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ABSTRACT

Vision-language models for medical image segmentation often produce masks that
conflict with the accompanying text, especially under multi-site/multi-lesion de-
scriptions. We trace this failure to two factors: (i) highly templated and repet-
itive clinical language causes one-to-one hard contrastive learning to yield nu-
merous false negatives, weakening cross-modal alignment; and (ii) predominantly
vision-driven, one-way cross-attention lacks a language-dominant, spatially aware
pathway, hindering effective injection of textual semantics into the spatial visual
domain. To this end, we propose Consistency-enhanced Two-stage Segmenta-
tion (C2Seg). In the pretraining stage, Cluster-aware Contrastive Learning uses
a frozen strong baseline to construct an intra-batch text similarity matrix as soft
labels, thereby alleviating false negative conflicts and producing more discrimina-
tive visual representations. In the fusion stage, we introduce a Bidirectional Com-
plementary Attention Module, where each modality dominates attention along its
own path, fostering deep interaction and structural consistency between visual and
textual representations. In order to enhance the expressive power of multimodal
features, we further adopt KAN-based Attention Gating. Without updating the
language encoder, our approach significantly improves text–mask consistency and
segmentation accuracy on four public medical imaging datasets. Code is provided
in the supplementary material.

1 INTRODUCTION

Despite the remarkable progress of vision-language models (VLMs) in visual understanding through
large-scale image-text alignment (Ghosh et al., 2024; Li et al., 2025b), current medical VLMs still
frequently produce masks that contradict the accompanying text on key semantic attributes, espe-
cially in multi-site/multi-lesion scenarios. As illustrated in Fig. 1(a), even when the text explicitly
specifies quantity and spatial cues such as “Bilateral”, “two”, or “upper left”, the predicted masks
may still fail to match the described number of lesions or their coarse locations. This phenomenon
suggests that existing pipelines have not yet effectively transformed clinical language into pixel-level
structural constraints, making it difficult to ensure text–mask consistency at the level of semantic at-
tributes such as lesion count, laterality, and coarse spatial position.

We trace this mismatch to two underlying factors, as illustrated in Fig. 1(b). Firstly, clinical de-
scriptions are highly templated and semantically repetitive, so the same short phrase can correspond
to different imaging instances. In QaTa-COV19 dataset, for example, roughly 7,000 cases share
only about 300 unique text templates, which means that the same text is frequently reused within
the same training mini-batch rather than being a rare coincidence. Under this distribution, main-
stream InfoNCE-style contrastive learning (Hu et al., 2024) still enforces a strict one-to-one match-
ing, treating each image–text pair (I(i), T (i)) as the only positive and all unpaired combinations
(I(i), T (j)), j ̸= i as negatives. In medical settings, however, T (i) and some T (j) can be exactly the
same template (e.g., “unilateral pulmonary infection, one infected area”), so pairs like (I(i), T (j))
are incorrectly pushed apart as strong negatives. This hard-coding of nearly identical semantics as
negatives produces a large number of false negatives and contrastive conflicts, ultimately degrad-
ing cross-modal alignment quality. Secondly, most existing methods still rely on vision-centric,
unidirectional cross-attention mechanisms (Wang et al., 2024; Chen et al., 2025). Although some
works explore Dual-path attention (DualA) between vision and language in their fusion architec-
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Figure 1: Challenge and limitations of existing methods, and our solution.

tures (Huang et al., 2024), the textual features in these approaches typically only modulate visual
features indirectly through attention weights, without forming an explicit, language-dominant spatial
representation. As a result, such methods remain essentially vision-centric, and their exploitation
and modeling of linguistic semantics are still insufficient.

To this end, we propose a Consistency-enhanced Two-stage Segmentation framework (C2Seg). As
illustrated in Fig. 1(c), Stage I employs Cluster-aware Contrastive Learning (CaCL), which lever-
ages implicit batch-wise semantic neighborhoods in a frozen language space to construct soft label
distributions. This allows the image–text contrastive loss to fit a continuous semantic similarity dis-
tribution rather than hard positives/negatives, thereby alleviating contrastive conflicts and producing
more discriminative, robustly aligned visual representations. In Stage II, we design a Bidirectional
Complementary Attention Module (BCAM) that augments the traditional vision-dominant cross-
attention with a language-dominant path while preserving spatial structure: the vision path outputs
“each pixel enhanced by sentence-level semantics,” whereas the language path captures “the ag-
gregated per-token influence at each pixel,” enabling spatially aware, deep bidirectional interaction.
Furthermore, we introduce a KAN-based Attention Gating (K–Gate) that adaptively weights spatial
locations and modality-specific features for fine-grained feature selection; KANs are also applied
in the visual encoder and BCAM to provide nonlinear modeling capacity with limited parameter
overhead. The contributions of this work can be summarized as follows:

• We propose CaCL that converts inter-text similarity into soft labels for contrastive learning,
effectively suppressing false-negative conflicts, strengthening cross-modal alignment, and
promoting semantic consistency.

• We design BCAM, which consists of two parallel vision-dominant and language-dominant
paths, enabling deep bidirectional interaction and complementary enhancement while pre-
serving spatial structure.

• We introduce K–Gate to perform nonlinear modeling of visual and language features sepa-
rately through KANs, thereby achieving fine-grained selection of cross-modal information.

• We present C2Seg and demonstrate its significant improvements on text–mask consistency
and segmentation accuracy through extensive experiments on four public medical datasets.

2 RELATED WORK

Vision Language Models. In recent years, the success of general vision-language pretraining
models has strongly driven multimodal research in the medical domain. For example, Zhang et al.
(2023) performs image-text contrastive pretraining on large-scale biomedical figures and reports,
learning generic medical image-text representations for retrieval and classification; Li et al. (2023a)
extends instruction-following VLMs to medical visual question answering and dialogue scenarios.
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Meanwhile, Cheng et al. (2023) and Ma et al. (2024) transfer the Segment Anything paradigm
to medical imaging, achieving strong organ and lesion segmentation performance under prompts.
Leveraging the rich multimodal semantic representations and scalable model interfaces offered by
these foundation models, a number of vision-language guided segmentation methods have recently
emerged(Tomar et al., 2022; Huemann et al., 2024; Wang et al., 2025b; Li et al., 2023b; Wang
et al., 2025c). However, despite the diversity of fusion mechanisms, most existing multimodal
segmentation models still rely on a unidirectional path where language guides vision, and lack ex-
plicit modeling of linguistic semantics. Although Liu et al. (2023); Cho et al. (2023); Sultan et al.
(2025) construct bidirectional interaction structures between vision and language, their so-called
“language-dominant” attention branches typically output only updated text tokens, while the final
segmentation prediction still depends on feature maps from the visual branch. In other words, text
mainly modulates visual features indirectly through attention weights, without forming an explicit
language-centric spatial representation, which limits the modeling of fine-grained, text-conditioned
spatial details.

Contrastive Learning. Multimodal pretraining networks utilize large-scale image-text pairs for
contrastive learning to achieve effective cross-modal alignment (Mukhoti et al., 2023; Chng et al.,
2024; Sung et al., 2024). In the context of medical image, the high cost of acquiring medical data
and pixel-level annotations makes the incorporation of richly paired medical text and images a nat-
ural solution (Wang et al., 2022; Hu et al., 2023). Contrastive learning methods can align medical
text and images, providing crucial semantic guidance for the segmentation process (Pan et al., 2025).
However, contrastive objectives are known to suffer from false negatives and class collisions, and
this issue is further exacerbated in clinical practice where medical reports are highly templated and
heavily reused: the same or nearly identical wording can appear in many different cases, so tra-
ditional hard sampling often mislabels semantically similar pairs as negatives, compromising the
stability and accuracy of the alignment. To mitigate such effects, Li et al. (2021) introduce clus-
ter prototypes to encode semantic structure, while Dwibedi et al. (2021) augments positives with
nearest neighbors in the feature space. Nonetheless, even when the contrastive objective is relaxed
from strictly one-to-one to one-to-many, these methods still rely on hard positive/negative assign-
ments at the label level, making it difficult to explicitly model the continuous semantic similarity
distribution between samples and thus preventing them from effectively mitigating the soft-positive
problem associated with semantic neighbors.

Kolmogorov-Arnold Networks. The Kolmogorov-Arnold representation theorem states that any
multivariate continuous function f(x1, x2, . . . , xn) can be represented as a finite composition of
univariate continuous functions. Inspired by this, Liu et al. (2024b) proposed the KAN, which
replaces the linear weights in conventional MLPs with learnable univariate function units. This
design enhances the model’s nonlinear modeling capacity with fewer parameters and improves in-
terpretability. Building on this idea, recent studies have introduced KANs into various vision tasks
and achieved promising results (Chen et al., 2024; Zhang et al., 2025; Wang et al., 2025a; Zhu
et al., 2025). Among them, Li et al. (2025a) integrated Tok-KAN blocks into the U-Net framework
to strengthen local feature modeling, providing higher accuracy, efficiency and interpretability for
vision tasks. Despite the demonstrated success of KANs in unimodal scenarios, its potential for
cross-modal alignment and fusion has yet to be systematically explored.

3 METHOD

Overview. Our proposed C2Seg comprises two sequential stages, as illustrated in Fig. 2. Given in-
put I and T , we first design CaCL in the pretraining stage, where pairwise cosine similarity between
text embeddings is computed to generate soft labels Yij that guide robust image-text contrastive
learning. In the fusion stage, we introduce BCAM, consisting of two paths that simultaneously
generate vision-dominant features Fv and language-dominant features Fl, enabling comprehensive
exploitation of language information while preserving spatial structural information. Subsequently,
K–Gate is applied to perform attention-weighted of the two feature streams, and producing the fi-
nal output Fout. Finally, through skip connections and upsampling operations, the spatial resolution
is progressively restored, yielding high-quality pixel-level segmentation predictions. Notably, we
fine-tune the visual encoder with a small learning rate while keeping the language encoder frozen to
preserve stable semantic anchors in the text space.
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Figure 2: Overview of the proposed C2Seg. Given medical images and their corresponding textual
descriptions, visual and language features are extracted using dedicated encoders.

3.1 FEATURE ENCODER

Based on the work of Li et al. (2025a) and Radford et al. (2021), we built a dual-branch encoder. The
visual branch employs three convolutional layers followed by two KAN layers, aiming to combine
the feature capturing ability of CNN with the nonlinear modeling capabilities of KANs. Given
an image I ∈ RC×H×W , the visual branch produces multi-scale features V = {Vℓ}4ℓ=0 with
Vℓ ∈ RCℓ×Hℓ×Wℓ and progressively downsampled spatial sizes (Hℓ,Wℓ). A global image vec-
tor is computed as v = Wv GAP(V4) ∈ Rdv , where GAP(·) denotes global average pooling and
Wv is a learnable projection. On the language branch, the frozen CLIP encoder processes text
T tokenized to length N , yielding position-aware token embeddings L ∈ RN×dt and a sentence
embedding l ∈ Rdt . To enable channel-aligned bidirectional interaction at each visual scale, to-
kens are projected by learnable per-scale 1×1 mappings as Lℓ = LWℓ with Wℓ ∈ Rdt×Cℓ , hence
Lℓ ∈ RN×Cℓ . The set {Vℓ} preserves pixel-level spatial structure for subsequent fusion and de-
coding, while {Lℓ} together with l provide token-level and sentence-level semantics that feed into
BCAM for bidirectional complementary interaction and fusion.

3.2 CLUSTER-AWARE CONTRASTIVE LEARNING

Unlike standard InfoNCE with a single positive/negative pairing, CaCL reframes in-batch con-
trastive learning as batch-wise semantic distribution matching. We first estimate text-text similarities
in the frozen language space and convert them into soft labels, which are then used to supervise the
image-text similarity distribution. This neighborhood-wise probabilistic supervision systematically
suppresses erroneous repulsive gradients induced by templated clinical phrasing. Throughout, image
embeddings {vi}Bi=1 and sentence embeddings {li}Bi=1 are L2-normalized.

Soft Label Construction. Given a batch of size B, we first compute the text–text cosine sim-
ilarity matrix Mij = cos(li, lj). To attenuate the global similarity inflation induced by shared
templates, we apply row-mean debiasing and non-negativity clipping to each row, obtaining M ′

ij =

max{Mij − µi, 0}, where µi = 1
B

∑
k Mik. Here, µi can be viewed as a batch-level “template

bias” whose removal helps suppress global template effects and yields a soft label distribution that
focuses more on local semantic neighborhoods. Temperature τ is then used to produce semantic soft
targets:

Ŷij =
exp(M ′

ij/τ)∑
k exp(M

′
ik/τ)

. (1)

To retain the anchor identity, the final target distribution mixes the diagonal with these soft targets as
Yij = ρ Ŷij+(1−ρ)1[j = i], where ρ ∈ [0, 1] balances the self-positive and its semantic neighbors.
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Distribution-supervised Symmetric InfoNCE. Let the cross-modal logit be sij = v⊤
i lj , and

define the directional probabilities P v→l
ij = softmaxj(sij/τ) and P l→v

ij = softmaxi(sij/τ). We
match the predicted distributions to Y in both directions with a single bidirectional objective:

LCaCL = − 1

B

B∑
i=1

B∑
j=1

[
Yij logP

v→l
ij + Yji logP

l→v
ij

]
. (2)

Theoretical Justification. With the above definitions of P v→l and P l→v , the gradient with respect
to any logit sij is

∂LCaCL

∂sij
=

1

τ

(
P v→l
ij − Yij + P l→v

ij − Yji

)
. (3)

Semantically related but non-matching pairs thus receive nonzero target mass (Yij > 0 and/or Yji >
0), which attenuates or even reverses the repulsive gradient, mitigating false negatives and promoting
neighborhood-consistent alignment. The additional computational cost is dominated by building M
in O(B2C) time, which is negligible relative to the backbone.

3.3 BIDIRECTIONAL COMPLEMENTARY ATTENTION MODULE

Existing DualA-style bidirectional fusion methods typically update only the text tokens in their
“language-dominant” branch, without producing features that explicitly preserve image spatial in-
formation. The representative work M3Att (Liu et al., 2023), although achieving bidirectional in-
teraction between vision and language via multimodal cross-attention, uses a single fully connected
projection to compress the spatial dimension P into the channel dimension C during fusion. This
amounts to a non-structured mixing of all image patches for each text token, which weakens the
original spatial inductive bias and tends to lose local details such as boundaries and textures. There-
fore, we propose BCAM, which constructs two complementary attention paths in parallel during the
fusion stage, one vision-dominant and one language-dominant, so that the two modalities can con-
dition each other and produce spatially aligned multimodal features directly on the pixel grid. This
alleviates modality imbalance and preserves more local information. The structures and differences
of the three attention mechanisms are shown in Fig. 3.

Figure 3: The architecture of: (a). the generic attention mechanism; (b). the Multi-Modal Mutual
Attention (M3Att); (c). our proposed Bidirectional Complementary Attention Module (BCAM).

Complementary Attention. Given visual features V ∈ RP×C (P = H ×W denotes the number
of spatial positions) and language features L ∈ RN×C , we use learnable KAN layers to obtain keys
and values for cross-attention, defined as Vkey = KAN(V), Vvalue = KAN(V), Lkey = KAN(L),
and Lvalue = KAN(L). We then construct the scaled dot-product attention scores A:

A =
1√
d
Vkey (Lkey)

⊤ ∈ RP×N . (4)
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Vision-dominant Path. We apply a softmax along the language axis N and use it to aggregate
language values, yielding a language-enhanced visual representation:

Fv = SoftmaxN (A) · Lvalue ∈ RP×C . (5)

The resulting Fv is a sentence- and token-injected visual feature map that preserves the original spa-
tial resolution P . Intuitively, each pixel position collects token semantics according to its relevance
weights, providing rich, pixel-level semantic context.

Language-dominant Path. Directly applying A⊤ ∈ RN×P to Vvalue would produce a token-level
representation of shape RN×C , which lacks explicit pixel topology and thus hampers subsequent
decoding. Therefore, we normalize the transpose A⊤ along the spatial axis P , apply each token’s
spatial weights to the visual values, and then aggregate across tokens to obtain a language-guided
feature aligned with the image grid:

Fl =
1

N

N∑
n=1

SoftmaxP
(
A⊤[n, :]

)
⊙ Vvalue ∈ RP×C , (6)

where ⊙ denotes broadcasted element-wise multiplication over the channel dimension. The resulting
Fl encodes each token’s collective attention over all spatial locations, forming a spatially coherent,
language-guided feature map. Compared with a unidirectional, vision-only fusion scheme, the addi-
tion of this language-initiated path mitigates modality imbalance, improves cross-modal alignment,
and provides spatially consistent signals to the decoder, thereby enhancing downstream segmenta-
tion performance.

3.4 KAN-BASED ATTENTION GATING

After the BCAM, the visual and textual streams have exchanged information bidirectionally; how-
ever, modality-specific statistical biases and noise patterns (e.g., imaging artifacts and templated
phrasing) may still propagate across modalities and be amplified, thereby diluting spatial detail or
inducing semantic drift. To address this, we introduce a KAN-based nonlinear gating mechanism
that performs selective suppression and enhancement within each modality before fusion, followed
by data-dependent mixing. This design improves the expressiveness of features and alleviates modal
imbalance from the source.

For the two feature streams output by BCAM, the visual branch Fv ∈ RP×C and the language
branch Fl ∈ RP×C , we construct two independent KAN gating heads, each comprising two KAN
layers with an intermediate ReLU and producing a gating tensor that matches the input shape. We
adopt a tanh activation to normalize each branch output, bounding the learned gating weights to
[−1, 1]. Accordingly, the gating tensors are defined as:

gv = tanh
(
KAN(2)

v (ReLU(KAN(1)
v (Fv)))

)
, gl = tanh

(
KAN

(2)
l (ReLU(KAN

(1)
l (Fl)))

)
. (7)

We then perform element-wise reweighting Fg
v = Fv ⊙ gv and Fg

l = Fl ⊙ gl, where ⊙ denotes
element-wise multiplication. After this modality-internal refinement, we concatenate [Fg

v∥F
g
l ] along

the channel dimension and apply a 1 × 1 convolution for channel alignment and linear mixing to
obtain the final fused representation Fout. This process enhances the spatial perception ability of
the model through feature selection, while providing a nonlinear and fine-grained selective path for
cross-modal fusion.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets. We conduct experiments on four public medical image segmentation datasets: QaTa-
COV19 (Degerli et al., 2022), MosMedData+ (Morozov et al., 2020; Hofmanninger et al., 2020),
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Table 1: Quantitative comparison on QaTa-COV19 and MosMedData+ datasets.

Method Params(M) Text QaTa-COV19 MosMedData+
Dice(%)↑ mIoU(%)↑ HD95↓ ASSD↓ Dice(%)↑ mIoU(%)↑ HD95↓ ASSD↓

U-Net (Ronneberger et al., 2015) 31.4 × 79.02 69.46 33.98 9.03 64.60 50.73 23.52 6.35
U-Net++ (Zhou et al., 2018) 74.5 × 79.62 70.25 36.14 9.91 71.75 58.39 24.06 5.45
nnUNet (Isensee et al., 2021) 19.1 × 80.42 70.81 28.14 9.86 72.59 60.36 22.75 5.56
TransUNet (Chen et al., 2021) 105.0 × 78.63 69.13 29.88 8.42 71.24 58.44 23.41 6.38
Swin-Unet (Cao et al., 2022) 82.3 × 78.07 68.34 31.51 9.20 63.29 50.19 25.31 7.69
UKAN (Li et al., 2025a) 9.4 × 79.30 69.85 31.89 8.79 72.56 59.05 29.38 7.25
MM-UKAN++ (Zhang et al., 2025) 9.9 × 79.20 69.70 35.26 9.76 71.82 58.37 32.63 8.96
CLIP (Radford et al., 2021) 87.0 ✓ 79.81 70.66 23.25 5.54 71.97 59.64 26.24 6.58
GLoRIA (Huang et al., 2021) 45.6 ✓ 79.94 70.68 26.47 5.24 72.42 60.18 28.61 6.79
ViLT (Kim et al., 2021) 87.4 ✓ 79.63 70.12 25.32 5.96 72.36 60.15 24.85 5.69
TGANet (Tomar et al., 2022) 19.8 ✓ 77.17 64.39 29.54 7.83 69.48 55.81 26.39 6.12
ConVIRT (Zhang et al., 2022) 35.2 ✓ 79.72 70.58 22.36 6.03 72.06 59.73 22.38 6.36
LAVT (Yang et al., 2022) 118.6 ✓ 80.48 67.01 15.70 4.87 68.51 55.32 17.28 4.18
SLViT (Ouyang et al., 2023) 131.5 ✓ 79.25 68.87 15.18 4.35 72.57 60.78 21.23 6.10
LViT (Li et al., 2023b) 29.7 ✓ 81.52 68.63 18.62 5.32 72.10 57.35 18.94 4.82
UniLSeg (Liu et al., 2024a) 28.7 ✓ 72.88 59.58 15.15 4.11 65.89 52.01 19.98 4.96
RefSegformer (Wu et al., 2024) 195.0 ✓ 81.63 69.71 20.22 5.29 70.25 57.31 19.70 4.78
ARSeg (Wang et al., 2025b) 30.1 ✓ 84.09 72.64 19.90 5.24 73.24 59.82 31.88 7.65
MedLangViT (Wang et al., 2025c) 27.7 ✓ 84.27 75.93 14.51 3.97 75.95 63.17 18.29 4.12
C2Seg (Ours) 18.92 ✓ 85.25 76.97 12.71 3.38 77.81 65.17 15.02 3.76

CVC-ClinicDB (Bernal et al., 2015), and Kvasir (Jha et al., 2019). QaTa-COV19 and MosMedData+
are lung datasets with paired textual annotations provided by Li et al. (2023b), while CVC-ClinicDB
and Kvasir are colon polyp datasets whose image-text pairs are constructed following Zhang et al.
(2024). We adopt Dice, mean Intersection over Union (mIoU), the 95th percentile Hausdorff Dis-
tance (HD95), and the Average Symmetric Surface Distance (ASSD) as our primary evaluation
metrics. Detailed descriptions of these datasets and the evaluation metrics are given in Appendix
Sec. A.4 and Appendix Sec. A.5, respectively.

Implementation Details. Our proposed method is implemented on a server with two NVIDIA
GeForce RTX 5090 D (32 GB) GPUs. By default, the batch size is set to 256 for the pretraining
stage and 32 for the segmentation stage, the temperature parameter τ is set to 0.07, and the soft-label
weight parameter ρ is set to 0.8. During the supervised segmentation stage, we adopt a combined
BCE + Dice objective (BCEDice loss) as the training loss; a detailed formulation of this loss is
provided in Appendix Sec. A.6. The initial learning rate is set to 1 × 10−3 for QaTa-COV19 and
CVC-ClinicDB, and 3× 10−4 for MosMedData+ and Kvasir. We use the Adam optimizer together
with a cosine annealing learning rate scheduler.

Table 2: Quantitative comparison on CVC-ClinicDB and MosMedData+ datasets.

Method Params(M) Text CVC-ClinicDB Kvasir
Dice(%)↑ mIoU(%)↑ HD95↓ ASSD↓ Dice(%)↑ mIoU(%)↑ HD95↓ ASSD↓

U-Net (Ronneberger et al., 2015) 31.4 × 57.57 44.93 49.40 19.87 75.77 65.20 40.29 12.11
U-Net++ (Zhou et al., 2018) 74.5 × 88.94 82.91 12.16 3.99 87.00 79.71 20.87 6.63
nnUNet (Isensee et al., 2021) 105.0 × 85.69 77.72 13.48 5.84 86.95 79.19 20.39 5.81
Swin-Unet (Cao et al., 2022) 82.3 × 81.19 71.64 26.38 8.67 77.24 66.90 21.25 8.80
UKAN (Li et al., 2025a) 9.4 × 89.74 84.47 13.19 3.72 87.77 81.13 21.37 5.82
MM-UKAN++ (Zhang et al., 2025) 9.9 × 89.52 82.15 13.26 3.36 85.63 78.03 24.81 7.12
LAVT (Yang et al., 2022) 118.6 ✓ 88.13 82.76 9.33 3.85 90.83 84.90 15.90 4.15
TGANet (Tomar et al., 2022) 19.8 ✓ 89.93 84.56 8.41 2.11 90.44 84.19 17.18 4.33
SLViT (Ouyang et al., 2023) 131.5 ✓ 80.55 72.86 26.91 9.87 85.69 77.97 19.57 5.56
LViT (Li et al., 2023b) 29.7 ✓ 88.27 80.81 15.18 4.15 87.36 79.85 24.18 6.40
RefSegformer (Wu et al., 2024) 195.0 ✓ 80.73 71.94 23.10 7.28 86.87 78.77 25.30 6.46
RecLMIS (Huang et al., 2024) 23.7 ✓ 81.31 73.04 38.44 12.13 90.63 84.35 17.93 4.43
MMIUNet (Bui et al., 2024) 56.2 ✓ 89.96 84.14 11.55 4.02 90.27 84.29 15.13 4.35
ARSeg (Wang et al., 2025b) 30.1 ✓ 89.74 82.64 13.71 4.29 88.45 81.34 22.79 5.66
MedLangViT (Wang et al., 2025c) 27.7 ✓ 88.35 81.92 10.66 4.50 90.57 84.21 14.12 4.09
C2Seg (Ours) 18.92 ✓ 91.82 86.81 6.53 2.23 91.92 85.27 13.62 3.98

4.2 PERFORMANCE COMPARISON

We conduct a systematic comparison between C2Seg and other segmentation methods on four pub-
lic medical image datasets, with quantitative results summarized in Tab. 1 and Tab. 2. Overall,
C2Seg achieves competitive or even state-of-the-art performance across all four benchmarks. Ben-
efiting from the incorporation of textual modality, C2Seg significantly outperforms the strongest
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CNN-based model nnU-Net and the KAN-based model UKAN. Compared with other multimodal
approaches, our method not only excels on region-overlap metrics (Dice and mIoU), but also shows
clear advantages on distance-based metrics HD95 and ASSD, indicating that C2Seg provides more
accurate delineation of lesion locations and boundaries and, from a geometric perspective, further
corroborating the benefit of leveraging textual constraints for spatial localization.

As illustrated in Fig. 4, we further analyze the behavior of different methods. In the first row, the
text explicitly specifies “unilateral pulmonary infection, one infected area”, yet several methods still
misclassify regions in the right lung as lesions, whereas C2Seg correctly restricts its prediction to
a single lesion in the left lung. In the second row, the textual prompt “middle lower left lung” is
given; some methods fail to properly capture positional information and produce over-segmentation
in the upper left lung, while C2Seg more accurately focuses on the middle-lower region of the left
lung, demonstrating finer text-guided localization. In the fifth row, the text includes a numerical
cue “two infected areas”; some methods produce an incorrect number of lesions, whereas C2Seg
matches both the spatial locations and the number of lesions described in the text. These qualitative
observations are consistent with the quantitative gains and further confirm the advantage of C2Seg
in adhering to textual constraints and improving text–mask consistency.

Figure 4: Visualization of different methods. Green, red, and blue represent true positive, false
negative, and false positive pixels, respectively.

4.3 ABLATION STUDIES

Effect of Proposed Components. We conduct systematic ablation studies on the MosMedData+
and CVC-ClinicDB datasets, as summarized in Tab. 3. Case (a) keeps only the visual branch as a
unimodal baseline; Case (b)-(f) all use CLIP as the text encoder, where (b) adopts DualA in Stage
II, (c) replaces DualA with BCAM, (d) further adds K-Gate on top of BCAM, (e) introduces con-
ventional hard-label contrastive learning (HardCL) in Stage I, and the final full model corresponds
to Case (f). The results show a clear step-wise improvement as components are added, validating
both the effectiveness and complementarity of the proposed modules.

Effect of Text Encoders. Keeping the training framework fixed, we further replace the text en-
coder with domain-specific biomedical language models BioBERT-Base v1.1 (Lee et al., 2020)
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Table 3: Ablation study on MosMedData+ and CVC-ClinicDB datasets.
Case Text encoder Stage I Stage II MosMedData+ CVC-ClinicDB

HardCL CaCL DualA BCAM K-Gate Dice(%)↑ mIoU(%)↑ Dice(%)↑ mIoU(%)↑
(a) × 73.61 60.02 86.59 78.11
(b)

CLIP

✓ 75.59 62.35 89.56 83.14
(c) ✓ ✓ 76.50 63.77 90.31 84.45
(d) ✓ ✓ ✓ 77.03 64.45 90.68 85.98
(e) ✓ ✓ ✓ ✓ 77.32 64.51 91.26 86.33
(f) ✓ ✓ ✓ ✓ 77.81 65.17 91.82 86.81
(g) BioBERT-Base ✓ ✓ ✓ ✓ 76.22 64.18 90.60 86.08
(h) PubMedBERT ✓ ✓ ✓ ✓ 76.69 64.76 90.25 84.69

and PubMedBERT (Gu et al., 2021). As shown in Tab. 3, even though CLIP text encoder is not
pretrained on medical corpora, its performance remains slightly better than BioBERT and PubMed-
BERT. We speculate this is mainly because the CLIP is learned via contrastive training on large-scale
image-text pairs, yielding an embedding space that is naturally aligned with visual features and bet-
ter matched to the short, location- and quantity-oriented descriptions used in this work, whereas
BioBERT/PubMedBERT are pretrained solely on pure-text biomedical corpora and are better suited
for long clinical reports, lacking such cross-modal alignment and adaptation.

Effect of Bidirectional Fusion Mechanism. To verify the effectiveness of the proposed bidirec-
tional complementary attention, we fix the backbone and decoder and only replace the Stage II fusion
module, comparing DualA with the proposed BCAM. The visualization results on QaTa-COV19 and
Kvasir datasets are shown in Fig. 5. Even when the prompt explicitly contains quantitative and po-
sitional cues such as “Unilateral,” “two,” and “lower left,” DualA still tends to produce results that
deviate from the text, for example activating both lungs or merging multiple lesions into a single
region. In contrast, with BCAM, the high-response regions are much better concentrated on the
text-specified target areas. This indicates that the language-dominant path effectively strengthens
the mapping from textual semantics to spatial representations and, when combined with the vision-
dominant path, not only alleviates text–mask inconsistency but also leads to more accurate lesion
localization and boundary delineation.

Figure 5: Qualitative comparison of DualA and BCAM on QaTa-COV19 and Kvasir datasets.

Effect of KAN Structure. To assess the role of KAN in our framework, we design five struc-
tural variants on the MosMedData+ dataset: using a pure CNN as the visual encoder; adopting a
hybrid encoder with the first three layers as CNN and the last two layers as KAN; replacing the
visual encoder entirely with a pure KAN; replacing the KAN layers in BCAM with linear projec-
tions while keeping the encoder unchanged; and replacing the KAN layers in K–Gate with standard
MLPs. As shown in Tab. 4(a), the hybrid encoder yields consistent performance gains over the pure
CNN encoder, whereas the pure KAN encoder even leads to degradation, indicating that the local
receptive fields provided by CNNs remain crucial for low-level feature extraction and that KAN is
more suitable as a high-level complement rather than a full replacement. In addition, substituting
KAN with linear layers or MLPs in BCAM or K–Gate results in performance drops, suggesting
that the nonlinear modeling capacity of KAN still offers advantages for higher-order cross-modal
interactions.
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Table 4: Ablation of KAN and hyperparameters on MosMedData+ datasets.
(a) Ablations on KAN. (b) Sensitivity of hyperparameters.

Settings Dice(%)↑ mIoU(%)↑ Effect of ρ Effect of τ Effect of batch size
CNN encoder 77.29 64.51 (τ = 0.07, batch size = 256) (ρ = 0.8, batch size = 256) (ρ = 0.8, τ = 0.07)

Hybrid encoder 77.81 65.17 ρ Dice(%)↑ mIoU(%)↑ τ Dice(%)↑ mIoU(%)↑ batch size Dice(%)↑ mIoU(%)↑
KAN encoder 76.21 63.27 0.6 77.64 65.05 0.05 77.59 65.12 128 76.52 63.93

BCAM (Linear) 77.26 64.42 0.8 77.81 65.17 0.07 77.81 65.17 256 77.81 65.17
K-Gate (MLP) 76.93 64.02 1.0 77.12 64.26 0.10 77.45 64.98 512 77.89 65.18

Effect of Hyperparameters. We conduct a hyperparameter sensitivity analysis on the MosMed-
Data+ dataset, with the results summarized in Tab. 4(b). For each experiment, all settings are fixed
to the default configuration (ρ=0.8, τ=0.07, batch size= 256) except for the hyperparameter under
investigation. The results show that the model is only weakly sensitive to ρ and τ , and we therefore
adopt the slightly better and more stable combination ρ=0.8 and τ=0.07 as the default setting. In
addition, as the batch size increases, the evaluation metrics exhibit a general upward trend, confirm-
ing the positive effect of larger batches on contrastive learning; however, the gain of 512 over 256 is
marginal, so we choose batch size= 256 in the main experiments as a trade-off between performance
and computational cost.

Effect of Contrastive Learning Strategy. We compare CaCL with two control settings (without
contrastive learning and with generic contrastive learning) on the QaTa-COV19 and MosMedData+
datasets. For each dataset, we select the top 5 textual descriptions with the largest number of matched
images and their corresponding image samples, and visualize the distributions of their image features
in the latent space under different training strategies. As shown in Fig. 6, CaCL yields more compact
and semantically better separated cross-modal features, confirming its effectiveness in improving
cross-modal alignment.

Figure 6: Visualization of image feature distribution on QaTa-COV19 and MosMedData+ datasets
under three pretraining strategies (no contrast, general contrast, and CaCL). Each color represents
all images corresponding to a textual description.

5 CONCLUSION

In this paper, we propose C2Seg, a two-stage medical image segmentation framework targeting text-
mask consistency. In the pretraining stage, we first reformulate batch contrastive learning as cluster-
level distribution matching, transforming text-to-text similarity into a soft target to suppress false
negatives and stabilize cross-modal alignment. In the fusion stage, we establish a modality fusion
path dominated by vision and language to more fully exploit textual information, while K–Gate
provides fine-grained cross-modal information selection. Extensive experiments on four challenging
datasets validate the superiority and effectiveness of C2Seg.

6 LIMITATIONS

In this work, we primarily rely on qualitative visualization to assess text–mask consistency and have
not yet introduced a dedicated quantitative metric for this purpose. Moreover, the textual descrip-
tions in our datasets are relatively clean and structured, so we have not systematically examined the
model’s robustness to complex text noise, such as spelling errors, abbreviations, or missing findings.
Both aspects are important directions that we plan to explore in future work.
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A APPENDIX

A.1 ETHICS STATEMENT

We have ensured that all data used in this research comply with ethical guidelines and proper cita-
tions. The study follows responsible AI practices and avoids any data manipulation or misrepresen-
tation.

A.2 REPRODICIBILITY STATEMENT

The experiments in this work are fully reproducible. All datasets and code used for model train-
ing and evaluation are publicly available. Detailed information on the experimental setup, model
configurations, and hyperparameters is provided to enable independent reproduction of results.

A.3 USE OF LLMS

This work does not involve the use of any large language models (LLMs), such as GPT, BERT, or
similar models.

A.4 DATASETS

To comprehensively evaluate the effectiveness of our proposed C2Seg, we conduct experiments on
four widely used public medical image segmentation datasets: QaTa-COV19, MosMedData+, CVC-
ClinicDB, and Kvasir. QaTa-COV19 and MosMedData+ are chest imaging datasets, both augmented
with textual descriptions curated by Li et al. (2023b), which provide descriptive information for each
image. A notable challenge in these two datasets is the high degree of text reuse: for example, over
7,000 samples in QaTa-COV19 share only about 300 different textual descriptions, which poses
additional difficulties for fine-grained vision–language alignment. In addition, we consider two
colonoscopy polyp segmentation datasets, CVC-ClinicDB and Kvasir, where image–text pairs are
constructed by Zhang et al. (2024) through clinically oriented descriptions of each image.
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The QaTa-COV19 dataset Degerli et al. (2022), jointly released by Qatar University and Tampere
University, comprises 9,258 chest X-ray images with pixel-level annotations for COVID-19 lesion
segmentation. We follow the dataset partition protocol used in LViT Li et al. (2023b), splitting
the dataset into a training set (5,716 images), a validation set (1,429 images), and a test set (2,113
images).

The MosMedData+ dataset Morozov et al. (2020); Hofmanninger et al. (2020) includes 2,729 chest
CT slices labeled with infection masks for pulmonary lesions. Each image is also accompanied
by textual descriptions that specify attributes such as infection laterality, anatomical location, and
affected lung lobes, providing diverse spatial and semantic cues. We adopt the same data split as in
LViT Li et al. (2023b): 2,183 training images, 273 validation images, and 273 test images.

The CVC-ClinicDB dataset Bernal et al. (2015) contains 612 colonoscopy images with pixel-level
polyp masks collected from 29 colonoscopy video sequences. In this work, we use the text-
augmented version released by Zhang et al. (2024), where each image is associated with a concise
clinical-style description. Following Zhang et al. (2024), we split CVC-ClinicDB into 550 training
images and 62 test images.

The Kvasir dataset Jha et al. (2019) consists of 1,000 colonoscopy images with expert-annotated
polyp masks acquired under diverse clinical conditions. Similarly, we adopt the text annotations
provided by Zhang et al. (2024) and follow its partition protocol, using 900 images for training and
100 images for testing.

A.5 EVALUATION METRICS

To quantitatively assess segmentation performance, we adopt four widely used evaluation metrics:
Dice score, mean Intersection over Union (mIoU), the 95th percentile Hausdorff distance (HD95),
and the Average Symmetric Surface Distance (ASSD). Dice and mIoU evaluate the region-wise
overlap between the predicted segmentation and ground-truth annotations across all categories and
spatial positions.

The Dice score measures the harmonic mean of precision and recall, placing more emphasis on
correctly segmented regions, and is defined as:

Dice =

N∑
i=1

C∑
j=1

1

NC
· 2|pij ∩ yij |
|pij |+ |yij |

, (8)

where pij and yij denote the predicted and ground-truth pixel sets, respectively, for sample i and
class j.

The mean Intersection over Union (mIoU) reflects the average segmentation accuracy by computing
the ratio of intersection over union for each class and averaging over the dataset:

mIoU =

N∑
i=1

C∑
j=1

1

NC
· |pij ∩ yij |
|pij ∪ yij |

, (9)

where N denotes the number of samples and C the total number of semantic categories. The notation
|pij ∩ yij | and |pij ∪ yij | indicate the number of overlapping and combined pixels, respectively,
between prediction and ground truth for each sample–category pair.

In addition to region-overlap metrics, we also report two boundary-based distance metrics, HD95
and ASSD, to assess the accuracy of lesion localization and contour delineation. Let Spred and
Sgt denote the sets of surface (boundary) points of the predicted and ground-truth segmentations,
respectively, and d(x, S) = miny∈S ∥x− y∥ be the shortest distance from a point x to a surface S.
We first compute all directed surface distances {d(x, Sgt) | x ∈ Spred} and {d(y, Spred) | y ∈ Sgt}
and take their union. HD95 is then defined as the 95th percentile of this pooled distance distribution,
i.e., the value below which 95% of all surface distances lie. A lower HD95 indicates that even the
worst-aligned boundary regions are relatively close to the ground truth.
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The Average Symmetric Surface Distance (ASSD) measures the mean bidirectional surface distance
between prediction and ground truth:

ASSD(Spred, Sgt) =
1

2

 1

|Spred|
∑

x∈Spred

d(x, Sgt) +
1

|Sgt|
∑
y∈Sgt

d(y, Spred)

 . (10)

Smaller ASSD values indicate that, on average, the predicted and ground-truth boundaries are
closely aligned in space. Together with Dice and mIoU, HD95 and ASSD provide a more com-
prehensive evaluation of both region overlap and boundary geometry.

A.6 TRAINING OBJECTIVE IN STAGE II

In Stage II, the segmentation decoder is optimized with a hybrid Binary Cross-Entropy (BCE) and
Dice loss, which combines stable pixel-wise supervision with region-overlap awareness. Let pi ∈
[0, 1] denote the predicted foreground probability for pixel i and yi ∈ {0, 1} the corresponding
ground-truth label (foreground or background), over all pixels indexed by i = 1, . . . , |Ω| in the
image domain Ω.

The BCE loss is defined as

LBCE = − 1

|Ω|

|Ω|∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] , (11)

which treats segmentation as a pixel-wise binary classification task and provides numerically stable
gradients, especially in the early training phase.

To explicitly encourage region-level overlap between the prediction and ground truth and alleviate
class imbalance, we further adopt a soft Dice loss:

LDice = 1−
2
∑|Ω|

i=1 piyi∑|Ω|
i=1 pi +

∑|Ω|
i=1 yi + ϵ

, (12)

where ϵ is a small constant to avoid division by zero. This term focuses on the agreement between
predicted and ground-truth foreground regions and is particularly beneficial when the lesion occupies
only a small portion of the image.

The final segmentation loss in Stage II is a weighted combination of the two terms:

Lseg = 0.5LBCE + 0.5LDice. (13)

In practice, this simple 1:1 weighting leverages the complementary strengths of BCE and Dice: the
former stabilizes optimization at the pixel level, while the latter improves the overlap quality of the
predicted masks, which is crucial for accurate medical image segmentation.
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