

000 001 002 003 004 005 TOWARDS TEXT–MASK CONSISTENCY IN MEDICAL 006 IMAGE SEGMENTATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

029 ABSTRACT 030

031 Vision-language models for medical image segmentation often produce masks that
032 conflict with the accompanying text, especially under multi-site/multi-lesion de-
033 scriptions. We trace this failure to two factors: (i) highly templated and repet-
034 itive clinical language causes one-to-one hard contrastive learning to yield nu-
035 merous false negatives, weakening cross-modal alignment; and (ii) predominantly
036 vision-driven, one-way cross-attention lacks a language-dominant, spatially aware
037 pathway, hindering effective injection of textual semantics into the spatial visual
038 domain. To this end, we propose Consistency-enhanced Two-stage Segmenta-
039 tion (**C2Seg**). In the pretraining stage, Cluster-aware Contrastive Learning uses
040 a frozen strong baseline to construct an intra-batch text similarity matrix as soft
041 labels, thereby alleviating false negative conflicts and producing more discrimina-
042 tive visual representations. In the fusion stage, we introduce a Bidirectional Com-
043 plementary Attention Module, where each modality dominates attention along its
044 own path, fostering deep interaction and structural consistency between visual and
045 textual representations. In order to enhance the expressive power of multimodal
046 features, we further adopt KAN-based Attention Gating. Without updating the
047 language encoder, our approach significantly improves text–mask consistency and
048 segmentation accuracy on four public medical imaging datasets. Code is provided
049 in the supplementary material.
050

051 1 INTRODUCTION 052

053 Despite the remarkable progress of vision-language models (VLMs) in visual understanding through
054 large-scale image-text alignment (Ghosh et al., 2024; Li et al., 2025b), current medical VLMs still
055 frequently produce masks that contradict the accompanying text on key semantic attributes, espe-
056 cially in multi-site/multi-lesion scenarios. As illustrated in Fig. 1(a), even when the text explicitly
057 specifies quantity and spatial cues such as “Bilateral”, “two”, or “upper left”, the predicted masks
058 may still fail to match the described number of lesions or their coarse locations. This phenomenon
059 suggests that existing pipelines have not yet effectively transformed clinical language into pixel-level
060 structural constraints, making it difficult to ensure text–mask consistency at the level of semantic at-
061 tributes such as lesion count, laterality, and coarse spatial position.
062

063 We trace this mismatch to two underlying factors, as illustrated in Fig. 1(b). Firstly, clinical de-
064 scriptions are highly templated and semantically repetitive, so the same short phrase can correspond
065 to different imaging instances. In QaTa-COV19 dataset, for example, roughly 7,000 cases share
066 only about 300 unique text templates, which means that the *same* text is frequently reused within
067 the same training mini-batch rather than being a rare coincidence. Under this distribution, main-
068 stream InfoNCE-style contrastive learning (Hu et al., 2024) still enforces a strict one-to-one match-
069 ing, treating each image–text pair $(I^{(i)}, T^{(i)})$ as the only positive and all unpaired combinations
070 $(I^{(i)}, T^{(j)})$, $j \neq i$ as negatives. In medical settings, however, $T^{(i)}$ and some $T^{(j)}$ can be exactly the
071 same template (e.g., “unilateral pulmonary infection, one infected area”), so pairs like $(I^{(i)}, T^{(j)})$
072 are incorrectly pushed apart as strong negatives. This hard-coding of nearly identical semantics as
073 negatives produces a large number of false negatives and contrastive conflicts, ultimately degrad-
074 ing cross-modal alignment quality. Secondly, most existing methods still rely on vision-centric,
075 unidirectional cross-attention mechanisms (Wang et al., 2024; Chen et al., 2025). Although some
076 works explore Dual-path attention (DualA) between vision and language in their fusion architec-
077

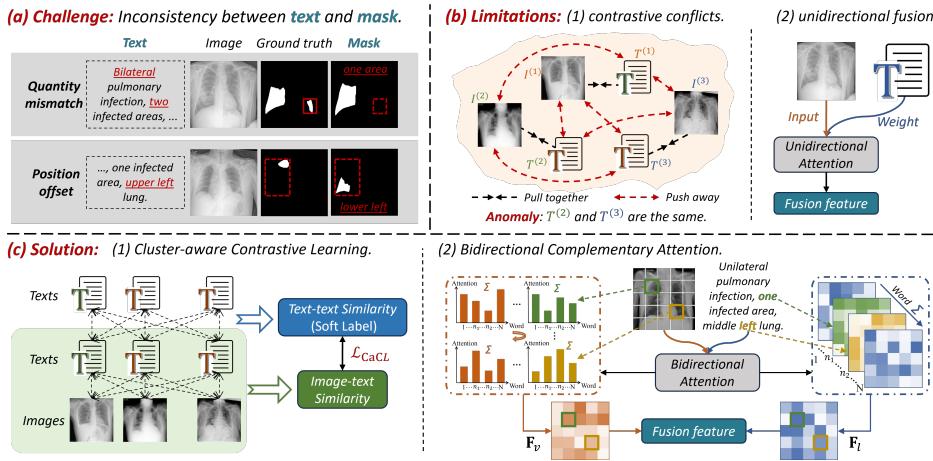


Figure 1: Challenge and limitations of existing methods, and our solution.

tures (Huang et al., 2024), the textual features in these approaches typically only modulate visual features indirectly through attention weights, without forming an explicit, language-dominant spatial representation. As a result, such methods remain essentially vision-centric, and their exploitation and modeling of linguistic semantics are still insufficient.

To this end, we propose a Consistency-enhanced Two-stage Segmentation framework (**C2Seg**). As illustrated in Fig. 1(c), Stage I employs Cluster-aware Contrastive Learning (CaCL), which leverages implicit batch-wise semantic neighborhoods in a frozen language space to construct soft label distributions. This allows the image–text contrastive loss to fit a continuous semantic similarity distribution rather than hard positives/negatives, thereby alleviating contrastive conflicts and producing more discriminative, robustly aligned visual representations. In Stage II, we design a Bidirectional Complementary Attention Module (BCAM) that augments the traditional vision-dominant cross-attention with a language-dominant path while preserving spatial structure: the vision path outputs “each pixel enhanced by sentence-level semantics,” whereas the language path captures “the aggregated per-token influence at each pixel,” enabling spatially aware, deep bidirectional interaction. Furthermore, we introduce a KAN-based Attention Gating (K-Gate) that adaptively weights spatial locations and modality-specific features for fine-grained feature selection; KANs are also applied in the visual encoder and BCAM to provide nonlinear modeling capacity with limited parameter overhead. The contributions of this work can be summarized as follows:

- We propose CaCL that converts inter-text similarity into soft labels for contrastive learning, effectively suppressing false-negative conflicts, strengthening cross-modal alignment, and promoting semantic consistency.
- We design BCAM, which consists of two parallel vision-dominant and language-dominant paths, enabling deep bidirectional interaction and complementary enhancement while preserving spatial structure.
- We introduce K-Gate to perform nonlinear modeling of visual and language features separately through KANs, thereby achieving fine-grained selection of cross-modal information.
- We present C2Seg and demonstrate its significant improvements on text–mask consistency and segmentation accuracy through extensive experiments on four public medical datasets.

2 RELATED WORK

Vision Language Models. In recent years, the success of general vision-language pretraining models has strongly driven multimodal research in the medical domain. For example, Zhang et al. (2023) performs image-text contrastive pretraining on large-scale biomedical figures and reports, learning generic medical image-text representations for retrieval and classification; Li et al. (2023a) extends instruction-following VLMs to medical visual question answering and dialogue scenarios.

108 Meanwhile, Cheng et al. (2023) and Ma et al. (2024) transfer the Segment Anything paradigm
 109 to medical imaging, achieving strong organ and lesion segmentation performance under prompts.
 110 Leveraging the rich multimodal semantic representations and scalable model interfaces offered by
 111 these foundation models, a number of vision-language guided segmentation methods have recently
 112 emerged(Tomar et al., 2022; Huemann et al., 2024; Wang et al., 2025b; Li et al., 2023b; Wang
 113 et al., 2025c). However, despite the diversity of fusion mechanisms, most existing multimodal
 114 segmentation models still rely on a unidirectional path where language guides vision, and lack ex-
 115 plicit modeling of linguistic semantics. Although Liu et al. (2023); Cho et al. (2023); Sultan et al.
 116 (2025) construct bidirectional interaction structures between vision and language, their so-called
 117 “language-dominant” attention branches typically output only updated text tokens, while the final
 118 segmentation prediction still depends on feature maps from the visual branch. In other words, text
 119 mainly modulates visual features indirectly through attention weights, without forming an explicit
 120 language-centric spatial representation, which limits the modeling of fine-grained, text-conditioned
 121 spatial details.

122 **Contrastive Learning.** Multimodal pretraining networks utilize large-scale image-text pairs for
 123 contrastive learning to achieve effective cross-modal alignment (Mukhoti et al., 2023; Chng et al.,
 124 2024; Sung et al., 2024). In the context of medical image, the high cost of acquiring medical data
 125 and pixel-level annotations makes the incorporation of richly paired medical text and images a nat-
 126 ural solution (Wang et al., 2022; Hu et al., 2023). Contrastive learning methods can align medical
 127 text and images, providing crucial semantic guidance for the segmentation process (Pan et al., 2025).
 128 However, contrastive objectives are known to suffer from false negatives and class collisions, and
 129 this issue is further exacerbated in clinical practice where medical reports are highly templated and
 130 heavily reused: the same or nearly identical wording can appear in many different cases, so tra-
 131 ditional hard sampling often mislabels semantically similar pairs as negatives, compromising the
 132 stability and accuracy of the alignment. To mitigate such effects, Li et al. (2021) introduce clus-
 133 ter prototypes to encode semantic structure, while Dwibedi et al. (2021) augments positives with
 134 nearest neighbors in the feature space. Nonetheless, even when the contrastive objective is relaxed
 135 from strictly one-to-one to one-to-many, these methods still rely on hard positive/negative assign-
 136 ments at the label level, making it difficult to explicitly model the continuous semantic similarity
 137 distribution between samples and thus preventing them from effectively mitigating the soft-positive
 138 problem associated with semantic neighbors.

139 **Kolmogorov-Arnold Networks.** The Kolmogorov-Arnold representation theorem states that any
 140 multivariate continuous function $f(x_1, x_2, \dots, x_n)$ can be represented as a finite composition of
 141 univariate continuous functions. Inspired by this, Liu et al. (2024b) proposed the KAN, which
 142 replaces the linear weights in conventional MLPs with learnable univariate function units. This
 143 design enhances the model’s nonlinear modeling capacity with fewer parameters and improves in-
 144 terpretability. Building on this idea, recent studies have introduced KANs into various vision tasks
 145 and achieved promising results (Chen et al., 2024; Zhang et al., 2025; Wang et al., 2025a; Zhu
 146 et al., 2025). Among them, Li et al. (2025a) integrated Tok-KAN blocks into the U-Net framework
 147 to strengthen local feature modeling, providing higher accuracy, efficiency and interpretability for
 148 vision tasks. Despite the demonstrated success of KANs in unimodal scenarios, its potential for
 149 cross-modal alignment and fusion has yet to be systematically explored.

150 3 METHOD

152 **Overview.** Our proposed C2Seg comprises two sequential stages, as illustrated in Fig. 2. Given in-
 153 put I and T , we first design CaCL in the pretraining stage, where pairwise cosine similarity between
 154 text embeddings is computed to generate soft labels Y_{ij} that guide robust image-text contrastive
 155 learning. In the fusion stage, we introduce BCAM, consisting of two paths that simultane-
 156 ously generate vision-dominant features \mathbf{F}_v and language-dominant features \mathbf{F}_l , enabling comprehensive
 157 exploitation of language information while preserving spatial structural information. Subsequently,
 158 K-Gate is applied to perform attention-weighted of the two feature streams, and producing the fi-
 159 nal output \mathbf{F}_{out} . Finally, through skip connections and upsampling operations, the spatial resolution
 160 is progressively restored, yielding high-quality pixel-level segmentation predictions. Notably, we
 161 fine-tune the visual encoder with a small learning rate while keeping the language encoder frozen to
 162 preserve stable semantic anchors in the text space.

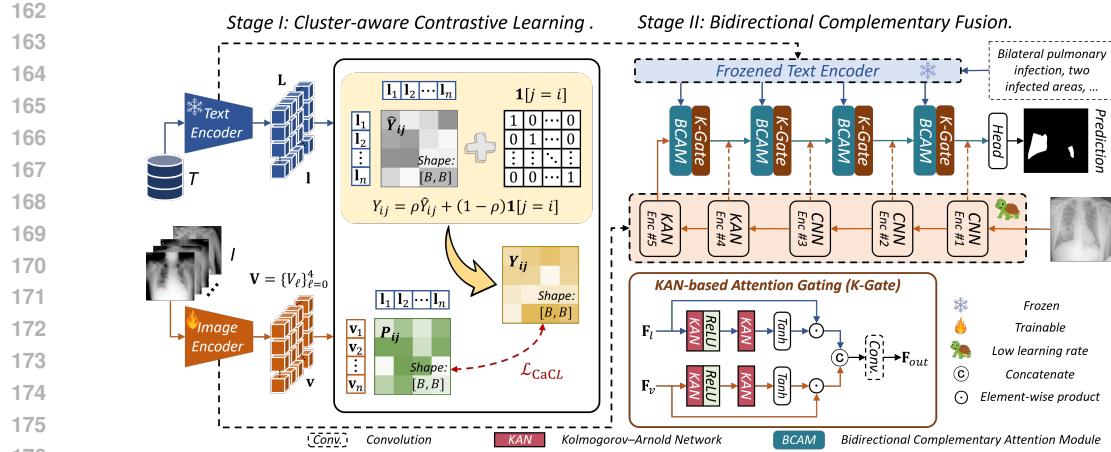


Figure 2: Overview of the proposed C2Seg. Given medical images and their corresponding textual descriptions, visual and language features are extracted using dedicated encoders.

3.1 FEATURE ENCODER

Based on the work of Li et al. (2025a) and Radford et al. (2021), we built a dual-branch encoder. The visual branch employs three convolutional layers followed by two KAN layers, aiming to combine the feature capturing ability of CNN with the nonlinear modeling capabilities of KANs. Given an image $I \in \mathbb{R}^{C \times H \times W}$, the visual branch produces multi-scale features $\mathbf{V} = \{V_\ell\}_{\ell=0}^4$ with $V_\ell \in \mathbb{R}^{C_\ell \times H_\ell \times W_\ell}$ and progressively downsampled spatial sizes (H_ℓ, W_ℓ) . A global image vector is computed as $\mathbf{v} = W_v \text{GAP}(V_4) \in \mathbb{R}^{d_v}$, where $\text{GAP}(\cdot)$ denotes global average pooling and W_v is a learnable projection. On the language branch, the frozen CLIP encoder processes text T tokenized to length N , yielding position-aware token embeddings $\mathbf{L} \in \mathbb{R}^{N \times d_t}$ and a sentence embedding $\mathbf{l} \in \mathbb{R}^{d_t}$. To enable channel-aligned bidirectional interaction at each visual scale, tokens are projected by learnable per-scale 1×1 mappings as $L_\ell = \mathbf{L}W_\ell$ with $W_\ell \in \mathbb{R}^{d_t \times C_\ell}$, hence $L_\ell \in \mathbb{R}^{N \times C_\ell}$. The set $\{V_\ell\}$ preserves pixel-level spatial structure for subsequent fusion and decoding, while $\{L_\ell\}$ together with \mathbf{l} provide token-level and sentence-level semantics that feed into BCAM for bidirectional complementary interaction and fusion.

3.2 CLUSTER-AWARE CONTRASTIVE LEARNING

Unlike standard InfoNCE with a single positive/negative pairing, CaCL reframes in-batch contrastive learning as batch-wise semantic distribution matching. We first estimate text-text similarities in the frozen language space and convert them into soft labels, which are then used to supervise the image-text similarity distribution. This neighborhood-wise probabilistic supervision systematically suppresses erroneous repulsive gradients induced by templated clinical phrasing. Throughout, image embeddings $\{\mathbf{v}_i\}_{i=1}^B$ and sentence embeddings $\{\mathbf{l}_i\}_{i=1}^B$ are L2-normalized.

Soft Label Construction. Given a batch of size B , we first compute the text-text cosine similarity matrix $M_{ij} = \cos(\mathbf{l}_i, \mathbf{l}_j)$. To attenuate the global similarity inflation induced by shared templates, we apply row-mean debiasing and non-negativity clipping to each row, obtaining $M'_{ij} = \max\{M_{ij} - \mu_i, 0\}$, where $\mu_i = \frac{1}{B} \sum_k M_{ik}$. Here, μ_i can be viewed as a batch-level ‘‘template bias’’ whose removal helps suppress global template effects and yields a soft label distribution that focuses more on local semantic neighborhoods. Temperature τ is then used to produce semantic soft targets:

$$\hat{Y}_{ij} = \frac{\exp(M'_{ij}/\tau)}{\sum_k \exp(M'_{ik}/\tau)}. \quad (1)$$

To retain the anchor identity, the final target distribution mixes the diagonal with these soft targets as $Y_{ij} = \rho \hat{Y}_{ij} + (1 - \rho) \mathbf{1}[j = i]$, where $\rho \in [0, 1]$ balances the self-positive and its semantic neighbors.

216 **Distribution-supervised Symmetric InfoNCE.** Let the cross-modal logit be $s_{ij} = \mathbf{v}_i^\top \mathbf{l}_j$, and
 217 define the directional probabilities $P_{ij}^{v \rightarrow l} = \text{softmax}_j(s_{ij}/\tau)$ and $P_{ij}^{l \rightarrow v} = \text{softmax}_i(s_{ij}/\tau)$. We
 218 match the predicted distributions to Y in both directions with a single bidirectional objective:
 219

$$\mathcal{L}_{\text{CaCL}} = -\frac{1}{B} \sum_{i=1}^B \sum_{j=1}^B [Y_{ij} \log P_{ij}^{v \rightarrow l} + Y_{ji} \log P_{ij}^{l \rightarrow v}]. \quad (2)$$

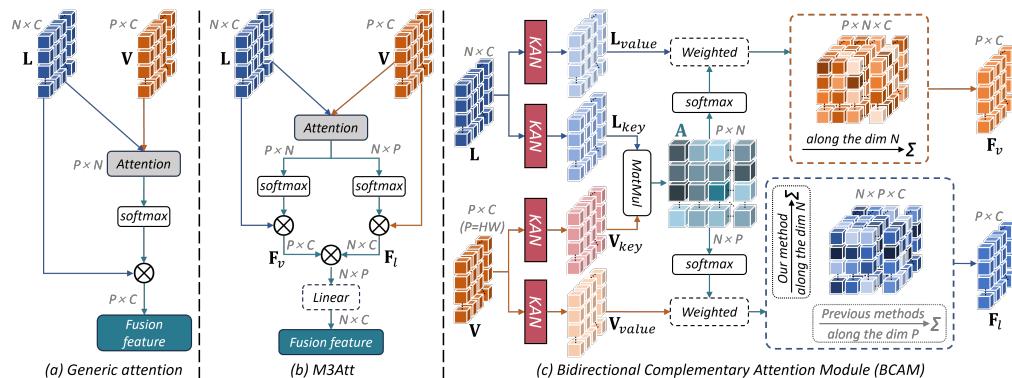
223 **Theoretical Justification.** With the above definitions of $P^{v \rightarrow l}$ and $P^{l \rightarrow v}$, the gradient with respect
 224 to any logit s_{ij} is
 225

$$\frac{\partial \mathcal{L}_{\text{CaCL}}}{\partial s_{ij}} = \frac{1}{\tau} (P_{ij}^{v \rightarrow l} - Y_{ij} + P_{ij}^{l \rightarrow v} - Y_{ji}). \quad (3)$$

228 Semantically related but non-matching pairs thus receive nonzero target mass ($Y_{ij} > 0$ and/or $Y_{ji} >$
 229 0), which attenuates or even reverses the repulsive gradient, mitigating false negatives and promoting
 230 neighborhood-consistent alignment. The additional computational cost is dominated by building M
 231 in $O(B^2C)$ time, which is negligible relative to the backbone.

233 3.3 BIDIRECTIONAL COMPLEMENTARY ATTENTION MODULE

235 Existing DualA-style bidirectional fusion methods typically update only the text tokens in their
 236 “language-dominant” branch, without producing features that explicitly preserve image spatial in-
 237 formation. The representative work M3Att (Liu et al., 2023), although achieving bidirectional in-
 238 teraction between vision and language via multimodal cross-attention, uses a single fully connected
 239 projection to compress the spatial dimension P into the channel dimension C during fusion. This
 240 amounts to a non-structured mixing of all image patches for each text token, which weakens the
 241 original spatial inductive bias and tends to lose local details such as boundaries and textures. There-
 242 fore, we propose BCAM, which constructs two complementary attention paths in parallel during the
 243 fusion stage, one vision-dominant and one language-dominant, so that the two modalities can con-
 244 dition each other and produce spatially aligned multimodal features directly on the pixel grid. This
 245 alleviates modality imbalance and preserves more local information. The structures and differences
 246 of the three attention mechanisms are shown in Fig. 3.



260 Figure 3: The architecture of: (a). the generic attention mechanism; (b). the Multi-Modal Mutual
 261 Attention (M3Att); (c). our proposed Bidirectional Complementary Attention Module (BCAM).

263 **Complementary Attention.** Given visual features $\mathbf{V} \in \mathbb{R}^{P \times C}$ ($P = H \times W$ denotes the number
 264 of spatial positions) and language features $\mathbf{L} \in \mathbb{R}^{N \times C}$, we use learnable KAN layers to obtain keys
 265 and values for cross-attention, defined as $\mathbf{V}_{\text{key}} = \text{KAN}(\mathbf{V})$, $\mathbf{V}_{\text{value}} = \text{KAN}(\mathbf{V})$, $\mathbf{L}_{\text{key}} = \text{KAN}(\mathbf{L})$,
 266 and $\mathbf{L}_{\text{value}} = \text{KAN}(\mathbf{L})$. We then construct the scaled dot-product attention scores \mathbf{A} :

$$\mathbf{A} = \frac{1}{\sqrt{d}} \mathbf{V}_{\text{key}} (\mathbf{L}_{\text{key}})^\top \in \mathbb{R}^{P \times N}. \quad (4)$$

270 **Vision-dominant Path.** We apply a softmax along the language axis N and use it to aggregate
 271 language values, yielding a language-enhanced visual representation:
 272

$$273 \quad \mathbf{F}_v = \text{Softmax}_N(\mathbf{A}) \cdot \mathbf{L}_{\text{value}} \in \mathbb{R}^{P \times C}. \quad (5)$$

275 The resulting \mathbf{F}_v is a sentence- and token-injected visual feature map that preserves the original spa-
 276 tial resolution P . Intuitively, each pixel position collects token semantics according to its relevance
 277 weights, providing rich, pixel-level semantic context.
 278

279 **Language-dominant Path.** Directly applying $\mathbf{A}^\top \in \mathbb{R}^{N \times P}$ to $\mathbf{V}_{\text{value}}$ would produce a token-level
 280 representation of shape $\mathbb{R}^{N \times C}$, which lacks explicit pixel topology and thus hampers subsequent
 281 decoding. Therefore, we normalize the transpose \mathbf{A}^\top along the spatial axis P , apply each token's
 282 spatial weights to the visual values, and then aggregate across tokens to obtain a language-guided
 283 feature aligned with the image grid:

$$285 \quad \mathbf{F}_l = \frac{1}{N} \sum_{n=1}^N \text{Softmax}_P(\mathbf{A}^\top[n, :]) \odot \mathbf{V}_{\text{value}} \in \mathbb{R}^{P \times C}, \quad (6)$$

288 where \odot denotes broadcasted element-wise multiplication over the channel dimension. The resulting
 289 \mathbf{F}_l encodes each token's collective attention over all spatial locations, forming a spatially coherent,
 290 language-guided feature map. Compared with a unidirectional, vision-only fusion scheme, the addi-
 291 tion of this language-initiated path mitigates modality imbalance, improves cross-modal alignment,
 292 and provides spatially consistent signals to the decoder, thereby enhancing downstream segmenta-
 293 tion performance.

294 3.4 KAN-BASED ATTENTION GATING

297 After the BCAM, the visual and textual streams have exchanged information bidirectionally; how-
 298 ever, modality-specific statistical biases and noise patterns (e.g., imaging artifacts and templated
 299 phrasing) may still propagate across modalities and be amplified, thereby diluting spatial detail or
 300 inducing semantic drift. To address this, we introduce a KAN-based nonlinear gating mechanism
 301 that performs selective suppression and enhancement within each modality before fusion, followed
 302 by data-dependent mixing. This design improves the expressiveness of features and alleviates modal
 303 imbalance from the source.

304 For the two feature streams output by BCAM, the visual branch $\mathbf{F}_v \in \mathbb{R}^{P \times C}$ and the language
 305 branch $\mathbf{F}_l \in \mathbb{R}^{P \times C}$, we construct two independent KAN gating heads, each comprising two KAN
 306 layers with an intermediate ReLU and producing a gating tensor that matches the input shape. We
 307 adopt a tanh activation to normalize each branch output, bounding the learned gating weights to
 308 $[-1, 1]$. Accordingly, the gating tensors are defined as:

$$310 \quad \mathbf{g}_v = \tanh(\text{KAN}_v^{(2)}(\text{ReLU}(\text{KAN}_v^{(1)}(\mathbf{F}_v)))), \quad \mathbf{g}_l = \tanh(\text{KAN}_l^{(2)}(\text{ReLU}(\text{KAN}_l^{(1)}(\mathbf{F}_l)))), \quad (7)$$

312 We then perform element-wise reweighting $\mathbf{F}_v^g = \mathbf{F}_v \odot \mathbf{g}_v$ and $\mathbf{F}_l^g = \mathbf{F}_l \odot \mathbf{g}_l$, where \odot denotes
 313 element-wise multiplication. After this modality-internal refinement, we concatenate $[\mathbf{F}_v^g \parallel \mathbf{F}_l^g]$ along
 314 the channel dimension and apply a 1×1 convolution for channel alignment and linear mixing to
 315 obtain the final fused representation \mathbf{F}_{out} . This process enhances the spatial perception ability of
 316 the model through feature selection, while providing a nonlinear and fine-grained selective path for
 317 cross-modal fusion.

318 4 EXPERIMENTS

321 4.1 DATASETS AND IMPLEMENTATION DETAILS

323 **Datasets.** We conduct experiments on four public medical image segmentation datasets: QaTa-
 COV19 (Degerli et al., 2022), MosMedData+ (Morozov et al., 2020; Hofmanninger et al., 2020),

324
325
326

Table 1: Quantitative comparison on QaTa-COV19 and MosMedData+ datasets.

Method	Params(M)	Text	QaTa-COV19				MosMedData+			
			Dice(%) \uparrow	mIoU(%) \uparrow	HD95 \downarrow	ASSD \downarrow	Dice(%) \uparrow	mIoU(%) \uparrow	HD95 \downarrow	ASSD \downarrow
U-Net (Ronneberger et al., 2015)	31.4	\times	79.02	69.46	33.98	9.03	64.60	50.73	23.52	6.35
U-Net++ (Zhou et al., 2018)	74.5	\times	79.62	70.25	36.14	9.91	71.75	58.39	24.06	5.45
nnUNet (Isensee et al., 2021)	19.1	\times	80.42	70.81	28.14	9.86	72.59	60.36	22.75	5.56
TransUNet (Chen et al., 2021)	105.0	\times	78.63	69.13	29.88	8.42	71.24	58.44	23.41	6.38
Swin-UNet (Cao et al., 2022)	82.3	\times	78.07	68.34	31.51	9.20	63.29	50.19	25.31	7.69
UKAN (Li et al., 2025a)	9.4	\times	79.30	69.85	31.89	8.79	72.56	59.05	29.38	7.25
MM-UKAN++ (Zhang et al., 2025)	9.9	\times	79.20	69.70	35.26	9.76	71.82	58.37	32.63	8.96
CLIP (Radford et al., 2021)	87.0	\checkmark	79.81	70.66	23.25	5.54	71.97	59.64	26.24	6.58
GLoRIA (Huang et al., 2021)	45.6	\checkmark	79.94	70.68	26.47	5.24	72.42	60.18	28.61	6.79
ViLT (Kim et al., 2021)	87.4	\checkmark	79.63	70.12	25.32	5.96	72.36	60.15	24.85	5.69
TGANet (Tomar et al., 2022)	19.8	\checkmark	77.17	64.39	29.54	7.83	69.48	55.81	26.39	6.12
ConVIRT (Zhang et al., 2022)	35.2	\checkmark	79.72	70.58	22.36	6.03	72.06	59.73	22.38	6.36
LAVT (Yang et al., 2022)	118.6	\checkmark	80.48	67.01	15.70	4.87	68.51	55.32	17.28	4.18
SLViT (Ouyang et al., 2023)	131.5	\checkmark	79.25	68.87	15.18	4.35	72.57	60.78	21.23	6.10
LViT (Li et al., 2023b)	29.7	\checkmark	81.52	68.63	18.62	5.32	72.10	57.35	18.94	4.82
UniSeg (Liu et al., 2024a)	28.7	\checkmark	72.88	59.58	15.15	4.11	65.89	52.01	19.98	4.96
RefSegformer (Wu et al., 2024)	195.0	\checkmark	81.63	69.71	20.22	5.29	70.25	57.31	19.70	4.78
ARSeg (Wang et al., 2025b)	30.1	\checkmark	84.09	72.64	19.90	5.24	73.24	59.82	31.88	7.65
MedLangViT (Wang et al., 2025c)	27.7	\checkmark	84.27	75.93	14.51	3.97	75.95	63.17	18.29	4.12
C2Seg (Ours)	18.92	\checkmark	85.25	76.97	12.71	3.38	77.81	65.17	15.02	3.76

340
341

CVC-ClinicDB (Bernal et al., 2015), and Kvasir (Jha et al., 2019). QaTa-COV19 and MosMedData+ are lung datasets with paired textual annotations provided by Li et al. (2023b), while CVC-ClinicDB and Kvasir are colon polyp datasets whose image-text pairs are constructed following Zhang et al. (2024). We adopt Dice, mean Intersection over Union (mIoU), the 95th percentile Hausdorff Distance (HD95), and the Average Symmetric Surface Distance (ASSD) as our primary evaluation metrics. Detailed descriptions of these datasets and the evaluation metrics are given in Appendix Sec. A.4 and Appendix Sec. A.5, respectively.

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

Implementation Details. Our proposed method is implemented on a server with two NVIDIA GeForce RTX 5090 D (32 GB) GPUs. By default, the batch size is set to 256 for the pretraining stage and 32 for the segmentation stage, the temperature parameter τ is set to 0.07, and the soft-label weight parameter ρ is set to 0.8. During the supervised segmentation stage, we adopt a combined BCE + Dice objective (BCEDice loss) as the training loss; a detailed formulation of this loss is provided in Appendix Sec. A.6. The initial learning rate is set to 1×10^{-3} for QaTa-COV19 and CVC-ClinicDB, and 3×10^{-4} for MosMedData+ and Kvasir. We use the Adam optimizer together with a cosine annealing learning rate scheduler.

361
362
363
364
365
366
367
368
369
370
371
372

Table 2: Quantitative comparison on CVC-ClinicDB and MosMedData+ datasets.

Method	Params(M)	Text	CVC-ClinicDB				Kvasir			
			Dice(%) \uparrow	mIoU(%) \uparrow	HD95 \downarrow	ASSD \downarrow	Dice(%) \uparrow	mIoU(%) \uparrow	HD95 \downarrow	ASSD \downarrow
U-Net (Ronneberger et al., 2015)	31.4	\times	57.57	44.93	49.40	19.87	75.77	65.20	40.29	12.11
U-Net++ (Zhou et al., 2018)	74.5	\times	88.94	82.91	12.16	3.99	87.00	79.71	20.87	6.63
nnUNet (Isensee et al., 2021)	105.0	\times	85.69	77.72	13.48	5.84	86.95	79.19	20.39	5.81
Swin-UNet (Cao et al., 2022)	82.3	\times	81.19	71.64	26.38	8.67	77.24	66.90	21.25	8.80
UKAN (Li et al., 2025a)	9.4	\times	89.74	84.47	13.19	3.72	87.77	81.13	21.37	5.82
MM-UKAN++ (Zhang et al., 2025)	9.9	\times	89.52	82.15	13.26	3.36	85.63	78.03	24.81	7.12
LAVT (Yang et al., 2022)	118.6	\checkmark	88.13	82.76	9.33	3.85	90.83	84.90	15.90	4.15
TGANet (Tomar et al., 2022)	19.8	\checkmark	89.93	84.56	8.41	2.11	90.44	84.19	17.18	4.33
SLViT (Ouyang et al., 2023)	131.5	\checkmark	80.55	72.86	26.91	9.87	85.69	77.97	19.57	5.56
LViT (Li et al., 2023b)	29.7	\checkmark	88.27	80.81	15.18	4.15	87.36	79.85	24.18	6.40
RefSegformer (Wu et al., 2024)	195.0	\checkmark	80.73	71.94	23.10	7.28	86.87	78.77	25.30	6.46
RecLMIS (Huang et al., 2024)	23.7	\checkmark	81.31	73.04	38.44	12.13	90.63	84.35	17.93	4.43
MMIUNet (Bui et al., 2024)	56.2	\checkmark	89.96	84.14	11.55	4.02	90.27	84.29	15.13	4.35
ARSeg (Wang et al., 2025b)	30.1	\checkmark	89.74	82.64	13.71	4.29	88.45	81.34	22.79	5.66
MedLangViT (Wang et al., 2025c)	27.7	\checkmark	88.35	81.92	10.66	4.50	90.57	84.21	14.12	4.09
C2Seg (Ours)	18.92	\checkmark	91.82	86.81	6.53	2.23	91.92	85.27	13.62	3.98

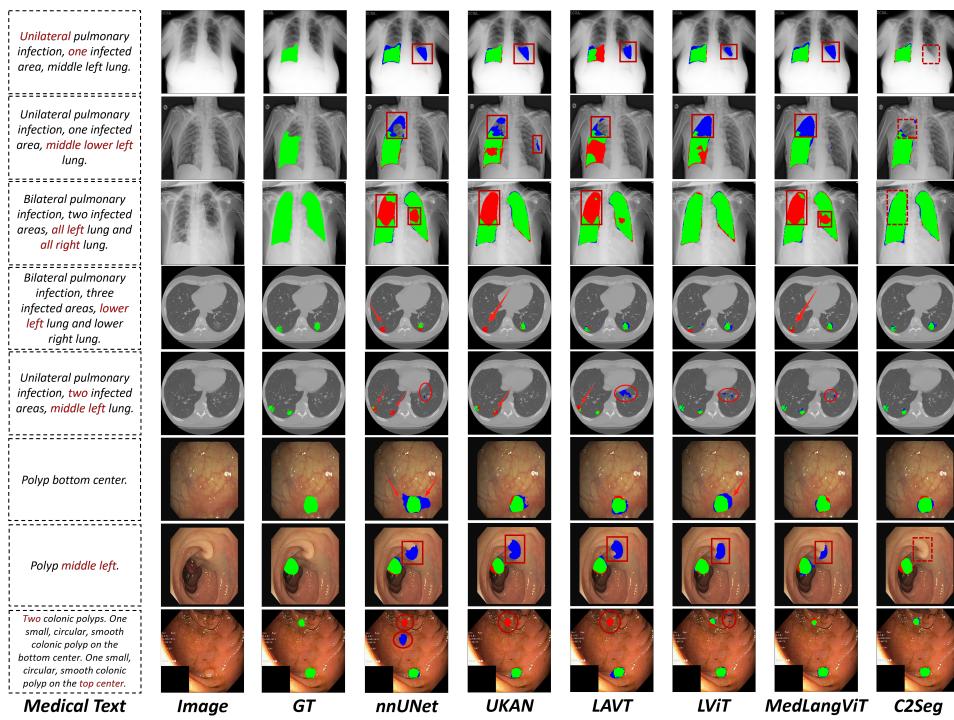
373
374

4.2 PERFORMANCE COMPARISON

We conduct a systematic comparison between C2Seg and other segmentation methods on four public medical image datasets, with quantitative results summarized in Tab. 1 and Tab. 2. Overall, C2Seg achieves competitive or even state-of-the-art performance across all four benchmarks. Benefiting from the incorporation of textual modality, C2Seg significantly outperforms the strongest

378 CNN-based model nnU-Net and the KAN-based model UKAN. Compared with other multimodal
 379 approaches, our method not only excels on region-overlap metrics (Dice and mIoU), but also shows
 380 clear advantages on distance-based metrics HD95 and ASSD, indicating that C2Seg provides more
 381 accurate delineation of lesion locations and boundaries and, from a geometric perspective, further
 382 corroborating the benefit of leveraging textual constraints for spatial localization.

383 As illustrated in Fig. 4, we further analyze the behavior of different methods. In the first row, the
 384 text explicitly specifies “unilateral pulmonary infection, one infected area”, yet several methods still
 385 misclassify regions in the right lung as lesions, whereas C2Seg correctly restricts its prediction to
 386 a single lesion in the left lung. In the second row, the textual prompt “middle lower left lung” is
 387 given; some methods fail to properly capture positional information and produce over-segmentation
 388 in the upper left lung, while C2Seg more accurately focuses on the middle-lower region of the left
 389 lung, demonstrating finer text-guided localization. In the fifth row, the text includes a numerical
 390 cue “two infected areas”; some methods produce an incorrect number of lesions, whereas C2Seg
 391 matches both the spatial locations and the number of lesions described in the text. These qualitative
 392 observations are consistent with the quantitative gains and further confirm the advantage of C2Seg
 393 in adhering to textual constraints and improving text–mask consistency.



417
 418 Figure 4: Visualization of different methods. Green, red, and blue represent true positive, false
 419 negative, and false positive pixels, respectively.

421 4.3 ABLATION STUDIES

423 **Effect of Proposed Components.** We conduct systematic ablation studies on the MosMedData+
 424 and CVC-ClinicDB datasets, as summarized in Tab. 3. Case (a) keeps only the visual branch as a
 425 unimodal baseline; Case (b)–(f) all use CLIP as the text encoder, where (b) adopts DualA in Stage
 426 II, (c) replaces DualA with BCAM, (d) further adds K-Gate on top of BCAM, (e) introduces con-
 427 ventional hard-label contrastive learning (HardCL) in Stage I, and the final full model corresponds
 428 to Case (f). The results show a clear step-wise improvement as components are added, validating
 429 both the effectiveness and complementarity of the proposed modules.

430 **Effect of Text Encoders.** Keeping the training framework fixed, we further replace the text en-
 431 coder with domain-specific biomedical language models BioBERT-Base v1.1 (Lee et al., 2020)

432

433

Table 3: Ablation study on MosMedData+ and CVC-ClinicDB datasets.

Case	Text encoder	Stage I		Stage II			MosMedData+		CVC-ClinicDB	
		HardCL	CaCL	DualA	BCAM	K-Gate	Dice(%)↑	mIoU(%)↑	Dice(%)↑	mIoU(%)↑
(a)	×						73.61	60.02	86.59	78.11
(b)	CLIP			✓			75.59	62.35	89.56	83.14
(c)				✓	✓		76.50	63.77	90.31	84.45
(d)				✓	✓	✓	77.03	64.45	90.68	85.98
(e)		✓		✓	✓	✓	77.32	64.51	91.26	86.33
(f)			✓	✓	✓	✓	77.81	65.17	91.82	86.81
(g)	BioBERT-Base		✓	✓	✓	✓	76.22	64.18	90.60	86.08
(h)	PubMedBERT		✓	✓	✓	✓	76.69	64.76	90.25	84.69

441

442

and PubMedBERT (Gu et al., 2021). As shown in Tab. 3, even though CLIP text encoder is not pretrained on medical corpora, its performance remains slightly better than BioBERT and PubMedBERT. We speculate this is mainly because the CLIP is learned via contrastive training on large-scale image-text pairs, yielding an embedding space that is naturally aligned with visual features and better matched to the short, location- and quantity-oriented descriptions used in this work, whereas BioBERT/PubMedBERT are pretrained solely on pure-text biomedical corpora and are better suited for long clinical reports, lacking such cross-modal alignment and adaptation.

449

450

Effect of Bidirectional Fusion Mechanism. To verify the effectiveness of the proposed bidirectional complementary attention, we fix the backbone and decoder and only replace the Stage II fusion module, comparing DualA with the proposed BCAM. The visualization results on QaTa-COV19 and Kvasir datasets are shown in Fig. 5. Even when the prompt explicitly contains quantitative and positional cues such as “Unilateral,” “two,” and “lower left,” DualA still tends to produce results that deviate from the text, for example activating both lungs or merging multiple lesions into a single region. In contrast, with BCAM, the high-response regions are much better concentrated on the text-specified target areas. This indicates that the language-dominant path effectively strengthens the mapping from textual semantics to spatial representations and, when combined with the vision-dominant path, not only alleviates text–mask inconsistency but also leads to more accurate lesion localization and boundary delineation.

461

462

463

464

465

466

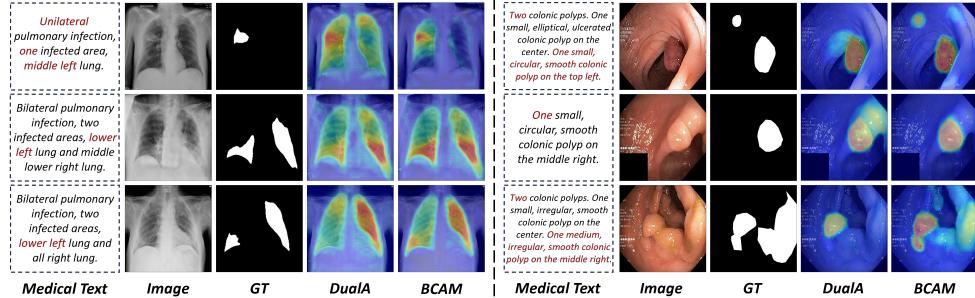
467

468

469

470

471



472

473

Figure 5: Qualitative comparison of DualA and BCAM on QaTa-COV19 and Kvasir datasets.

474

475

Effect of KAN Structure. To assess the role of KAN in our framework, we design five structural variants on the MosMedData+ dataset: using a pure CNN as the visual encoder; adopting a hybrid encoder with the first three layers as CNN and the last two layers as KAN; replacing the visual encoder entirely with a pure KAN; replacing the KAN layers in BCAM with linear projections while keeping the encoder unchanged; and replacing the KAN layers in K–Gate with standard MLPs. As shown in Tab. 4(a), the hybrid encoder yields consistent performance gains over the pure CNN encoder, whereas the pure KAN encoder even leads to degradation, indicating that the local receptive fields provided by CNNs remain crucial for low-level feature extraction and that KAN is more suitable as a high-level complement rather than a full replacement. In addition, substituting KAN with linear layers or MLPs in BCAM or K–Gate results in performance drops, suggesting that the nonlinear modeling capacity of KAN still offers advantages for higher-order cross-modal interactions.

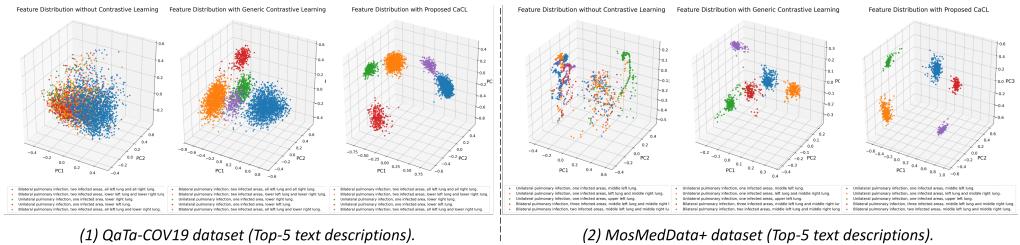
486

487 Table 4: Ablation of KAN and hyperparameters on MosMedData+ datasets.

488	489	490	491	492	(a) Ablations on KAN.		(b) Sensitivity of hyperparameters.						
					493	494	495	496	497	498	499	500	
CNN encoder	77.29	64.51				Effect of ρ ($\tau = 0.07$, batch size = 256)		Effect of τ ($\rho = 0.8$, batch size = 256)		Effect of batch size ($\rho = 0.8$, $\tau = 0.07$)			
Hybrid encoder	77.81	65.17	ρ	Dice(%) \uparrow	mIoU(%) \uparrow	τ	Dice(%) \uparrow	mIoU(%) \uparrow	batch size	Dice(%) \uparrow	mIoU(%) \uparrow		
KAN encoder	76.21	63.27	0.6	77.64	65.05	0.05	77.59	65.12	128	76.52	63.93		
BCAM (Linear)	77.26	64.42	0.8	77.81	65.17	0.07	77.81	65.17	256	77.81	65.17		
K-Gate (MLP)	76.93	64.02	1.0	77.12	64.26	0.10	77.45	64.98	512	77.89	65.18		

Effect of Hyperparameters. We conduct a hyperparameter sensitivity analysis on the MosMedData+ dataset, with the results summarized in Tab. 4(b). For each experiment, all settings are fixed to the default configuration ($\rho=0.8$, $\tau=0.07$, batch size = 256) except for the hyperparameter under investigation. The results show that the model is only weakly sensitive to ρ and τ , and we therefore adopt the slightly better and more stable combination $\rho=0.8$ and $\tau=0.07$ as the default setting. In addition, as the batch size increases, the evaluation metrics exhibit a general upward trend, confirming the positive effect of larger batches on contrastive learning; however, the gain of 512 over 256 is marginal, so we choose batch size = 256 in the main experiments as a trade-off between performance and computational cost.

Effect of Contrastive Learning Strategy. We compare CaCL with two control settings (without contrastive learning and with generic contrastive learning) on the QaTa-COV19 and MosMedData+ datasets. For each dataset, we select the top 5 textual descriptions with the largest number of matched images and their corresponding image samples, and visualize the distributions of their image features in the latent space under different training strategies. As shown in Fig. 6, CaCL yields more compact and semantically better separated cross-modal features, confirming its effectiveness in improving cross-modal alignment.



510 Figure 6: Visualization of image feature distribution on QaTa-COV19 and MosMedData+ datasets
511 under three pretraining strategies (no contrast, general contrast, and CaCL). Each color represents
512 all images corresponding to a textual description.

5 CONCLUSION

526 In this paper, we propose C2Seg, a two-stage medical image segmentation framework targeting text-
527 mask consistency. In the pretraining stage, we first reformulate batch contrastive learning as cluster-
528 level distribution matching, transforming text-to-text similarity into a soft target to suppress false
529 negatives and stabilize cross-modal alignment. In the fusion stage, we establish a modality fusion
530 path dominated by vision and language to more fully exploit textual information, while K-Gate
531 provides fine-grained cross-modal information selection. Extensive experiments on four challenging
532 datasets validate the superiority and effectiveness of C2Seg.

6 LIMITATIONS

536 In this work, we primarily rely on qualitative visualization to assess text–mask consistency and have
537 not yet introduced a dedicated quantitative metric for this purpose. Moreover, the textual descrip-
538 tions in our datasets are relatively clean and structured, so we have not systematically examined the
539 model’s robustness to complex text noise, such as spelling errors, abbreviations, or missing findings.
Both aspects are important directions that we plan to explore in future work.

540 REFERENCES
541

542 Jorge Bernal, F Javier Sánchez, Gloria Fernández-Esparrach, Debora Gil, Cristina Rodríguez, and
543 Fernando Vilariño. Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation
544 vs. saliency maps from physicians. *Computerized medical imaging and graphics*, 43:99–111,
545 2015.

546 Phuoc-Nguyen Bui, Duc-Tai Le, and Hyunseung Choo. Visual-textual matching attention for lesion
547 segmentation in chest images. In *International Conference on Medical Image Computing and*
548 *Computer-Assisted Intervention*, pp. 702–711. Springer, 2024.

549 Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning Wang.
550 Swin-unet: Unet-like pure transformer for medical image segmentation. In *European conference*
551 *on computer vision*, pp. 205–218. Springer, 2022.

552 Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L Yuille,
553 and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image segmentation.
554 *arXiv preprint arXiv:2102.04306*, 2021.

555 Wenting Chen, Jie Liu, Tianming Liu, and Yixuan Yuan. Bi-vlgm: Bi-level class-severity-aware
556 vision-language graph matching for text guided medical image segmentation. *International Journal*
557 *of Computer Vision*, 133(3):1375–1391, 2025.

558 Yifei Chen, Zhu Zhu, Shenghao Zhu, Linwei Qiu, Binfeng Zou, Fan Jia, Yunpeng Zhu, Chenyan
559 Zhang, Zhaojie Fang, Feiwei Qin, et al. Sckansformer: Fine-grained classification of bone marrow
560 cells via kansformer backbone and hierarchical attention mechanisms. *IEEE Journal of Biomedical*
561 *and Health Informatics*, 2024.

562 Junlong Cheng, Jin Ye, Zhongying Deng, Jianpin Chen, Tianbin Li, Haoyu Wang, Yanzhou Su,
563 Ziyan Huang, Jilong Chen, Lei Jiang, Hui Sun, Junjun He, Shaoting Zhang, Min Zhu, and
564 Yu Qiao. Sam-med2d, 2023. URL <https://arxiv.org/abs/2308.16184>.

565 Yong Xien Chng, Henry Zheng, Yizeng Han, Xuchong Qiu, and Gao Huang. Mask grounding for
566 referring image segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
567 *and Pattern Recognition*, pp. 26573–26583, 2024.

568 Yubin Cho, Hyunwoo Yu, and Suk-Ju Kang. Cross-aware early fusion with stage-divided vision and
569 language transformer encoders for referring image segmentation. *IEEE Transactions on Multi-*
570 *media*, 26:5823–5833, 2023.

571 Aysen Degerli, Serkan Kiranyaz, Muhammad EH Chowdhury, and Moncef Gabbouj. Osegnet:
572 Operational segmentation network for covid-19 detection using chest x-ray images. In *2022 IEEE*
573 *International Conference on Image Processing (ICIP)*, pp. 2306–2310. IEEE, 2022.

574 Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman. With
575 a little help from my friends: Nearest-neighbor contrastive learning of visual representations. In
576 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 9588–9597, 2021.

577 Akash Ghosh, Arkadeep Acharya, Sriparna Saha, Vinija Jain, and Aman Chadha. Exploring the
578 frontier of vision-language models: A survey of current methodologies and future directions.
579 *arXiv preprint arXiv:2404.07214*, 2024.

580 Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama, Xiaodong Liu, Tristan Naumann,
581 Jianfeng Gao, and Hoifung Poon. Domain-specific language model pretraining for biomedical
582 natural language processing. *ACM Transactions on Computing for Healthcare (HEALTH)*, 3(1):
583 1–23, 2021.

584 Johannes Hofmanninger, Forian Prayer, Jeanny Pan, Sebastian Röhrich, Helmut Prosch, and Georg
585 Langs. Automatic lung segmentation in routine imaging is primarily a data diversity problem, not
586 a methodology problem. *European radiology experimental*, 4(1):50, 2020.

587 Haigen Hu, Xiaoyuan Wang, Yan Zhang, Qi Chen, and Qiu Guan. A comprehensive survey on
588 contrastive learning. *Neurocomputing*, 610:128645, 2024.

594 Yutao Hu, Qixiong Wang, Wenqi Shao, Enze Xie, Zhenguo Li, Jungong Han, and Ping Luo. Beyond
 595 one-to-one: Rethinking the referring image segmentation. In *Proceedings of the IEEE/CVF*
 596 *International Conference on Computer Vision*, pp. 4067–4077, 2023.

597

598 Shih-Cheng Huang, Liyue Shen, Matthew P Lungren, and Serena Yeung. Gloria: A multimodal
 599 global-local representation learning framework for label-efficient medical image recognition. In
 600 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 3942–3951, 2021.

601 Xiaoshuang Huang, Hongxiang Li, Meng Cao, Long Chen, Chenyu You, and Dong An. Cross-modal
 602 conditioned reconstruction for language-guided medical image segmentation. *IEEE Transactions*
 603 *on Medical Imaging*, 2024.

604

605 Zachary Huemann, Xin Tie, Junjie Hu, and Tyler J Bradshaw. Contextual net: a multimodal vision-
 606 language model for segmentation of pneumothorax. *Journal of Imaging Informatics in Medicine*,
 607 37(4):1652–1663, 2024.

608

609 Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnun-
 610 net: a self-configuring method for deep learning-based biomedical image segmentation. *Nature*
 611 *methods*, 18(2):203–211, 2021.

612

613 Debesh Jha, Pia H Smedsrød, Michael A Riegler, Pål Halvorsen, Thomas De Lange, Dag Johansen,
 614 and Håvard D Johansen. Kvasir-seg: A segmented polyp dataset. In *International conference on*
 615 *multimedia modeling*, pp. 451–462. Springer, 2019.

616

617 Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convolu-
 618 tion or region supervision. In *International conference on machine learning*, pp. 5583–5594.
 619 PMLR, 2021.

620

621 Jinyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jae-
 622 woo Kang. Biobert: a pre-trained biomedical language representation model for biomedical text
 623 mining. *Bioinformatics*, 36(4):1234–1240, 2020.

624

625 Chenxin Li, Xinyu Liu, Wuyang Li, Cheng Wang, Hengyu Liu, Yifan Liu, Zhen Chen, and Yixuan
 626 Yuan. U-kan makes strong backbone for medical image segmentation and generation. In *Pro-
 627 ceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 4652–4660, 2025a.

628

629 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau-
 630 mann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision as-
 631 sistant for biomedicine in one day. *Advances in Neural Information Processing Systems*, 36:
 632 28541–28564, 2023a.

633

634 Junnan Li, Pan Zhou, Caiming Xiong, and Steven C.H. Hoi. Prototypical contrastive learning of
 635 unsupervised representations. In *ICLR*, 2021.

636

637 Zihan Li, Yunxiang Li, Qingde Li, Puyang Wang, Dazhou Guo, Le Lu, Dakai Jin, You Zhang, and
 638 Qingqi Hong. Lvit: language meets vision transformer in medical image segmentation. *IEEE*
 639 *transactions on medical imaging*, 43(1):96–107, 2023b.

640

641 Zongxia Li, Xiyang Wu, Hongyang Du, Huy Nghiêm, and Guangyao Shi. Benchmark evalua-
 642 tions, applications, and challenges of large vision language models: A survey. *arXiv preprint*
 643 *arXiv:2501.02189*, 1, 2025b.

644

645 Chang Liu, Henghui Ding, Yulun Zhang, and Xudong Jiang. Multi-modal mutual attention and
 646 iterative interaction for referring image segmentation. *IEEE Transactions on Image Processing*,
 647 32:3054–3065, 2023.

648

649 Yong Liu, Cairong Zhang, Yitong Wang, Jiahao Wang, Yujiu Yang, and Yansong Tang. Universal
 650 segmentation at arbitrary granularity with language instruction. In *Proceedings of the IEEE/CVF*
 651 *Conference on Computer Vision and Pattern Recognition*, pp. 3459–3469, 2024a.

652

653 Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
 654 Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. *arXiv preprint*
 655 *arXiv:2404.19756*, 2024b.

648 Jun Ma, Yuting He, Feifei Li, Lin Han, Chenyu You, and Bo Wang. Segment anything in medical
 649 images. *Nature Communications*, 15(1):654, 2024.

650

651 Sergey P Morozov, Anna E Andreychenko, Nikolay A Pavlov, AV Vladzmyrskyy, Natalya V
 652 Ledikhova, Victor A Gombolevskiy, Ivan A Blokhin, Pavel B Gelezhe, AV Gonchar, and V Yu
 653 Chernina. Mosmeddata: Chest ct scans with covid-19 related findings dataset. *arXiv preprint*
 654 *arXiv:2005.06465*, 2020.

655 Jishnu Mukhoti, Tsung-Yu Lin, Omid Poursaeed, Rui Wang, Ashish Shah, Philip HS Torr, and
 656 Ser-Nam Lim. Open vocabulary semantic segmentation with patch aligned contrastive learning.
 657 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 658 19413–19423, 2023.

659 Shuyi Ouyang, Hongyi Wang, Shiao Xie, Ziwei Niu, Ruofeng Tong, Yen-Wei Chen, and Lanfen
 660 Lin. Slvit: Scale-wise language-guided vision transformer for referring image segmentation. In
 661 *IJCAI*, pp. 1294–1302, 2023.

662

663 Qingtao Pan, Wenhao Qiao, Jingjiao Lou, Bing Ji, and Shuo Li. Dusss: Dual semantic similarity-
 664 supervised vision-language model for semi-supervised medical image segmentation. In *Proceed-
 665 ings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 6299–6307, 2025.

666 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 667 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 668 models from natural language supervision. In *International conference on machine learning*, pp.
 669 8748–8763. PMLR, 2021.

670 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 671 ical image segmentation. In *International Conference on Medical image computing and computer-
 672 assisted intervention*, pp. 234–241. Springer, 2015.

673

674 Rafi Ibn Sultan, Hui Zhu, Chengyin Li, and Dongxiao Zhu. Bipvl-seg: Bidirectional progres-
 675 sive vision-language fusion with global-local alignment for medical image segmentation. *arXiv
 676 preprint arXiv:2503.23534*, 2025.

677 Changki Sung, Wanhee Kim, Jungho An, Wooju Lee, Hyungtae Lim, and Hyun Myung. Context-contrast:
 678 Contextual contrastive learning for semantic segmentation. In *Proceedings of the IEEE/CVF
 679 conference on computer vision and pattern recognition*, pp. 3732–3742, 2024.

680 Nikhil Kumar Tomar, Debesh Jha, Ulas Bagci, and Sharib Ali. Tganet: Text-guided attention for
 681 improved polyp segmentation. In *International Conference on Medical Image Computing and
 682 Computer-Assisted Intervention*, pp. 151–160. Springer, 2022.

683

684 Guoli Wang, Qikui Zhu, Chaoda Song, Benzheng Wei, and Shuo Li. Medkaformer: When
 685 kolmogorov-arnold theorem meets vision transformer for medical image representation. *IEEE
 686 Journal of Biomedical and Health Informatics*, 2025a.

687 Qijie Wang, Xian Lin, and Zengqiang Yan. Towards robust medical image referring segmentation
 688 with incomplete textual prompts. In *International Conference on Medical Image Computing and
 689 Computer-Assisted Intervention*, pp. 636–646. Springer, 2025b.

690

691 Sheng Wang, Zihao Zhao, Xi Ouyang, Tianming Liu, Qian Wang, and Dinggang Shen. Interac-
 692 tive computer-aided diagnosis on medical image using large language models. *Communications
 693 Engineering*, 3(1):133, 2024.

694

695 Yiyi Wang, Jia Su, Xinxiao Li, and Eisei Nakahara. Medlangvit: A language–vision network for
 696 medical image segmentation. *Electronics*, 14(15):3020, 2025c.

697

698 Zifeng Wang, Zhenbang Wu, Dinesh Agarwal, and Jimeng Sun. Medclip: Contrastive learning from
 699 unpaired medical images and text. In *Proceedings of the Conference on Empirical Methods in
 700 Natural Language Processing. Conference on Empirical Methods in Natural Language Process-
 701 ing*, volume 2022, pp. 3876, 2022.

Jianzong Wu, Xiangtai Li, Xia Li, Henghui Ding, Yunhai Tong, and Dacheng Tao. Toward robust
 referring image segmentation. *IEEE Transactions on Image Processing*, 33:1782–1794, 2024.

702 Zhao Yang, Jiaqi Wang, Yansong Tang, Kai Chen, Hengshuang Zhao, and Philip HS Torr. Lavt:
 703 Language-aware vision transformer for referring image segmentation. In *Proceedings of the*
 704 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 18155–18165, 2022.

705

706 Boheng Zhang, Haorui Huang, Yi Shen, and Mingjian Sun. Mm-ukan++: A novel kolmogorov-
 707 arnold network based u-shaped network for ultrasound image segmentation. *IEEE Transactions*
 708 *on Ultrasonics, Ferroelectrics, and Frequency Control*, 2025.

709

710 Sheng Zhang, Yanbo Xu, Naoto Usuyama, Hanwen Xu, Jaspreet Bagga, Robert Tinn, Sam Pre-
 711 ston, Rajesh Rao, Mu Wei, Naveen Valluri, et al. Biomedclip: a multimodal biomedical
 712 foundation model pretrained from fifteen million scientific image-text pairs. *arXiv preprint*
 713 *arXiv:2303.00915*, 2023.

714

715 Xu Zhang, Bo Ni, Yang Yang, and Lefei Zhang. Madapter: A better interaction between image
 716 and language for medical image segmentation. In *International Conference on Medical Image*
 717 *Computing and Computer-Assisted Intervention*, pp. 425–434. Springer, 2024.

718

719 Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D Manning, and Curtis P Langlotz. Con-
 720 trastive learning of medical visual representations from paired images and text. In *Machine learn-
 721 ing for healthcare conference*, pp. 2–25. PMLR, 2022.

722

723 Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++:
 724 A nested u-net architecture for medical image segmentation. In *International workshop on deep*
 725 *learning in medical image analysis*, pp. 3–11. Springer, 2018.

726

727 Junan Zhu, Zhizhe Tang, Zheng Liang, Ping Ma, and Chuanjian Wang. Kanseg: An efficient medical
 728 image segmentation model based on kolmogorov-arnold networks for multi-organ segmentation.
 729 *Digital Signal Processing*, pp. 105472, 2025.

730

728 A APPENDIX

731 A.1 ETHICS STATEMENT

732 We have ensured that all data used in this research comply with ethical guidelines and proper cita-
 733 tions. The study follows responsible AI practices and avoids any data manipulation or misrepresen-
 734 tation.

736 A.2 REPRODUCIBILITY STATEMENT

738 The experiments in this work are fully reproducible. All datasets and code used for model train-
 739 ing and evaluation are publicly available. Detailed information on the experimental setup, model
 740 configurations, and hyperparameters is provided to enable independent reproduction of results.

742 A.3 USE OF LLMs

743 This work does not involve the use of any large language models (LLMs), such as GPT, BERT, or
 744 similar models.

746 A.4 DATASETS

748 To comprehensively evaluate the effectiveness of our proposed C2Seg, we conduct experiments on
 749 four widely used public medical image segmentation datasets: QaTa-COV19, MosMedData+, CVC-
 750 ClinicDB, and Kvasir. QaTa-COV19 and MosMedData+ are chest imaging datasets, both augmented
 751 with textual descriptions curated by Li et al. (2023b), which provide descriptive information for each
 752 image. A notable challenge in these two datasets is the high degree of text reuse: for example, over
 753 7,000 samples in QaTa-COV19 share only about 300 different textual descriptions, which poses
 754 additional difficulties for fine-grained vision–language alignment. In addition, we consider two
 755 colonoscopy polyp segmentation datasets, CVC-ClinicDB and Kvasir, where image–text pairs are
 constructed by Zhang et al. (2024) through clinically oriented descriptions of each image.

The QaTa-COV19 dataset Degerli et al. (2022), jointly released by Qatar University and Tampere University, comprises 9,258 chest X-ray images with pixel-level annotations for COVID-19 lesion segmentation. We follow the dataset partition protocol used in LViT Li et al. (2023b), splitting the dataset into a training set (5,716 images), a validation set (1,429 images), and a test set (2,113 images).

The MosMedData+ dataset Morozov et al. (2020); Hofmanninger et al. (2020) includes 2,729 chest CT slices labeled with infection masks for pulmonary lesions. Each image is also accompanied by textual descriptions that specify attributes such as infection laterality, anatomical location, and affected lung lobes, providing diverse spatial and semantic cues. We adopt the same data split as in LViT Li et al. (2023b): 2,183 training images, 273 validation images, and 273 test images.

The CVC-ClinicDB dataset Bernal et al. (2015) contains 612 colonoscopy images with pixel-level polyp masks collected from 29 colonoscopy video sequences. In this work, we use the text-augmented version released by Zhang et al. (2024), where each image is associated with a concise clinical-style description. Following Zhang et al. (2024), we split CVC-ClinicDB into 550 training images and 62 test images.

The Kvasir dataset Jha et al. (2019) consists of 1,000 colonoscopy images with expert-annotated polyp masks acquired under diverse clinical conditions. Similarly, we adopt the text annotations provided by Zhang et al. (2024) and follow its partition protocol, using 900 images for training and 100 images for testing.

776 A.5 EVALUATION METRICS

To quantitatively assess segmentation performance, we adopt four widely used evaluation metrics: Dice score, mean Intersection over Union (mIoU), the 95th percentile Hausdorff distance (HD95), and the Average Symmetric Surface Distance (ASSD). Dice and mIoU evaluate the region-wise overlap between the predicted segmentation and ground-truth annotations across all categories and spatial positions.

The Dice score measures the harmonic mean of precision and recall, placing more emphasis on correctly segmented regions, and is defined as:

$$787 \quad \text{Dice} = \sum_{i=1}^N \sum_{j=1}^C \frac{1}{NC} \cdot \frac{2|p_{ij} \cap y_{ij}|}{|p_{ij}| + |y_{ij}|}, \quad (8)$$

790 where p_{ij} and y_{ij} denote the predicted and ground-truth pixel sets, respectively, for sample i and
791 class j .

793 The mean Intersection over Union (mIoU) reflects the average segmentation accuracy by computing
794 the ratio of intersection over union for each class and averaging over the dataset:

$$796 \quad \text{mIoU} = \sum_{i=1}^N \sum_{j=1}^C \frac{1}{NC} \cdot \frac{|p_{ij} \cap y_{ij}|}{|p_{ij} \cup y_{ij}|}, \quad (9)$$

800 where N denotes the number of samples and C the total number of semantic categories. The notation
801 $|p_{ij} \cap y_{ij}|$ and $|p_{ij} \cup y_{ij}|$ indicate the number of overlapping and combined pixels, respectively,
802 between prediction and ground truth for each sample–category pair.

803 In addition to region-overlap metrics, we also report two boundary-based distance metrics, HD95
804 and ASSD, to assess the accuracy of lesion localization and contour delineation. Let S_{pred} and
805 S_{gt} denote the sets of surface (boundary) points of the predicted and ground-truth segmentations,
806 respectively, and $d(x, S) = \min_{y \in S} \|x - y\|$ be the shortest distance from a point x to a surface S .
807 We first compute all directed surface distances $\{d(x, S_{\text{gt}}) \mid x \in S_{\text{pred}}\}$ and $\{d(y, S_{\text{pred}}) \mid y \in S_{\text{gt}}\}$
808 and take their union. HD95 is then defined as the 95th percentile of this pooled distance distribution,
809 i.e., the value below which 95% of all surface distances lie. A lower HD95 indicates that even the
worst-aligned boundary regions are relatively close to the ground truth.

810 The Average Symmetric Surface Distance (ASSD) measures the mean bidirectional surface distance
 811 between prediction and ground truth:
 812

$$813 \quad 814 \quad 815 \quad 816 \quad \text{ASSD}(S_{\text{pred}}, S_{\text{gt}}) = \frac{1}{2} \left(\frac{1}{|S_{\text{pred}}|} \sum_{x \in S_{\text{pred}}} d(x, S_{\text{gt}}) + \frac{1}{|S_{\text{gt}}|} \sum_{y \in S_{\text{gt}}} d(y, S_{\text{pred}}) \right). \quad (10)$$

817 Smaller ASSD values indicate that, on average, the predicted and ground-truth boundaries are
 818 closely aligned in space. Together with Dice and mIoU, HD95 and ASSD provide a more com-
 819 prehensive evaluation of both region overlap and boundary geometry.
 820

821 A.6 TRAINING OBJECTIVE IN STAGE II

823 In Stage II, the segmentation decoder is optimized with a hybrid Binary Cross-Entropy (BCE) and
 824 Dice loss, which combines stable pixel-wise supervision with region-overlap awareness. Let $p_i \in$
 825 $[0, 1]$ denote the predicted foreground probability for pixel i and $y_i \in \{0, 1\}$ the corresponding
 826 ground-truth label (foreground or background), over all pixels indexed by $i = 1, \dots, |\Omega|$ in the
 827 image domain Ω .
 828

The BCE loss is defined as

$$830 \quad 831 \quad 832 \quad \mathcal{L}_{\text{BCE}} = -\frac{1}{|\Omega|} \sum_{i=1}^{|\Omega|} [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)], \quad (11)$$

833 which treats segmentation as a pixel-wise binary classification task and provides numerically stable
 834 gradients, especially in the early training phase.
 835

836 To explicitly encourage region-level overlap between the prediction and ground truth and alleviate
 837 class imbalance, we further adopt a soft Dice loss:
 838

$$839 \quad 840 \quad 841 \quad \mathcal{L}_{\text{Dice}} = 1 - \frac{2 \sum_{i=1}^{|\Omega|} p_i y_i}{\sum_{i=1}^{|\Omega|} p_i + \sum_{i=1}^{|\Omega|} y_i + \epsilon}, \quad (12)$$

842 where ϵ is a small constant to avoid division by zero. This term focuses on the agreement between
 843 predicted and ground-truth foreground regions and is particularly beneficial when the lesion occupies
 844 only a small portion of the image.
 845

The final segmentation loss in Stage II is a weighted combination of the two terms:
 846

$$847 \quad \mathcal{L}_{\text{seg}} = 0.5 \mathcal{L}_{\text{BCE}} + 0.5 \mathcal{L}_{\text{Dice}}. \quad (13)$$

848 In practice, this simple 1:1 weighting leverages the complementary strengths of BCE and Dice: the
 849 former stabilizes optimization at the pixel level, while the latter improves the overlap quality of the
 850 predicted masks, which is crucial for accurate medical image segmentation.
 851

852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863