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ABSTRACT

Dense Retrieval (DR) is now considered as a promising tool to enhance the mem-
orization capacity of Large Language Models (LLM) such as GPT3 and GPT-4
by incorporating external memories. However, due to the paradigm discrepancy
between text generation of LLM and DR, it is still an open challenge to integrate
the retrieval and generation tasks in a shared LLM. In this paper, we propose an
efficient LLM-Oriented Retrieval Tuner, namely LMORT, which decouples DR
capacity from base LLM and non-invasively coordinates the optimally aligned
and uniform layers of the LLM towards a unified DR space, achieving an efficient
and effective DR without tuning the LLM itself. The extensive experiments on
six BEIR datasets show that our approach could achieve competitive zero-shot re-
trieval performance compared to a range of strong DR models while maintaining
the generation ability of LLM.

1 INTRODUCTION

Large language models (LLMs) such as GPT-3 (Brown et al., 2020) and GPT-4 (OpenAI, 2023)
have achieved significant success and shown impressive zero/few-shot generalization ability across
a wide range of natural language processing tasks (Brown et al., 2020; Kojima et al., 2022). Recently,
they are now being functioned as the backbone of autonomous agents consisting of planning, tools,
action, and memory, and become a milestone towards Artificial General Agent (AGI) (Weng, 2023).

In a LLM-based autonomous agent, the inclusion of an external memory component, which can aid
the agent in retaining and recalling information for a long time (Nematzadeh et al., 2020), holds
significant importance. A promising avenue for augmenting LLM’s long-term memory lies in dense
retrieval (DR), which employs a representation model to map information into dense vectors, and
allows efficient identification of relevant information from large-scale vector storage (Karpukhin
et al., 2020; Xiong et al., 2021; Ni et al., 2022).

LLM-based retrieval, such as cpt-text (Neelakantan et al., 2022) with large GPT-3 models, presents
a promising avenue for establishing external memory. They generally need to fine-tune the LLMs
as a retrieval-specific representation models, which is always feasible but suboptimal. Specifically,
LLMs maximize the likelihood of the succeeding properly generated token, building upon the history
context text (Brown et al., 2020; Touvron et al., 2023). However, the DR task involves transforming
existing text into a vector space, whereby text vectors embodying related semantics draw closer,
while those representing distinct semantics are distanced further apart (Karpukhin et al., 2020; Wang
& Isola, 2020). The divergence paradigm between text generation and DR makes it difficult for
LLM-based retriever/agent share a single LLM, resulting in additional model parameters (requiring
a retrieval-specific LLM) and longer inference time (i.e., every query needs being re-encoded by the
retrieval-LLM). Consequently, achieving compatibility between retrieval and text generation within
a unified LLM remains a significant yet largely unresolved problem.

Considering the impressive zero-shot capabilities of LLM across various NLP tasks, we have ev-
ery reason to support the hypothesis that the original representation of LLM (i.e., the output of a
frozen LLM) contains sufficient semantic information for Dense Retrieval (DR), albeit not aligned
with the DR space. Inspired by previous works (Wang & Isola, 2020), we introduce the alignment
and uniformity, which represent two important aspects to measure an ideal DR’s vector space, to
analyze LLM representation space layer by layer. Alignment favors the representation model that
assign similar features to similar samples. Uniformity prefers a feature distribution that preserves
maximal information for samples. As illustrated in Fig. 1, our analysis reveals that layers of LLM
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Figure 1: Layer-wise alignment and uniformity analysis in GPT-j-6B. The redder the color, the
better the alignment and uniformity. Conversely, the bluer the color, the worse alignment and
uniformity. The X-axis denotes six BEIR datasets and their average results. The Y-axis represents
the layer number of GPT-j-6B (e.g., #1 is the first embedding layer and #29 is the last hidden layer).

with better alignment tend to be less uniform, and conversely, layers with high uniformity exhibit
weaker alignment. This observation suggests a more promising direction to solve those problems
is to synthesize the alignment and uniformity of original LLM’s representation space, instead of
conducting retrieval-specific LLM tuning.

Motivated by the observations mentioned above, we propose an efficient LLM-Oriented Retrieval
Tuner (LMORT), to drives the optimally aligned and uniform layers of the frozen LLM towards a
unified DR space. Specifically, the LMORT tuner adapts a Transformer-like structure, comprising
two carefully-crafted bidirectional attention operations in each layer. One attention utilizes self-
attention to learn features starting from the LLM’s optimal alignment (uniformity) layer, and the
other cross-attention is operated on LLM’s best uniformity (alignment), so as to simultaneously
consider uniformity and alignment in a shot. Through the fine-tuning of LMORT with standard DR
tasks, the alignment and uniformity properties of the frozen LLM seamlessly merge into a unified
space conducive to effective retrieval.

We conduct extensive experiments on six zero-shot retrieval datasets from BEIR benchmark (Thakur
et al., 2021), focusing on three LLMs, including GPT2-Large, XL (Radford et al., 2018), and GPT-
j-6B (Wang, 2021). LMORT demonstrates significant scalability, with its zero-shot retrieval perfor-
mance improving by 13% as the size of LLM increases from Large to 6B. Even when compared
to strong DR baselines with fine-tuned LLM, tuning just three-layer of LMORT yields competitive
performance. Our analysis also indicates that LMORT’s effectiveness lies in its resonable utiliza-
tion of LLM alignment and uniformity, mitigating their original incompatibility. Furthermore, we
evaluate LMORT’s parameter and training efficiency. After dimensionality reduction, with only a
marginal 1% performance decrease, LMORT significantly cuts down training parameters to 2% and
training time to 4% compared to LLM-based DR fine-tuning.

2 RELATED WORK

Dense Retrieval (DR) based on Pre-trained Language Models (PLMs) entails the process of fine-
tuning PLMs into dense representation models (Karpukhin et al., 2020; Ni et al., 2022; Neelakantan
et al., 2022). Within this category, masked PLMs with bidirectional attention, such as BERT (Kenton
& Toutanova, 2019) and T5 (Raffel et al., 2020), have demonstrated substantial empirical advantages
for retrieval tasks. Nevertheless, these benefits tend to diminish in zero-shot DR scenarios, particu-
larly when the PLM is either inadequately sized or not meticulously trained (Thakur et al., 2021).

To enhance the zero-shot generalization capabilities of PLM-based DRs, research communities have
explored a variety of training techniques, including the adoption of training data augmentation (Ma
et al., 2021), refinement training strategies (Yu et al., 2022). Popular data augmentation techniques
include the creation of weakly supervised data through text processes (Lee et al., 2019) such as span
corruption (Izacard et al., 2022) and pseudo-query generation (Ma et al., 2021). In parallel, com-
monly employed training strategies contain retrieval-oriented pre-training (Gao & Callan, 2022; Lu
et al., 2021), training-negative iteration (Xiong et al., 2021; Si et al., 2022), and cross-encoder dis-
tillation (Ren et al., 2021b; Zhang et al., 2022). In addition to improving training techniques, recent
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work has shown that simply increasing the size of T5 to XXL achieves state-of-the-art performance
on the zero-shot retrieval benchmark Ni et al. (2022).

Recently, considering the powerful ability of decoder-only large language models (LLMs) on a wide
range of NLP tasks Brown et al. (2020); OpenAI (2023), their potential for retrieval tasks has also
been explored. Researchers find that simply increasing the size of the LLM can also significantly
boost zero-shot retrieval performance (Muennighoff, 2022; Neelakantan et al., 2022). For instance,
cpt-text (Neelakantan et al., 2022) fine-tunes the massive 175B GPT-3 Brown et al. (2020) as a
dense retriever, achieving superior results on many zero-shot retrieval datasets Thakur et al. (2021).
Although directly fine-tuning a larger LLMs is a simpler and effective approach, it comes with a
higher training cost and limits the LLM to a retrieval-specific model, making it less compatible with
other natural language processing and generation tasks.

In this paper, we employ a distinct approach by fine-tuning a lightweight LLM-oriented retrieval
tuner, seamlessly integrated into the LLM without direct alterations to its internal parameters. This
approach allows us to unlock the zero-shot retrieval capabilities of the LLM while preserving its
versatile generalization abilities at a more cost-effective training expense.

3 LLM’S ZERO-SHOT DR CAPABILITY ANALYSIS

In this section, we first recaps the preliminary of Dense Retrieval (DR). Following that, we present
the analysis findings regarding zero-shot DR capabilities.

3.1 PRELIMINARY OF DR

According to a query Xq , DR aims to retrieve a set of relevant passages X+
p from a large-scale corpus

Xp ∈ C. Specifically, the query Xq and the passage Xp can be encoded as dense representations:

xq = g(Xq;ϕ); xp = g(Xp;ϕ), (1)

where g(·;ϕ) denotes the representation model with parameters ϕ. In this way, the whole corpus can
be encoded as vector database V and retained for a long term with a limitless storage capacity.

Then the most related K passages can be retrieved by assessing the similarity between the query
vector xq and each passage vectors xp, such as dot product and cosine similarity:

Top Kxp∈Vsim(xq,xp;ϕ). (2)

3.2 ZERO-SHOT DR CAPABILITY ANALYSIS

We carry out an analysis of frozen LLMs from the views of alignment and uniformity that are two
crucial characteristics of an ideal DR space Wang & Isola (2020).

Layer-wise Dense Representation. To evaluate the DR potential of LLMs, our initial step involves
acquiring a dense representation of the input sequence through the LLM. Achieving this, we trans-
form the hidden states from the LLM’s final output layer into dense vectors through mean pooling,
and this process is applied to all layers of the LLM.

Given an input sequence X = {x1, ..., xt, ..., xn}, the LLM processes the sequence X into a set of
layered hidden states Hl = {hl

1, ...,h
l
t, ...,h

l
n}, where 1 ≤ l < L and L is the total layer number of

the LLM. Then the intermediate states Hl of layer l can be pooled into a dense vector xl:

Hl ← LLM(X;ϕllm),

xl = f(Hl),
(3)

where ϕllm and f denotes the LLM’s parameters and the mean pooling operation, respectively. Once
the layer-wise dense representation is established, the alignment and uniformity of the representation
space at each LLM layer can be evaluated.

Layer-wise Alignment Analysis. Alignment requires that two samples forming a positive pair
should be mapped to nearby features in the representation space, i.e., the distance between posi-
tive samples is excepted to be closer. Formally, let be a positive pair (X,X+) ∼ ppos, which is
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processed into LLM’s layered hidden states Hl
X and Hl

X+ (Eq. 3), where 0 ≤ l < L. Then each
layer of hidden states Hl

(·) is then mapped into a representation vector f(·) through pooling and
normalization operations. The alignment loss Lalign is introduced to measure the expected distance
between positive pairs:

Lalign(f) ≜ E(X,X+)∼ppos ||f(H
l
X)− f(Hl

X+)||22. (4)

Layer-wise Uniformity Analysis. Uniformity prefers representation vectors should be uniformly
distributed on the normalized feature space, preserving as much information of the sample as possi-
ble. Similar to alignment analysis, we measure the uniformity loss of each LLM layer. The unifor-
mity loss Luniform is defined as the expected pairwise potential of all sample pairs (X,Y )

i.i.d∼ pdata:

Luniform(f) ≜ log E
(X,Y )

i.i.d∼ pdata
e−2||f(Hl

X)−f(Hl
Y )||22 . (5)

Layer-wise Analysis Results. We conduct the layer-wise alignment and uniformity analysis on
three causal LLMs of different sizes: GPT2-Large (0.75B, 37 layers), GPT2-XL (1.5B, 49 layers)
and GPT-j-6B (6B, 29 layers). The analysis data are six zero-shot retrieval datasets from the BEIR
benchmark Thakur et al. (2021) 1: TREC-COVID, NFCorpus, FiQA, ArguAna, SciFact, and SCI-
DOCS. In these datasets, the query and the relevant passage are regarded as positive pairs (X,X+)
in the alignment analysis. When evaluating uniformity, the pairwise pair (X,Y ) can be uniformly
sampled from the query set and the passage set.

Figure 1 illustrates the alignment and uniformity losses computed from the representation space of
each layer of GPT-j-6B on these datasets (more results are shown in Appendix C). The results sug-
gest that the inherent nature of LLMs makes it challenging to simultaneously optimize alignment
and uniformity within a single layer, as these two properties tend to be mutually exclusive. This
observation becomes more pronounced for larger LLMs. Additionally, we also observe that lower
layers exhibit better alignment, while higher layers tend to excel in uniformity. This finding is con-
sistent with previous research Sajjad et al. (2022): the LLM captures shallow concepts at the low
layers, such as lexical n-grams. Meanwhile, the lexical overlap is an important feature of positive
pairs (alignment); while top layers capture richer and more abstract information, such as morphol-
ogy, semantics and syntax, revealing that higher layers preserve more information (uniformity).

Through the above analysis, we conclude that the representation spaces of frozen LLMs possess the
alignment and uniformity characteristics necessary for an effective retrieval space. However, these
two properties are distributed across different layers of the LLM. Consequently, these observations
inspire the idea presented in Section 4, which aims to unleash the zero-shot DR capability of LLM,
by tuning the alignment and uniformity of the LLM into a unified output representation space.

4 LLM-ORIENTED RETRIEVAL TUNER (LMORT)

Motivated by the insights discussed in Section 3, we intuitively propose a LLM-oriented retrieval
tuner, namely LMORT, which non-invasively tunes the optimal alignment and uniformity layer of
LLMs into a unified representation space to achieve a effective LLM-oriented retrieval.

4.1 LMORT’S ARCHITECTURE

Figure 2 illustrates the architecture of LMORT, which is a multi-layer architecture built on top
of LLM’s optimal alignment and uniformity layers. Each LMORT layer contains three carefully-
designed sub-layers. Next, we first introduce the selection of LLM’s alignment and uniformity layers
and then describe the details of LMORT.

LLM’s Align & Uniform Layers. As per the analysis method introduced in Section 3, we select
the alignment layer with the lowest alignment loss (Eq. 4) and the uniform layer with the lowest uni-
formity loss (Eq. 5). Specifically, given an input sequence X = {x1, ..., xt, ..., xn}, LLM processes

1Due to the high cost of LLM-oriented evaluation, we have chosen six reasonably sized datasets for experi-
ments from all 18 BEIR datasets. More details of these datasets can be found in Appendix B.
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Figure 2: Illustration of LLM-Oriented Retrieval Tuner (LMORT). The total layer number of
LMORT is much less than that of the frozen LLM (M ≪ N ).

the sequence X into a set of layered hidden states Hl = {hl
1, ...,h

l
t, ...,h

l
n}, where 0 ≤ l < L. the

LLM’s align layer and uniform layer are denoted as Ha and Hu, respectively:

Ha,Hu ← LLM(X;ϕllm), (6)

LMORT’s Layer-wise Structure. Each LMORT block consists of two carefully-designed bidi-
rectional attention sub-layers (i.e., self bi-attention and cross bi-attention sub-layers) and one feed-
forward layer. Referring to vanilla Transformer blocks, residual connections surround each sub-
layer, and layer normalization follows. The two attention sub-layers are directed towards the LLM’s
align layer Ha and uniform layer Hu, respectively:

• Self Bi-Attention. The first attention sub-layer utilizes a bi-directional attention operation,
whereby the attention matrices Qa, Ka, and Va are all mapped from the LLM’s align
layer Ha and each token at a given position interacts with tokens from all positions in the
sequence. This attention mechanism facilitates the identification and capturing contextual
features of sequence from LLM’s alignment perspective:

Self-Attention(Qa,Ka,Va) = softmax

(
Qa(Ka)T√

dk

)
Va. (7)

• Cross Bi-Attention. The second attention sub-layer also employs bi-directional attention,
but with a significant difference: The key Ku and value Vu is sourced from the LLM’s uni-
form layer’s output Hu, while query Qs are obtained from the previous Self Bi-Attention’s
output. This design establishes an inner connection within LLM’s align and uniform layers,
enabling LMORT to narrow the gap between them:

Cross-Attention(Qs,Ku,Vu) = softmax

(
Qs(Ku)T√

dk

)
Vu. (8)

It should be noted that the connections between LMORT’s two attention sub-layers and LLM’s
alignment and uniformity layers can be inter-changed. For instance, Self-Attention(Qu,Ku,Vu)
can also be applied to the uniform layer Hu, while Cross-Attention(Qs,Ka,Va) can be directed
towards the alignment layer Ha. This connection mode is regarded as one of the hyper-parameters.

Lastly, LMORT’s output representation Ho is converted into a dense vector x through the mean
pooling operation f(·):

Ho = LMORT(Ha,Hu; θ),

x = f(Ho),
(9)

where θ represents the parameters of the LMORT. In this way, large-scale input sequences X can be
encoded and stored as dense vectors V .
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Figure 3: The average results of layer-wise alignment and uniformity estimation on six BEIR
datasets. The redder the color, the better the alignment and uniformity. Conversely, the bluer the
color, the worse alignment and uniformity. The Y-axis represents the layer number of three GPTs.

4.2 LMORT’S TRAINING

We employ the standard DR training method to fine-tune LMORT. Formally, let be a training query
set Q and a corpus C, where each query Xq is labeled with a set of relevant passages X+

p ∈ C+Xq
,

and negative passages C−Xq
sampled from the rest corpus C \ C+Xq

. The learning objective can be
formulated as optimizing parameters θ of LMORT, in such a way, positive pairs of the query and
positive passages (Xq, X

+
p ) have higher similarity than the negative ones (Xq, X

−
p ):

θ∗ = argmin
θ

∑
Xq∈Q

∑
X+

p ∈C+
Xq

−log
exp (sim(xq,x

+
p ; θ, ϕ̃llm))

exp (sim(xq,x
+
p ; θ; ϕ̃llm)) +

∑
X−

p ∈C−
Xq

exp (sim(xq,xp
−; θ; ϕ̃llm))

,

(10)

where the dense representation of query xq and passage xp
+/− are encoded through LLM (Eq. 6)

and LMORT (Eq. 9). During training, we only tune the LMORT’s parameters (θ) and freeze the all
parameters of the LLM (ϕ̃llm), where the optimization gradient is not passed back to the LLM.

5 EXPERIMENTS

In this section, we begin by detailing the experimental setups, followed by conducting hyperpa-
rameter studies, comparisons, and ablation experiments on LMORT. Additionally, we perform an
in-depth analysis of alignment, uniformity, efficiency, and scalability.

5.1 EXPERIMENTAL SETUPS

Evaluation Datasets. We employ six zero-shot retrieval datasets, the same analysis data in Sec-
tion 3, as testing data. These datasets include TREC-COVID (Voorhees et al., 2021), NFCor-
pus (Boteva et al., 2016), FiQA (Maia et al., 2018), ArguAna (Wachsmuth et al., 2018), Sci-
Fact (Wadden et al., 2020), and SCIDOCS (Cohan et al., 2020). We evaluate model performance
using the standard NDCG@10 metric. For training, we leverage MS MARCO (Nguyen et al., 2016),
which annotates about 500k web query-positive passages, and use training negatives released by
sentence-transformers (Reimers & Gurevych, 2019). More details presents in Appendix A and B.

LMORT Implementation. We select GPTs as the target LLMs, specifically containing GPT2-
Large (0.75B), GPT2-XL (1.5B) and GPT-j-6B. For all our training runs, we maintain a batch size
of 8, a learning rate of 5e-6, and train for a total of 3 epochs. We evaluate the models using the
checkpoint from the last training step, without selecting checkpoints based on testing performance.
We employ a single RTX 3090 GPU (24GB) for GPT2-Large and XL, while GPT-j-6B utilizes four
A100 GPUs (40GB). More implementation details are listed in Appendix A.
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5.2 HYPER-PARAMETER STUDY

We explore three hyperparameters of LMORT: (1) Connection Mode: This pertains to how LLM’s
optimal alignment (A) and uniformity (U) layers are connected within LMORT. We test two con-
nection methods: (A→U) self-attention to A and cross-attention to U; (U→A) self-attention to U and
cross-attention to A. (2) Number of LMORT Layers: We determine the total number of LMORT lay-
ers to be utilized. (3) Performance-scaling with base-LLM size: We assess performance scalability
under various base-LLMs with different parameter sizes.

Connection Mode. The optimal A&U layer of LLMs is determined by the alignment and uniformity
loss (Eq. 4 and Eq. 5). Therefore, we firstly assess these two losses for each layer of GPT2-Large,
XL, and GPT-j-6B across six BEIR datasets. The resulting average losses are visualized in Fig. 3.
We observe that the A layers differ among the three LLMs, but their U layers are consistently the
final layers. Tab. 1 shows the results of specific layer selection and connection mode.

Table 1: LLM’s optimal alignment (A) and uniformity (U)
layers and the average NDCG@10 scores of LMORT on six
BEIR datasets. A→U denotes LMORT applies self-attention
on A layer and cross-attention to U layer. U→A means us-
ing self-attention on U and cross-attention to A. worst A&U
denotes connecting LMORT to the worst A&U layers.

LLMs A layer U layer LMORT (NDCG@10)
A→U U→A worst A&U

GPT2-Large #36 #37 0.296 0.294 0.248
GPT2-XL #4 #49 0.342 0.355 0.167
GPT-j-6B #1 #29 0.425 0.417 0.324

As shown in Tab. 1, Large and 6B
prefer the A→U connection, whereas
XL is better suited for the U→A
connection within LMORT. When
LMORT is connected to the LLM
layers with the worst alignment
and uniformity, its retrieval perfor-
mance significantly declines across
all three LLM scenarios. This re-
veals the critical role of selecting
and connecting LLM’s A&U layers
for LMORT’s effectiveness.

Number of LMORT Layers. We further conduct experiments with these LLMs to investigate how
the number of LMORT layers affects their zero-shot retrieval performance. The results exhibited in
Fig. 4 reveals that various LLMs show effective retrieval performance with a very few number of
LMORT layers. Notably, larger LLMs require fewer LMORT layers, i.e., the optimal LMORT layer
count is seven for GPT2-Large (L=7), five for GPT2-XL (L=5), and just three for GPT-j-6B (L=3).

Performance-scaling with base-LLM size. As LMORT transitions from GPT2-Large to XL and
then GPT-j-6B, its retrieval performance consistently sees improvements of 6% and 7%, respec-
tively. This significant performance-scaling capability highlight the effectiveness of the lightweight
LMORT in unlocking the retrieval potential of LLMs without necessitating any tuning of the LLM.

5.3 COMPARISON & ABLATION STUDY

Baselines. We experiment four different ablated versions of LMORT. First, (1) we shift LMORT
from its best align and uniform layers to the worst A&U layers of LLMs. (2&3) Then, we remove
LMORT’s cross-bi-attention, only retaining the self-bi-attention to A or U. Since the the last layer of
three LLMs consistently serves as U layers, self-attention to U is equivalent to applying self-attention
on top of LLMs. (4) To provide a basis for comparison, we also test the effectiveness of applying
self-attention to the embedding layer (E) of LLM, indicating LLMs have not been used. Notably, in
GPT-j-6B, layer A is identical to layer E.

Apart from the ablated baselines, we also present results from four publicly classic baselines for
comparison: BM25 (Yang et al., 2017), DPR (Karpukhin et al., 2020), GTR-XXL (Ni et al., 2022),
and cpt-text-L (Neelakantan et al., 2022). BM25 is a sparse retriever, demonstrating strong perfor-
mance in zero-shot retrieval tasks. On the other hand, DPR, GTR-XXL, and cpt-text-L are dense
retrievers employing BERT-base, T5-XXL-encoder (4.5B), and GPT3-6B as their fine-tuning back-
bones, respectively. It is worth noting that the proposal of LMORT is to equip LLM with zero-shot
retrieval capability without altering any internal states of LLMs, instead of achieving state-of-the-art
on BEIR. Hence, we do not reference methods that achieve SOTA results through more sophisticated
training techniques, even though these skills could theoretically be applied to LMORT.

Evaluation results. Tab. 2 presents the overall results. Among three different size of base-LLM
settings, the performance of the four-ablated LMORT versions is significantly worse compared to
the full version. Specifically, when LMORT is converted to the worst A&U layer of LLMs, retrieval
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Figure 4: The average NDCG@10 results of LMORT with different layer number on three LLMs
(GPT2-Large, GPT2-XL, GPT-j-6B). The X-axis means the total layer number of LMORT. The Y-
axis denotes the average NDCG@10 scores of six BEIR datasets.

Table 2: Overall NDCG@10 results on six BEIR datasets. L means the layer number of LMORT. A,
U, and E denotes the alignment (A), uniformity (U), and embedding (E) layers of LLMs, respectively.

LLMs Methods COVID NFCorpus FiQA ArguAna SciFact SCIDOCS AVG

GPT2-Large
(Fix)

LMORT (L=7) 0.455 0.224 0.164 0.393 0.451 0.091 0.296
self/cross-attn to worst A&U 0.405 0.189 0.176 0.235 0.396 0.085 0.248
only self-attn to A 0.371 0.206 0.143 0.349 0.448 0.076 0.266
only self-attn to U (top LLM) 0.373 0.203 0.131 0.376 0.471 0.076 0.272
only self-attn to E (w/o LLM) 0.481 0.175 0.134 0.316 0.368 0.090 0.261

GPT2-XL
(Fix)

LMORT (L=5) 0.600 0.236 0.219 0.428 0.526 0.122 0.355
self/cross-attn to worst A&U 0.287 0.156 0.114 0.094 0.281 0.068 0.167
only self-attn to A 0.499 0.207 0.165 0.330 0.524 0.107 0.305
only self-attn to U (top LLM) 0.418 0.223 0.168 0.426 0.449 0.088 0.295
only self-attn to E (w/o LLM) 0.472 0.171 0.123 0.321 0.469 0.087 0.274

GPT-j-6B
(Fix)

LMORT (L=3) 0.735 0.280 0.251 0.476 0.679 0.126 0.425
self/cross-attn to worst A&U 0.698 0.286 0.229 0.405 0.205 0.122 0.324
only self-attn to A (w/o LLM) 0.516 0.193 0.144 0.308 0.503 0.094 0.293
only self-attn to U (top LLM) 0.707 0.290 0.248 0.432 0.646 0.115 0.406
only self-attn to E (w/o LLM) 0.516 0.193 0.144 0.308 0.503 0.094 0.293

For Reference: Sparse Retrieval and Dense Retrieval (fine-tuning all parameters)
BM25 0.656 0.325 0.236 0.315 0.665 0.158 0.393
DPR (BERT-base) 0.588 0.234 0.206 0.394 0.494 0.119 0.339
GTR-XXL (T5-enc-4.5B) 0.501 0.342 0.467 0.540 0.662 0.161 0.445
cpt-text-L (GPT3-6B) 0.562 0.380 0.452 0.469 0.744 n.a. n.a.

performance degrades by 5%, 19%, and 10% for GPT2-Large, XL, and GPT-j-6B, respectively. On
the other hand, removing cross-bi-attention from LMORT and retaining only self-bi-attention leads
to the largest drops in performance, with decreases of 3%, 6%, and 13% for Large, XL, and 6B,
respectively. These results underscore the critical importance of selecting the A&U layer of LLMs
and their connections to the self/cross-attention of LMORT.

Compared to strong sparse and dense retrievers on BEIR, the outcome of LMORT is quite promising,
considering that the base LLM remains entirely frozen, with only 3 plugin LMORT layers fine-tuned.
LMORT initially falls behind when mounted on GPT2-Large. However, its performance greatly
improves when transitioning to GPT2-XL, surpassing DPR. Furthermore, with the base LLM scaled
up to 6B size, LMORT outperforms BM25 and DPR by 3% and 9%, respectively, trailing behind
GTR-XXL by just 2%. As we known, GTR-XXL and cpt-text-L leverage additional training data,
while LMORT trains solely with MARCO. We thus have a reasonable expectation that LMORT’s
performance can be further enhanced through the utilization of data augmentation techniques.

5.4 FURTHER ANALYSIS

In this sub-section, we further analyze LMORT’s alignment and uniformity, and then quantify the
parameter and training efficiency of LMORT.

LMORT’s alignment & uniformity. We analyze alignment and uniformity losses in the output
(O) layer of LMORT (GPT-j-6B) and compare them to the optimal align (A) and uniform (U) layer
of the LLM. These results shown in Fig. 5 highlight LMORT’s ability to achieve a better balance
between alignment and uniformity within the same representation space. However, this balance does
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0.013 0.043 0.015 0.003 0.011 0.019 0.017
0.541 0.982 0.476 0.229 0.486 0.709 0.571

#A
#U

#O 0.089 0.136 0.094 0.048 0.071 0.097 0.089

covid nfcorpus fiqa arguana scifact scidocs AVG

-0.034 -0.109 -0.050 -0.009 -0.041 -0.060 -0.051
-0.880 -1.667 -1.161 -0.961 -1.520 -1.583 -1.295

-0.230 -0.346 -0.280 -0.163 -0.236 -0.247 -0.250

covid nfcorpus fiqa arguana scifact scidocs AVG

Alignment Loss Uniformity Loss

Datasets Datasets

Figure 5: The alignment and uniformity analysis of LMORT (GPT-j-6B) on six BEIR datasets.
#O means the output layer of LMORT. #A and #U denotes the optimal alignment and uniformity
layer of the LLM, respectively. The minimum the loss, the better the alignment and uniformity.
Conversely, the maximum the loss, the worse alignment and uniformity.

Table 3: NDCG@10 results of the standard and dimension-reduced versions of LMORT (L=3),
where LLM is GPT-j-6B. #D denotes the dimension size. #P denotes the ratio of parameters of
LMORT to the base LLM. #T represents the ratio of the average time of each training step to that
of directly fine-tuning the LLM.

LMORT #D #P #T COVID NFCorpus FiQA ArguAna SciFact SCIDOCS AVG
standard 4096 13% 14% 0.735 0.280 0.251 0.476 0.679 0.126 0.425
dim-reduced 1024 2% 4% 0.734 0.280 0.248 0.427 0.663 0.122 0.412

come at some cost to optimal alignment and uniformity. How to simultaneously maintain/surpass
the optimal A and U provided by LLM in a unified space, is a potential avenue for future research.

LMORT’s parameter efficiency. Additionally, we conduct an assessment of LMORT’s parameter
size. Tab. 3 presents the results of the standard LMORT mounted on GPT-j-6B, which shares the
same hidden vector dimensions as GPT-j-6B, and the dimension-reduced version of LMORT. The
standard LMORT comprises only 13% of LLM’s parameters, while the dimension-reduced version
contains a mere 2% of LLM’s parameters, with just a 1% drop in retrieval performance.

LMORT’s training efficiency. We also analyze the training efficiency of LMORT. Specifically, we
compare the cost time per training step between training LMORT and fine-tuning LLM on a single
A100 GPU, where we set the batch size and number of positive and negative passages to one, and
the input length to 32. The results of Tab. 3 show that standard LMORT only requires 14% of the
time of each training step of directly fine-tuning LLM, and LMORT after dimensionality reduction
(Appendix A), even reduces the training time to 4% of that of fine-tuning LLM. Such high training
efficiency is due to the mechanism that LMORT avoids propagating gradients back to LLM.

6 LIMITATIONS AND FUTURE WORK

Limitations. LMORT still lags behind the retrieval performance achieved through LLM-based fine-
tuning at the same scale. We believe this performance gap will narrow with the size of base-LLM.
Moreover, it’s important to emphasize that LMORT can only be used with open-source LLMs be-
cause it necessitates access to the LLM’s hidden state.

Future work. LMORT offers a obvious advantage in its compatibility with LLM’s retrieval and
generation abilities. This makes it an suitable choice for memory-enhanced generation scene, e.g.,
dealing with long-text modeling and long-range conversations. LMORT can effectively store LLM-
processed information for long periods, facilitating quick retrieval when necessary. These retrieved
memories can be seamlessly integrated into the latest modeling sequence, ensuring consistent long-
range modeling. The application of LMORT will be left for future research.

7 CONCLUSION

In this paper, we initially conduct a layer-wise analysis on the representation space of the frozen
LLM from the perspective of alignment and uniformity traits for DR, observing mutually exclusive
nature between those two metrics. Subsequently, we further propose a novel tuner, namely LMORT,
which strikes a trade-off between the optimal alignment and uniformity layers of LLM, establishing
an effective dense representation for DR. Extensive experiments on six BEIR datasets show that
LMORT could unlock zero-shot capacity of LLM and achieve competitive performance in terms of
retrieval ability and parameter/training efficiency. The plugin paragram of LMORT could unify the
DR and text generation in a shared LLM, providing a new alternative for memory-augmented LLM.
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Yi Luan, Keith B Hall, Ming-Wei Chang, et al. Large dual encoders are generalizable retrievers.
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
EMNLP, 2022. URL https://doi.org/10.18653/v1/2022.emnlp-main.669.

OpenAI. Gpt-4 technical report. 2023. URL https://arxiv.org/abs/2303.08774.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. 2018. URL https://insightcivic.s3.
us-east-1.amazonaws.com/language-models.pdf.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL http://jmlr.org/
papers/v21/20-074.html.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 3982–3992, 2019. URL https://aclanthology.org/D19-1410.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model train-
ing. In 2021 USENIX Annual Technical Conference, USENIX ATC 2021, July 14-16, 2021, pp.
551–564. USENIX Association, 2021a. URL https://www.usenix.org/conference/
atc21/presentation/ren-jie.

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang, and
Ji-Rong Wen. Rocketqav2: A joint training method for dense passage retrieval and passage re-
ranking. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP, pp. 2825–2835, 2021b. URL https://doi.org/10.18653/v1/2021.
emnlp-main.224.

Hassan Sajjad, Nadir Durrani, Fahim Dalvi, Firoj Alam, Abdul Rafae Khan, and Jia Xu. Analyzing
encoded concepts in transformer language models. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL 2022, Seattle, WA, United States, July 10-15, 2022, pp. 3082–3101, 2022.
URL https://doi.org/10.18653/v1/2022.naacl-main.225.

Sun Si, Xiong Chenyan, Yu Yue, Overwijk Arnold, Liu Zhiyuan, and Bao Jie. Reduce catas-
trophic forgetting of dense retrieval training with teleportation negatives. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2022. URL
https://doi.org/10.18653/v1/2022.emnlp-main.445.

11

https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2201.10005
https://arxiv.org/abs/2201.10005
https://baicsworkshop.github.io/pdf/BAICS_22.pdf
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://doi.org/10.18653/v1/2022.emnlp-main.669
https://arxiv.org/abs/2303.08774
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/D19-1410
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://doi.org/10.18653/v1/2021.emnlp-main.224
https://doi.org/10.18653/v1/2021.emnlp-main.224
https://doi.org/10.18653/v1/2022.naacl-main.225
https://doi.org/10.18653/v1/2022.emnlp-main.445


Under review as a conference paper at ICLR 2024

Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych.
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A TRAINING DETAILS

Training dataset. We employ the MS MARCO passage ranking dataset (Nguyen et al., 2016) as
the training data, which is curated from actual user search queries originating from the Bing search
engine. Within MARCO, there are approximately 500k pairs of training queries and corresponding
positive passages. The training negatives used are sampled from the collected negatives provided by
sentence-transformer 2. We have made the training negatives available in supplementary material.

Table 4: Hyper-parameter of training LMORT.
Hyperparameters GPT2-Large (Fix) GPT2-XL (Fix) GPT-j-6B (Fix)
LMORT layer number 7 5 3
Batch size (query size) 8 8 8
Positive size per query 1 1 1
Negative size per query 7 7 15
Max query length 32 32 32
Max passage length 128 128 128
Learning rate 5e-6 5e-6 5e-6
Optimizer AdamW AdamW AdamW
Scheduler WarmupDecayLR WarmupDecayLR WarmupDecayLR
Warmup ratio 0.1 0.1 0.1
Training epoch 3 3 3
FP16 ✓ ✓ ✓
DeepSpeed ✘ ✘ ZeRO-2

Training hyper-parameter. We outline all of our training hyperparameters in Tab. 4. During train-
ing LMORT (GPT-j-6B), we use DeepSpeed ZeRO-2 technology (Ren et al., 2021a) for gradient
partitioning. Additionally, the corresponding code can also be found in the supplementary material.

Dimensionality reduction. In Sec 5.4, we simply employ two-layer MLPs to perform dimension-
ality reduction on LMORT (GPT-j-6B). The 4096-dimensional hidden states from the LLM’s align-
ment and uniformity layer passes through two MLP layers with sizes of 8192 and 1024 dimensions,
respectively. This results in a 4-fold reduction in dimensionality, reducing the inner dimension size
of LMORT to 1024. Further implementation details can be located in the supplementary material.

B EVALUATION DETAILS

Evaluation datasets. Six BEIR datasets (Thakur et al., 2021) are used for zero-shot DR evaluation,
i.e., TREC-COVID (Voorhees et al., 2021), NFCorpus (Boteva et al., 2016), FiQA-2018 (Maia et al.,
2018), ArguAna (Wachsmuth et al., 2018), SciFact (Wadden et al., 2020), and SCIDOCS (Cohan
et al., 2020). Tab. 5 shows their statistics. The Normalised Cumulative Discount Gain (NDCG@10)
score on the test set is used as the metric, which is consistent with prior work (Thakur et al., 2021).

Table 5: Statistics of evaluation datasets.
Dataset Test Query Corpus
TREC-COVID 50 171332
NFCorpus 323 3633
FiQA-2018 648 57638
ArguAna 1406 8674
SciFact 300 5183
SCIDOCS 1000 25657

Evaluation hyper-parameters. We keep the same evaluation hyperparameter settings as utilized in
previous research (Yu et al., 2022). Detailed hyperparameters can be found in its public evaluation
script 3. During the evaluation of LMORT (GPT-j-6B), we adopt the DeepSpeed Zero-3 technol-
ogy (Ren et al., 2021a) for parameter partitioning.

2https://huggingface.co/datasets/sentence-transformers/
msmarco-hard-negatives

3https://github.com/OpenMatch/OpenMatch/tree/master/scripts/BEIR
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C DETAILED LAYER-WISE ANALYSIS RESULTS

Figures 6, 7, and 8 show in detail the layer-wise analysis results on the alignment loss and uniformity
loss for GPT2-Large (37 layers), GPT2-XL (49 layers), and GPT-j-6B (29 layers), as described in
Section 3. Lower loss values in these figures indicate a higher level of alignment and uniformity.

Figure 6: The layer-wise alignment and uniformity analysis of GPT2-Large on six BEIR datasets.
The minimum the loss, the better the alignment and uniformity. Conversely, the maximum the
loss, the worse alignment and uniformity.

Figure 7: The layer-wise alignment and uniformity analysis of GPT2-XL on six BEIR datasets.
The minimum the loss, the better the alignment and uniformity. Conversely, the maximum the
loss, the worse alignment and uniformity.
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Figure 8: The layer-wise alignment and uniformity analysis of GPT-j-6B on six BEIR datasets. The
minimum the loss, the better the alignment and uniformity. Conversely, the maximum the loss,
the worse alignment and uniformity.

The analysis code for estimating the layer-wise alignment loss and uniformity loss is available in the
supplementary material.
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