
Reproducibility Report
Rigging the Lottery: Making All Tickets Winners

Varun Sundar
University of Wisconsin Madison

vsundar4@wisc.edu

Rajat Vadiraj Dwaraknath
Stanford University

rajatvd@stanford.edu

Reproducibility Summary

Scope of Reproducibility

For a fixed parameter count and compute budget, the proposed algorithm (RigL) claims to directly train sparse networks
that match or exceed the performance of existing dense-to-sparse training techniques (such as pruning). RigL does so
while requiring constant Floating Point Operations (FLOPs) throughout training. The technique obtains state-of-the-art
performance on a variety of tasks, including image classification and character-level language-modelling.

Methodology

We implement RigL from scratch in Pytorch using boolean masks to simulate unstructured sparsity. We rely on the
description provided in the original paper, and referred to the authors’ code for only specific implementation detail such
as handling overflow in ERK initialization. We evaluate sparse training using RigL for WideResNet-22-2 on CIFAR-10
and ResNet-50 on CIFAR-100, requiring 2 hours and 6 hours respectively per training run on a GTX 1080 GPU.

Results

We reproduce RigL’s performance on CIFAR-10 within 0.1% of the reported value. On both CIFAR-10/100, the central
claim holds—given a fixed training budget, RigL surpasses existing dynamic-sparse training methods over a range of
target sparsities. By training longer, the performance can match or exceed iterative pruning, while consuming constant
FLOPs throughout training. We also show that there is little benefit in tuning RigL’s hyper-parameters for every sparsity,
initialization pair—the reference choice of hyperparameters is often close to optimal performance.

Going beyond the original paper, we find that the optimal initialization scheme depends on the training constraint. While
the Erdos-Renyi-Kernel distribution outperforms Random distribution for a fixed parameter count, for a fixed FLOP
count, the latter performs better. Finally, redistributing layer-wise sparsity while training can bridge the performance
gap between the two initialization schemes, but increases computational cost.

What was easy

The authors provide code for most of the experiments presented in the paper. The code was easy to run and allowed us
to verify the correctness of our re-implementation. The paper also provided a thorough and clear description of the
proposed algorithm without any obvious errors or confusing exposition.

What was difficult

Tuning hyperparameters involved multiple random seeds and took longer than anticipated. Verifying the correctness of
a few baselines was tricky and required ensuring that the optimizer’s gradient (or momentum) buffers were sparse (or
dense) as specified by the algorithm. Compute limits restricted us from evaluating on larger datasets such as Imagenet.

Communication with original authors

We had responsive communication with the original authors, which helped clarify a few implementation and evaluation
details, particularly regarding the FLOP counting procedure.

Preprint. Under review.

1 Introduction

Sparse neural networks are a promising alternative to conventional dense networks—having comparatively greater
parameter efficiency and lesser floating-point operations (FLOPs) (Han et al. [2016], Ashby et al. [2017], Srinivas et al.
[2017]). Unfortunately, present techniques to produce sparse networks of commensurate accuracy involve multiple
cycles of training dense networks and subsequent pruning. Consequently, such techniques offer no advantage over
training dense networks, either computationally or memory-wise.

In the paper Evci et al. [2020], the authors propose RigL, an algorithm for training sparse networks from scratch. The
proposed method outperforms both prior art in training sparse networks, as well as existing dense-to-sparse training
algorithms. By utilising dense gradients only during connectivity updates and avoiding any global sparsity redistribution,
RigL can maintain a fixed computational cost and parameter count throughout training.

As a part of the ML Reproducibility Challenge, we replicate RigL from scratch and investigate if dynamic-sparse
training confers significant practical benefits compared to existing sparsifying techniques.

2 Scope of reproducibility

In order to verify the central claims presented in the paper we focus on the following target questions:

• Does RigL outperform existing sparse-to-sparse training techniques—such as SET (Mocanu et al. [2018]) and
SNFS (Dettmers and Zettlemoyer [2020])—and match the accuracy of dense-to-sparse training methods such
as iterative pruning (Zhu and Gupta [2018])?

• RigL requires two additional hyperparameters to tune. We investigate the sensitivity of final performance to
these hyperparameters across a variety of target sparsities (Section 5.3).

• How does the choice of sparsity initialization affect the final performance for a fixed parameter count and a
fixed training budget (Section 6.1)?

• Does redistributing layer-wise sparsity during connection updates (Dettmers and Zettlemoyer [2020]) improve
RigL’s performance? Can the final layer-wise distribution serve as a good sparsity initialization scheme
(Section 6.2)?

3 Methodology

The authors provide publicly accessible code1 written in Tensorflow (Abadi et al. [2016]). To gain a better understanding
of various implementation aspects, we opt to replicate RigL in Pytorch (Paszke et al. [2019]). Our implementation
extends the open-source code2 of Dettmers and Zettlemoyer [2020] which uses a boolean mask to simulate unstructured
sparsity. Our source code is publicly accessible on Github3 with training plots available on WandB4 (Biewald [2020]).

Mask Initialization For a network with L layers and total parameters N , we associate each layer with a random
boolean mask of sparsity sl, l ∈ [L]. The overall sparsity of the network is given by S =

∑
l slNl

N , where Nl is the
parameter count of layer l. Sparsities sl are determined by the one of the following mask initialization strategies:

• Uniform: Each layer has the same sparsity, i.e., sl = S ∀l. Similar to the original authors, we keep the first
layer dense in this initialization.

• Erdos-Renyi (ER): Following Mocanu et al. [2018], we set sl ∝
(

1− Cin+Cout
Cin×Cout

)
, where Cin, Cout are the in

and out channels for a convolutional layer and input and output dimensions for a fully-connected layer.
• Erdos-Renyi-Kernel (ERK): Modifies the sparsity rule of convolutional layers in ER initialization to include

kernel height and width, i.e., sl ∝
(

1− Cin+Cout+w+h
Cin×Cout×w×h

)
, for a convolutional layer with Cin × Cout × w × h

parameters.

We do not sparsify either bias or normalization layers, since these have a negligible effect on total parameter count.

1https://github.com/google-research/rigl
2https://github.com/TimDettmers/sparse_learning
3https://github.com/varun19299/rigl-reproducibility
4https://wandb.ai/ml-reprod-2020

2

https://github.com/google-research/rigl
https://github.com/TimDettmers/sparse_learning
https://github.com/varun19299/rigl-reproducibility
https://wandb.ai/ml-reprod-2020

Table 1: Test accuracy of reference and our implementations on CIFAR-10, tabulated for three different sparsities.
Note that the runs listed here do not use a separate validation set while training.

Method Ours Original
Dense 94.6 94.1

1− s = 0.1 1− s = 0.2 1− s = 0.5 1− s = 0.1 1− s = 0.2 1− s = 0.5

Static (ERK) 91.6 93.2 94.3 91.6 92.9 94.2
Pruning 93.2 93.6 94.3 93.3 93.5 94.1

RigL (ERK) 93.2 93.8 94.4 93.1 93.8 94.3

Mask Updates Every ∆T training steps, certain connections are discarded, and an equal number are grown. Unlike
SNFS (Dettmers and Zettlemoyer [2020]), there is no redistribution of layer-wise sparsity, resulting in constant FLOPs
throughout training.

Pruning Strategy Similar to SET and SNFS, RigL prunes f fraction of smallest magnitude weights in each layer. As
detailed below, the fraction f is decayed across mask update steps, by cosine annealing:

f(t) =
α

2

(
1 + cos

(
tπ

Tend

))
(1)

where, α is the initial pruning rate and Tend is the training step after which mask updates are ceased.

Growth Strategy RigL’s novelty lies in how connections are grown: during every mask update, k connections having
the largest absolute gradients among current inactive weights (previously zero + pruned) are activated. Here, k is chosen
to be the number of connections dropped in the prune step. This requires access to dense gradients at each mask update
step. Since gradients are not accumulated (unlike SNFS), RigL does not require access to dense gradients at every step.
Following the paper, we initialize newly activated weights to zero.

4 Experimental Settings

4.1 Model descriptions

For experiments on CIFAR-10 (Alex Krizhevsky [2009]), we use a Wide Residual Network (Zagoruyko and Ko-
modakis [2016]) with depth 22 and width multiplier 2, abbreviated as WRN-22-2. For experiments on CIFAR-100
(Alex Krizhevsky [2009]), we use a modified variant of ResNet-50 (He et al. [2016]), with the initial 7× 7 convolution
replaced by two 3× 3 convolutions (architecture details provided in the supplementary material).

4.2 Datasets and Training descriptions

We conduct our experiments on the CIFAR-10 and CIFAR-100 image classification datasets. For CIFAR-10, we use a
train/val/test split of 45k/5k/10k samples. In comparison, the authors use no dedicated validation set, with 50k samples
and 10k samples comprising the train set and test set, respectively. This causes a slight performance discrepancy
between our reproduction and the metrics reported by the authors (dense baseline has a test accuracy of 93.4% vs 94.1%
reported). However, our replication matches the paper’s performance when 50k samples are used for the train set (Table
4). We use a validation split of 10k samples for CIFAR-100 as well.

On both datasets, we train models for 250 epochs each, optimized by SGD with momentum. Our training pipeline uses
standard data augmentation, which includes random flips and crops. When training on CIFAR-100, we additionally
include a learning rate warmup for 2 epochs and label smoothening of 0.1 (Goyal et al. [2017]). We also initialize the
last batch normalization layer (Ioffe and Szegedy [2015]) in each BottleNeck block to 0, following He et al. [2019].

4.3 Hyperparameters

RigL includes two additional hyperparameters (α,∆T) in comparison to regular dense network training. In Sections
5.1 and 5.2, we set α = 0.3,∆T = 100, based on the original paper. Optimizer specific hyperparameters—learning
rate, learning rate schedule, and momentum—are also set according to the original paper. In Section 5.3, we tune these

3

Table 2: WideResNet-22-2 on CIFAR10, tabulated for two density (1− s) values. We group methods by their FLOP
requirement and in each group, we mark the best accuracy in bold. Similar to Evci et al. [2020], we assume that
algorithms utilize sparsity during training. All results are obtained by methods implemented in our unified codebase.

Method
1− s = 0.1 1− s = 0.2

Accuracy ↑
(Test)

FLOPs ↓
(Train, Test)

Accuracy ↑
(Test)

FLOPs ↓
(Train, Test)

Small Dense 89.0 ± 0.35 0.11x, 0.11x 91.0 ± 0.07 0.20x, 0.20x
Static 89.1 ± 0.17 0.10x, 0.10x 91.2 ± 0.16 0.20x,0.20x
SET 91.3 ± 0.47 0.10x, 0.10x 92.7 ± 0.28 0.20x, 0.20x
RigL 91.7 ± 0.18 0.10x, 0.10x 92.6 ± 0.10 0.20x, 0.20x

SET (ERK) 92.2 ± 0.04 0.17x, 0.17x 92.9 ± 0.16 0.35x, 0.35x
RigL (ERK) 92.4 ± 0.06 0.17x, 0.17x 93.1 ± 0.09 0.35x, 0.35x

Static2× 89.15 ± 0.17 0.20x, 0.10x 91.2 ± 0.16 0.40x, 0.20x
Lottery 90.4 ± 0.09 0.45x, 0.13x 92.0 ± 0.31 0.68x,0.27x
SET2× 83.3 ± 15.33 0.20x, 0.10x 93.0 ± 0.22 0.41x, 0.20x
SNFS 92.4 ± 0.43 0.51x, 0.27x 92.7 ± 0.20 0.66x, 0.49x

SNFS (ERK) 92.2 ± 0.2 0.52x, 0.28x 92.8 ± 0.07 0.66x, 0.49x
SNFS2× 92.3 ± 0.33 1.02x, 0.27x 93.2 ± 0.14 1.32x, 0.98x
RigL2× 92.3 ± 0.25 0.20x, 0.10x 93.0 ± 0.21 0.41x, 0.20x
Pruning 92.6 ± 0.08 0.32x,0.13x 93.2 ± 0.27 0.41x,0.27x

RigL2× (ERK) 92.7 ± 0.37 0.34x, 0.17x 93.3 ± 0.09 0.70x, 0.35x

Dense Baseline 93.4 ± 0.07 9.45e8, 3.15e8 - -

hyperparameters with Optuna (Akiba et al. [2019]). We also examine whether indivdually tuning the learning rate for
each sparsity value offers any significant benefit.

4.4 Baseline implementations

We compare RigL against various baselines in our experiments: SET (Mocanu et al. [2018]), SNFS (Dettmers and
Zettlemoyer [2020]), and Magnitude-based Iterative-pruning (Zhu and Gupta [2018]). We also compare against two
weaker baselines, viz., Static Sparse training and Small-Dense networks. The latter has the same structure as the dense
model but uses fewer channels in convolutional layers to lower parameter count. We implement iterative pruning with
the pruning interval kept same as the masking interval for a fair comparison.

4.5 Computational requirements

We run our experiments on a SLURM cluster node—equipped with 4 NVIDIA GTX1080 GPUs and a 32 core Intel
CPU. Each experiment on CIFAR-10 and CIFAR-100 consumes about 1.6 GB and 7 GB of VRAM respectively and is
run for 3 random seeds to capture performance variance. We require about 6 and 8 days of total compute time to produce
all results, including hyper-parameter sweeps and extended experiments, on CIFAR-10 and CIFAR-100 respectively.

5 Results

Given a fixed training FLOP budget, RigL surpasses existing dynamic sparse training methods over a range of target
sparsities, on both CIFAR-10 and 100 (Sections 5.1, 5.2). By training longer, RigL matches or marginally outperforms
iterative pruning. However, unlike pruning, its FLOP consumption is constant throughout. This a prime reason for using
sparse networks, and makes training larger networks feasible. Finally, as evaluated on CIFAR-10, the original authors’
choice of hyper-parameters are close to optimal for multiple target sparsities and initialization schemes (Section 5.3).

5.1 WideResNet-22 on CIFAR-10

Results on the CIFAR-10 dataset are provided in Table 2. Tabulated metrics are averaged across 3 random seeds and
reported with their standard deviation. All sparse networks use random initialization, unless indicated otherwise.

4

(a) Random initialization (b) ERK initialization (c) 2x longer

Figure 1: Test Accuracy vs Sparsity on CIFAR-10, plotted for Random initialization (left), ERK initialization
(center), and for training 2× longer (right). Owing to random growth, SET can be unstable when training for longer
durations with higher sparsities. Overall, RigL2× (ERK) achieves highest test accuracy.

While SET improves over the performance of static sparse networks and small-dense networks, methods utilizing
gradient information (SNFS, RigL) obtain better test accuracies. SNFS can outperform RigL, but requires a much larger
training budget, since it (a) requires dense gradients at each training step, (b) redistributes layer-wise sparsity during
mask updates. For all sparse methods, excluding SNFS, using ERK initialization improves performance, but with
increased FLOP consumption. We calculate theoretical FLOP requirements in a manner similar to Evci et al. [2020]
(exact details in the supplementary material).

Figure 1 contains test accuracies of select methods across two additional sparsity values: (0.5, 0.95). At lower sparsities
(higher densities), RigL matches the performance of the dense baseline. Performance further improves by training
for longer durations. Particularly, training RigL (ERK) twice as long at 90% sparsity exceeds the performance of
iterative pruning while requiring similar theoretical FLOPs. This validates the original authors’ claim that RigL (a
sparse-to-sparse training method) outperforms pruning (a dense-to-sparse training method).

5.2 ResNet-50 on CIFAR100

Table 3 & Figure 2: Benchmarking sparse ResNet-50s on CIFAR-
100, tabulated by performance and cost (below), and plotted across
densities (right). In each group below, RigL outperforms or matches
existing sparse-to-sparse and dense-to-sparse methods. Notably,
RigL3× at 90% sparsity and RigL2× at 80% sparsity surpass iterative
pruning with similar FLOP consumption. RigL2× (ERK) further
improves performance but requires a larger training budget.

Method
1− s = 0.1 1− s = 0.2

Accuracy ↑
(Test)

FLOPs ↓
(Train, Test)

Accuracy ↑
(Test)

FLOPs ↓
(Train, Test)

Static 69.7 ± 0.42 0.10x, 0.10x 72.3 ± 0.30 0.20x,0.20x
Small Dense 70.8 ± 0.22 0.11x, 0.11x 72.6± 0.93 0.20x, 0.20x

SET 71.4 ± 0.35 0.10x, 0.10x 73.4 ± 0.45 0.20x, 0.20x
RigL 71.8 ± 0.33 0.10x, 0.10x 73.5 ± 0.04 0.20x, 0.20x

Static (ERK) 71.5 ± 0.18 0.22x, 0.22x 73.2 ± 0.39 0.38x, 0.38x
SET (ERK) 72.3 ± 0.39 0.22x, 0.22x 73.5 ± 0.25 0.38x, 0.38x

RigL (ERK) 72.6 ± 0.37 0.23x, 0.22x 73.4 ± 0.15 0.38x, 0.38x

SNFS 72.3 ± 0.20 0.58x, 0.37x 73.9 ± 0.20 0.70x, 0.55x
SNFS (ERK) 73.0 ± 0.33 0.59x, 0.38x 73.9 ± 0.27 0.69x, 0.54x

Pruning 73.1 ± 0.32 0.36x,0.11x 73.8 ± 0.23 0.45x,0.25x
RigL2× 73.1 ± 0.71 0.20x, 0.10x 74.0 ± 0.24 0.41x, 0.20x
Lottery 73.6 ± 0.32 0.62x,0.11x 74.2 ± 0.41 0.81x,0.25x
RigL3× 73.7 ± 0.16 0.30x, 0.10x 74.2 ± 0.23 0.61x, 0.20x

RigL2× (ERK) 73.6 ± 0.05 0.46x, 0.22x 74.4 ± 0.10 0.76x, 0.38x

Dense Baseline 74.7 ± 0.38 7.77e9, 2.59e9 - -

(a) Random initialization

(b) ERK initialization, Extended training

We see similar trends when training sparse variants of ResNet-50 on the CIFAR-100 dataset (Table 3, metrics reported
as in Section 5.1). We also include a comparison against sparse networks trained with the Lottery Ticket Hypothesis

5

(Frankle and Carbin [2018]) in Table 3—we obtain tickets with a commensurate performance for sparsities lower than
80%. Finally, the choice of initialization scheme affects the performance and FLOP consumption by a greater extent
than the method used itself, with the exception of SNFS (groups 1 and 2 in Table 3).

5.3 Hyperparameter Tuning

Table 4: Reference vs Optimal (α,∆T) on CIFAR-10. Optimal hyperparameters are obtained by tuning with a TPE
sampler in Optuna. The difference between the reference and optimal performance is small, indicating that there is not
a significant benefit in tuning (α,∆T) individually for each initialization and sparsity configuration.

Initialization
Density Reference Optimal

(1− s) (α,∆T)
Accuracy ↑

(Test) (α,∆T)
Accuracy ↑

(Test)

Random 0.1 0.3, 100 91.7 ± 0.18 0.197, 50 91.8 ± 0.17
Random 0.2 0.3, 100 92.6 ± 0.10 0.448, 150 92.8 ± 0.16
Random 0.5 0.3, 100 93.3 ± 0.07 0.459, 550 93.3 ± 0.18

ERK 0.1 0.3, 100 92.4 ± 0.06 0.416, 200 92.4 ± 0.23
ERK 0.2 0.3, 100 93.1 ± 0.09 0.381, 950 93.1 ± 0.21
ERK 0.5 0.3, 100 93.4 ± 0.14 0.287, 500 93.8 ± 0.06

(α,∆T) vs Sparsities To understand the impact of the two additional hyperparameters included in RigL, we use a
Tree of Parzen Estimator (TPE sampler, Bergstra et al. [2011]) via Optuna to tune (α,∆T). We do this for sparsities
(1− s) ∈ {0.1, 0.2, 0.5}, and a fixed learning rate of 0.1. Additionally, we set the sampling domain for α and ∆T as
[0.1, 0.6] and {50, 100, 150, ..., 1000} respectively. We use 15 trials for each sparsity value, with our objective function
as the validation accuracy averaged across 3 random seeds.

Table 4 shows the test accuracies of tuned hyperparameters. While the reference hyperparameters (original authors,
α = 0.3,∆T = 100) differ from the obtained optimal hyperparameters, the difference in performance is marginal,

(a) ERK, 1 − 𝑠 = 0.1 (b) ERK, 1 − 𝑠 = 0.2 (c) ERK, 1 − 𝑠 = 0.5

(d) Random, 1 − 𝑠 = 0.1 (e) Random, 1 − 𝑠 = 0.2 (f) Random, 1 − 𝑠 = 0.5

Figure 3: Learning Rate vs Sparsity on CIFAR-10. Runs using a learning rate > 0.1 do not converge and are not
plotted here. There is little benefit in tuning the learning rate for each sparsity, and 0.1, 0.05 are good choices overall.

6

especially for ERK initialization. This in agreement with the original paper, which finds α ∈ {0.3, 0.5},∆T = 100 to
be suitable choices. We include contour plots detailing the hyperparameter trial space in the supplementary material.

Learning Rate vs Sparsities We further examine if the final performance improves by tuning the learning rate
(η) individually for each sparsity-initialization pair. We employ a grid search over η ∈ {0.1, 0.05, 0.01, 0.005} and
(α,∆T) ∈ {(0.3, 100), (0.4, 200), (0.4, 500), (0.5, 750)}. As seen in Figure 3, η = 0.1 and η = 0.05 are close to
optimal values for a wide range of sparsities and initializations. Since these learning rates also correspond to good
choices for the Dense baseline, one can employ similar values when training with RigL.

6 Results beyond Original Paper

6.1 Sparsity Distribution vs FLOP Consumption

(a) WRN-22-2 on CIFAR 10 (b) ResNet-50 on CIFAR100

Figure 4: Test Accuracy vs FLOP consumption of WideResNet-22-2 on CIFAR-10 and ResNet-50 on CIFAR-
100, compared for Random and ERK initializations. For the same FLOP budget, models trained with ERK initialization
must be more sparse, resulting in inferior performance.

While ERK initialization outperforms Random initialization consistently for a given target parameter count, it requires a
higher FLOP budget. Figure 4 compares the two initialization schemes across fixed training FLOPs. Theoretical FLOP
requirement for Random initialization scales linearly with density (1− s), and is significantly lesser than ERK’s FLOP
requirements. Consequently, Random initialization outperforms ERK initialization for a given training budget.

6.2 Effect of Redistribution

Table 5: Effect of redistribution during RigL updates, evaluated on CIFAR10 and CIFAR100. By utilising sparse
gradient or sparse momentum based redistribution, RigL (Random) matches RigL (ERK)’s performance. Among
Random and ERK initialized experiments, we mark the best metrics under each sparsity and dataset in bold.

Method Redistribution
CIFAR-10 CIFAR-100

1− s = 0.1 1− s = 0.2 1− s = 0.1 1− s = 0.2

Accuracy ↑
(Test)

FLOPs ↓
(Train, Test)

Accuracy ↑
(Test)

FLOPs ↓
(Train, Test)

Accuracy ↑
(Test)

FLOPs ↓
(Train, Test)

Accuracy ↑
(Test)

FLOPs ↓
(Train, Test)

Random Initialization

RigL - 91.7 ± 0.18 0.10x, 0.10x 92.9 ± 0.10 0.20x, 0.20x 71.8 ± 0.33 0.10x, 0.10x 73.5 ± 0.04 0.20x, 0.20x
RigL-SG Sparse Grad 92.2 ± 0.17 0.28x, 0.28x 92.7 ± 0.25 0.49x, 0.49x 72.3 ± 0.12 0.36x,0.35x 73.7 ± 0.15 0.53x, 0.53x
RigL-SM Sparse Mmt 92.2 ± 0.20 0.28x, 0.28x 92.9 ± 0.21 0.50x, 0.49x 72.6 ± 0.27 0.36x,0.36x 73.7 ± 0.35 0.53x, 0.53x

ERK Initialization

RigL - 92.4 ± 0.06 0.17x, 0.17x 93.1 ± 0.09 0.35x, 0.35x 72.6 ± 0.37 0.23x, 0.22x 73.4 ± 0.15 0.38x, 0.38x
RigL-SG Sparse Grad 92.1 ± 0.19 0.28x, 0.28x 92.7 ± 0.19 0.49x, 0.49x 73.0 ± 0.13 0.37x,0.36x 74.2 ± 0.26 0.53x, 0.53x
RigL-SM Sparse Mmt 92.27 ± 0.01 0.28x, 0.28x 93.0 ± 0.13 0.50x, 0.49x 72.6 ± 0.27 0.37x, 0.37x 74.2 ± 0.13 0.53x, 0.53x

Re-Initialization with RigL-SM (Random, ERK)

RigL - 90.3 ± 0.34 0.28x, 0.28x 91.0 ± 0.38 0.50x, 0.49x 67.6 ± 0.28 0.36x, 0.36x 68.9 ± 0.65 0.53x, 0.53x
RigL (ERK) - 90.2 ± 0.57 0.28x, 0.28x 90.6 ± 0.56 0.50x, 0.49x 67.8 ± 0.73 0.37x, 0.37x 68.9 ± 0.47 0.53x, 0.53x

One of the main differences of RigL over SNFS is the lack of layer-wise redistribution during training. We examine if
using a redistribution criterion can be beneficial and bridge the performance gap between Random and ERK initialization.

7

Following Dettmers and Zettlemoyer [2020], during every mask update, we reallocate layer-wise density proportional
to its average sparse gradient or momentum (RigL-SG, RigL-SM).

Table 5 shows that redistribution significantly improves RigL (Random), but not RigL (ERK). We additionally plot
the FLOP requirement against training steps and the final sparsity distribution in Figure 5. The layer-wise sparsity
distribution largely becomes constant within a few epochs. The final distribution is similar, but more “extreme” than
ERK—wherever ERK exceeds/falls short of Random, redistribution does so by a greater extent.

By allocating higher densities to 1× 1 convolutions (convShortcut in Figure 5), redistribution significantly increases
the FLOP requirement—and hence, is not a preferred alternative to ERK. Surprisingly, initializing RigL with the final
sparsity distribution in a manner similar to the Lottery Ticket Hypothesis results in subpar performance (group 3, Table
5).

(b) Layer-wise density distribution(a) FLOP consumption vs train steps

Figure 5: Effect of redistribution on RigL’s performance, evaluated using WideResNet-22-2 on CIFAR10 at 80%
sparsity. (left) FLOPs required per forward pass, shown relative to the dense baseline, rises quickly and saturates within
a few epochs (~10k steps) for both sparse gradient and sparse momentum based redistribution. (right) Comparison of
the final density distribution against Random and ERK counterparts. “b” refers to block and “l” layer here.

7 Discussion

Evaluated on image classification, the central claims of Evci et al. [2020] hold true—RigL outperforms existing
sparse-to-sparse training methods and can also surpass other dense-to-sparse training methods with extended training.
RigL is fairly robust to its choice of hyperparameters, as they can be set independent of sparsity or initialization. We find
that the choice of initialization has a greater impact on the final performance and compute requirement than the method
itself. Considering the performance boost obtained by redistribution, proposing distributions that attain maximum
performance given a FLOP budget could be an interesting future direction.

For computational reasons, our scope is restricted to small datasets such as CIFAR-10/100. RigL’s applicability outside
image classification—in Computer Vision and beyond (machine translation etc.) is not covered here.

What was easy The authors’ code covered most of the experiments in their paper and helped us validate the
correctness of our replicated codebase. Additionally, the original paper is quite complete, straightforward to follow, and
lacked any major errors.

What was difficult Implementation details such as whether momentum buffers were accumulated sparsely or densely
had a substantial impact on the performance of SNFS. Finding the right ε for ERK initialization required handling of
edge cases—when a layer’s capacity is exceeded. Hyperparameter tuning (α,∆T) involved multiple seeds and was
compute-intensive.

Communication with original authors We acknowledge and thank the original authors for their responsive commu-
nication, which helped clarify a great deal of implementation and evaluation specifics. Particularly, FLOP counting for
various methods while taking into account the changing sparsity distribution. We also discussed experiments extending
the original paper—as to whether the authors had carried out a similar study before.

8

References
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), pages 265–283, 2016.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings of the 25rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, August 2019.

Geoffrey Hinton Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Mike Ashby, Christiaan Baaij, Peter Baldwin, Martijn Bastiaan, Oliver Bunting, Aiken Cairncross, Christopher
Chalmers, Liz Corrigan, Sam Davis, Nathan van Doorn, et al. Exploiting unstructured sparsity on next-generation
datacenter hardware. 2017.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimization. In
Advances in Neural Information Processing Systems, December 2011.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/. Software
available from wandb.com.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing performance, 2020.
URL https://openreview.net/forum?id=ByeSYa4KPS.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making all tickets
winners. In Proceedings of Machine Learning and Systems (ICML), July 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In
Proceedings of the International Conference on Learning Representations (ICLR), April 2018.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J Dally. Eie: efficient
inference engine on compressed deep neural network. ACM SIGARCH Computer Architecture News, 44(3):243–254,
2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for image classification
with convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In International Conference on Machine Learning (ICML), July 2015.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine Gibescu, and Antonio Liotta.
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature
Communications, 2018. doi: 10.1038/s41467-018-04316-3.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems,
December 2019.

Suraj Srinivas, Akshayvarun Subramanya, and R. Venkatesh Babu. Training sparse neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British Machine Vision
Conference (BMVC), September 2016.

Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for model compression. In
Proceedings of the International Conference on Learning Representations (ICLR), April 2018.

9

https://www.wandb.com/
https://openreview.net/forum?id=ByeSYa4KPS

	Introduction
	Scope of reproducibility
	Methodology
	Experimental Settings
	Model descriptions
	Datasets and Training descriptions
	Hyperparameters
	Baseline implementations
	Computational requirements

	Results
	WideResNet-22 on CIFAR-10
	ResNet-50 on CIFAR100
	Hyperparameter Tuning

	Results beyond Original Paper
	Sparsity Distribution vs FLOP Consumption
	Effect of Redistribution

	Discussion

