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Abstract
Object hallucination in large vision-language
models presents a significant challenge to their
safe deployment in real-world applications. Re-
cent works have proposed object-level hallucina-
tion scores to estimate the likelihood of object
hallucination; however, these methods typically
adopt either a global or local perspective in iso-
lation, which may limit detection reliability. In
this paper, we introduce GLSIM, a novel training-
free object hallucination detection framework that
leverages complementary global and local embed-
ding similarity signals between image and text
modalities, enabling more accurate and reliable
hallucination detection in diverse scenarios. We
comprehensively benchmark existing object hallu-
cination detection methods and demonstrate that
GLSIM achieves superior detection performance,
outperforming competitive baselines by a signifi-
cant margin.

1. Introduction
Large Vision-Language Models (LVLMs) (Li et al., 2023a;
Dai et al., 2023; Zhu et al., 2023; Chen et al., 2024c; Ye et al.,
2024; Wang et al., 2024; Bai et al., 2023; Lu et al., 2024)
have made striking advances in understanding real-world vi-
sual data, enabling systems that can describe images, answer
visual questions, and follow multi-modal instructions with
fluency and creativity (Liu et al., 2023; Liang et al., 2024).
Yet beneath this surface of impressive capability lies a criti-
cal vulnerability—object hallucinations (OH)—where the
model generates plausible-sounding mentions of objects that
are not present in the image (Rohrbach et al., 2018). An ex-
ample is illustrated in Figure 1, where the LVLM describes
a “dining table” in a birthday party scene, even though the
image contains no such object. These hallucinations can
undermine user trust, and are particularly concerning in
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high-stakes domains including medical imaging (Li et al.,
2023a), autonomous navigation (Cui et al., 2024), and ac-
cessibility applications (Yang et al., 2024). Detecting such
hallucinations is thus essential for safe and reliable deploy-
ment of LVLMs, and has become an increasingly active area
of research (Bai et al., 2024).

Existing approaches to object hallucination detection of-
ten rely on external knowledge sources, such as human-
annotated ground truth annotations (Rohrbach et al., 2018;
Li et al., 2023b; Fu et al., 2023; Wang et al., 2023a; Chen
et al., 2024b; Petryk et al., 2024). Others prompt or fine-
tune external large language or vision-language models as
judge to detect hallucinations (Jing et al., 2024; Sun et al.,
2024; Liu et al., 2024a; Guan et al., 2024; Gunjal et al.,
2024; Chen et al., 2024a). However, these approaches face
practical limitations: ground-truth references are often un-
available in real-world scenarios, and external LLMs are
prone to hallucinate themselves, thereby limiting reliability.
This highlights the need for a lightweight, model-internal
approach that can detect hallucinations without supervision
or auxiliary models.

In this paper, we propose an object-level hallucination
scoring function that operates without relying on external
sources, leveraging the similarity between image and text
modalities within the latent embedding space of LVLMs.
We introduce Global-Local Similarity (GLSIM) score, a
method that unify two complementary perspectives: a global
similarity score, which captures how well an object seman-
tically fits the overall scene, and a local grounding score,
which checks whether any specific region in the image actu-
ally supports the object’s presence. This fusion addresses a
key shortcoming of prior approaches that rely on one per-
spective in isolation (Zhou et al., 2024; Jiang et al., 2025b;a;
Phukan et al., 2025). For instance, a global-only method
may wrongly consider a “dining table” plausible in a birth-
day party scene (Figure 1), simply because such contextual
associations are common in pretraining data—even if no
table is visually present. On the other hand, local-only ap-
proaches may struggle when a hallucinated object is visually
similar to real objects in the scene, as in Figure 2, where
a model hallucinates a “handbag” due to confusion with
a leather seat of a motorcycle. By integrating both global
and local signals, our method can ask not only “does this
object belong contextually to the scene?” but also “is there
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The image features a young child, 
possibly a baby, standing in front 
of a birthday cake. The child is 
wearing a tie, the cake is placed 
on a dining table, and there are 
two balloons in the scene.

Describe this image.
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Figure 1. Overall framework. (a) We detect object-level hallucinations by leveraging latent embedding similarity. (b) For each object,
the most relevant image regions are identified via unembedding from latent image representations. (c) The final GLSIM score is computed
as a weighted combination of local (Section 4.2) and global (Section 4.3) signals, capturing both scene-level plausibility and spatial
alignment, enhancing object hallucination detection accuracy.

concrete visual evidence for it?”, resulting in more accu-
rate, well-rounded, and interpretable hallucination detection
across diverse scenarios.

As illustrated in Figure 1, GLSIM works by evaluating each
object mention along two axes. First, the global score mea-
sures the similarity between the object token’s embedding
and the overall scene embedding—captured by the final to-
ken of the multimodal instruction prompt (highlighted in yel-
low). Next, we compute a local similarity score that checks
for spatial grounding. Specifically, we identify the top im-
age patches most relevant to the object using an adapted
Logit Lens technique (nostalgebraist, 2020), then assess
whether these regions provide strong visual evidence for
the object using the average similarity between the object
token’s embedding and the top-K image token embeddings
(highlighted in green). By combining these two complemen-
tary signals, GLSIM produces a holistic score that reflects
both contextual fit and visual grounding—effectively distin-
guishing real objects from hallucinations.

We extensively evaluate GLSIM across multiple benchmark
datasets and LVLMs, including LLaVA-1.5 (Li et al., 2023a),
MiniGPT-4 (Zhu et al., 2023), and Shikra (Chen et al.,
2023), demonstrating strong generalization and state-of-
the-art performance in detecting object hallucinations. On
both MSCOCO and Objects365 datasets, GLSIM consis-
tently outperforms the latest baselines, including Internal
Confidence (Jiang et al., 2025a) and attention-based ground-
ing scores (Jiang et al., 2025b), achieving up to a 12.7%
improvement in AUROC. Ablation studies confirm the com-
plementary roles of the global and local components: remov-

ing either degrades performance, while their combination
yields the most reliable detection. Qualitative results further
illustrate how GLSIM accurately flags subtle hallucinations,
making it a practical tool for real-world deployment.

Our key contributions are summarized as follows:

1. We propose GLSIM, a novel object hallucination detec-
tion method that combines global and local similarity
scores between latent embeddings. To the best of our
knowledge, this is the first work to demonstrate their
complementary effectiveness for the OH detection task.

2. We provide a comprehensive benchmarking of existing
OH detection methods, addressing an important gap
that has been overlooked in prior work.

3. We demonstrate the superior performance of GLSIM
through extensive experiments, conduct in-depth abla-
tions to analyze the contributions of each component
and design choice, and verify the generalizability of
our method across various LVLMs and datasets.

2. Related Works
Object Hallucination Detection in LVLMs. Object hal-
lucination (OH) refers to the phenomenon where LVLMs
generate textual descriptions that include non-existent ob-
jects in the image—a critical but underexplored problem
in LVLMs with direct implications for reliable decision-
making. Such hallucinations can stem from factors includ-
ing statistical biases in training data (Delétang et al., 2024),
strong language model prior (Liu et al., 2023), or visual in-
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formation loss (Favero et al., 2024). Recent studies have fo-
cused on evaluating and detecting OH by leveraging ground-
truth annotations (Rohrbach et al., 2018; Li et al., 2023b; Fu
et al., 2023; Wang et al., 2023a; Chen et al., 2024b; Petryk
et al., 2024). For instance, CHAIR (Rohrbach et al., 2018)
suggests utilizing the discrete ratio of objects presented
in the answer relative to a ground-truth object list to iden-
tify OH. Another line of work evaluates OH using external
LLMs or LVLMs (Jing et al., 2024; Sun et al., 2024; Liu
et al., 2024a; Guan et al., 2024; Gunjal et al., 2024; Chen
et al., 2024a). For instance, GAIVE (Liu et al., 2024a) lever-
ages a stronger LVLM (e.g., GPT-4 (Achiam et al., 2023))
as a teacher to assess the responses of a student model,
while HaLEM (Wang et al., 2023b) fine-tunes an LLM (e.g.,
LLaMA (Touvron et al., 2023)) to score LVLM generations.
While effective, these methods are resource-intensive and
often lack transparency.

Several recent works have proposed object-level halluci-
nation scores that estimate OH likelihood without requir-
ing an external judge model or additional training. For
instance, LURE (Zhou et al., 2024) utilizes the negative log-
likelihood (NLL) of the object token generation probability;
Internal Confidence (IC) (Jiang et al., 2025a) computes the
maximum probability of the object token across all image
hidden states (nostalgebraist, 2020); and Summed Visual
Attention Ratio (SVAR) (Jiang et al., 2025b) leverages at-
tention weights assigned to image tokens with respect to the
object token. While promising, these methods primarily tar-
get hallucination mitigation and often fall short in detection
performance: these methods typically leverage either global
(e.g., NLL, SVAR) or localized (e.g., IC) signals in isolation
and thus fail to capture the nuanced interplay between the
overall semantic context and fine-grained visual grounding.
Moreover, NLL often fail since LVLMs tend to favor lin-
guistic fluency over factual accuracy (Radford et al., 2019);
IC does not fully capture contextual information from the
generated text; and SVAR can be biased toward previously
generated text tokens (Liu et al., 2024c) and vulnerable to
attention sink effects (Kang et al., 2025). Different from
prior works, we introduce the first object hallucination de-
tection method that explicitly integrates both global and
local signals—unifying localized attribution with holistic
semantic alignment between the image and generated text.
We benchmark our approach against existing object-level
hallucination detection methods across diverse settings to
offer a comprehensive comparison in this space. Further
related works are provided in Appendix C.2.

3. Problem Setup
Large Vision-Language Models for text generation typi-
cally consist of three main components: a vision encoder
(e.g., CLIP (Radford et al., 2021)) which extracts visual

features, a multi-modal connector (e.g., MLP) that projects
these visual features into the language space, and an autore-
gressive language model that generates text conditioned on
the projected visual and prompt embeddings.

Given an input image, the vision encoder processes it into a
set of patch-level visual embeddings, commonly referred to
as visual tokens. These tokens are then projected into the
language model’s embedding space through the multi-modal
connector, resulting in a sequence of N visual embeddings:
v = {v1, . . . , vN} ∈ RN×d, where each vi corresponds to
a transformed visual token of dimension d. On the language
side, the input text prompt (e.g., “Describe this image in
detail.”) is tokenized and embedded into a sequence of lan-
guage embeddings: t = {t1, . . . , tL} ∈ RL×d, where L
is the prompt length. These two modalities—the projected
visual tokens v and the textual embeddings t—are con-
catenated and passed as the input sequence to the language
model. The language model then generates a sequence of
output tokens: y = {y1, . . . , yM}, where each yi ∈ V is
drawn from a vocabulary space and M is the output length.

Object hallucination detection. In this work, we focus on
detecting object existence hallucination in LVLMs—cases
where the model generates text that references objects not
present in the image (Li et al., 2023b; Zhai et al., 2023;
Bai et al., 2024). This represents the most fundamental
and critical form of errors affecting model reliability. We
provide the formal task definition below.
Definition 3.1 (Object Hallucination Detector). Let
x = (v, t) denote the input to the LVLM, and y =
{y1, . . . , yM} be the sequence of generated tokens from
the model. From y, we extract a set of object mentions
o = {o1, . . . , onh+nr

} ⊂ O, where nh and nr denote the
number of hallucinated and real objects, respectively. The
task of object hallucination detection is to design a scor-
ing function s : O × X → [0, 1], where s(o,x) quantifies
the likelihood that object o ∈ O is present in the input
x ∈ X . Here O and X denote the space of objects and
input, respectively. Based on this score, we define the object
hallucination detector:

G(o,x) =

{
1, if s(o,x) ≥ τ

0, otherwise,
(1)

where τ ∈ [0, 1] is a decision threshold. Here, G(o,x) = 1
indicates that object o is real (i.e., occurs in the image),
while G(o,x) = 0 indicates a hallucinated object.

4. Method
Overview. In this section, we propose an object-level hal-
lucination scoring function that operates without relying on
external sources, leveraging the similarity between image
and text modalities within the latent embedding space of

3



GLSIM: Detecting Object Hallucinations in LVLMs via Global-Local Similarity

The image features a young child, 
possibly a baby, standing in front 
of a birthday cake. The child is 
wearing a tie, the cake is placed 
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to be wearing a leather jacket. A 
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Figure 2. Qualitative evidence. In the generated descriptions, hallucinated objects are highlighted in red. The localized image regions are
shaded with the same color as their corresponding objects. The gray line shows a threshold value τ . If an object’s score is lower than the
threshold τ , we consider it a hallucination. In (a), the local score successfully compensates for the failure of the global score, while in (b),
the global score offsets the limitations of the local score.

LVLMs. We introduce Global-Local Similarity (GLSIM)
score, a method that leverages both global and local similar-
ity measures, and discuss how these complementary signals
contribute to effective object hallucination detection.

4.1. Motivation: Both Local and Global Signals Matter

Object hallucination in LVLMs often arises when models
generate plausible-sounding descriptions that are not visu-
ally grounded. But detecting such hallucinations is challeng-
ing: they can stem from subtle biases, background patterns,
or statistical co-occurrence in training data (Li et al., 2023b;
Gong et al., 2024; Zhou et al., 2024). Critically, relying on
a single perspective—either a global similarity or a local
region-level score—is often not enough to reliably catch
them. In particular, global similarity quantifies how seman-
tically related the object is to the image as a whole. It
captures holistic alignment between the object mention and
the overall scene, and is useful for assessing whether the
object “makes sense” in context. In contrast, local similar-
ity measures how well the object is visually grounded in a
specific region. It focuses on fine-grained evidence aligned
with spatial areas most relevant to the object, helping verify
whether it is actually present.

Qualitative evidence. Figure 2 illustrates how each signal
alone can be insufficient. In panel (a), the LVLM-generated
description includes a “dining table”, yet no table is
present in the image. A global similarity score fails to
flag this hallucination—likely because the overall scene
(e.g., birthday cake, party setting) frequently co-occurs with
tables in training data, leading to a high false-positive signal.
In contrast, a local score that focuses on the visual region
associated with “dining table” correctly assigns a low
similarity, reflecting the absence of meaningful grounding
in that region. In contrast, panel (b) shows a failure case

for local similarity. The model hallucinates a “handbag,”
and while the global similarity correctly captures that the
handbag is not semantically compatible with the overall
scene, the local score becomes unreliable—likely due to a
visually similar object in the image (i.e., leather seat of the
motorcycle).

These examples underscore the inherent limitations of using
either signal in isolation. Global similarity can be overly
influenced by high-level contextual associations, leading to
false positives when hallucinated objects are contextually
plausible within the scene but not visually present. On the
other hand, local similarity is sensitive to spatial precision,
but can misfire when localization is noisy or there are visu-
ally similar objects. As a result, each signal captures only
a partial view of the grounding problem. To overcome this,
we propose a unified approach, Global-Local Similarity
(GLSIM), that leverages the complementary strengths of
both perspectives and offers more accurate and reliable de-
tection of object hallucinations across a diverse range of
visual-textual contexts. In the next subsections, we intro-
duce the score definition in detail—explaining how we de-
sign global and local similarity for each object mention, and
how they are integrated into a single decision score for hal-
lucination detection. More qualitative results are presented
in Appendix B.1.

4.2. Object Grounding via Local Similarity

A key component of our approach is the computation of
the local similarity score, which captures how well an ob-
ject mention is visually grounded in a specific region of
the image. Unlike global similarity, which reflects scene-
level plausibility, the local score focuses on verifying the
presence of the object at the spatial level. The main chal-
lenge lies in identifying the most relevant region for each
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object mention—without relying on external annotations or
bounding boxes.

Unsupervised object grounding. We leverage an unsuper-
vised approach that leverages internal representations of the
LVLM itself, to ground whether a predicted object token o
is hallucinated or not. Given the LVLM input x = (v, t),
where v = {v1, . . . , vN} are the visual tokens and t are the
prompt embeddings, we extract the hidden representations
hl(vi) ∈ Rd of each visual token vi at decoder layer l. To
project these representations into the vocabulary space, we
can leverage Visual Logit Lens (VLL) as:

VLLl(vi) = hl(vi) ·WU ,

where WU ∈ Rd×|V| is the unembedding layer matrix. Un-
like the original Logit Lens (nostalgebraist, 2020), which
operates solely in language models, our approach adapts it
to a multimodal setting to attribute generated object men-
tions to relevant visual tokens. We apply a softmax and
extract the predicted probability for the target object token
o: softmax(VLLl(vi))[o], probability quantifies how likely
a visual token vi is to predict the object word o, offering a
model-internal signal of relevance between the image patch
and object token. Importantly, we select the Top-K im-
age patches with the highest probabilities as the localized
regions corresponding to the object o:

I(o) = TopKvi∈v ({softmax(VLLl(vi))[o]}) . (2)

We visualize object grounding results in Section 5.3 and
Appendix B.2.

Local similarity score. Based on the localized regions
I(o), we compute average cosine similarity between each
localized image embedding and object embedding:

slocal(o,x) =
1

K

∑
vi∈I(o)

sim(hl(vi), hl′(o)), (3)

where sim(·, ·) denotes cosine similarity, and l′ is the de-
coder layer used to represent the text embedding at the
position of the object word. The score should be higher for
real objects and relatively lower for hallucinated objects.

4.3. Scene-Level Grounding via Global Similarity

While the local similarity score focuses on spatially ground-
ing an object in specific image regions, it alone may be insuf-
ficient—especially in cases where localization is ambiguous.
To complement this, we introduce a global similarity score
that measures scene-level semantic coherence between an
object mention and the entire image. This can be useful for
identifying out-of-context hallucinations (e.g., referencing a
“handbag” in a motorcycle scene).

Global similarity score. We compute the global similar-
ity as the cosine similarity between the embedding of the
object/text token and the embedding of the final token in
the instruction prompt. The final instruction token often en-
codes a condensed summary of the model’s understanding
of both image and prompt context. By comparing the object
token to this representation, the global score quantifies how
well the object semantically aligns with the overall scene.
This allows the model to down-weight mentions that may
be contextually implausible, even if they are locally aligned
with some visual region.

Formally, given an object mention o and LVLM input x =
(v, t), let hl′(o) ∈ Rd be the object token representation at
layer l′, and let hl(v, t) ∈ Rd be the hidden representation
of the last visual-text prompt token at layer l. The global
similarity score is then defined as:

sglobal(o,x) = sim (hl(v, t), hl′(o)) , (4)

where sim(·, ·) denotes cosine similarity.

Global-Local Similarity (GLSIM) score. To fully lever-
age the complementary strengths of both grounding sig-
nals, we define the final hallucination detection score as a
weighted combination of local and global similarity. Specif-
ically, we define the GLSIM score as:

sGLSIM(o,x) = w · sglobal(o,x)+(1−w) · slocal(o,x), (5)

where w ∈ [0, 1] is a hyperparameter controlling the balance
between local evidence and global context. This fused score
captures both spatial alignment and scene-level plausibility,
enabling more accurate detection of hallucinated objects. In
practice, we find that a moderate value of w (e.g., 0.6) yields
consistently strong performance across diverse scenarios
(see Section 5.3). Based on the scoring function, the object
hallucination detector is G(o,x) = 1{sGLSIM(o,x) ≥ τ},
where 1 indicates a real object and 0 indicates a hallucinated
object.

5. Experiments
5.1. Setup

Datasets and models. We utilize the MSCOCO
dataset (Lin et al., 2014), which is widely adopted as the
primary evaluation benchmark in numerous LVLM object
hallucination studies and contains 80 object classes. In
addition, we employ the Objects365 dataset (Shao et al.,
2019), which offers a more diverse set of images and a
larger category set comprising 365 object classes, along
with denser object annotations per image. For evaluation,
we randomly sample 5,000 images each from the validation
sets of MSCOCO and Objects365. We conduct experi-
ments on three representative LVLMs: LLaVA-1.5 (Li et al.,
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Table 1. Main results. Comparison with competitive object hallucination detection methods on different datasets. For our method, the
mean and standard deviation are computed across three different random seeds. All values are percentages, and the best results are shown
in bold.
Dataset Method LLaVA-1.5-7B LLaVA-1.5-13B MiniGPT-4 Shikra

AUROC ↑ AUPR ↑ AUROC ↑ AUPR ↑ AUROC ↑ AUPR ↑ AUROC ↑ AUPR ↑

MSCOCO

NLL ICLR’24 63.7 84.9 63.1 86.1 59.4 81.2 60.4 82.1
Entropy ICLR’21 64.0 85.0 63.2 86.3 60.6 83.2 62.9 84.0
Internal Conf. ICLR’25 72.9 89.3 71.0 90.0 75.7 93.0 69.1 88.5
SVAR CVPR’25 74.7 91.2 75.2 92.9 83.6 95.9 70.7 89.1
Contextual Lens♠ NACCL’25 75.4 90.7 78.7 92.8 84.9 96.2 69.5 87.6
GLSIM (Ours) 83.7±0.3 94.2±0.2 84.8±0.5 95.8±0.2 87.0±0.4 97.0±0.1 83.0±0.7 94.9±0.3

Objects365

NLL ICLR’24 62.9 60.8 59.4 61.0 56.7 70.4 58.9 64.8
Entropy ICLR’21 63.3 60.9 59.1 60.4 57.3 70.7 60.7 67.6
Internal Conf. ICLR’25 68.7 67.4 65.5 70.0 68.5 75.0 64.4 72.5
SVAR CVPR’25 64.9 66.6 63.5 68.2 71.0 79.4 60.6 68.3
Contextual Lens♠ NACCL’25 63.2 62.6 62.1 65.6 70.2 77.8 59.6 67.0
GLSIM (Ours) 72.6±0.5 74.6±0.4 70.4±0.8 74.0±0.6 74.8±0.6 82.4±0.7 69.7±1.0 75.9±0.9

2023a), MiniGPT-4 (Zhu et al., 2023), and Shikra (Chen
et al., 2023). For LLaVA-1.5, we evaluate both 7B and 13B
model variants to study scalability. Implementation details
are provided in Appendix A. We evaluate on three additional
LVLMs—InstructBLIP (Dai et al., 2023), LLaVA-NeXT-
7B (Liu et al., 2024b), and Cambrian-1-8B (Tong et al.,
2024), in Appendix 5.3.

Evaluation. We formulate the object hallucination detec-
tion problem as an object-level binary classification task,
where a positive sample is a real object and a negative sam-
ple is a hallucinated object. We extract objects from the
generated descriptions and perform exact string matching
against the ground-truth object classes of each image and
their synonyms, following CHAIR (Rohrbach et al., 2018).
To evaluate OH detection performance, we report: (1) the
area under the receiver operating characteristic curve (AU-
ROC), and (2) the area under the precision-recall curve
(AUPR), both of which are threshold-independent metrics
widely used for binary classification tasks.

Baselines. We compare our approach against a compre-
hensive set of baselines, categorized as follows: (1) Token
probability-based approaches—Negative Log-Likelihood
(NLL) (Zhou et al., 2024) and Entropy (Malinin &
Gales, 2021); (2) Logit Lens probability-based approach—
Internal Confidence (Jiang et al., 2025a); (3) Atten-
tion-based approach—Summed Visual Attention Ratio
(SVAR) (Jiang et al., 2025b); and (4) Embedding simi-
larity-based approach—Contextual Lens♠ (Phukan et al.,
2025). To ensure a fair comparison, we evaluate all base-
lines on identical test sets using the default experimen-
tal configurations provided in their respective papers. As
Contextual Lens♠ was originally proposed for sentence-
level hallucination detection, we adapt it for object-level
hallucination detection. Further details of these baselines
are discussed in Appendix C.

5.2. Main results

As shown in Table 1, we compare our method, GLSIM,
with competitive object hallucination detection methods,
including the latest ones published in 2025. GLSIM con-
sistently outperforms existing state-of-the-art approaches
across different models and datasets by a significant margin.
Specifically, on the MSCOCO dataset with LLaVA-1.5-7B,
GLSIM outperforms SVAR by 9.0% AUROC, and achieves
an 8.3% AUROC improvement over Contextual Lens, an
embedding similarity-based baseline. Unlike Contextual
Lens, which relies on the maximum cosine similarity be-
tween text embeddings and all image embeddings, GLSIM
integrates global and local signals, resulting in more robust
detection performance. Notably, our method also demon-
strates strong performance on Shikra, achieving a 12.7%
improvement in AUROC on the MSCOCO dataset com-
pared to SVAR. Given that Shikra is trained with a focus on
region-level inputs and understanding, this result suggests
that our method is effective in models with strong spatial
alignment capabilities.

Comparison with Internal Confidence. Recently, the
Internal Confidence (IC) method (Jiang et al., 2025a) was
proposed to detect hallucinations using visual logit lens
probabilities. Our approach differs from IC in three key
ways. First, IC directly uses the maximum probability from
the visual logit lens across all image patches and layers,
which can be overconfident—assigning high scores to hal-
lucinated objects (see Figure 3). In contrast, we compute
the semantic similarity in representation space between
the object token embedding and the Top-K visual tokens,
yielding a more reliable and semantically meaningful sig-
nal. For hallucinated objects, this leads to alignment with
semantically irrelevant regions, resulting in lower similarity
scores, thereby enabling more reliable object hallucination
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Figure 3. Internal Confidence (IC) can assign high confidence to
incorrect regions for hallucinated objects. Our local score (Sec-
tion 4.2) mitigates this by cross-modal embedding similarity.

detection. Second, IC considers only the most probable
patch, while we aggregate over the Top-K most relevant
patches. As shown in our ablation study (Section 5.3), using
multiple visual regions improves performance by capturing
spatially distributed evidence and reducing sensitivity to
local noise. Third, IC is purely local in nature, whereas our
framework also integrates a global similarity score that cap-
tures object-scene coherence at the image level. Together,
these advantages enable our method to outperform IC by a
substantial margin of 10.8% AUROC.

5.3. Ablation Studies

In this section, we provide various in-depth analysis of each
component of our method. All experiments are conducted
using LLaVA-1.5-7B and Shikra on the MSCOCO dataset,
and results are reported in terms of AUROC (%). Further
ablation studies are provided in Appendix D.

Analysis of global and local scores. We systematically
compare global and local scores on the MSCOCO dataset,
as shown in Table 2. Finding 1: Embedding similarity is
an effective scoring metric. Embedding similarity (ES)-
based methods consistently outperform other scoring func-
tions, with performance improvements ranging from 1.1% to
22.6%. In contrast, token probability (TP)-based approaches
are optimized for linguistic fluency rather than object exis-
tence accuracy; attention weight (AT)-based methods often
fail to align with causal attributions (Jain & Wallace, 2019);
and Logit Lens probability (LLP) methods tend to exhibit
overconfidence. By directly capturing the semantic align-
ment between image and text modalities, embedding similar-
ity provides a more reliable signal for OH detection. Find-
ing 2: Object grounding improves OH detection. Among
local methods, our approach leverages grounded objects
in the image and computes embedding similarity directly
with those object representations, achieving 0.3% to 11%
improvements over baselines. This enables fine-grained
alignment, unlike Internal Confidence and Contextual Lens
methods, which rely only on the maximum token proba-

Table 2. Comparison of global and local scores.

Method Metric LLaVA Shikra

Global

NLL TP 63.7 60.4
Entropy TP 64.0 62.9
SVAR AT 74.7 70.7
sglobal (Eq. (4)) ES 79.3 78.9

Local

Internal Conf. LLP 72.9 69.1
Contextual Lens♠ ES 75.4 69.5
slocal (Top-1) ES 76.5 73.1
slocal (Top-K) ES 78.8 76.8

G & L sGLSIM (Top-1) ES 82.0 81.0
sGLSIM (Top-K) ES 83.7 83.0

Table 3. Object grounding methods.

Score Grd. Method LLaVA Shikra

sglobal - 79.3 79.8

slocal

Attention 66.3 65.0
Cosine Sim. 76.2 70.1
Logit Lens 78.8 76.8

sGLSIM

Attention 79.4 80.0
Cosine Sim. 80.7 80.9
Logit Lens 83.7 82.0

bility or cosine similarity score. Finding 3: Combining
global and local scores further improves performance.
By combining global (sglobal) and local (slocal) similarity
scores, we observe additional gains of 2.7% in Top-1 and
4.4% in Top-K for the LLaVA model. This demonstrates
that our scoring function design in Equation (5) effectively
integrates the complementary strengths of both global and
local signals.

Comparison of object grounding methods. We explore
several design choices for the patch selection for object
grounding in Section 4.2, with results summarized in Ta-
ble 3. Specifically, we vary the metric used for Top-K
(K = 32) patch selection, comparing (1) attention weights,
(2) cosine similarity, and (3) our method (visual logit lens).
Our method outperforms attention weights by 12.5% and
cosine similarity by 2.6% in local score evaluation. When
combining global and local scores, our method achieves
gains of 4.3% over attention weights and 3.0% over cosine
similarity. We further visualize the Top-K patch scores for
each metric in Figure 4. From the visualization, we observe
that high attention weights tend to be assigned to irrelevant
regions (Kang et al., 2025); cosine similarity better localizes
object regions but still assigns spuriously high scores to
background areas. In contrast, ours accurately highlights
object regions, leading to more reliable patch selection for
grounding.
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(a) Object: “car” (b) Object: “surfboard”

Attention

Similarity

Logit Lens (Ours)Cosine Similarity Attention Cosine Similarity Logit Lens (Ours)

Figure 4. Object grounding results with LLaVA. Ground-truth bounding boxes are shown in red.
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Figure 5. (a) Effect of the number of selected image patches K; (b) effect of the weighting parameter w in Equation (5); and (c) effect of
the text embedding layer index l′.

How do the selected number of patches K affect the per-
formance? We analyze the impact of varying the number
of selected patches K in Equation (2) on object halluci-
nation detection performance in Figure 5(a). Performance
improves with increasing K up to K=32 for LLaVA and
K=16 for Shikra, after which it degrades. This trend sug-
gests that a small K may fail to capture sufficient object
information, while a large K introduces irrelevant regions,
adding noise. Given that LLaVA processes 576 image to-
kens, the optimal K roughly corresponds to 6% of total
image tokens. This highlights the importance of choosing
K relative to input resolution for effective OH detection.

How does the weighting parameter w affect perfor-
mance? In Figure 5(b), we examine the effect of the weight-
ing parameter w in Equation (5) on OH detection perfor-
mance. Performance increases with w up to 0.6, after which
it declines. Smaller values of w place greater emphasis
on the local score, while larger values prioritize the global
score. We find that moderate values consistently yield the
best results across models, suggesting that global and local
signals are complementarily informative—where the global
score captures scene-level semantics, and the local score
captures fine-grained, spatial-level semantics. These results
support our design choice of combining both components
through a balanced weighting scheme, effectively enhancing
overall performance.

How does the text embedding layer index affect perfor-
mance? We examine how the choice of text embedding
layer l′ influences overall performance when computing em-

bedding similarity in Equation (3) and Equation (4). We fix
the image embedding layer l to the 32nd layer for LLaVA
and the 30th layer for Shikra, as specified in Table 6. As
shown in Figure 5(c), the best performance is achieved at
the 31st layer for LLaVA and the 27th layer for Shikra.
Performance improves with later layers, suggesting that
semantic representations are progressively refined in later
layers. However, it slightly drops afterward, which supports
the observation from (Skean et al., 2025) that the optimal
layer for downstream tasks may not necessarily be the final
layer. These findings indicate that later-intermediate layers
are particularly effective for object hallucination detection.
The complete performance matrix over all (l, l′) layer pairs
is provided in Appendix E.

Design choices for global and local scores. We ablate
several key design choices for each scoring function in Ta-
ble 5. For the global score (sglobal), we compare (1) sim-
ilarity with the last image token embedding, (2) average
similarity across all image tokens, and (3) similarity with
the last instruction token. The last instruction token per-
forms best, outperforming the average similarity by 8%,
highlighting its strength in capturing scene-level semantics.
For the local score (slocal), we compare (1) a Logit Lens
probability-weighted average of local similarities among
top-K patches and (2) a non-weighted average as in Equa-
tion (3), where the latter works slightly better. Finally, com-
bining global and local scores improves performance for
both variants of the global score. This confirms that the two
signals are complementary and supports the design of our

8
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Table 4. Performance on additional models evaluated on MSCOCO.
Method InstructBLIP LLaVA-NeXT Cambrian-1

AUROC ↑ AUPR ↑ AUROC ↑ AUPR ↑ AUROC ↑ AUPR ↑
NLL ICLR’24 65.1 82.3 56.1 84.6 50.1 76.3
Entropy ICLR’21 65.6 82.6 57.5 84.8 50.2 76.4
Internal Conf. ICLR’25 81.9 91.6 77.8 95.8 65.4 96.0
SVAR CVPR’25 78.4 90.6 76.9 95.6 60.5 90.8
Contextual Lens♠ NACCL’25 83.0 92.8 70.1 93.7 63.4 94.8
GLSIM (Ours) 85.0 94.3 81.4 97.6 79.7 98.0

Table 5. Design choices for global and local scoring functions.

Score Method LLaVA Shikra

Global
Last image token 65.9 56.2
Average image token 71.3 66.7
Last instruction token 79.3 79.8

Local Weighted average 75.8 73.0
Non-weighted average 78.8 76.8

GLSIM
Average & Eq. (3) 79.2 77.0
Last inst. & Eq. (3) 83.7 82.0

scoring function.

Results for additional models. We further evaluate our
approach on three additional large vision-language mod-
els—InstructBLIP (Dai et al., 2023), LLaVA-NeXT-7B (Liu
et al., 2024b), and Cambrian-1-8B (Tong et al., 2024)—us-
ing the MSCOCO dataset. As shown in Table 4, our method
consistently outperforms baselines, achieving a 2.0% AU-
ROC improvement on InstructBLIP, 4.2% on LLaVA-NeXT,
and a notable 14.3% gain on Cambrian-1. These results
demonstrate the robustness of GLSIM across varying model
architectures and scales.

6. Conclusion
In this paper, we propose GLSIM, a novel training-free
framework for object hallucination detection, which ex-
ploits the complementary strengths of global scene-level
semantics and fine-grained spatial alignment by leverag-
ing embedding similarity. Empirical results demonstrate
that GLSIM achieves superior performance across diverse
families of LVLMs and two representative datasets. Our in-
depth quantitative and qualitative ablations provide further
insights into understanding the effectiveness of GLSIM. We
hope our work will inspire future research on OH detection
from diverse perspectives.

Limitations and future work. Our analysis in this paper
focuses on object existence hallucinations, as annotations

and benchmarks for attribute and relation hallucinations are
currently limited. Nonetheless, it would be interesting to
investigate further the grounding ability of the Logit Lens
technique for attributes and relationships to quantify local
similarity beyond object presence. Moreover, leveraging
accurate OH detection from our method to guide model
editing or prediction refinement presents a promising future
direction for mitigating object hallucinations.
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A. Implementation Details
We implement our method using greedy decoding with a maximum generated token length of 512. The layer indices (l, l′),
the number of selected patches K, and the weighting parameter w used for computing the final score are selected based on a
separate validation set, as detailed in Table 6. For multi-token objects, we use the first token to compute the scores and
consider the first occurrence of each object for hallucination detection. The total number of generated objects is shown
in Table 7. For all experiments, we report the average over three different random seeds. All experiments are conducted
using Python 3.11.11 and PyTorch 2.6.0 (Paszke, 2019), on a single NVIDIA A6000 GPU with 48GB of memory.

Table 6. Hyperparameters.

Model Hyperparameters

Layer indices K w

LLaVA-1.5-7b (32, 31) 32 0.6
LLaVA-1.5-13b (40, 38) 32 0.6
MiniGPT-4 (32, 30) 4 0.5
Shikra (30, 27) 16 0.6

Table 7. Number of generated objects.

Model MSCOCO Objects365

Real Hallu. Real Hallu.

LLaVA-1.5-7b 14,910 4,121 14,357 9,850
LLaVA-1.5-13b 15,372 3,687 15,086 9,672
MiniGPT-4 11,642 2,282 11,603 7,222
Shikra 15,724 4,727 15,063 10,350
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B. Additional Qualitative Results
B.1. Qualitative Results

The image features a yellow and 
purple train traveling down the 
tracks.There are several people in 
the image, some of them standing 
near the train, possibly waiting 
for it to stop or disembark.D
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The image features a group of 
children gathered around a dining 
table, enjoying a meal together. 
There are multiple bowls on the 
table, and a book is visible near 
the center of the table.D
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(a) (b)

The image features a person 
standing in a room, with their
back turned to the viewer. They 
are holding a remote control in 
their hand, possibly playing a 
video game. D
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The image features a large, ornate 
church with a tall steeple and a 
clock. There are several cars 
parked in front of the church, 
with some cars closer to the 
foreground and others further backD
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The image depicts a hotel room 
with a bed in the center of the 
room. The bed is covered with a 
brown blanket. A chair is also 
present in the room, positioned 
near the bedD
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The image features a woman with 
purple hair, wearing a black shirt 
and a red tie. She is looking at 
the camera, possibly posing for a 
picture. In the background, a sink
is visible.D
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Figure 6. Additional qualitative evidence. In the generated descriptions, hallucinated objects are highlighted in red. The localized image
regions are shaded with the same color as their corresponding objects. The gray line shows a threshold value τ . If an object’s score is
lower than the threshold τ , we consider it a hallucination. In (a), the local score successfully compensates for the failure of the global
score, while in (b), the global score offsets the limitations of the local score.
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B.2. Object Grounding

Object: “mouse” Object: “bull” Object: “vase”

Object: “sandwich” Object: “remote” Object: “donuts”

Object: “cake” Object: “people” Object: “car”

Object: “ball”Object: “chair”Object: “cup”

Figure 7. Object grounding results for real objects. We visualize the Top-K Logit Lens probabilities at the 32nd layer of LLaVA-1.5-7B.
Ground-truth bounding boxes are shown in red.

Object: “mouse” Object: “bull” Object: “vase”

Object: “surfboard” Object: “remote” Object: “donuts”

Object: “cake” Object: “people” Object: “car”

Object: “ball”Object: “chair”Object: “cup”

Figure 8. Object grounding results for hallucinated objects. We visualize the Top-K Logit Lens probabilities at the 32nd layer of
LLaVA-1.5-7B.
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C. Related Works
C.1. Baselines

Negative Log-likelihood. Zhou et al. (2024) represents the probability of autoregressive decoding for each object token as
p(o | y<j ,v), where j denotes the positional index of object o. For each object o, the corresponding hallucination score is
defined as:

snll = − log p(o | y<j ,v). (6)

To align with the definition in Equation (1), we use s′nll = −snll.

Entropy. We further investigate the object-level hallucination score by estimating the entropy (Malinin & Gales, 2021) of
the token probability distribution at position j:

sentropy = −
∑
y∈V

p(y | y<j ,v) log p(y | y<j ,v). (7)

To align with the definition in Equation (1), we use s′entropy = −sentropy.

Internal Confidence. Jiang et al. (2025a) apply the logit lens to image representations, enabling the analysis of how visual
features are transformed into textual predictions. To quantify the model’s confidence for object hallucination detection,
the internal confidence score is computed as the maximum softmax probability of the object word o across all image
representations and layers. Following the notations introduced in Section 4.2, the hallucination score is defined as:

sIC = max
l∈[L]

max
i∈[N ]

VLLl(vi)[o], (8)

where L denotes the total number of layers and N denotes the total number of image patches.

Summed Visual Attention Ratio (SVAR). The Visual Attention Ratio (VAR) quantifies the interaction of a generated
token o with visual information by summing its attention weights assigned to image tokens in a specific attention head h and
layer ℓ:

VAR(ℓ,h)(o) ≜
N∑
i=1

A(ℓ,h)(o, vi), (9)

where A(ℓ,h)(o, vi) represents the attention weight from object token o to image token vi at h-th head in l-th layer. Building
on this, Jiang et al. (2025b) define the Summed Visual Attention Ratio (SVAR), which measures the overall visual attention
by averaging VAR scores across all heads and summing over a range of layers. Specifically, for an object token o within
layers ℓ5 to ℓ18, SVAR is computed as:

sSVAR =
1

H

18∑
ℓ=5

H∑
h=1

VAR(ℓ,h)(o), (10)

where H denotes the total number of attention heads.

Contextual Lens. To detect sentence-level hallucination, Phukan et al. (2025) compute the maximum cosine similarity
between the average embedding of the generated description at a specific layer lT and each image embedding at layer lI .

Sentence-level Score = max
i∈[N ]

sim(
1

M

m∑
j=1

hlT (yj), hlI (vi)). (11)

To compute the object-level hallucination score, we modify the original score with:

sCL = max
i∈[N ]

sim(hlT (o), hlI (vi)). (12)

16



GLSIM: Detecting Object Hallucinations in LVLMs via Global-Local Similarity

C.2. Extended Literature Review

Sentence-level hallucination detection in LLMs and LVLMs aims to classify an entire generation as either hallucinated
or correct, providing a coarse-grained assessment of factuality (Huang et al., 2025). A plethora of work addresses sentence-
level hallucination detection in large language models (LLMs) by designing uncertainty scoring functions, such as utilizing
token generation probabilities (Ren et al., 2023), prompting LLMs to quantify their confidence (Lin et al., 2022), and
evaluating consistency across multiple responses (Manakul et al., 2023). Specifically, internal state-based methods leverage
latent model embeddings (Azaria & Mitchell, 2023), employing techniques such as contrast-consistent search (Burns
et al., 2023), identifying hallucination-related subspaces (Du et al., 2024), or reshaping the latent space for hallucination
detection (Park et al., 2025).

Recently, reference-free sentence-level hallucination detection for large vision-language models (LVLMs) has attracted
research attention. Li et al. (2024) first compare uncertainty quantification methods from LLMs for application to LVLMs.
Inspired by Kuhn et al. (2023), VL-Uncertainty (Zhang et al., 2024) estimates uncertainty by measuring prediction variance
across semantically equivalent but perturbed prompts.

In contrast to these works, we propose the hallucination scoring function for object-level hallucination detection in LVLMs,
which provides a fine-grained assessment by localizing hallucinations within generations rather than classifying entire
outputs. Our method leverages latent embeddings from both visual and textual modalities and explores intrinsic metrics
tailored to LVLMs.

D. Further Ablation Studies
D.1. Visualization of Score Distributions

Figure 9. Score distribution for negative log-likelihood (Zhou et al., 2024) vs. our method.

We provide score distribution for the negative log-likelihood (NLL) (Zhou et al., 2024) and GLSIM (ours) in Figure 9. Our
approach exhibits a more distinct separation between the real and hallucinated data distributions. This enhanced separation
highlights the effectiveness of our global and local scoring designs, as well as their combination strategy, contributing to
more reliable detection performance compared to existing method.

D.2. Comparison with POPE

To compare with prompting-based methods such as POPE (Li et al., 2023b), we extract objects from the generated captions
produced using the prompt “Describe this image in detail.” We then convert these objects into a set of Yes-or-No short-form
questions. We prompt the LVLM with the following template:
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Input prompt for POPE evaluation

Prompt:
Q: Is there a {object} in the image?
A:

Responses containing “Yes” are labeled as 1 (real), and all others as 0 (hallucinated). For evaluation, each question is
labeled using the ground-truth object annotations from the MSCOCO dataset, following the same procedure as our main
pipeline. We select the decision threshold τ that maximizes the F1 score. We report accuracy (ACC), precision (PR) for real
(true) and hallucinated (false) objects, recall, and F1 score with % in Table 8. To compare computational efficiency, we
also report the average inference time (Time) required to detect object hallucinations per image. For LLaVA-1.5-7B, our
method achieves 2.8% improvement in the precision of real objects and a substantial 1.0% improvement in the precision
of hallucinated objects compared to POPE. From a computational perspective, our method requires only a single forward
pass for generation, whereas prompting-based methods like POPE require (1 + C) forward passes—one for generating
the description and C for the number of object-level verification prompts. Notably, our method reduces inference time
by 6.5 seconds per generated description compared to POPE, demonstrating substantial efficiency gains. These results
demonstrate the superior effectiveness and computational efficiency of our method in detecting object hallucinations, even
when compared to prompting-based approach, particularly in accurately filtering hallucinated content while maintaining
precision on real objects.

Table 8. Comparison with POPE on MSCOCO.
Model Method Time (s) ACC ↑ PR (True) ↑ PR (False) ↑ Recall ↑ F1 ↑

LLaVA-1.5-7B POPE (Li et al., 2023b) 8.1 79.5 80.3 70.8 96.7 87.8
Ours 1.6 81.8 83.1 71.8 96.6 89.3

LLaVA-1.5-13B POPE (Li et al., 2023b) 9.3 80.9 81.2 75.0 98.6 89.1
Ours 1.8 83.6 86.4 75.2 95.0 90.5

D.3. Multi-token Objects

Table 9. Comparison of token selection strategies for multi-token objects.

Token LLaVA-1.5-7B LLaVA-1.5-13B

First 83.7 84.8
Last 83.3 84.0
Average 83.4 84.2

To compute the visual logit lens probability for object grounding and the embedding similarity for hallucination detection,
we default to using the first token of multi-token objects. To evaluate the impact of this design choice, we conduct an
ablation study comparing three strategies: (1) using the first token, (2) using the last token, and (3) taking the average across
all tokens. Results on the MSCOCO dataset in Table 9 show that the first-token strategy is most effective, since the first
token often captures the core semantic meaning of the object.

D.4. Distance Metric

We investigate the impact of the choice of distance metric for computing embedding similarity on overall performance on
the MSCOCO dataset, as shown in Table 10. Specifically, we compare cosine similarity and L2 distance (i.e., Euclidean
distance) as the underlying metric for our GLSIM score. On the LLaVA-1.5-7B model, L2 distance yields slightly better
performance, improving AUROC by 0.3%. In contrast, on the Shikra model, cosine similarity outperforms L2 distance by
1.7%. These results suggest that the effectiveness of a distance metric may depend on the model’s training strategy and
architecture. Nevertheless, both metrics consistently outperform the baselines in Table 1, demonstrating the robustness of
our method across different metric designs.
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Table 10. Ablation on the impact of distance metric.

Metric LLaVA Shikra

Global L2 80.2 77.2
Cosine 79.3 78.9

Local L2 79.9 75.6
Cosine 78.8 76.8

G & L L2 84.0 81.3
Cosine 83.7 83.0

E. Layer-wise Performance Matrix
We provide the full performance (AUROC) matrix across all combinations of image and text embedding layers (l, l′) on the
MSCOCO dataset, illustrating how the composition of layers influences hallucination detection performance.
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Figure 10. Performance matrix of LLaVA-1.5-7B.
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Figure 11. Performance matrix of LLaVA-1.5-13B.
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Figure 12. Performance matrix of MiniGPT-4.
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Figure 13. Performance matrix of Shikra.

F. Broader Impacts
Ensuring the reliability of LVLMs is critical as they are increasingly deployed in high-stakes domains such as autonomous
navigation, medical diagnosis, and accessibility applications. This work addresses the critical challenge of object hallucina-
tion detection, which identifies objects mentioned in generated outputs that are not present in the input image. We propose a
practical, training-free method that combines global and local signals from pre-trained LVLMs to enhance hallucination
detection. Our research not only advances the technical frontier in this area, but also contributes to the development of
trustworthy AI systems, fostering confidence in the deployment of LVLMs in safety-critical applications.
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