an independent conditional token, providing a
global constraint for generating coherent results.

3.3. Semi-implicit Matching Constraint

We’ve improved the network structure for better results, but
DDPM’s high computational complexity still limits diffu-
sion generative methods’ potential. This issue arises from
DDPM’s assumption that small, unimodal noise is added at
each step, requiring many steps for denoising. Increasing
noise step size disrupts the Gaussian distribution, making
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Figure 2. Our system comprises a semantic alignment module and two core components: (a) The semantic alignment module maps both
the transcribed text and gesture sequence into the latent space simultaneously, further abstracting the semantic latent variables and aligning
them with the gesture latent variables in a higher-level abstract space, serving as independent guiding tokens. (b) The semi-implicit
decoupled denoiser, by introducing GAN and semi-implicit constraints, models the complex denoising distribution between adjacent large
strides, accelerating generation by reducing the number of steps. (c) The motion prior optimization takes the denoised initial local gesture
sequence as a condition, and in conjunction with the audio guiding signal, generates global motion and finger actions for the second time.
This system requires no additional input and has no time constraints; any pure audio file can generate a set of vivid, natural, and high-
quality holistic co-speech gesture sequences. ’r2l’ represents converting the rotation representation to the coordinate representation using
the SMPL model.

a simple L2 loss inadequate for modeling complex motion
distribution and causing unnatural jittering.

To address this, we incorporate a GAN structure inspired
by SiDDMs [31] as an implicit objective to learn the de-
noiser. The GAN’s conditional discriminator differentiates
between the predicted denoising and original motion distri-
butions, while the conditional denoiser aims to make them
indistinguishable. The process is described by equation (2).

min
θ

max
Dadv

∑
t>0

Eq(xt)Dadv(q(xt−1|xt)||pθ(xt−1|xt)), (2)

By examining the implementation of equation (2), it is clear
that, during the adversarial stage, the method indirectly
matches the conditional distribution by aligning with the
joint distribution:

min
θ

max
Dadv

Eq(x0)q(xt−1|x0)q(xt|xt−1)Dadv(q(xt−1, xt)||

pθ(xt−1, xt)),
(3)

However, adversarial training is a purely implicit match-
ing process, typically used to constrain distributions that
cannot be explicitly represented. We consider using a sim-
pler marginal distribution to replace the joint distribution in
equation (3). That is, we directly compute the posterior dis-
tribution, and then use the forward process for adversarial
learning to model the large-step denoising distribution. The
equation is represented as follows:

min
θ

max
D∅

Eq(x0)q(xt−1|x0)q(xt|xt−1)[−log(D∅(xt−1, c, t))]

+[−log(1−D∅(x̂t−1, c, t))],
(4)

Although we have simplified the implicit matching pro-
cess, making adversarial training more stable, we have also
encountered a new problem. Since the large-step denoising
distribution is typically a complex multimodal distribution,
the posterior sampling pθ( ˆxt−1|xt, x̂0) result still has a sig-
nificant difference from the forward sampling process, pre-
venting our denoiser from successfully reversing from the



pure noise distribution to the original distribution. Based
on this, we employ the regularization term, Auxiliary For-
ward Diffusion Constraint (AFD), to explicitly constrain the
similarity between the backward sampling results and for-
ward diffusion results at the same time step. Its expression
is as follows:

Eq(x0)q(xt−1|x0)q(xt|xt−1)
(1− βt)||x̂t−1 − xt−1||2

βt
, (5)

where
√
1− βtxt−1 represents the mean of the forward pro-

cess q(xt|xt−1), and βt represents the variance table within
the interval (0,1]. All models are trained using the AdamW
optimizer with a fixed learning rate l. We apply EMA de-
cay to the optimizer during the training process. The final
training objective is:

min
θ

max
Dadv

Eq(x0)q(xt−1|x0)q(xt|xt−1)[−log(D∅(xt−1, c, t))]

+[−log(1−D∅(x̂t−1, c, t))] + λreconLRecon

+λAFD
(1− βt)||x̂t−1 − xt−1||2

βt
,

(6)
where λrecon represents the reconstruction weight of the de-
noiser, and λAFD represents the weight of the regulariza-
tion term. LRecon represents the Mean Squared Error Loss
between the denoised x̂0 and the original data x0.

3.4. Motion Prior Optimizer

Despite the semi-implicit decoupled denoiser’s ability to re-
cover detailed and expressive gesture sequences, the corre-
lation between audio and motion remains weak. This results
in issues like foot sliding, jittering, and unnatural move-
ments in previous methods. We believe the problem stems
from the fact that not all aspects of co-speech gestures de-
pend on audio. For instance, trajectories may not be related
to audio beats but are closely connected to limb movements.
To address these issues, we designed a motion prior opti-
mizer.
Trajectory Prior Optimizer. In our system, the trajec-
tory is more closely linked to limb posture than to audio.
Therefore, we use limb posture as the guiding condition
to recreate the global motion trajectory. Thanks to large-
scale public human motion datasets, our model can ac-
quire extensive motion prior knowledge. Taking a cue from
GLAMR [38], we define the trajectory as a 9-dimensional
parameter G = (∆x,∆y,∆z, rot6d ∈ R6), where the
last six dimensions represent global rotation and the first
three dimensions represent displacement increments along
the XY Z axes, ensuring smoother results.

The trajectory prior model continues to use the semi-
implicit diffusion approach, with the 3D coordinates of
the 21 human joint parts (excluding the root joint) and
the time step t as conditional guidance. These are inde-
pendently mapped to conditional tokens and input into the

Transformer-Encoder-based denoiser. The denoising pro-
cess follows equation (6).
Finger Prior Optimizer. We’ve observed that finger move-
ments guided solely by audio or semantic signals often lack
dynamism and expressiveness. We believe finger move-
ments correlate with forearm movements, such as a person
pointing in a certain direction when raising their arm for-
ward. Hence, we train finger priors on large-scale sign lan-
guage and gesture datasets. During finger prior training, the
guiding condition only uses the 6D rotation representation
of the human forearm, leaving semantic and audio features
empty for subsequent fine-tuning. The finger results are de-
noised using equation (3).

When fine-tuning on the BEATX dataset, we incorporate
the audio signal into the finger prior’s conditional guidance
and link the entire system together for fine-tuning. During
inference, the motion prior model serves as an optimizer,
using the body generated by the semi-implicit decoupled
denoiser as a condition, and generates the global trajectory
and finger rotations as the final output.

3.5. Semantic Alignment

The existence of many-to-many mapping relationships be-
tween audio content and gesture sequences poses a signif-
icant challenge for generating semantically aligned actions
accurately. To address this issue, we learn a joint embed-
ding space for gestures and audio transcriptions, allowing
them to align in an abstract space and reveal the seman-
tic associations between the two modalities. Inspired by
I-JEPA [4], we initially train gesture and transcription en-
coders separately using a motion VAE structure and a BERT
tokenizer [9]. We parameterize the transcriptions as tok-
enized word embedding sequences and linearly map them to
a space with the same dimensions as the gesture latent codes
xm. Finally, we introduce a Predictor to further abstract se-
mantic features yt from the latent space and fine-tune the
encoders using CLIP-style contrastive learning D(xm, yt).
Both the motion VAE and Predictor structures adopt the tra-
ditional Transformer architecture. The NT-Xent [7] loss
is used in contrastive learning, with the goal of maximiz-
ing the similarity of transcription-gesture matched pairs in
the latent space while minimizing the similarity of non-
matched pairs. Formally, the loss function is as follows:

L(t,m) = −log
exp(sim(xt, ym)/τ)∑

k∈K exp(sim(xt, ym)/τ)
, (7)

where, xt and ym are the latent space representations of a
matching transcription-gesture pair. sim is similarity score
between two latent codes, K is a set containing one positive
sample transcription and a group of negative sample ges-
tures, and τ is the temperature parameter used to adjust the
sensitivity of the function. Finally, we freeze the trained se-
mantic alignment module and deploy only the transcription



encoder into the system, ensuring that the final generated
results accurately capture the semantic content.

4. Experiments
In this section, we evaluate the effectiveness of the proposed
system in generating holistic co-speech gestures from audio
and compare it with contemporary holistic gesture genera-
tion methods to demonstrate the superiority of our system.
Ablation studies further validate the roles of essential mod-
ules and design choices within the system. Generalization
experiments showcase the potential value and application
prospects of our proposed method in this domain. Consid-
ering the subtle nature of human gestures for evaluation, we
conduct extensive user studies to substantiate the superior
performance of the proposed system. We strongly encour-
age readers to refer to the accompanying video for addi-
tional qualitative evaluations and application results.

4.1. Experiment Design

Datasets. For the audio-independent global trajectory mo-
tion prior module, we train on the 100-STYLE [23] and
AMASS [22] datasets. Both are large-scale publicly avail-
able Mocap datasets, with the former containing over 4 mil-
lion frames of 100 different locomotion styles, and the lat-
ter being a large-scale human motion dataset, both repre-
sented with 55 joints in SMPLX [21] format. The trajectory
prior is trained using all datasets. For the finger prior mod-
ule associated with arm movements, we train on the Sig-
nAvatars [37] sign language dataset and the audio-removed
BEATX [19] dataset. The former contains SMPLX repre-
sentations of multiple sign language videos shared with us
by the authors, and the latter is a publicly available large-
scale gesture dataset, uniformly represented in SMPLX for-
mat, containing 24 English speakers. When training the fin-
ger prior, we mix all speaker data and sign language data
for training. Finally, we train the audio-to-gesture model on
the BEATX dataset, and during the fine-tuning of fingers,
we release the audio features and semantic alignment as ad-
ditional guiding signals to generate natural and rich finger
movements. We evaluate the model’s effectiveness on the
BEATX test set.
Evaluation Metrics. To evaluate the effectiveness of our
proposed system, in addition to focusing on the com-
mon Frechet Gesture Distance (FGD) [36], Beat Alignment
(BA) [19], and Diversity (DIV) [18] metrics, we also in-
troduce physical naturalness evaluation metrics, including
Skating (Skate) [15] and Floating (Float) [39], and define a
Semantic Alignment score (SA) to validate the performance
of the semantic alignment module. The first three are used
to evaluate the quality of generated gestures: (1) FGD is a
common metric in generative models, used to evaluate the
difference between the distribution of generated movements
and the original training distribution, providing insights into

the fidelity and similarity between generated data and real
data. (2) BA is used to evaluate the synchronicity of speech
and movement, with higher values indicating better align-
ment with the audio beat. (3) DIV measures the L1 distance
between multiple body gestures generated under the same
control signal, with larger values indicating greater diver-
sity.

To evaluate the physicality of holistic co-speech ges-
tures, we use (4) Skate to quantify the displacement distance
of the virtual character’s toes when their feet are in contact
with the ground (determined by setting a toe acceleration
threshold). This is crucial for the naturalness and authentic-
ity of overall motion, as realistic motion results can provide
users with an immersive experience. (5) Float is used to as-
sess the floating distance of the virtual character along the
y-axis. We assume the ground level to be the lowest point
of the sequence plus 0.5 cm, and when the character has at
least one foot in contact with the ground, we calculate the
distance between the toes and the ground to quantify the
degree of floating.

To evaluate the semantic consistency between speech
and generated gestures, we define a new metric called Se-
mantic Alignment (SA) [3]. It assesses the degree of se-
mantic alignment by calculating the similarity between the
latent gesture representation in the low-dimensional space
and the real text representation in the abstract space. The
calculation formula is as follows:

SA = cos(avg pool(Vg(Gpred)), avg pool(Vs(S))), (8)

where G represents the gestures generated by the model,
and S denotes the hidden states encoded by the BERT [9]
model after tokenizing the transcribed text, serving as a rep-
resentation of the semantics.
Implementation Details. Our system was trained on Py-
Torch with a denoiser learning rate of 3e-5 and a discrimi-
nator learning rate of 1.25e-4. The discriminator’s gradient
penalty term was set to 0.02, in line with DDGAN [28], and
the CFG weight was set to 3.5. All models were trained on
an A100 GPU for a uniform 1.3 million-step iteration, tak-
ing a total of 5 days. During evaluation, all methods were
tested on a single V100 GPU for fairness.

4.2. Comparison with Contemporary Methods

We present the quantitative results for speaker 2’s test se-
quences in the BEATX dataset using the audio-to-gesture
method in Table 1. The purpose is to provide a fair com-
parison with the values reported in the original EMAGE pa-
per. For a more comprehensive view of the quantitative
experiments, we provide the quantitative results for the
entire dataset in parentheses. Our findings demonstrate
that, in comparison with diffusion-based methods such as
DSG [33], FreeTalker [34], and DiffGesture [42], our ap-
proach outperforms them in terms of gesture matching, even



Method BEATX
FGD↓ SA BA↑ DIV↑ steps

HA2G [20] 12.32 0.13 6.77 8.626 -
DisCo [17] 9.417 0.09 6.439 9.912 -
CaMN [18] 6.644 0.22 6.769 10.86 -
TalkShow [35] 6.209 0.22 6.947 13.47 -
EMAGE [19] 5.512(7.305) 0.17 7.724(7.709) 10.88(10.948) -
DiffGesture(re-train) [42] 12.8 0.07 7.08 11.30 1000
DSG(re-train) [33] 8.811(11.742) 0.08 7.241(7.3368) 11.49(11.121) 1000
FreeTalker(re-train) [34] 7.712 0.19 7.73 10.62 1000
HoloGest(Ours) 5.3407(6.457) 0.66 7.957(8.0281) 14.15(13.525) 50

Table 1. Objective metrics on BEATX. EMAGE provides the FGD
evaluation model, where a lower value indicates a closer approxi-
mation to the original motion distribution. The calculation meth-
ods for BA and DIV are consistent with EMAGE. Steps represent
the denoising steps in diffusion-based generation methods. The
values in parentheses represent the evaluation results for the en-
tire BEATX dataset.

Method BEATX
FGD↓ Skate↓ Float↓ SA↑

Real 1.7e-4 0.0866 8.8015 0.82
EMAGE 5.51 0.7904 34.6534 0.17
DSG 8.811 0.4192 22.7526 0.08
HoloGest(Ours) 5.34 0.1068 9.6317 0.66

Table 2. Objective Metrics. Skate represents the skating metric
when in contact with the ground, with values closer to Real being
better. Float indicates the floating error during ground contact,
with values closer to GT being better.

with a 20-fold reduction in denoising steps. Moreover, our
method surpasses VAE and VQ-VAE-based approaches like
EMAGE [19], TalkShow [35], and CAMN [18] in terms of
beat alignment and diversity.

However, gesture evaluation is subtle, and the FGD met-
ric only reflects the similarity between generated results and
the original distribution, not the actual effect of the virtual
speaker or the trajectory and global rotation of holistic co-
speech gestures. While EMAGE has metrics close to our
system, it lacks prior knowledge of the entire motion se-
quence, leading to discord in its generated results, includ-
ing unnatural global flips and severe skating phenomena.
Its fingers also lack rich movements due to the absence of
finger priors.

In contrast, our system, which introduces motion priors,
generates reliable global movements without affecting vivid
gestures, provides stable locomotion without unnatural flips
or severe arm jittering, and offers users a more natural and
harmonious experience. Table 2 presents the physical met-
rics and semantic alignment scores, consistent with our ob-
served phenomena.

4.3. Qualitative Comparison

We present the results generated by DSG, EMAGE, and
HoloGest on the BEATX test set. As seen in Figure 3,

speaker16 :Jorge

speaker11:Nidal

speaker4: Lawrence

speaker2: Scotto

DSG EMAGE Ours DSG EMAGE Ours

global flittingstill

frames:160 frames:200
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skate & float stable

frames:400 frames:410
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Figure 3. A comparison of three methods: DSG, a diffusion-based
co-speech gesture generation method using DDPM (stiff limbs,
slow inference, physically unnatural); EMAGE, an autoregressive
generation method using VAE (motion artifacts, global flipping,
physically unnatural); and our proposed generation method (rich
movements, lively fingers, physically natural). We test on a se-
quence of an English-speaking presenter selected from BEATX.
Red annotations indicate defects, while yellow annotations high-
light advantages.

DSG’s gesture generation lacks expressiveness, showing lit-
tle movement during flat speech, resulting in a stiff appear-
ance with unnatural phenomena like sliding and floating.
The 1000-step DDPM sampling strategy also leads to in-
efficient generation. EMAGE, using VAE for direct regres-
sion, is fast but prone to motion artifacts and global flipping,
affecting user experience.

In contrast, our model achieves large strides with fewer
denoising steps, enhancing generation speed while main-
taining high fidelity, making it suitable for real-time appli-
cations. The introduction of motion priors improves global
motion and physical naturalness. Thanks to the seman-
tic alignment module in the abstract space, our method is
highly expressive, with large, lively upper limb movements
and natural, rich lower limb movements. Our divide-and-
conquer approach enhances the richness of finger move-
ments and the stability of global actions.



Method BEATX
FGD↓ Skate↓ Float↓ SA↑ BA↑ DIV↑ steps

Real 1.7e-4 0.0866 8.8015 0.91 - - -
DSG 8.811 0.4192 22.7526 0.08 7.241 11.49 1000
EMAGE 5.512 0.7904 34.6534 0.17 7.724 10.88 -
Baseline 7.718 0.3922 19.7831 0.20 7.432 12.83 1000
+ SIDD 7.016 0.5567 25.1263 0.22 7.135 14.12 50
+ SA 6.351 0.5239 17.6612 0.60 7.946 14.26 50
+ Global 5.86 0.3396 19.023 0.66 7.953 14.29 50
+ Prior 5.3407 0.1068 9.6317 0.66 7.957 14.15 50

Table 3. Ablation study results on the module design in the system.

4.4. Ablation Study

To validate the importance of each module in the system,
we compare various variants obtained from the complete
method:
• Baseline, directly decouples three body parts: the up-

per body, lower body, and fingers, as three parallel sub-
models for denoising distribution modeling, while main-
taining the DDPM denoising process, using only audio
features as guiding signals, as done in DSG.

• + SIDD, to alleviate the inefficiency in generation caused
by body decoupling, we introduce a semi-implicit denois-
ing process that directly models the complex large-step
denoising distribution, achieving acceleration by reduc-
ing the number of denoising steps.

• + SA, by employing the JEPA strategy, we use semantic
features that are aligned with the real gesture sequences
in the abstract space as additional guiding conditions,
and independently conditionally tokenize them, similar to
what is done in locomotion.

• + Global, in order to establish connections between the
decoupled parts, we associate the features of the three
parts and further map them to a single global token, serv-
ing as an additional global perceptual information.

• + Prior, incorporate global trajectory motion priors and
finger priors as pre-trained models for secondary genera-
tion.
Table 3 shows the ablation study results, with the com-

plete system outperforming all ablation versions. The diffu-
sion generative model with only decoupled structure shows
some improvement compared to DSG but has a noticeable
disadvantage in metrics compared to VAE-based methods.
This is due to the lack of connections between parts, causing
uncoordinated overall gestures when directly merged. In-
troducing global associations and semi-implicit denoising
process alleviates this issue and improves generation effi-
ciency. The introduction of semantic alignment features sig-
nificantly enhances the richness of generated actions. De-
spite the improvements in metrics and gesture quality, the
lack of global motion prior knowledge still leads to physi-
cally unnatural factors like skating and global jitter, impact-
ing user experience. By introducing global trajectory priors

Method BEATX
HL↑ SGA↑ R↑ Stable↑

Real 4.61± 0.17 4.72± 0.20 4.66± 0.07 4.89± 0.02
DSG 3.70± 0.12 3.91± 0.14 4.27± 0.15 3.12± 0.12
EMAGE 3.44± 0.18 4.11± 0.14 3.56± 0.09 2.87± 0.22
HoloGest(Ours) 4.47± 0.09 4.51± 0.19 4.82± 0.1 4.71± 0.11

Table 4. 95% Confidence Interval for User Study Average Score.

and finger priors as pre-trained models for secondary gen-
eration, we achieve physically plausible results and provide
users with a better experience.

For a more detailed analysis of the decoupling strat-
egy, accelerated sampling strategy, and efficiency analysis,
please refer to the accompanying supplementary material.
For demo results, please refer to the attached video. We
strongly encourage readers to watch our video to evaluate
the effectiveness of HoloGest.

4.5. User Study

We used four human perceptual consistency scoring met-
rics as described in [2]. These metrics evaluate human like-
ness (HL), speech-gesture appropriateness (SGA), gesture
richness, and whole-body stability. To assess our method’s
visual performance, we conducted a user study on gesture
sequences generated by each method. Evaluation segments
varied from 16 to 40 seconds in length, averaging 26.2 sec-
onds. We engaged 30 participants and used a scoring range
of 1 to 5, with labels from ”poor” to ”excellent”. Table 5
shows the average user opinion scores. We compared the
results generated by the original DSG, EMAGE, our sys-
tem without Prior, and the complete system. As per user
feedback 4, our method generates high-quality co-speech
gesture sequences comparable to, or better than, real data,
and does so faster than traditional DDPM diffusion gener-
ative methods. Notably, our method takes only 0.88 sec-
onds to generate a 2-second gesture sequence, compared to
approximately 7 seconds using 1000-step DDPM, making
it suitable for real-time applications like human-computer
communication.

5. Conclusions
In this study, we tackled challenges in generating holistic
co-speech gestures. By innovating upon diffusion-based
methods with implicit marginal constraints and explicit aux-
iliary forward diffusion regularization, our model enabled
faster inference and mitigated generation speed inefficien-
cies. Additionally, we considered motion prior and intro-
duced a pre-trained model on extensive human motion data,
generating physically accurate gesture sequences and en-
hancing user experience. Our approach significantly ac-
celerated HoloGest’s generation while maintaining high fi-
delity, paving the way for future real-time synchronous ges-
ture generation tasks.
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