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Abstract001

Despite recent advancements in Large Lan-002
guage Models (LLMs), their performance on003
tasks involving long contexts remains sub-004
optimal. In this work, we propose DOU-005
BLEDIPPER, a novel In-Context-Learning006
method that automatically generates few-shot007
examples for long context QA tasks by recy-008
cling contexts. Specifically, given a long input009
context (1-3k tokens) and a query, we generate010
additional query-output pairs from the given011
context as few-shot examples, while introduc-012
ing the context only once. This ensures that the013
demonstrations are leveraging the same context014
as the target query while only adding a small015
number of tokens to the prompt. We further016
enhance each demonstration by instructing the017
model to explicitly identify the relevant para-018
graphs before the answer, which improves per-019
formance while providing fine-grained attribu-020
tion to the answer source. We apply our method021
on multiple LLMs and obtain substantial im-022
provements (+16 absolute points on average023
across models) on various QA datasets with024
long context. Surprisingly, despite introducing025
only single-hop ICL examples, LLMs success-026
fully generalize to multi-hop long-context QA027
using our approach.028

1 Introduction029

Long contexts are prevalent in various domains,030

ranging from legal documents and scientific articles031

to lengthy reports and novels. These may consist of032

a single extensive document or multiple passages,033

typically retrieved through specific retrieval mech-034

anisms (e.g., RAG (Lewis et al., 2020)).035

Yet, while Large Language Models (LLMs) have036

demonstrated impressive capabilities in a variety037

of tasks including answering questions requiring038

one or multiple reasoning steps, they often strug-039

gle to answer simple questions when faced with040

long contexts. Despite substantial engineering ef-041

forts (Chen et al., 2023b) to extend the context win-042

dow of LLMs to extremely long inputs (32k and043

Figure 1: Comparison of traditional In-Context-
Learning (ICL) and our new method. In traditional
ICL (left), each example comprises a possibly lengthy
context, accompanied by a query and an answer, typi-
cally derived from the training dataset. Conversely, our
approach (right) simplifies each example to just a ques-
tion and an answer, both of which are generated directly
from the provided input context.

even 1M tokens), these models continue to struggle 044

with much shorter inputs, comprising only a few 045

thousand tokens, especially when the relevant infor- 046

mation is buried in the middle of the context (Liu 047

et al., 2023b) or obscured by numerous irrelevant 048

details (Levy et al., 2024). 049

In-Context Learning (ICL) with few-shot exam- 050

ples may be an appealing solution to enhance LLM 051

performance in long contexts. However, apply- 052

ing ICL in real-world scenarios without access to 053

training data introduces significant challenges. De- 054

velopers need to maintain a demonstration pool 055

for retrieving semantically similar demonstrations 056

to any given query (Liu et al., 2022; Rubin et al., 057

2022). Furthermore, ICL adds a substantial token 058

overhead to the prompt, an issue that becomes even 059

more pronounced with long-context inputs. 060

In this work, we introduce a novel method to 061

enhance the QA performance of LLMs in long 062
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input setups. Our approach, termed DOUBLEDIP-063

PER, leverages LLMs’ In-Context Learning capa-064

bility and is based on two principles. First, instead065

of typical ICL, where each few-shot example is066

standalone with a separate lengthy context and a067

question-answer (QA) pair, we propose to recycle068

the given input context and automatically generate069

few-shot examples from this context. Specifically,070

we randomly select a few paragraphs from the071

given input context and generate QA pairs for each072

passage. These generated QAs serve as demon-073

stration examples and are placed between the input074

context and the target input question. Figure 1075

illustrates the differences between the traditional076

ICL with few-shot examples and DOUBLEDIPPER.077

Second, we enhance each ICL demonstration by078

explicitly instructing the model to identify relevant079

information prior to generating an answer. Explic-080

itly identifying relevant passages can be regarded081

as a structured Chain of Thought that incentivizes082

the model to pinpoint relevant information before083

reasoning, an essential capability for long-context084

processing.085

By generating few-shot demonstrations from086

various sections of the input context while in-087

structing the model to identify relevant passages,088

DOUBLEDIPPER encourages the model to develop089

deeper reading comprehension skills specific to090

the given input evidence. This, in turn, allows the091

model to answer subsequent queries with higher092

accuracy. DOUBLEDIPPER presents several advan-093

tages. First, recycling the same context for ICL094

demonstrations ensures that the few-shot examples095

refer to the exact same domain as the input ques-096

tion, thus obviating the need for external retrieval097

of similar demonstrations. Also, in terms of ef-098

ficiency, since each example does not include its099

own input context, our method adds to the orig-100

inal prompt a minimal number of tokens, result-101

ing in a substantially cheaper inference than tra-102

ditional ICL. Finally, DOUBLEDIPPER generates103

answers with attribution to relevant paragraphs, im-104

proving the model’s lookup ability and offering105

transparency, which substantially simplifies human106

evaluation (Menick et al., 2022; Gao et al., 2023;107

Liu et al., 2023a; Slobodkin et al., 2024).108

We applied DOUBLEDIPPER to 12 LLMs, both109

commercial (Gemini Pro, Nano, Flash (Reid et al.,110

2024); GPT-4 (Achiam et al., 2023)) and open-111

source ranging from 2B to 70B parameters (Llama112

3.1 (Dubey et al., 2024); Mistral (Jiang et al., 2023);113

Mixtral (Jiang et al., 2024); Gemma, (Riviere et al.,114

2024)). We evaluate our method on 7 QA datasets 115

with long inputs, including common multi-hop QA 116

datasets. Our experiments demonstrate that with 117

only 3 self-generated few-shot examples, DOU- 118

BLEDIPPER consistently outperforms the baseline 119

on our evaluation set by 16 absolute points on aver- 120

age across models. In addition, for some models, 121

DOUBLEDIPPER enhances the robustness to the 122

position of the relevant information within the text. 123

Interestingly, while our few-shot examples focus on 124

single-paragraph answers, DOUBLEDIPPER gener- 125

alizes well to multi-hop QAs and where the answer 126

requires information from multiple passages. 127

2 Background 128

Challenges in Long Context for Language Mod- 129

eling. LLMs have been well-documented to strug- 130

gle when input length grows (An et al., 2023), 131

and especially when it exceeds input lengths seen 132

during training (Anil et al., 2022). Various meth- 133

ods have been proposed to advance long-context 134

capabilities: Architectural, e.g., to augment the 135

embedding layer to cleverly extrapolate to unseen 136

lengths (Vaswani et al., 2017; Press et al., 2021; 137

Caciularu et al., 2022; Tan et al., 2024); via data, 138

e.g., to incorporate longer inputs and more chal- 139

lenging long-context scenarios into training (Chen 140

et al., 2024b; He et al., 2024; Chen et al., 2024a); 141

via attention intervention (Hsieh et al., 2024) or 142

by considering question likelihood as a signal for 143

prompt reordering (Liu et al., 2024b). However, 144

this challenging problem stubbornly remains in 145

competitive models (Liu et al., 2023b; Bishop et al., 146

2024; Levy et al., 2024). In contrast to the above 147

methods, DOUBLEDIPPER is a simple method that 148

does not involve training or architectural changes. 149

Many benchmarks targetting long-context have 150

been proposed, such as Scrolls and Zero- 151

Scrolls (Shaham et al., 2022, 2023), Loogle (Li 152

et al., 2023), LongBench (Bai et al., 2023b), L- 153

Eval (An et al., 2024), inter alia. The problem of 154

designing informative and reliable benchmarks in 155

long-context is an an active, ever-changing area of 156

research (Goldman et al., 2024; Yen et al., 2024). 157

We describe the most relevant evaluation bench- 158

marks used in this work in Section 4. 159

In-Context Learning In-context Learning (ICL) 160

consists of adding demonstrations to the prompt 161

in order to steer or improve model behavior (Min 162

et al., 2022). These demonstrations are either hand- 163

crafted (Song et al., 2022), or retrieved from a large 164

2



set of training examples (Liu et al., 2022; Rubin165

et al., 2022; Paranjape et al., 2023). While ICL166

provides a flexible approach to learn new tasks167

without updating parameters (Brown et al., 2020b;168

an Luo et al., 2024), applying ICL in real-world169

scenarios is challenging notably because there is170

no available training data for each user query.171

More closely related to our work, a few recent172

studies propose to prompt LLMs for automatically173

generating in-context demonstrations for various174

short context tasks. For instance, Kim et al., 2022175

focus on sentence classification tasks and prompt176

LLMs to generate full demonstrations conditioned177

on a label (e.g., “write a negative review”) and178

(Chen et al., 2023a; Yasunaga et al., 2024; Li et al.,179

2024) generate relevant exemplars to the query for180

reasoning problems. While effective for reason-181

ing tasks with short contexts, these methods are182

not directly applicable to long-context scenarios183

because LLMs would need to generate not just a184

question and an answer, but also an entire long185

context for each demonstration, which is both com-186

putationally expensive and prone to hallucination.187

DOUBLEDIPPER addresses these challenges by in-188

troducing a novel and efficient strategy: rather than189

generating entirely new contexts, it recycles the in-190

put context and generates only the question-answer191

(QA) pairs needed as demonstrations.192

3 DOUBLEDIPPER193

Given a long input text C composed of n paragraphs194

C = {p1, p2, ..., pn} and a question q, the goal is to195

generate the answer a and identify the set(s) of para-196

graphs that support the answer S = {s1, ..., sk}.197

The number of the supporting paragraphs is not198

known in advance and can be one or more.199

We describe DOUBLEDIPPER, an efficient200

method for improving the performance of large201

language models (LLMs) when dealing with long202

contexts. The core principles of DOUBLEDIPPER203

involve: (1) recycling the input context to automat-204

ically generate few-shot examples, and (2) “teach-205

ing” the model via in-context learning (ICL) to ex-206

plicitly pinpoint the supporting paragraphs before207

generating the answer.208

Figure 2 illustrates DOUBLEDIPPER. Starting209

with the input paragraphs C, we initially select k210

paragraphs at random (e.g., paragraphs 15, 5, and211

17, for k := 3). For each chosen paragraph, we212

prompt the model to formulate a question that per-213

tains to the specific paragraph, accompanied by an214

appropriate answer (for further details on prompt 215

specifications, refer to Appendix B). Each gener- 216

ated QA pair is directly associated with its origin 217

paragraph, enabling us to assemble the following 218

structured in-context demonstration, shown as the 219

DOUBLEDIPPER block in Figure 2: 220

Question : qi 221

Evidence : pi 222

Answer : ai 223

Here, pi indicates the index of the paragraph 224

associated with the QA pair (qi, ai). Given 225

a context C and a test question q, we com- 226

pile a list of generated demonstrations Ddemo = 227

(q1, p1, a1, . . . , qk, pk, ak) to predict the output 228

y ∼ pθ(y | C,Ddemo , q) where the output y is 229

the concatenation of one or more indices of the 230

supporting paragraph(s) S and the answer a. 231

Unlike traditional few shot examples that instruct 232

the model about a specific task, DOUBLEDIPPER 233

aims to coach the model on how to “handle” the in- 234

put context. This is achieved by guiding the model 235

to explicitly localize relevant information before 236

generating the answer. Also, by randomly sam- 237

pling multiple paragraphs from the input, DOU- 238

BLEDIPPER guarantees that the ICL demonstra- 239

tions involve reading different parts of the context, 240

allowing the model to better comprehend the in- 241

put text. Beyond improving the performance of 242

the QA task, instructing the model to provide the 243

supporting paragraphs offers transparency and sub- 244

stantially eases human evaluation. 245

DOUBLEDIPPER offers several advantages. 246

First, as each example in the demonstration consists 247

only of a question, an answer and the ID of relevant 248

passage, the number of added tokens due to the ex- 249

tra demonstrations is minimal (5%), leading to a 250

low additional cost and computation compared to 251

the traditional In-Context-Learning. Furthermore, 252

by reusing the same context to generate demon- 253

strations, our approach guarantees that all few shot 254

examples are derived from the exact same domain 255

as the input query (Rubin et al., 2022). 256

4 Experiments 257

Datasets We apply our method to various 258

datasets, each presenting its own domain-specific 259

challenges. We selected these datasets because the 260

supporting paragraphs are also annotated. Overall 261

our evaluation set includes 5.5K instances, with 262

statistics of each dataset given in Table 1. 263
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Instructions: […]

[0]: The Parc botanique de Neuvic (6 hectares) is a botanical garden located in Neuvic-Sur-L'Isle […]

[5] Santa Cruz de las Flores is the name of a town located south of Tlajomulco de Zuñiga, in the state of Jalisco, 
Mexico. It has been called Xochitlan, meaning "Place of Flowers" 
[6]: Graft-De Rijp is a former municipality in the Netherlands, in the province of North Holland. 

[15]: The Jardin Botanique de l'Université de Strasbourg (3.5 hectares) is a botanical garden at 28 rue Goethe, 
Strasbourg, Bas-Rhin, Alsace, France. It is open daily without charge.

[17]: Marquette is an unincorporated community in [...], located on Illinois Route 29, east of De Pue.
[18]: The capital and seat of the provincial government is Haarlem, and the province's largest city is the 
Netherlands' capital Amsterdam. The King's Commissioner of North Holland is Johan Remkes, serving since 2010.

See below a few examples:
Question: Is there an admission fee for the Jardin botanique de l'Université de Strasbourg?
Evidence: [15]
Answer: No, it is open daily without charge.
Question: What is the name of the town located south of Tlajomulco de Zuñiga?
Evidence: [5]
Answer: Santa Cruz de las Flores
Question: What is the name of the community that is west of Marquette?
Evidence: [17]
Answer: De Pue

Who was in charge of the state where Graft-De Rijp is located?
Evidence: [6, 18]
Answer: Johan Remkes
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t
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Figure 2: Example of DOUBLEDIPPER applied to the MuSique dataset. Given 20 passages as input, DOUBLEDIPPER
randomly selects 3 passages (specifically passages 15, 5, 17) and automatically generates a question-pair for each
one. As each QA is associated with its respective paragraph, we form the demonstrations to instruct the model to
identify the relevant passage(s) and the correct answer.

Dataset # Instances Avg. # tokens

Lost-in-the-middle 2,500 2,815
FLenQA 1,500 3,225
HotpotQA 500 1,646
2Wiki 500 1,222
MuSiQue 500 2,549

Table 1: Evaluation datasets in our experiments. The
average number of tokens is computed according to
Gemma’s tokenization of the vanilla prompt.

The Lost-in-the-middle dataset (Liu et al.,264

2023b) includes examples from NaturalQuestions-265

Open (Kwiatkowski et al., 2019). Each instance266

consists of twenty Wikipedia passages, with only267

one passage containing the answer to the query.268

The remaining passages are distractors that are lex-269

ically similar but do not contain the answer. To270

assess the robustness of LLMs to the position of271

relevant information, Liu et al. (2023b) evaluated272

cases where the relevant passage appeared in posi-273

tions 1, 5, 10, 15, and 20. Following their method-274

ology, we sampled 500 instances for each position,275

resulting in a total of 2,500 instances.276

FLenQA (Levy et al., 2024) is a benchmark277

that includes simple questions with answers of ei- 278

ther “True” or “False” based on two key sentences. 279

FLenQA includes three subtasks. The first subtask 280

is MonoRel, where each instance asks whether a 281

transitive relation between two entities holds based 282

on the context (e.g., "Is X younger than Y?" based 283

on the sentences "X is younger than Z" and "Z is 284

younger than Y"). The second subtask, PIR, in- 285

volves one key sentence indicating that a person 286

is in a specific room and another key sentence de- 287

scribing a property of this room. The question 288

asks whether the person is in a room with the de- 289

scribed property. The final subtask is SRT, based 290

on RuleTaker (Clark et al., 2020). Each instance 291

consists of a logical rule, two sentences each intro- 292

ducing a fact, and a question over the rule and facts. 293

For each subtask, FLenQA includes contexts with 294

varying lengths, from 50 to 3,000 tokens, by simply 295

adding irrelevant text, demonstrating consistent per- 296

formance degradation with increased input length. 297

In our experiments, we sampled 250 instances for 298

each subtask with input lengths of 2,000 and 3,000 299

tokens, leading to a total of 1,500 instances. 300

In addition, we evaluate our method on com- 301

mon multi-hop QA benchmarks. We sampled 302

4



500 instances from HotPotQA (Yang et al., 2018),303

2Wiki (Ho et al., 2020), and MuSiQue (Trivedi304

et al., 2021). In all these datasets, the input text305

includes multiple passages, and models need to per-306

form at least two steps of reasoning over different307

passages in order to answer the question.308

Models We apply DOUBLEDIPPER to a vari-309

ety of models, both commercial and open-source.310

The commercial models include Gemini 1.5 Pro,311

Gemini 1.5 Flash (Reid et al., 2024) and GPT-312

4o-mini (Achiam et al., 2023). The open-source313

models we tested are Llama 3.1 8B, Llama 3.1314

70B (Dubey et al., 2024), Gemma 2B (v2), Gemma315

9B (v2) and Gemma 27B (Riviere et al., 2024),316

Mistral-7B-Instruct (v0.2) (Jiang et al., 2023),317

Mixtral-8x7B-Instruct (v0.1) (Jiang et al., 2024)318

and Mistral Nemo Instruct 24071.319

Few-shot generation in DOUBLEDIPPER is an320

auxiliary task and should ideally run in an efficient321

time without requiring heavy resources. Therefore,322

in our main experiments, we employ Gemma 2B to323

generate the demonstrations at it is the smallest and324

most efficient model used in our experiments. See325

Section 6 for an ablation analysis of the effect of the326

chosen model for generating the demonstrations.327

Baselines We evaluate DOUBLEDIPPER against328

two main baselines. The first is a vanilla base-329

line that takes as input the entire context C and the330

query q and generates only the answer a, a com-331

mon prompting strategy in recent studies on long332

context (Liu et al., 2023b; Levy et al., 2024). The333

second baseline, Zero-shot + Evidence Retrieval,334

prompts the model in a zero-shot manner to first335

identify relevant passages before generating the an-336

swer, following common practices in generating337

with attribution (Gao et al., 2023; Slobodkin et al.,338

2024; Fierro et al., 2024).339

Evaluation We evaluate each dataset with the340

original evaluation metrics. Namely, we report341

Accuracy for Lost-in-the-middle (Liu et al., 2023b)342

and FLenQA (Levy et al., 2024), and Token F1 for343

HotPotQA (Yang et al., 2018), 2Wiki (Ho et al.,344

2020) and MuSique (Trivedi et al., 2021).345

In addition to the task’s accuracy, we also evalu-346

ate the performance of the identification of the sup-347

porting paragraph(s), by computing the F1 score on348

the predicted set of supporting passages compared349

to the ground truth (Yang et al., 2018; Ho et al.,350

2020; Trivedi et al., 2021).351

1https://mistral.ai/news/mistral-nemo/

Implementation Details We randomly select 352

three passages from the input, each containing at 353

least two sentences, and ask the model to generate 354

a single QA pair for each passage. See Section 6 355

for an analysis of the number of self-generated 356

demonstrations on the performance 357

5 Results 358

Result 1: DOUBLEDIPPER offers a substantial 359

performance boost. Table 2 presents the QA per- 360

formance of the baseline, Zero-shot + Evidence Re- 361

trieval and DOUBLEDIPPER on our evaluation set. 362

For brevity, we report the results of eight models 363

here and four models in Appendix C in Table 7, 364

which show similar trends. The results first show 365

that prompting models to explicitly identify the 366

relevant paragraphs before generating the answer 367

(Zero-shot + Evidence Retrieval) leads to a perfor- 368

mance improvement of 9.7 points on average across 369

models over the vanilla baseline. DOUBLEDIPPER, 370

leveraging demonstrations generated with the effi- 371

cient Gemma 2B parameters, offers an additional 372

substantial boost of 6.3 points for all models on 373

average, culminating in an overall improvement 374

of 16 absolute points over the vanilla baseline. 375

Notably, while DOUBLEDIPPER produces simple 376

QAs answerable from a single paragraph, it always 377

surpasses the baseline in multi-hop QA datasets 378

(HotPotQA, 2Wiki and MuSique). Likewise, DOU- 379

BLEDIPPER outperforms the baseline also on most 380

FLenQA datasets (PIR, MonoRel and SRT), which 381

involve synthetic True/False questions although the 382

demonstrations in DOUBLEDIPPER are typically 383

simple factoid questions. 384

While DOUBLEDIPPER exhibits strong perfor- 385

mance overall, we observe nuanced behavior on 386

the SRT dataset, with performance gains varying 387

across models (improvement for Gemini, Llama 388

3.1 8B, Mistral 7B and Mistral Nemo). This dis- 389

crepancy is likely due to the fact that SRT demands 390

a specific type of reasoning, where models must 391

reason over both a rule (e.g., “If X is big and X is 392

good then X is tall”) and dispersed facts (e.g., “Erin 393

is Good” and “Erin is furry”) to determine whether 394

a statement (e.g., “Erin is tall”) can be derived from 395

the context. Finally, the Lost dataset highlights a 396

specific characteristic of DOUBLEDIPPER: while 397

the baseline’s known positional bias (Liu et al., 398

2024a) masks the average improvement for some 399

models, DOUBLEDIPPER substantially boost per- 400

formance when relevant information appear in the 401
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Avg. 2Wiki MonoRel PIR SRT HotPotQA Lost MuSique

Gemini Pro (vanilla) 60.5 24.9 95.0 97.6 64.4 46.7 71.6 23.1
Zero-shot + Evidence Retrieval 62.3 32.5 94.6 95.8 62.4 49.6 74.8 26.5
DOUBLEDIPPER 70.4 46.8 97.4 99.0 79.6 60.9 72.4 36.4

Gemini Flash (vanilla) 42.9 10.2 70.0 86.0 57.6 10.0 59.5 7.3
Zero-shot + Evidence Retrieval 58.2 30.2 78.8 90.6 65.0 44.9 67.4 30.2
DOUBLEDIPPER 66.1 48.0 85.8 95.0 68.6 60.6 65.0 39.7

Gemma 2 9B (v2) (vanilla) 44.0 11.4 74.8 81.8 55.6 13.8 61.0 9.3
Zero-shot + Evidence Retrieval 58.7 38.6 82.0 83.4 59.4 56.1 64.4 26.8
DOUBLEDIPPER 61.2 41.7 84.0 95.0 51.4 61.2 61.8 33.3

Gemma 2 27B (v2) (vanilla) 48.0 11.2 85.2 79.2 63.8 14.3 62.4 19.9
Zero-shot + Evidence Retrieval 59.7 34.3 90.6 87.4 59.0 51.7 65.2 29.8
DOUBLEDIPPER 64.2 42.0 92.0 96.4 58.6 64.2 62.5 33.9

Llama 3.1 8B (vanilla) 37.2 11.8 56.2 52.2 48.6 20.7 63.5 7.4
Zero-shot + Evidence Retrieval 53.1 42.2 71.8 65.4 50.8 55.3 62.0 24.5
DOUBLEDIPPER 59.9 38.7 91.2 90.6 51.0 59.3 58.1 30.1

Llama 3.1 70B (vanilla) 67.5 46.5 93.2 95.6 83.2 57.0 69.6 27.6
Zero-shot + Evidence Retrieval 71.0 57.6 97.8 97.6 81.0 62.0 71.5 29.5
DOUBLEDIPPER 72.9 62.3 98.6 98.8 73.0 71.5 66.0 40.2

Mistral 7B (v0.3) (vanilla) 37.4 14.1 59.2 57.4 50.2 15.8 60.8 4.6
Zero-shot + Evidence Retrieval 44.0 23.8 66.2 62.4 49.6 34.1 58.6 13.6
DOUBLEDIPPER 51.0 28.6 68.4 88.8 50.6 43.4 60.7 16.7

Mistral-Nemo 44.0 17.2 72.6 67.0 51.0 28.9 59.7 11.9
Zero-shot + Evidence Retrieval 46.7 29.1 59.8 67.2 51.0 39.8 60.6 19.4
DOUBLEDIPPER 53.3 38.7 58.0 81.0 51.4 51.9 62.9 29.5

Table 2: Accuracy of the QA task for the vanilla baseline (prompting the model to only answer the question),
Zero-shot + Evidence Retrieval (prompting the model to explicitly identify the relevant passage(s) before generating
the answer) and DOUBLEDIPPER with 3 demonstrations generated by Gemma 2 2B.

middle of the context (further elaborated in Result402

3), demonstrating its efficacy in mitigating posi-403

tional biases in long-context settings.404

Result 2: Learning to retrieve the evidence(s)405

with DOUBLEDIPPER is more effective in com-406

mercial and large open source models. Table 3407

presents the performance of the supporting para-408

graphs prediction for the Zero-shot + Evidence Re-409

trieval and DOUBLEDIPPER on our evaluation set.410

For all commercial models, Llama 3.1 70B and the411

recent Mistral-Nemo-Instruct-2407, DOUBLEDIP-412

PER predicts better the supporting paragraphs than413

in the zero-shot setting (+2.6 F1 for Gemini Pro,414

+3.4 F1 for Gemini Flash, +2.7 F1 for Llama 3.1415

70B and +6.4 F1 for Mistral-Nemo-Instruct-2407).416

Conversely, DOUBLEDIPPER slightly hurts the per-417

formance of common open source models (e.g.,418

-2.8 F1 for Mistral, -0.3 F1 for Llama 3.1, -1.3 F1419

for Gemma 27B, etc.).420

This discrepancy appears to stem from shortcut421

learning (Tang et al., 2023). Indeed, our demon-422

strations in DOUBLEDIPPER use a single evidence423

paragraph, and smaller models tend to overfit to424

this pattern, learning to retrieve only one passage425

even when multiple are needed. For example, under426

DOUBLEDIPPER, Gemma 2 9B retrieves only 1.2 427

paragraphs on average, compared to 2 in the “un- 428

constrained” zero-shot setting. Larger models like 429

Gemini Pro do not exhibit this behavior, correctly 430

generalizing to predict an average of 2 evidence 431

paragraphs even with single-paragraph demonstra- 432

tions. This hypothesis is strongly supported by 433

the “Lost” dataset, which requires only a single 434

evidence paragraph. On this dataset, nearly all 435

models, including smaller ones, benefit substan- 436

tially from DOUBLEDIPPER (e.g., +12.2 F1 for 437

Mistral 7B). Crucially, despite their suboptimal re- 438

trieval performance on multi-evidence tasks, these 439

smaller models still produce better final answers 440

with DOUBLEDIPPER than the zero-shot baseline, 441

highlighting the net benefit of the approach. 442

Result 3: DOUBLEDIPPER makes models more 443

robust to the position of relevant information. 444

Following Liu et al. (2023b), Figure 3 shows the 445

performance of Gemma 2 9B, Mixtral 8x7B and 446

Gemini Flash for both the baseline and DOU- 447

BLEDIPPER on our sample of the Lost-of-the- 448

middle dataset, according to the position of the doc- 449

ument that contains the answer. See Appendix D 450

for the performance curve of the other tested mod- 451
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Avg. 2Wiki MonoRel PIR SRT HotPotQA Lost MuSique

Gemini Pro
Zero-shot + Evidence Retrieval 83.7 96.7 97.7 97.5 62.8 92.1 63.6 75.3
DOUBLEDIPPER 86.3 94.4 99.8 97.1 80.9 90.0 66.4 75.4

Gemini Flash
Zero-shot + Evidence Retrieval 75.7 82.3 90.5 72.6 70.4 80.9 67.3 65.9
DOUBLEDIPPER 79.1 83.7 98.3 80.2 71.2 84.6 66.1 69.5

Gemma 2 9B
Zero-shot + Evidence Retrieval 61.9 76.7 69.3 60.3 43.2 76.5 51.5 55.9
DOUBLEDIPPER 57.0 74.2 52.5 59.0 23.1 78.4 55.3 56.8

Gemma 2 27B
Zero-shot + Evidence Retrieval 85.1 96.2 97.9 96.1 84.1 90.7 53.4 77.3
DOUBLEDIPPER 83.8 97.5 85.4 97.6 74.9 93.0 59.7 78.8

Llama 3.1 8B
Zero-shot + Evidence Retrieval 61.7 53.2 86.5 66.9 67.8 63.2 41.1 53.5
DOUBLEDIPPER 61.4 68.9 71.4 54.9 52.8 73.7 53.0 54.8

Llama 3.1 70B
Zero-shot + Evidence Retrieval 85.1 98.2 98 89.2 82.3 93.9 52.5 81.6
DOUBLEDIPPER 87.8 98.6 100 92.8 83.8 96.5 61.6 81.6

Mistral 7B (v0.3)
Zero-shot + Evidence Retrieval 46.6 62.4 49.8 46.2 17.5 64.0 43.4 43.0
DOUBLEDIPPER 43.8 63.4 33.8 42.5 4.2 66.7 55.6 40.2

Mixtral 7x8B v(0.1)
Zero-shot + Evidence Retrieval 60.0 72.4 69.4 64.6 43.4 76.9 40.6 52.4
DOUBLEDIPPER 58.9 70.4 81.6 63.6 18.3 75.0 50.4 53.2

Mistral-Nemo
Zero-shot + Evidence Retrieval 69.7 91.1 85.0 76.9 35.9 88.8 39.8 70.3
DOUBLEDIPPER 76.1 95.9 95.1 81.5 39.0 93.7 54.8 73.0

Table 3: Performance (F1) of supporting paragraph(s) prediction.

k = 1 k = 3 k = 5 k = 10

Gemini Nano 60.0 62.1 62.2 62.3
Gemini Flash 65.3 66.1 65.9 66.1
Gemma 2B (v2) 47.0 49.5 49.6 49.9
Gemma 9B (v2) 58.7 61.2 61.4 61.3
Llama 3.1 57.7 59.9 60.6 61.4
Mistral 7B (v0.3) 48.9 51.0 51.1 51.4
Mixtral 7x8B (v0.1) 49.3 52.2 51.7 52.2

Table 4: Average performance on our evaluation set
with various numbers of self-generated few shot demon-
strations (k) in DOUBLEDIPPER. See Appendix E.1 for
the results on each evaluation dataset.

els, which show similar trends.452

Overall, the performance curve for DOUBLEDIP-453

PER consistently surpasses the baseline when the454

relevant information appears “in the middle” and455

sometimes also at the beginning and/or the end456

(e.g., Gemini Flash). This variation can likely be457

attributed to the inherent biases of LLMs towards458

the beginning and end of inputs, while adding in459

context demonstrations mitigates this bias. This460

reveals that beyond improving performance, DOU-461

BLEDIPPER can make the model more robust to462

the position of the relevant document.463

6 Ablation Studies464

How many examples are needed? In Table 4,465

we explore for some models the impact of varying466

k, the number of self-generated few-shot examples467

in DOUBLEDIPPER to 1, 3, 5, and 10. On aver-468

age, a single demonstration already provides an im- 469

provement over the baseline. Three demonstrations 470

adds another boost of 2 points, while increasing 471

the number of demonstrations to 5 and 10 leads 472

to a marginal improvement. This finding is in line 473

with previous work (Brown et al., 2020a; Min et al., 474

2022). We conclude that a small number of exam- 475

ples carries most of the benefit with our method, 476

but given additional computation budget, adding 477

more examples does carry additional minor benefit. 478

DOUBLEDIPPER without identification of sup- 479

porting paragraphs To ablate the second core 480

principle of DOUBLEDIPPER—the explicit identi- 481

fication of supporting paragraphs prior to answer 482

generation—we prompt open-source models with 483

self-generated few-shot examples consisting solely 484

of question-answer pairs, without instructing the 485

model to retrieve the relevant passage(s). These 486

demonstrations may undermine DOUBLEDIPPER’s 487

objective by encouraging models to produce an- 488

swers without grounding them in the source text. 489

The results confirms our hypothesis: removing evi- 490

dence identification consistently degrades QA per- 491

formance compared to the full DOUBLEDIPPER 492

approach. When averaging results across models 493

and datasets, this omission leads to a substantial 494

performance drop from 54.8 to 46.6. Detailed re- 495

sults are provided in Appendix E.3, Table 10. 496

Investigating the effect of the few-shot generator 497

To understand the impact of the default chosen 498

model (Gemma 2 2B) for generating the demon- 499
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Figure 3: Performance (accuracy) of Gemma 2 9B, Mixtral 8x7B and Gemini Flash with and without DOUBLEDIP-
PER on our sample of the Lost-in-the-middle dataset (Liu et al., 2023b) according to the position of the document
that contains the answer.

Gemma 2B Self Gemini Pro

Gemini Pro 70.4 71.6 71.6
Gemini Flash 66.1 67.5 68.1
Gemini Nano 62.1 61.7 62.8
Gemma 2B 49.5 49.5 51.0
Gemma 9B 61.2 62.0 63.5
Llama 3.1 59.9 60.1 61.5
Mistral v0.3 51.0 49.8 52.6
Mixtral 52.2 49.8 54.4

Table 5: Average performance of DOUBLEDIPPER with
different models for generating the demonstrations. See
Appendix E.2 for the results on each evaluation dataset.

strations, we conducted two additional experiments.500

The first experiment is SELF in which we use the501

same model for generating the demonstrations and502

for answering the original question. In the second503

experiment, we generate the demonstrations with504

the best LLM used in our experiments, namely505

Gemini Pro. The average results are reported in506

Table 5 and the performance for each evaluation507

dataset is presented in Appendix E.2. The re-508

sults show that generating the demonstrations with509

Gemma 2 or SELF achieves similar performance,510

while Gemini Pro leads to a consistent increase in511

performance across models, indicating that future512

better models can improve further the performance.513

Please refer to Appendix E.2 for additional abla-514

tions on the few-shot generation.515

DOUBLEDIPPER vs. Traditional ICL Another516

alternative to use ICL in practice is to preprend517

each QA prompt by a fixed set of QA demon-518

strations, each composed of a context, a question519

and an answer. Although the demonstrations are520

not necessarily from the same distribution as each521

user query, this common practice is helpful for522

task recognition and for an overview of the overall523

format (Min et al., 2022; Pan et al., 2023). For524

the demonstrations, we randomly selected 3 ex-525

Baseline ICL DOUBLEDIPPER

Gemma 2 9B 44.0 51.0 61.2
Gemma 2 27B 48.0 54.9 64.2
Llama 3.1 8B 37.2 40.7 59.9
Llama 3.1 70B 67.5 65.4 72.9
Mistral v0.3 37.4 42.0 51.0
Mixtral v0.1 42.6 45.1 52.2
GPT 4o mini 51.3 56.1 60.8

Table 6: Comparison of traditional In-Context Learning
(ICL) where each demonstration example comprises a
full text, a question and an answer from an external
dataset to DOUBLEDIPPER where the demonstrations
contain only question-answer pairs, automatically gen-
erated on the same input text.

amples from the SQuAD 2.0 dataset (Rajpurkar 526

et al., 2018). We compare the average results of 527

the baseline, ICL and DOUBLEDIPPER in Table 6 528

and report full results in Appendix E.4 in Table 11. 529

While ICL is effective and outperforms the base- 530

line, DOUBLEDIPPER provides an additional per- 531

formance boost of 9.5 points on average. 532

Qualitative analysis: Correctness of the gener- 533

ated QA pairs We manually analyze 150 QAs 534

generated by Gemma 2B as demonstrations. Our 535

review confirms that 93.5% of these self-generated 536

QAs are correct, meaning that the question is mean- 537

ingful and the answer could be found in the corre- 538

sponding paragraph. 539

7 Conclusion 540

We introduce DOUBLEDIPPER, a simple method 541

for enhancing the performance of LLMs with long 542

context. By recycling the input context to generate 543

the demonstrations, DOUBLEDIPPER successfully 544

addresses the practical challenges of ICL with long- 545

context and outperforms multiple baselines in var- 546

ious QA settings, including distractor passages in 547

the input, True/False questions and multi-hop QA. 548
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8 Limitations549

Our work has several limitations.550

First, our current work focuses on multiple vari-551

ants of QA tasks (distractor passages, True/False552

and multi-hop), where the demonstrations teach the553

models to identify specific evidence paragraph(s)554

and extract answers. Future research can extend555

our work to other QA settings (e.g., information556

seeking) and additional tasks (e.g., summarization).557

Second, our evaluation set is constrained to in-558

stances that are solely in English and range between559

1,000 to 4,000 tokens. While this demonstrates560

the method’s effectiveness, its scalability and per-561

formance on much longer contexts (e.g., 100k+562

tokens) and in multilingual settings remain open563

questions.564

Finally, while DOUBLEDIPPER is significantly565

more token-efficient than traditional ICL, the ini-566

tial step of generating demonstrations introduces567

a computational and latency overhead compared568

to a zero-shot baseline. This presents a trade-off569

between inference cost and the substantial perfor-570

mance gains our method provides.571
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A Appendix 942

B Prompts 943

Figure 4 shows the zero-shot prompt we use 944

for generating the question-answer pairs in DOU- 945

BLEDIPPER. For the QA prompts, we use the same 946

instructions and prompt template as the original 947

papers (Lost-in-the-middle and FLenQA) and add 948

a simple line for the instructions in other multi-hop 949

QA datasets: “Please answer the question based 950

on the given passages below.”. For MuSique, since 951

the dataset includes questions that are not answer- 952

able, we add the following sentence to the prompt: 953

“If the question can’t be answered given the given 954

passages, please write "unanswerable"”. 955

C Additional Results 956

Table 7 shows the QA performance of the baseline, 957

Zero-shot + Evidence Retrieval and DOUBLEDIP- 958

PER on our evaluation set when applied to Gemma 959

2B, Gemini Nano and GPT-4o-mini. Her 960

D Lost-in-the-middle 961

Figure 5 shows the QA accuracy of the models 962

Gemma 2 2B, Mistral 7B, Gemini Nano and Gem- 963

ini Pro on our subset of the “Lost-in-the-middle” 964

dataset. 965

E Analysis 966

E.1 Impact of the Number of Demonstrations 967

in DOUBLEDIPPER 968

Table 8 presents the results of DOUBLEDIPPER 969

with 1, 3 (main experiment in the paper), 5 and 970

10 generated demonstrations. For all these ex- 971

periments, the demonstrations were generated by 972

Gemma 2 2B. 973

Figure 6 shows the QA accuracy of DOU- 974

BLEDIPPER on “Lost” according to the position 975

of the relevant passage for each k ∈ {1, 3, 5, 10}. 976

E.2 Impact of the few-shot generator 977

Table 9 presents the detailed QA performance of all 978

models with different models for generating DOU- 979

BLEDIPPER’s demonstrations. As mentioned in the 980

paper (Section 6), generating the demonstrations 981

with the best model (ie. Gemini Pro) achieves the 982

best performance overall. 983

Can we generate demonstrations with smaller 984

LLMs? We next study whether smaller, more 985
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Given the following TEXT, please write a simple question whose answer appears verbatim in
the text.The question should include enough information so that it can be understood
without the text.The answer should be concise.Please write both the question ans answer
in the following format:

Q:
A:
TEXT: [PARAGRAPH]

Figure 4: Template prompt for generating the QA pairs in DOUBLEDIPPER.

Avg. 2Wiki MonoRel PIR SRT HotPotQA Lost MuSique

Gemini Nano (vanilla) 41.6 10.8 72.2 66.8 55.4 21.3 59.6 5.2
Zero-shot + Evidence Retrieval 56.5 32.0 82.4 82.4 56.4 56.7 60.5 25.2
DOUBLEDIPPER 62.1 40.6 86.6 95.4 56.2 65.1 60.5 30.4

GPT-4o-mini (vanilla) 51.3 19.0 78.6 89.6 71.6 23.3 67.8 9.3
Zero-shot + Evidence Retrieval 53.8 19.4 89.6 93.0 63.2 26.2 67.9 17.6
DOUBLEDIPPER 60.8 29.8 94.8 96.4 61.6 53.7 64.7 24.5

Gemma 2 2B (v2) (vanilla) 38.6 8.9 71.8 68.6 51.2 13.3 49.6 6.5
Zero-shot + Evidence Retrieval 42.0 22.3 66.8 70.6 40.2 30.6 47.6 16.2
DOUBLEDIPPER 49.5 23.7 85.8 81.6 50.0 39.9 46.7 18.8

Mixtral 7x8B (v0.1) (vanilla) 42.6 13.7 73.0 66.2 51.0 18.2 67.7 8.4
Zero-shot + Evidence Retrieval 47.4 18.8 81.8 73.6 50.6 26.3 67.9 13.1
DOUBLEDIPPER 52.2 22.3 91.8 86.0 47.8 35.1 66.6 16.0

Table 7: Accuracy of the QA task for the vanilla baseline (prompting the model to only answer the question),
Zero-shot + Evidence Retrieval (prompting the model to explicitly identify the relevant passage(s) before generating
the answer) and DOUBLEDIPPER with 3 demonstrations generated by Gemma 2 2B.

Avg. 2Wiki MonoRel PIR SRT HotPotQA Lost MuSique

Gemini Nano

k = 1 60.03 37.68 85.20 88.20 56.40 62.50 60.68 29.56
k = 3 62.12 40.55 86.60 95.40 56.20 65.12 60.52 30.44
k = 5 62.25 41.79 87.00 95.60 55.20 65.05 60.56 30.52
k = 10 62.33 43.16 86.00 96.20 55.20 65.37 60.44 29.96

Gemini Flash

k = 1 65.34 48.83 84.80 90.80 66.40 60.17 65.16 41.19
k = 3 66.11 48.03 85.80 95.00 68.60 60.58 65.04 39.71
k = 5 65.87 47.49 87.20 95.00 66.60 61.13 64.20 39.48
k = 10 66.08 46.13 86.20 95.20 69.00 62.03 63.80 40.18

Gemma 2B (v2)

k = 1 47.05 24.05 73.60 77.00 50.20 41.32 47.04 16.13
k = 3 49.48 23.66 85.80 81.60 50.00 39.85 46.68 18.77
k = 5 49.59 26.70 85.40 80.40 48.40 40.34 46.56 19.30
k = 10 49.92 26.43 85.80 81.40 49.00 40.91 47.68 18.26

Gemma 9B (v2)

k = 1 58.77 37.58 81.00 87.60 51.60 58.46 63.44 31.68
k = 3 61.20 41.70 84.00 95.00 51.40 61.21 61.80 33.31
k = 5 61.40 44.42 84.20 94.80 50.00 62.99 60.76 32.60
k = 10 61.34 43.78 84.40 95.80 50.40 63.01 59.96 32.05

Llama 3.1 8B

k = 1 57.74 38.20 85.40 84.80 51.80 57.50 60.96 25.49
k = 3 59.86 38.75 91.20 90.60 51.00 59.29 58.12 30.09
k = 5 60.58 41.56 89.80 91.40 51.00 61.31 57.68 31.28
k = 10 61.41 44.68 89.00 91.00 51.00 63.88 56.36 33.98

Mistral 7B

k = 1 48.91 28.86 67.60 77.40 50.00 40.62 62.00 15.91
k = 3 51.03 28.65 68.40 88.80 50.60 43.44 60.68 16.66
k = 5 51.12 29.86 69.20 89.00 49.40 43.83 60.36 16.23
k = 10 51.44 30.14 68.20 89.40 49.00 46.49 59.96 16.91

Mixtral 7x8B

k = 1 49.26 19.83 86.00 74.80 49.40 31.73 69.00 14.07
k = 3 52.22 22.31 91.80 86.00 47.80 35.10 66.56 15.97
k = 5 51.65 23.55 91.40 82.40 47.20 34.64 64.92 17.46
k = 10 52.18 23.49 91.80 84.40 47.00 36.23 64.00 18.32

Table 8: Performance of DOUBLEDIPPER on our evaluation set with various numbers of self-generated few shot
demonstrations (k).

efficient models could be used to generate demon-986

strations for DOUBLEDIPPER. To do this, we987

created demonstrations using two smaller LLMs,988

Gemma 3 1B (Kamath et al., 2025) and Qwen 2.5 989

0.5B (Bai et al., 2023a), and provid them to a sub- 990

set of our evaluation models (Llama 3.1, Gemma 991
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Figure 5: Performance (accuracy) of Gemma 2 2B, Mistral 7B, Gemini Nano and Gemini Pro with and without
DOUBLEDIPPER on our sample of the Lost-in-the-middle dataset (Liu et al., 2023b) according to the position of the
document that contains the answer.

Figure 6: Performance (accuracy) of several models with DOUBLEDIPPER according to the number of self-generated
demonstrations in the prompt.

Avg. 2Wiki MonoRel PIR SRT HotPotQA Lost MuSique

Gemini Pro Gemma 2B 70.4 46.8 97.4 99.0 79.6 60.9 72.4 36.4
Self 71.6 49.6 98.2 99.6 78.8 62.5 72.5 40.1

Gemini Flash
Gemma 2B 66.1 48.0 85.8 95.0 68.6 60.6 65.0 39.7
Self 67.5 49.5 88.6 96.8 65.6 64.3 65.2 42.5
Gemini Pro 68.1 50.3 90.4 96.0 69.0 64.8 64.8 41.6

Gemini Nano
Gemma 2B 62.1 40.6 86.6 95.4 56.2 65.1 60.5 30.4
Self 61.7 39.8 85.8 95.2 56.2 64.3 60.7 30.0
Gemini Pro 62.8 40.4 87.2 99.0 54.4 66.8 60.4 31.7

Gemma 2 2B Self 49.5 23.7 85.8 81.6 50.0 39.9 46.7 18.8
Gemini Pro 51.0 25.2 83.8 93.4 48.0 41.7 46.2 18.4

Gemma 2 9B
Gemma 2B 61.2 41.7 84.0 95.0 51.4 61.2 61.8 33.3
Self 62.0 44.8 82.4 97.0 50.6 62.9 61.5 34.9
Gemini Pro 63.5 46.2 86.4 99.2 52.2 64.4 61.4 34.8

Llama 3.1 8B
Gemma 2B 59.9 38.7 91.2 90.6 51.0 59.3 58.1 30.1
Self 60.1 41.3 88.6 89.8 50.8 61.5 57.8 31.0
Gemini Pro 61.5 41.0 89.8 95.6 51.6 63.5 57.5 31.7

Mistral 7B (v0.3)
Gemma 2B 51.0 28.6 68.4 88.8 50.6 43.4 60.7 16.7
Self 49.8 25.2 68.8 93.8 49.6 36.5 60.6 14.3
Gemini Pro 52.6 31.4 67.2 96.4 48.2 45.7 62.1 17.0

Mixtral 7x8B (v0.1)
Gemma 2B 52.2 22.3 91.8 86.0 47.8 35.1 66.6 16.0
Self 49.8 16.0 91.8 86.0 48.8 25.5 67.8 12.8
Gemini Pro 54.4 20.8 94.8 96.2 49.0 36.3 66.6 16.9

Table 9: Performance of DOUBLEDIPPER according to the model for generating the demonstrations (Gemma 2B,
Self or Gemini Pro).

2 9B, Gemma 2 27B, and Mistral Nemo). The992

results show that DOUBLEDIPPER maintains its993

advantage over baselines, exhibiting only a modest994

performance drop of less than 2 points compared995

to using demonstrations from the larger Gemma 2 996

2B. This finding suggests that DOUBLEDIPPER re- 997

mains effective even when its demonstration gener- 998

ation component is replaced with more lightweight 999
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models.1000

Can DOUBLEDIPPER benefit from incorrect1001

demonstrations? To answer this question, we1002

prompt Gemma 2 2B to generate a question and1003

an incorrect answer and provide these demonstra-1004

tions to a sample of our tested models (Llama1005

3.1, Gemma 2 9B, Gemma 2 27B and Mistral1006

Nemo). The results are mixed and not conclusive:1007

some models barely benefit or suffer from incor-1008

rect demonstrations (+1.6 for Gemma 2 9B, -0.41009

for Gemma 2 27B), while others somehow bene-1010

fit from incorrect demonstrations (+4.8 for Llama1011

3.1 8B and +5.1 for Mistral Nemo over the base-1012

line). Critically, however, all models still perform1013

substantially worse than DOUBLEDIPPER with cor-1014

rect demonstrations. A possible explanation for the1015

unexpected gains is that even incorrect examples1016

provide useful structural guidance for the task for-1017

mat, a phenomenon observed in prior work (Min1018

et al., 2022).1019

E.3 Impact of the identification of supporting1020

paragraphs in the QA generation1021

Table 10 compares the performance of DOU-1022

BLEDIPPER to DOUBLEDIPPER without evidence1023

identification.1024

E.4 In-Context-Learning1025

Table 11 presents the results of our tested models1026

when prepended with three in-context demonstra-1027

tions, taken from the Squad 2.0 dataset (Rajpurkar1028

et al., 2018).1029
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Avg. 2Wiki MonoRel PIR SRT HotPotQA Lost MuSique

Gemma 2B DOUBLEDIPPER (QA only) 46.4 16.0 84.6 79.2 49.6 31.1 49.5 14.7
DOUBLEDIPPER 49.5 23.7 85.8 81.6 50.0 39.9 46.7 18.8

Gemma 9B DOUBLEDIPPER (QA only) 55.1 22.5 91.0 96.6 52.0 42.9 61.0 20.0
DOUBLEDIPPER 61.2 41.7 84.0 95.0 51.4 61.2 61.8 33.3

Mistral 7B (v0.3) DOUBLEDIPPER (QA only) 49.1 21.8 73.4 89.8 48.6 38.6 60.3 11.5
DOUBLEDIPPER 51.0 28.6 68.4 88.8 50.6 43.4 60.7 16.7

Mixtral 8x7B (v0.1) DOUBLEDIPPER (QA only) 49.5 17.0 91.4 86.8 50.8 22.9 65.8 11.9
DOUBLEDIPPER 52.2 22.3 91.8 86.0 47.8 35.1 66.6 16.0

Llama 3.1 8B DOUBLEDIPPER (QA only) 32.7 25.0 9.2 41.4 46.6 33.5 56.7 16.6
DOUBLEDIPPER 59.9 38.7 91.2 90.6 51.0 59.3 58.1 30.1

Table 10: Performance of DOUBLEDIPPER and DOUBLEDIPPER without instructing the models to retrieve the
evidence (QA only) on the QA datasets.

Avg. 2Wiki MonoRel PIR SRT HotPotQA Lost MuSique

Gemma 2 2B 40.4 11.5 69.4 59.8 50.6 33.1 48.8 9.7
Gemma 2 9B 51.0 21.7 76.8 78.8 53.6 49.1 60.0 17.3
Gemma 2 27B 54.9 21.3 85.0 76.6 58.2 53.3 61.5 28.3
Llama 3.1 8B 40.7 16.4 59.6 53.0 45.6 36.8 62.5 11.0
Llama 3.1 70B 65.4 38.1 93.0 91.4 75.4 59.7 67.6 32.4
Mistral v0.3 42.0 25.5 56.4 52.8 50.2 42.7 58.2 8.3
Mixtral v0.1 45.1 19.6 73.6 65.4 50.4 30.7 66.6 9.6
GPT 4o mini 56.1 29.7 77.4 86.8 65.2 49.4 65.6 18.5

Table 11: Accuracy of the QA task for the ICL experiment with 3 fixed demonstrations prepended to each instance.
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