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ABSTRACT: Molecular ionization potentials (IP) and photoionization
cross sections (σ) can affect the sensitivity of photoionization detectors
(PIDs) and other sensors for gaseous species. This study employs several
methods of machine learning (ML) to predict IP and σ values at 10.6 eV
(117 nm) for a dataset of 1251 gaseous organic species. The explicitness of
the treatment of the species electronic structure progressively increases
among the methods. The study compares the ML predictions of the IP and σ
values to those obtained by quantum chemical calculations. The ML
predictions are comparable in performance to those of the quantum
calculations when evaluated against measurements. Pretraining further
reduces the mean absolute errors (ε) compared to the measurements. The
graph-based attentive fingerprint model was most accurate, for which εIP =
0.23 ± 0.01 eV and εσ = 2.8 ± 0.2 Mb compared to measurements and
computed cross sections, respectively. The ML predictions for IP correlate well with both the measured IPs (R2 = 0.88) and with IPs
computed at the level of M06-2X/aug-cc-pVTZ (R2 = 0.82). The ML predictions for σ correlated reasonably well with computed
cross sections (R2 = 0.66). The developed ML methods for IP and σ values, representing the properties of a generalizable set of
volatile organic compounds (VOCs) relevant to industrial applications and atmospheric chemistry, can be used to quantitatively
describe the species-dependent sensitivity of chemical sensors that use ionizing radiation as part of the sensing mechanism, such as
photoionization detectors.
KEYWORDS: ionization potential, photoionization cross section, machine learning, photoionization detector, volatile organic compounds

1. INTRODUCTION
Ionization potential (IP; unit, eV = electronvolt; 1 eV = 1.6 ×
10−19 J) and photoionization cross section (σ; unit, Mb =
megabarn; 1Mb = 10−18 cm2) affect the quantitative response of
some optical sensors to species concentration. Volatile organic
compounds (VOCs), a large and diverse group of chemical
species important to atmospheric chemistry, have concen-
trations that span several orders of magnitude.1 Although a
photoionization detector (PID) can sense a broad array of
VOCs, its response remains qualitative without knowledge of
molecular IP and σ values. Quantum chemical methods exist for
calculating the IP and σ values of VOCs, but the computational
cost becomes prohibitive for large molecules and basis sets.2

In recent years, machine learning (ML) techniques have
facilitated the application of quantum chemical methods for
predicting molecular properties to address this computational
challenge. Quantitative structure−property relationships
(QSPR) derived by machine learning (ML) have screened
properties of prospective drug molecules,3,4fuels,5,6and poly-
mers.7,8These methods implicitly approximate quantum chem-
ical calculations by a coarse-grained basis set.9 As such, the
methods have low accuracy for predicting properties that
depend on electronic structure, which is problematic because IP

and σ are both highly sensitive to electronic structure. The ML-
based QSPRs thus do not predict IP and σ accurately enough for
practical use. More explicit ML methods developed using deep
learning approaches, such as Chemception10 and graph-based
neural networks (GNNs),11 incorporate spatial dependencies
representing the bonding among atoms. In this way, they can
incorporate quantum chemical elements that approach the
accuracy of direct quantum chemistry calculations.
Accurate predictions of IP and σ values across a broad range of

VOCs are a baseline need for employing PIDs to quantify
atmospheric VOC concentrations. PIDs have high sensitivity,
broad selectivity, and fast response time. However, when used
outside of a laboratory environment consisting of individual and
known gaseous species, the sensor output can be qualitative
rather than quantitative due to unknown species-dependent
responses. These responses depend primarily on the IP and σ
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values of the molecules, as follows. The photon energy used in
the sensor must exceed the ionization potential of the molecule,
and the photoionization cross section of the molecule at that
photon energy proportionally affects the sensor output. Due to
the many different types of molecules produced through
atmospheric VOC oxidation mechanisms, determining IP and
σ by laboratory measurements of each gas species is not feasible.
The development of accurate prediction methods is thus
needed.
Herein, ML-based approaches are applied for predicting the

IP and σ values of atmospherically relevant VOCs at a photon
energy of 10.6 eV (117 nm). The most widely employed
commercial photoionization detectors operate at this energy. A
dataset of 1251 IP values measured in the laboratory using
photoelectron spectroscopy or photoionization mass spectrom-
etry was used in the analysis. For the associated molecular
species, quantum chemical calculations were used to estimate IP
values, which were compared to the measurements. Quantum
chemical calculations were also used to estimate the σ values for
the group of species at the specified photon energy. The
empirical IP values and the quantum-computed IP and σ values
served as datasets to train multiple ML methods, including
descriptor-based, sequence-based, graph-based, and quantum-
based approaches. The ML predictions, the quantum chemical
calculations, and the measurements across the entire group of
molecules are intercompared and discussed in the analysis.

2. EXPERIMENTAL METHOD
2.1. Quantum Chemical Calculations. 2.1.1. Ionization

Potential. An ionization potential is the minimum incident
photon energy required to expel an electron from a molecular
orbital to vacuum, leaving behind a free ion. The lowest-lying
ionization potential, which is the focus of this study, occurs from
the highest occupied molecular orbital (HOMO). The physics
of the interactions for the photoionization of gaseous matter is
through the coupling of electromagnetic radiation with
molecular electric dipoles.12

Photoionization is a multistage process: excitation from the
ground state to an excited state (eq 1), release of a photoelectron
(eq 2), and vibrational relaxation of the excited state (eq 3). The
process can be described as follows

hvAB AB+ ‡ (1)

AB AB e, +‡ + ‡ (2)

AB AB,+ ‡ + (3)

In these equations, AB indicates the molecule in its electronic
and vibrational ground state, hv refers to the incident photon,
AB‡ denotes the molecular species in an excited state, AB+,‡

represents the molecular cation in an excited state, e− is the
ejected electron, and AB+ corresponds to the ionized species.
The kinetic energy of the ejected electron is equal to the incident
photon energy minus the ionization potential.
Photoionization can occur adiabatically or vertically, as

depicted in Figure 1. This distinction relates to the timescales

Figure 1.Diagram of quantum energy levels and the transitions among them. Nuclear position coordinate (R) varies along the abscissa. Energy varies
along the ordinate. Vertical and adiabatic transitions associated with the ionization potential are indicated. The adiabatic IP accounts for the relaxation
of the nuclear coordinates in the excited state (Ri → Rf), leading to a lower energy than that of the vertical IP. Terms AB and AB+ refer to the molecular
and ionized forms of a species. Quantum number (ν) refers to a vibrational state. The vibrational component of the wavefunction is denoted by an
integer subscript, and the electronic component by the prime symbol. Other symbols are defined in the main text. The extent of wavefunction overlap
between the ground and excited state is denoted by the overlap of shaded regions at each vibrational state. An example of a resulting photoionization
spectrum is shown on the right-hand side. It represents the overlap integral of wavefunctions (ψ) in correspondence to the transitions of the main
progression as well as the hot bands. From this spectrum, the value of the photoionization cross section (σ) at a photon energy can be extracted.
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and net energy changes of the physical processes. Photon
absorption (eq 1, τ ∼ 10−15 s) and electron emission occur on a
faster timescale (eq 2, τ ∼ 10−17 s) than the vibrational relaxation
of the molecular ion (eq 3, τ ∼ 10−13 s). Adiabatic ionization
corresponds to vibrational relaxation of the nuclear coordinates
from the excited state. Thus, the adiabatic IP is the energy
difference between zero-point levels of the ionized and neutral
species, including the electronic (Eelectronic) and zero-point
vibrational energies (ZPVE). This energy corresponds to the
energy of AB+ of eq 3 minus the energy of AB of eq 1. By
comparison, vertical ionization corresponds to the absence of
vibrational relaxation in the excited state. This energy
corresponds to the energy difference between AB+,‡ and AB of
eqs 1 and 2.
The adiabatic IP is typically used in theory, whereas vertical IP

is typically obtained by measurement. For example, photo-
electron spectroscopy indirectly measures IP by considering the
kinetic energy of the ejected electron (eq 2). Photoionization
mass spectrometry determines IP by focusing on parent ion (eq
2 or eq 3). In this study, we focus on vertical IPs as they are the
more relevant experimental quantity, but also compare
prediction methods for computing adiabatic IP. The difference
between adiabatic and vertical IPs is typically less than 0.4 eV.
For both adiabatic and vertical IP, the following relationship
holds

E

E

IP ( ZPVE)

( ZPVE)
molecule electronic cation

electronic neutral

= +
+

(4)

Herein, IPs measured for 1251 organic species were selected
from the Chemistry WebBook of the USA National Institute of
Science and Technology (NIST).13 Measurements behind the
dataset included photoionization mass spectrometry, photo-
electron spectroscopy, and electron-impact techniques. Only
molecules containing nitrogen, oxygen, carbon, and hydrogen
were selected. Radicals, ions, and species having more than 20
nonhydrogen atoms were excluded. IPs in the dataset spanned
6.16−13.94 eV. Eachmolecule was encoded using the Simplified
Molecular-Input Line-Entry System (SMILES)14 and converted
to a three-dimensional representation in Z-matrix form (Open
Babel v3.3.1).15 Geometries of the neutral molecules and the
corresponding cations were optimized using density functional
theory (DFT) at three levels: B3LYP/6-31G++(d,p),16

ωB97XD/def2-TZVP,17 and M06-2X/aug-cc-pVTZ.18 Adia-
batic and vertical IPs were computed at each level using eq 4.
The electronic structure calculations were performed in
Gaussian 16.19

2.1.2. Photoionization Cross Section. The photoionization
cross section relates to the fraction of incoming photons that
result in an ionization interaction between a photon and an
ionizable molecule. Several theoretical procedures for calculat-
ing σ values near the ionization threshold include the frozen-
core Hartree−Fock (FCHF) method,20,21time-dependent den-
sity functional theory,22 variational methods,23,24and methods
incorporating Dyson orbitals.25 The FCHF and Dyson orbital
methods provide estimates of σ values at a typical uncertainty of
less than a factor of 2.25,26In the present study, the FCHF
method is used because of its efficiency in calculating near-
threshold cross sections for large molecules.27

Processes related to IP and σ are depicted in Figure 1. The
photoionization cross section represents the transition proba-
bility between the initial and final wavefunctions of AB and AB+.

As such, σ values are proportional to the square of the transition
dipole moment (M⃗I,f), as follows

( )r R r R r RM ( , ) ( , ) d di,f
2

i f i f

2
| | = | | = (5)

In eq 5, the value of M⃗i,f is the integral across the product of the
N-electron dipole operator μ̂ with the initial and final
wavefunctions (ψi and ψi, respectively). The wavefunctions
depend on the electronic and nuclear coordinates, denoted by r
and R, respectively. Through the Born−Oppenheimer approx-
imation, the total wavefunction can be separated into electronic
(φ) and vibrational (χ) components, allowing separation of M⃗i,f
into two terms. These terms are the electronic transition dipole
moment, denoted byD(E), and the vibrational Franck−Condon
overlap envelope, denoted by the Supporting Information (SI),
as follows

( ) ( )r R r R r

M

R R

D E S E

R( ; ) ( ; ) d ( ) ( ) d

( ) ( )

i,f
2

i e f e

2

electronic transition dipole moment

i f

2

Franck Condon overlap envelope

| |

=

=

(6)

where Re represents the equilibrium nuclear coordinates for
calculation oI(E) within the Condon approximation and E
indicates the incident photon energy.
The electronic component D(E) was computed using

ePolyScat20,21 within the single-channel FCHF approxima-
tion.28 The single-center expansion technique for Lmax = 50 was
used. Molecular orbitals were computed in Gaussian from the
restricted Hartree−Fock wavefunctions with the aug-cc-pVTZ
basis set after geometry optimization at the M06-2X/aug-cc-
pVTZ level of theory. Symmetry rules governing photo-
ionization used in ePolyScat simulations are described in the
Supporting Information. Ultrafine grid quadrature and very tight
self-consistent field convergence were used.
For S(E), Franck−Condon factors were computed in

ezFCF29 using normal modes and separable-mode harmonic
oscillator assumptions at the M06-2X/aug-cc-pVTZ level of
theory. The factors were cumulatively summed and normalized
to provide S(E). The value of S(E) was taken as unity when the
IP greatly exceeded the photon energy (i.e., ≥1 eV).26 In this
situation, the photon energy is assumed sufficiently high that all
available vibrational modes within themolecule are active. In the
envelope calculations, resonant states were omitted.
Photoionization cross sections were computed using eq 6 at

10.6 eV for a subset of 724 organic molecules in the NIST
dataset for which IP < 10.6 eV. A photon energy of 10.6 eV is
typical for a PID. An individual σ value was the average of the
length gauge and the velocity gauge, which are two different
approximations to describe the interaction of a photon with a
molecule.26 The length gauge assumes that the photon has a
purely electric field, while the velocity gauge assumes that the
photon has a mixed electric and magnetic field. The absolute
difference between the length and velocity gauges was used as an
approximate measure of the error in σ. Autoionization and other
nonradiative processes, such as photodissociation and internal
conversion, were not included in the analysis. Values for σ
represented the parent ion only, meaning that the complexity of
modeling photo-ion product channels was not incorporated.
This simplification, however, did not result in a large error
because ion fragmentation is typically not substantial for photon
energies within 2 eV of IP.30,31
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2.2. Machine Learning Methods. Four different ML
methods were used to construct estimative models of IP and σ
values as output for chemical structures as input (Figure 2). The
fourmethods employed varying explicitness in their treatment of
electronic structure, which influenced the predictive accuracy of
each. The measured values from the NIST database were used
for training the ML models of IP values. The corresponding
ePolyScat simulation results were used to train the ML models
of σ values. Each ML model was trained using fivefold cross-
validation, with onefold used as the validation set during each
iteration, and a separate test set was set aside for the final
evaluation of the model performance. Descriptor-based models
were developed using RDKit,32 sequence-based models using
Simple Transformers, and graph-based models using Deep-
Chem.33 The quantum-based models were built using the QDF-
NN code of Tsubaki andMizoguchi.34 The GNN andQDF-NN
methods were augmented using pretraining on energies of the
highest occupied molecular orbital (HOMO) from the
Quantum Mechanics 9 (QM9) dataset.35,36 The rationale for
the pretraining was based on Koopman’s theorem, which asserts
that the negative value of the HOMO energy level is the first
approximation of ionization potential.37 This pretraining was
applied for both IP and σ values because encodings of the
electronic structure are relevant to both quantities. Further
details on the training of each model are available in the
Supporting Information.38

2.2.1. Descriptor-Based ML Method. Descriptor-based
QSPR methods use molecular information, such as the number
of valence electrons, heteroatoms, rings, stereocenters, molec-
ular weights, and functional groups, as variables in predicting
molecular properties (Figure 2). They have been widely used for
predicting the physicochemical properties of materials, includ-
ing melting point,39 boiling point,40 flash point,41 flammability

limits,42 glass-transition temperature,8 acid dissociation con-
stant,43 and thermal stability.44 ML-based QSPR methods are
increasingly supplanting traditional QSPRs because of superior
accuracy. Descriptor-based methods, however, do not explicitly
consider electronic structure.
A set of 2756 molecular descriptors (n = 1875) and

fingerprints (n = 881) was used to train descriptor-based
methods. The open-source PaDEL software45 using the
PaDELPy Python wrapper was used. The tested algorithms
included (1) the random-forest algorithm, (2) deep neural
networks, and (3) gradient boosting. These algorithms were
chosen due to their strong performance on regression tasks and
widespread use in the ML-based QSPR literature. Of the 2756
descriptors, the two most informative were selected for training
using an algorithm of maximum relevance and minimum
redundancy (mRMR).46 Hyperparameter tuning was performed
using Bayesian optimization for each model.47 Each method was
subsequently trained with optimized hyperparameters, and
method performance was intercompared. After testing, the
method of gradient boosting had the highest accuracy, and this
descriptor-based ML method was therefore used as the baseline
model of this study.

2.2.2. Sequence-Based ML Method. Sequence-based ML
methods perform well for some molecular properties.48−51 They
couple transformer models52 with SMILES notation. The
architectures, such as Chemformer48 and ChemBERTa,49 are
adapted from natural language tasks. Representations encoded
by neuron weighting are obtained from self-supervised
pretraining on large-scale datasets like QM9 (134,000
molecules). No knowledge of molecular properties is needed
for this process, meaning that arbitrarily large datasets of known
molecular structures can be used. In the iteration process, a
representation of molecular bonding becomes encoded by

Figure 2.Overview of machine learning methods explored in this study for predicting IP and σ values as output for molecular SMILES strings as input.
(A) Descriptor-based approach. (B) Graph-based approach (including AFP model). (C) Sequence-based approach. (D) Quantum-based approach.
The main text presents further definitions of abbreviations and symbols as well as associated explanation and discussion.

ACS Earth and Space Chemistry http://pubs.acs.org/journal/aesccq Article

https://doi.org/10.1021/acsearthspacechem.3c00009
ACS Earth Space Chem. 2023, 7, 863−875

866

https://pubs.acs.org/doi/suppl/10.1021/acsearthspacechem.3c00009/suppl_file/sp3c00009_si_002.pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.3c00009?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.3c00009?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.3c00009?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.3c00009?fig=fig2&ref=pdf
http://pubs.acs.org/journal/aesccq?ref=pdf
https://doi.org/10.1021/acsearthspacechem.3c00009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 3. Parity plots between measured and computed adiabatic and vertical ionization potentials at different levels of quantum chemistry theory. (A,
B) Adiabatic and vertical IPs for B3LYP/6-311++G(d,p) (nadiabatic = 1109, nvertical = 1208). (C, D) Adiabatic and vertical IPs for ωB97XD/def2-TZVP
(nadiabatic = 1157, nvertical = 1182). (E, F) Adiabatic and vertical IP forM06-2X/aug-cc-pVTZ (nadiabatic = 1206, nvertical = 1219). Parity and best-fit lines are
plotted. The mean absolute error (ε) and the coefficient of determination (R2) are listed in each panel. Gray shading of data points is for visual
illustration and has no other meaning. Values of n denote the number of molecules included in the panels. The values differ among panels because of
convergence issues associated with the different levels of quantum chemistry theory.
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neuron weighting. In an approach similar to pretraining, the
resulting encoded representation is then further adjusted to
smaller datasets (e.g., typically 1000 molecules) for greater
accuracy in a variety of downstream tasks.
For the present study, SMILES representations and encodings

for neuron weighting were used from the ChemBERTamodel,49

as obtained from the HuggingFace model repository,53 which
had been trained on the PubChem 10M dataset.54 The resulting
setup was trained on IP and σ values for 50 iterations using a
learning rate of 5 × 10−4. Details regarding model execution and
the hyperparameters are stored in a repository, for which
information is provided at end of the main text.38

2.2.3. Graph-Based ML Method. Graph-based neural
networks (GNNs) can predict molecular properties for non-
Euclidean data.55 Several studies demonstrated more accurate
results over descriptor-based methods, although other studies
reached the opposite conclusion.56 GNNs generate a molecular
graph that defines the connectivity between a set of nodes (i.e.,

atoms) and edges (i.e., bonds). GNNs aggregate information
about neighboring atoms through recursion across the
molecular graph. Two GNN methods were implemented in
this study, including a graph convolutional network (GCN)57

and attentive fingerprints (AFP).58

The GCN is the graph-based analogue of a standard
convolutional neural network. It utilizes Duvenaud graph
convolutions.59 A baseline GCN model was created consisting
of a single hidden layer of 512 neurons, a dense layer of 1024
neurons, and a single-neuron output layer representing a linear
activation function. The baseline model was trained for 100
iterations at a learning rate of 10−4. A second model utilized
pretraining to improve model performance. The pretraining was
based on the QM9 HOMO values on the same neural
architecture at a learning rate of 10−4 for 50 iterations. The
weights of the first two layers were subsequently fixed, and the
network was trained on the IP and σ values for 50 iterations at a
learning rate of 10−5.

Figure 4. Parity plots between predicted and measured IP values (n = 1249) for the model of lowest mean absolute error for each ML method. (A)
Descriptor-based approach. (B) Sequence-based approach. (C) Graph-based approach. (D) Quantum-based approach. Predicted IP values include
the combined test set across all folds of cross-validation.
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AFP models have superior performance over GCNs in some
applications.56,58 The AFP mechanism of graph attention allows
nonlocal effects to be incorporated at the intramolecular level.54

Herein, an AFP model was trained using the PyTorch
framework60 and Adam optimization61 by gradient descent.
Optimal hyperparameters were selected by a Bayesian approach.
The model was trained by minimizing the mean squared error,
and it was evaluated for the mean absolute error on the test set.

2.2.4. Quantum-Based MLMethod. A quantum-based deep-
field neural network (QDF-NN)34 is a physics-informed
approach to predict molecular properties based on Kohn−
Sham DFT.62 Neural networks simultaneously approximate
both the energy functional map and the Hohenberg−Kohn
(HK) map. The HK map is indirectly constructed in a self-
supervised manner. The energy functional map is externally
defined based on the IP and σ values. This two-pronged
approach allows the network to approximate basis functions
more closely than the previously discussed models.63

The QDF-NN models for IP and σ values were configured
using a 6-31G basis set on Gaussian-type orbitals for a radius of
0.75 and a grid interval of 0.3. The neural architecture consisted
of an input layer and four hidden layers, each having a
dimensionality of 500. Each model was trained using a batch size
of 4, a learning rate of 10−4, a learning rate decay of 0.5 occurs at
every 100 iterations, and a total of 1000 iterations. In the final
layer, the output variables were averaged. The approach also
included pretraining. HOMOvalues from theQM9 dataset were
used for 1000 iterations. The weights for the IP and σ networks
were then pretrained using the weights of the QM9 model.
Subsequently, the first two network layers were fixed, and the
training took place.

3. RESULTS AND DISCUSSION
3.1. Quantum Chemical Calculations Compared to IP

Measurements. In Figure 3, the measured IPs from the NIST
database are compared with the adiabatic and vertical IPs
computed at three increasingly complex levels of quantum
theory.64,65 These levels included B3LYP/6-311++G(d,p),
ωB97XD/def2-TZVP, and M06-2X/aug-cc-pVTZ. For adia-
batic IPs, the most accurate results were obtained by usingM06-
2X/aug-cc-pVTZ. A coefficient of determination (R2) of 0.95
and a mean absolute error (ε) of 0.23 eV were achieved. For
vertical IPs, the most accurate results (R2 = 0.93 and ε = 0.24 eV)
were obtained withωB97XD/def2-TZVP even though this basis
set was smaller than that of M06-2X/aug-cc-pVTZ. For DFT,
increasing the basis set does not necessarily improve the
predictive performance.66 While IP estimates obtained at a
higher level of theory would be generally more accurate, it would
be impractical for a dataset of the size used in the present study.
Given the 0.4 eV uncertainty between adiabatic and vertical IP,
methods with errors that fall within this range were deemed
acceptable. Values of skew (g) and kurtosis (κ) are also listed in
the figure. The positive skew for the adiabatic IPs indicated a bias
toward larger errors. Conversely, the negative skew for the
vertical IPs had a bias toward smaller errors. The skew for
vertical IPs was less than that of adiabatic IPs for all three basis
sets. Similarly, the kurtosis was larger for adiabatic IPs than for
vertical IPs, meaning that the distribution of adiabatic IPs had
more outliers far from the mean.

3.2. Machine Learning Methods Compared to IP
Measurements. In Figure 4, the measured IPs from the
NIST database are compared with the predicted IPs in a series of
parity plots for descriptor-based, sequence-based, graph-based,

and quantum-based ML methods. Results are summarized in
Table 1. The mean absolute error approximately follows

sequentially from worse to better along the model sequence
from descriptor-based to quantum-based ML methods. The εIP
of the ML models ranged from 0.22 to 0.35 eV relative to the
NIST database, which can be compared to 0.23−0.37 eV for
quantum chemistry calculations.
As the simplest and baseline method of this study, the

descriptor-based random-forest mRMR model had εIP = 0.33 ±
0.02 eV (Figure 4A). This higher error reflects the absence of
molecular structure and connectivity in this treatment. Never-
theless, the descriptors allowed physical insight into the
important molecular features that affected the predicted results.
In this regard, the values for feature importance of 20 descriptors
selected by the mRMR model are shown in Figure 5. Increasing
the number of descriptors beyond 20 did not improve model
accuracy. A full list of descriptors is provided in Table 3. For IP,
the most informative descriptors were BCUTp-1h (0.26) and
BCUTp-1l (0.15), which were linked tomolecular polarizability.
The sequence-based model had εIP = 0.26 ± 0.01 eV (Figure

4B), representing a 24% reduction in error compared to the
baseline descriptor-based model. This result is consistent with
the hypothesis that more explicit electronic modeling leads to
improved performance. The graph-based GCN model initially
performed poorly (εIP = 0.39 ± 0.02 eV), but pretraining
improved performance (εIP = 0.32 ± 0.02 eV). Even so, this
performance exceeded neither the sequence-based models nor
the baseline descriptor-based model. The reduced performance
of GCN graph-based networks over descriptor-based methods
was previously reported.56,67,68

By comparison, the graph-based AFP model had the lowest
error of εIP = 0.23 ± 0.01 eV among all models (Figure 4C). The
strong performance of the AFP model can be explained by its
simultaneous consideration of descriptors, connectivity, and
nonlocal effects. The quantum-based QDF-NNmodel had εIP =
0.33± 0.01 eV without pretraining and εIP = 0.30± 0.02 eV with
pretraining. The AFP model performed significantly better than
the QDF-NN model despite the more explicit treatment of
electronic structure in the latter. Although pretraining improved
the performance of the QDF-NN model, the AFP model still

Table 1. Calculated and Measured Ionization Potentials,
Photoionization Cross Sections, and PID Response Factors
for Various Organic Compounds

Molecule
Point
Group

IPmeas
(eV)a

IPcalc
(eV)b

σmeas
(Mb)

σcalc
(Mb)c

Response
Factor

isoprene Cs 8.86 8.65 13.0d 14.7 1.67
acetaldehyde Cs 10.23 10.21 7.5d 7.39 6
ethanol Cs 10.47 10.32 2.1 2.45 11
benzaldehyde Cs 9.49 9.65 18.2e 16.6 0.7
furan C2v 8.88 8.83 15f 14.5 0.4
dimethyl ether C2v 10.03 9.93 8.8g 8.12 1.3
isopropanol C1 10.17 10.09 5d 4.54 4
1,3-butadiene C2 9.07 8.84 13.2d 13.2 0.8
p-xylene C2 8.44 8.38 17.8d 14.6 0.55
2-propanol C1 10.17 10.09 6.5g 7.9 4
cyclopentene Cs 9.01 8.80 13g 15.2 1.5
aIonization potentials obtained from the NIST Chemical WebBook.13
bIPs calculated at the M06-2X/aug-cc-pVTZ level of theory.
cCalculated with ePolyScat using Lmax = 50 at the M06-2X/aug-cc-
pVTZ level of theory. dAdam and Zimmermann.78 eEschner and
Zimmermann.79 fCzekner et al.80 gCool et al.31
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outperformed it. The QDF-NN also had larger kurtosis than the
other models, indicating heavy tails in the distribution and more
outliers. For predictive modeling, a smaller kurtosis is preferable
to minimize the bound of predictive error.

3.3. Quantum Chemical Calculations Compared to
Photoionization Cross Section Measurements. Table 1
lists calculated and measured σ values for a subset of molecules
present in the NIST dataset. There is a high coefficient of
determination (R2 = 0.97). The absolute error in IP and σ for
these molecules is 0.12 eV and 1.1 Mb. There is also high
correlation with the PID response factors (Pearson’s r = −0.84).
These empirically determined values indicate the response of a
PID sensor to a specific molecule. PID response factors and
photoionization cross section are typically closely related.69

Across all molecules in Table 1, the average uncertainty in the
photoionization cross section was 1.0Mb. For comparison, the σ
value of stable species can typically be measured within a margin

of error of <20%.70−74Error can arise from several factors,
including (1) measurement uncertainty in IP (e.g., 0.1−0.2 eV
for photoelectron spectroscopy, 0.05−0.1 eV for photoioniza-
tion mass spectrometry), (2) measurement uncertainty
associated in σ, and (3) computational limitations. With respect
to the last, computations necessarily were not performed using
an infinite basis set or with full configuration interactions.

3.4. Machine Learning Methods Compared to Calcu-
lations of the Photoionization Cross Sections. In a series of
parity plots (Figure 5), the σ values computed by ePolyScat for
724 molecules are compared with those values predicted by the
MLmodels. The subset included all molecules for which both IP
and σ simulations completed successfully and ePolyScat
simulations exhibited convergence of ExpOrb values. Results
are summarized in Table 2. The AFP model yielded the best
overall results (εσ = 2.8 ± 0.2Mb) for a correlation coefficient of
R2 = 0.66. This model again performed better than the quantum-

Figure 5. Parity plots between predicted and computed σ values (n = 724) for the model of lowest mean absolute error for each ML method. (A)
Descriptor-based approach. (B) Sequence-based approach. (C) Graph-based approach. (D) Quantum-based approach. Predicted σ values include the
test set across all folds of cross-validation. The σ values computed at 10.6 eV (117 nm) are based on the quantum chemistry at the level ofM06-2X/aug-
cc-pVTZ. The panels show σ values only in cases for which the measured IP values are 10.6 eV (117 nm) or lower. Vertical IP values were used in the
ePolyScat computation of σ.
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based QDF-NN model, including pretraining (εσ = 3.1 ± 0.1
Mb). For comparison to the error, the computed σ values ranged
from 0 to 40 Mb. The ML methods all had systematic
underprediction for large σ values. The error and dispersion in
the performance of the ML methods can in part be attributed to
the uncertainties in the computed values constituting the
training dataset itself. These values had an average error between
the velocity and length gauge values of 5.0 Mb. This error could
be reduced by using a larger value for Lmax but at the cost of
computational resources.

3.5. Implications. The ML-based approaches used herein
have a significantly lower computational complexity than the
quantum chemical calculations. The computational complexity
of DFT scales with the number of electrons (n) as O(n3). When
incorporating Hartree−Fock exchange, as used in the hybrid
functionals B3LYP and M06-2X, this complexity increases to
O(n4).75,76In contrast, the ML-based approaches are not
significantly affected by the number of electrons in the system,
particularly during the inference stage, making them significantly
faster for making predictions. The downside of this approach is
that the training process can be computationally intensive,
particularly for QDF-NN. The training procedure is, however,
significantly faster than IP predictions with M06-2X/aug-cc-
pVTZ as well as for the σ simulations when a high Lmax is used in
the DFT calculations. The explicitness to which electronic
correlation is considered did not significantly impact the
computational complexity of the ML-based methods. This
behavior can explain the superior performance of the AFPmodel
compared to the QDF-NN model, despite the different
approaches to modeling electronic correlation.
Although the ML-based approaches perform better in terms

of scaling than the quantum chemical calculations, they offer
limited chemical interpretability. By comparison, quantum
chemical calculations determine the wavefunctions of a system,
from which many properties can be derived. The corresponding
molecular orbitals and other molecular properties can be
examined to interpret the reliability of results. Neural-based
approaches do not solve the Schrödinger equation and thus
cannot be interpreted in the same way. Even so, other

Table 2. Performance Comparison among the Different ML-
Based Methods of This Studya

Method Model εIP (eV) εσ (Mb)

Descriptor-based Neural network 0.44 ± 0.02 3.5 ± 0.3
Gradient boosting 0.33± 0.02 3.4 ± 0.2
Random forest 0.33± 0.02 3.2 ± 0.3

Sequence-based BPE-ChemBERTa 0.29 ± 0.01 3.1 ± 0.2
SMILES-ChemBERTa 0.26 ± 0.01 3.0 ± 0.3

Graph-based GCN base 0.39 ± 0.02 3.7 ± 0.3
GCN with pretraining on
GM9 HOMO

0.32 ± 0.02 3.9 ± 0.2

AFP 0.23 ± 0.01 2.8 ± 0.2
Quantum-based QDF-NN base 0.33 ± 0.01 3.4 ± 0.1

QDF-NN with
pretraining on GM9
HOMO

0.30 ± 0.02 3.1 ± 0.1

aIn all cases, the IP and σ values were predicted as the ML output for
molecular SMILES strings as the ML input. The ε value listed for each
model represents the mean absolute error across a fivefold cross-
validation of that model (see main text). The error for the IP values is
referenced to measurements. The error for σ values is referenced to
quantum chemistry computations at the level of M06-2X/aug-cc-
pVTZ. The results of the best model are shown in bold.

Table 3. Label Explanation for Top Molecular Descriptors
Selected by mRMR for Predicting IP and σ Values.
Correlation Coefficients (R) Are Listed

Label
Correlation

(R) Description

IP Model
BCUTp-1h 0.51 largest eigenvalue of Burden matrix

weighted by polarizability
BCUTp-1l 0.50 lowest eigenvalue of Burden matrix

weighted by polarizability
PubchemFP564 0.50 PubChem binary substructure fingerprint
AATS0s 0.49 averagedMoreau−Broto autocorrelation of

lag zero weighted by intrinsic state
maxsssN 0.41 maximum atom-type E-state: >N−
minsssN 0.41 minimum atom-type E-state: >N−
TIC1 0.58 1-ordered neighborhood total information

content
TDB2e 0.29 distance-based

autocorrelation�lag 2/weighted by
Sanderson electronegativities

GATS2c 0.26 Geary coefficient of lag 2 weighted by
Gasteiger charge

SpMax5_Bhi 0.53 largest absolute eigenvalue of Burden
modified matrix�n 5/weighted by
relative first ionization

hmin 0.63 minimum H E-state
piPC3 0.54 3-ordered π-path count (log scale)
ntN 0.28 number of atom-type E-state: #N
piPC2 0.60 2-ordered π-path count (log scale)
MWC4 0.54 molecular walk count of order 4 (ln(1 + x))
TWC 0.55 total walk count (up to order 10)
SRW4 0.58 self-returning walk count of order 4

(ln(1 + x))
MWC3 0.57 molecular walk count of order 3 (ln(1 + x))
SRW2 0.60 self-returning walk count of order 2

(ln(1 + x))
MWC2 0.59 molecular walk count of order 2 (ln(1 + x))
σ Model
ATSC0e 0.32 centered Moreau−Broto

autocorrelation�lag 0/weighted by
Sanderson electronegativities

maxwHBa 0.37 maximum E-states for weak hydrogen bond
acceptors

SM1_Dzs 0.38 spectral moment of order 1 from Barysz
matrix weighted by I-state

MATS3c 0.07 moran autocorrelation�lag 3/weighted by
charges

minwHBa 0.29 minimum E-states for weak hydrogen bond
acceptors

StsC 0.37 sum of atom-type E-state: #C−
maxtsC 0.37 maximum atom-type E-state: #C−
mintsC 0.35 minimum atom-type E-state: �C�
SM1_Dzp 0.30 spectral moment of order 1 from Barysz

matrix/weighted by polarizabilities
ntsC 0.41 count of atom-type E-state: #C−
PubchemFP460 0.40 PubChem binary substructure fingerprint
nBondsT 0.39 number of triple bonds
maxddC 0.07 maximum atom-type E-state: �C�
PubchemFP427 0.40 PubChem binary substructure fingerprint
PubchemFP495 0.14 PubChem binary substructure fingerprint
PubchemFP417 0.40 PubChem binary substructure fingerprint
PubchemFP797 0.13 PubChem binary substructure fingerprint
PubchemFP309 0.13 PubChem binary substructure fingerprint
nT10Ring 0.03 PubChem binary substructure fingerprint
MDEN-11 −0.04 molecular distance edge between all

primary nitrogens
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approaches are available for interpreting neural-based methods.
DeepChem allows the approach of Local Interpretable Model-
Agnostic Explanations (LIME)77 to determine which parts of a
molecule contribute most to the prediction. Descriptor-based

models can make use of LIME to check performance changes for
successive removal of descriptors. In principle, the learned
electron density can be extracted from the QDF-NNmodel, but
implementation is still lacking. Non-neural descriptor-based

Figure 6. Bar charts of feature importance for the 30 most relevant molecular descriptors selected by the ML random-forest method of maximum
relevance and minimum redundancy (mRMR). Abbreviations for the descriptors are listed in Table 3. Feature importance refers to the weighted
decrease in the impurity criterion for a node (see the Supporting Information for more details). Higher scores indicate greater relevance to model
performance. Values are computed for IP, and σ are plotted in panels (A) and (B), respectively.
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models can use feature importance or regression coefficients
(Figure 6). A description of each of these molecular descriptors
is provided in Table 3. The procedure for calculating feature
importance is available in the Supporting Information. Examples
of the chemical structures and SMILES strings for the least
accurate IP and σ values from the AFP model also appear in the
Supporting Information.
In conclusion, obtaining accurate estimates for the ionization

potentials and photoionization cross sections of VOCs is
important for predicting the species-specific response of the
photoionization detectors and other nonselective optical
chemical sensors. Computing these values for thousands of
different molecules involved in the oxidation mechanisms of
atmospheric VOCs is infeasible because of computational cost.
Developing ML-based alternatives to accurately predict these
quantities is an alternative approach. In this study, multiple ML
methods were used to predict IP and σ values at 10.6 eV (117
nm). Improvements in model performance correlated with
progressively more explicit consideration of electronic structure.
For IP values, pretraining boosted performance substantially for
the GNN and QDF-NN models, reducing ε by 24% for both
cases. Similar but smaller improvements in accuracy were
achieved for σ values. Overall, the AFP models provided the
most accurate estimates, achieving ε = 0.23 ± 0.01 eV for IP and
ε = 2.8 ± 0.2 Mb for σ. Average relative errors for these two
methods were 2.5% for IP and 14% for σ across all molecules.
The results show that accurate parameter estimates of IP and σ
can be obtained for VOCs by ML methods to comparable
accuracy as that of quantum chemical methods. The ML
methods, however, have a lower computational cost by several
orders of magnitude. The ML methods can rapidly parse
species-specific responses of nonselective optical chemical
sensors, such as photoionization detectors. Future studies are
planned to incorporate this predictive model into experimental
studies utilizing PID sensors.
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