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Abstract. Line-search methods are commonly used to solve optimiza-
tion problems. The simplest line search method is steepest descent where
one always moves in the direction of the negative gradient. Newton’s
method on the other hand is a second-order method that uses the cur-
vature information in the Hessian to pick the descent direction. In this
work, we propose a new line-search method called Constrained Gradient
Descent (CGD) that implicitly changes the landscape of the objective
function for efficient optimization. CGD is formulated as a solution to
the constrained version of the original problem where the constraint is
on a function of the gradient. We optimize the corresponding Lagrangian
function thereby favourably changing the landscape of the objective func-
tion. This results in a line search procedure where the Lagrangian penalty
acts as a control over the descent direction and can therefore be used to
iterate over points that have smaller gradient values, compared to iter-
ates of vanilla steepest descent. We establish global linear convergence
rates for CGD and provide numerical experiments on synthetic test func-
tions to illustrate the performance of CGD. We also provide two practical
variants of CGD, CGD-FD which is a Hessian free variant and CGD-QN,
a quasi-Newton variant and demonstrate their effectiveness.

Keywords: Numerical Optimization · Gradient Regularization.

1 Introduction

Line-search methods such as gradient descent and Newton’s method have been
extremely popular in solving unconstrained optimization problems [15]. However,
vanilla version of such algorithms typically produce unsatisfactory results when
applied to large scale optimization problems such as those involving deep neural
networks. In such problems, the objective/loss function has a very non-linear
landscape that is embedded with several local maxima and minima making them
difficult to optimize [11]. To tackle this problem, one of the approaches used is to
modify the objective/loss function in such a way that the new function is easier
to optimize. This is typically done by adding a regularization term that will make
the loss landscape more smooth, and which would in turn reduce the chances of
the optimizer reaching sub-optimal minima, thereby improving generalizability
[5,18,1,17,8].
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Fig. 1. (Left) Loss function f1(x) = x2
1 + 2x2

2 and a steeper loss function f2(x).
(Right) 5 steps of GD on functions f1(x) and f2(x) with a fixed step-size α = 0.05.
The contours and the gradient norm heatmap are over the function f1(x).

In this work, we focus on this idea of modifying the objective function for
effective numerical optimization and propose an algorithmic paradigm to achieve
it. To illustrate the key idea, consider minimizing a loss function f1(·) over R2

as shown in Fig. 1 (Left). Additionally consider a steeper loss function f2(·) such
that for every x ∈ R2 we have f1(x) ≤ f2(x). Note that the functions are such
that their minima coincides. Now perform gradient descent (GD) with a fixed
step-size on both these functions. Their respective trajectories are plotted in
Fig. 1 (Right) on the contours of f1. It is clear from the figure that the iterates
of GD on f2 are much closer to the minima as compared to iterates of GD on
f1. We make this observation a focal point of this work and investigate if one
can achieve the latter iterates (iterates from GD on f2) on the former (f1).

Towards this, we propose Constraint gradient descent (CGD), a variant of
the GD algorithm which achieves this by constraining the gradient norm to be
appropriately small. Instead of solving this constrained optimization problem, we
consider the Lagrangian of this function and perform GD on it. The Lagrangian
parameter λ controls the penalty on gradient norm and thereby controls the
steepness of the modified function. It is on this modified function that we seek
to apply GD to possibly attain iterates that are much closer to the local minima
as compared to GD iterates. From Fig. 1 (Right) we additionally see that com-
pared to GD, the CGD iterates (which is nothing but GD iterates on f2) have a
lower gradient norm. Since the path to minima is over points with lower gradient
norm, this we believe is an attractive feature and even amounts to better gen-
eralization properties for high dimensional functions such as loss landscapes of
neural networks. The idea of flat minima and their attractiveness goes long back
to Hochreiter and Schmidhuber [7]: An optimal minimum is considered “flat” if
the test error changes less in its neighbourhood. Keskar et al. [10] and Chaudhari
et al. [4] observe better generalization results for neural networks at flat minima.
Gradient regularization has only been recently explored, that too from a numer-
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ical perspective for deep neural networks (DNNs) where it has been shown that
fixed learning rates result in implicit gradient regularization [17,8,1,16].

A key aim of this work is to understand gradient regularization from the
perspective of a numerical optimization algorithm and identify properties and
features that may not have been obvious earlier. We believe CGD and its variants
discussed in this work have the ability to find flatter minima, something which
is useful while training neural networks. We summarize our contributions below:

– We propose a new line-search procedure called Constraint Gradient Descent
(CGD) that performs gradient descent on a gradient regularized loss func-
tion. We also provide global linear convergence for CGD in Theorem 1.

– While CGD requires the Hessian information, we also propose a first-order
variant of CGD using finite-difference approximation of the Hessian called
CGD-FD. We define appropriate stopping criteria in CGD-FD for settings
where gradient computation can be expensive.

– We conduct experiments over synthetic test functions to compare the perfor-
mance of CGD and its variants compared to standard line-search procedures.

– Our work also provides new insights to existing gradient regularization based
methods. In fact, we re-interpret and identify pitfalls in the Explicit Gradient
Regularization (EGR) Method [1] using our formulation.

The remainder of the paper is organized as follows. In the next section, we
recall some preliminaries on line-search methods. We then discuss the CGD
algorithm and propose its variants. We then illustrate the performance of our
algorithm on several test functions and conclude with a discussion on future
directions.

2 Notation and Preliminaries

The set of real numbers and non-negative real numbers is denoted by R and
R+ respectively. We consider a vector x ∈ Rn as a column vector given by x =[
x1 x2 . . . xn

]T . We use a boldface letter to denote a vector and lowercase letters
(with subscripts) to denote its components. Lp-norm of a vector x is defined as
∥x∥p = (

∑
i |xi|p)1/p. Setting p = 2 gives us L2-norm: ∥x∥ ≜ ∥x∥2 =

√∑
i x

2
i =√

xTx. λmax(·) and λmin(·) denote the maximum and minimum eigenvalue of a
matrix respectively. Norm of a matrix is assumed to be the spectral norm i.e.,
∥A∥ =

√
λmax(ATA). In denotes the identity matrix of size n×n. All zero vector

of length n is denoted by 0n.

2.1 Line-Search Methods

Let f(x) be a twice differential function with domain D ⊆ Rn and codomain R,
i.e., f : D → R. Let ∇f(xk) and H(xk) denote the gradient and Hessian of the
function f(x) evaluated at point xk ∈ D. For the sake of simplicity, we will also
use the notation ∇fk and Hk to denote ∇f(xk) and H(xk) respectively. For the
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given function f(x), we consider the problem of finding its minimizer, i.e., we
wish to find x∗ ∈ D such that

x∗ = argmin
x∈D

f(x). (1)

We focus on the situation where x∗ is obtained using an iterative line-search
procedure (for details refer [12, Ch. 3]). The steepest descent (gradient descent)
method, Newton’s method, and quasi-Newton’s method are some examples of
line-search methods. In an iterative algorithm, the key idea is to begin with an
initial guess x0 for the minimizer and generate a sequence of vectors x0,x1, . . .
until convergence (or until desired level of accuracy is achieved). In such algo-
rithms, xk+1 is obtained using xk using a pre-defined update rule.

For line-search methods, the update rule can be written in a general form as,
xk+1 = xk + αpk where α ∈ R+ is the step-size (or learning rate) and pk ∈ Rn

corresponds to the direction in the kth iteration. For pk to be a descent direction,
the following condition must hold:

∇fT
k pk < 0. (2)

2.2 Quasi-Newton Methods

Quasi-Newton methods (QN methods) are line-search methods that maintain an
approximation of the inverse of the Hessian to emulate Newton’s direction. The
iterates here are of the form,

xk+1 = xk − αGk∇fk (3)

where Gk is a positive definite matrix that is updated at every step to ap-
proximate the inverse Hessian.

We consider DFP and BFGS algorithms that update Gk using symmetric
rank-two updates at each descent step [3,6]. The update equations for DFP and
BFGS are given as follows (for more details refer [12, Ch. 6]):

(DFP) Gk+1 = Gk +
sks

T
k

yT
k sk

− Gkyky
T
k Gk

yT
k Gkyk

(BFGS) Gk+1 =

(
In − sky

T
k

yT
k sk

)
Gk

(
In − yks

T
k

yT
k sk

)
+

sks
T
k

yT
k sk

where sk = xk+1 − xk and yk = ∇fk+1 −∇fk.
We can derive the corresponding Hessian approximation G̃k from the update

steps for Gk by applying the Sherman-Morrison-Woodbury formula [12, App.
A]. These are given as follows:

(DFP) G̃k+1 =

(
In − yks

T
k

yT
k sk

)
G̃k

(
In − sky

T
k

yT
k sk

)
+

yky
T
k

yT
k sk

(4)

(BFGS) G̃k+1 = G̃k +
yky

T
k

yT
k sk

− G̃ksks
T
k G̃k

sTk G̃ksk
(5)
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3 Constrained Gradient descent

In this section we propose Constrained Gradient Descent (CGD), an iterative
line-search method to find a minimizer x∗ of the given function f(x) (see Equa-
tion 1). The key idea in our approach is to focus on the set of x ∈ D such
that ∇f(x) is close to zero. For this consider a general constrained optimization
problem:

x∗ = argmin
x∈D

h(∇f(x))≤ϵ

f(x) (6)

where the constraint h(·) is defined on the gradient and ϵ is a small positive real
number. The unconstrained optimization problem corresponding to Equation 6
is obtained by penalizing the constraint with a Lagrange multiplier λ > 0:

x⋆ = argmin
x∈D

[
f(x) + λ h (∇f(x))

]
(7)

Note that ϵ doesn’t affect the optimization and hence ignored from the objective.
Also, observe that such a formulation provides us with a modified loss function
to optimize over. A suitable constraint h(·) will make the objective steeper while
also keeping the stationary points intact. We call this penalization or using a
gradient penalty since the objective is penalized at points based on its gradient
value. For CGD, we consider h(·) to be the square of L2-norm of the gradient.

x⋆ = argmin
x∈D

g(x) ≜ f(x) + λ∥∇f(x)∥2 = f(x) + λ
(
∇f(x)T∇f(x)

)
(8)

Steepest descent iterates over g(·) in Equation 8 are given as

xk+1 = xk − α∇gk

= xk − α (∇fk + 2λHk∇fk) (9)
= xk − αBk∇fk

where Bk ≜ In+2λHk. Thus, pk = −Bk∇fk which is the direction taken at the
kth iteration by CGD. Revisiting the example in Fig. 1, the function f1(x) = x2

1+
2x2

2 was penalized with the square of L2-norm of gradient as given in Equation 8.
Thus, the modified loss function f2(x) = x2

1 + 2x2
2 + λ

(
(2x1)

2 + (4x2)
2
)
= (1 +

4λ)x2
1 + 2(1 + 8λ)x2

2 where λ was chosen to be 0.4.
We now provide a lemma that investigates if the penalized objective function

has stationary points which are different from the original function and if so
characterizes them.

Lemma 1. Let Sx̂ and Sx⋆ be the stationary points of f(x) and g(x) as defined
in Equation 8. Then, Sx̂ ⊆ Sx∗ . Furthermore, for any x∗ ∈ Sx∗ one of the
following is true: (a) x∗ ∈ Sx̂ or (b) ∇f(x∗) is an eigenvector of H(x∗) with the
eigenvalue − 1

2λ .
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Proof. From Equation 9, for any x̂ ∈ Sx̂, ∇f(x̂) = 0n ⇒ ∇g(x̂) = 0n. So,
Sx̂ ⊆ Sx∗ holds trivially. Now for any x∗ ∈ Sx∗ , ∇g(x∗) = 0n ⇒ (In +
2λH(x∗))∇f(x∗) = 0n. If ∇f(x∗) ̸= 0n, we have H(x∗)∇f(x∗) = − 1

2λ∇f(x∗)
which proves the result. ⊓⊔

The above lemma illustrates that additional stationary points could possibly be
introduced and some of these points could also be local minima. The lemma also
characterizes conditions under which this is true and therefore such points can
easily be detected. A perturbation from the current λ in that case results in the
iterate to descend further, possibly moving towards a better minimum.

−8.5 −8.0 −7.5 −7.0 −6.5 −6.0
x

5

10

15

y

−f ′(x)

−g′(x)

Loss Landscape f (x)

Penalized Landscape g(x)

Fig. 2. Penalization introducing new stationary points at x ≈ −6.5 and x ≈ −7.6, and
changing the local maximum at x ≈ −8.1 to a local minimum.

Further note that within the current scheme, the nature of stationary points
of f(x) might change in g(x). Particularly, the local maxima and saddle points of
f(x) might become local minima in g(x) depending on λ. This happens because
penalization does not change the function value at the stationary point while
spiking up the function values at points in the neighbourhood.

As a result, descent on the penalized function might actually cause ascent
over the original loss function. For example in Fig. 2, observe that at x = −7.7
(marked with the dashed line), steepest descent along −∇g(x) direction would
actually cause an ascent over the original loss function.

To fix this behaviour, we ensure that we only move along the direction
−∇g(x) when it is a descent direction. Therefore, we only move along −∇g(x),
if ∇f(x)T∇g(x) > 0 (from Equation 2). Otherwise, we set λ = 0 at this point
and move along the −∇f(x) direction. Note that this simple check also helps
us to avoid stopping at artificially introduced stationary points. We summarize
CGD in Algorithm 1.

3.1 Global Linear Convergence of CGD

We begin with the following definition followed by a theorem on convergence
guarantees for CGD.
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Algorithm 1 Constrained Gradient Descent (CGD)
Input: Objective function f : D → R, initial point x0, max iterations T , step-size α,
regularization coefficient λ.
Output: Final point xT .
1: for iteration k = 0, . . . , T − 1 do
2: pk ← − (In + 2λkHk)∇fk
3: if ∇fT

k pk < 0 then ▷ Check if pk is a Descent Direction
4: xk+1 ← xk + αpk

5: else
6: xk+1 ← xk − α∇fk
7: return xT

Definition 1 (PL Inequality [14]). A function f : D → R satisfies the PL
inequality if for some µ > 0,

1

2
∥∇f(x)∥2 ≥ µ(f(x)− f∗), ∀x ∈ D. (10)

where f∗ is the optimal function value.

Theorem 1. Let f be a convex, L-smooth function on D ⊆ Rn. Let {xk}k≥0 be
the sequence generated by the CGD method as described in Equation 9. Then for a
constant step-size α ∈

(
0, 2

L(1+2λL)2

)
, the following holds true [2, Theorem 4.25]:

1. The sequence {fk}k≥0 is nonincreasing. In addition, for any k ≥ 0, fk+1 < fk
unless ∇fk = 0.

2. ∇fk → 0 as k → ∞.

Furthermore, if f satisfies the PL inequality (Equation 10) then the CGD method
with a step-size of 1

L(1+2λL)2
, has a global linear convergence rate,

fk − f∗ ≤
(
1− µ

L(1 + 2λL)
2

)k

(f0 − f∗).

Proof. Since f is convex and L-smooth we have,

– 0 ⪯ H ⪯ LI ⇔ 0 ≤ vTHv ≤ L ∥v∥2 ⇔ 0 ≤ ∥H∥ ≤ L
– f (y) ≤ f (x) +∇f (x)

T
(y − x) + L

2 ∥y − x∥2

Substituting xk+1 and xk in place of y and x. And xk+1 − xk = −α∇gk,

fk+1 ≤ fk − α∇fT
k ∇gk +

L

2
α2 ∥∇gk∥2 (11)

Bounds on ∥∇gk∥2 and ∇fT
k ∇gk are found as follows:

∥∇gk∥2 = ∥∇fk + 2λHk∇fk∥2

= ∥∇fk∥2 + 4λ∇fT
k Hk∇fk + 4λ2 ∥Hk∇fk∥2

≤ ∥∇fk∥2 + 4λ∇fT
k Hk∇fk + 4λ2 ∥Hk∥2 ∥∇fk∥2

≤ ∥∇fk∥2
(
1 + 4λL+ 4λ2L2

)
= (1 + 2λL)2 ∥∇fk∥2
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and ∇fT
k ∇gk = ∥∇fk∥2+2λ∇fT

k Hk∇fk ≥ ∥∇fk∥2. Substituting in Equation 11,

fk+1 − fk ≤ −α ∥∇fk∥2 +
L

2
α2(1 + 2λL)2 ∥∇fk∥2

= −α

(
1− L(1 + 2λL)

2
α

2

)
∥∇fk∥2 (12)

Thus, we have, fk−fk+1 ≥ M∥∇fk∥2 ≥ 0 where M = α
(
1− L(1+2λL)2α

2

)
>

0 for constant step-size α ∈
(
0, 2

L(1+2λL)2

)
. So, the equality fk+1 = fk only holds

when ∇fk = 0. Furthermore, since the sequence {fk}k≥0 is non-increasing and
bounded below, it converges. So, ∇fk → 0 as k → ∞. This proves the first two
parts. For the third part, consider the µ-PL assumption; from Equations 10 and
12 at step-size α = 1

L(1+2λL)2
, we have

fk+1 − fk ≤ − 1

2L(1 + 2λL)
2 ∥∇fk∥2 ≤ − µ

L(1 + 2λL)
2 (fk − f∗)

On subtracting f∗ from both sides,

∴ fk+1 − f∗ ≤
(
1− µ

L(1 + 2λL)
2

)
(fk − f∗)

Applying this inequality recursively gives us the result. ⊓⊔
Note that the PL inequality assumption is not necessary for functions that

are strongly convex or strictly convex functions (over compact sets) since the in-
equality is already satisfied. Karimi et al. [9] further shows that this convergence
result can be extended to functions of the form h(Ax) where h is a strongly
(or strictly) convex function composed with a linear function e.g., least-squares
problem and logistic regression.

3.2 CGD-FD: Finite difference approximation of the Hessian

Note that CGD is a second-order optimization algorithm as it requires the Hes-
sian information to compute each iterate. We improve over this complexity by
restricting CGD to be a first-order line search method wherein the Hessian is
approximated using a finite difference [13]. Using Taylor series, we know that

∇f(xk +∆x) = ∇fk +Hk∆x+O(∥∆x∥2).
Now let ∆x = rv where r is arbitrarily small. Then, we can rewrite the above
expression as:

Hv =
∇f(xk + rv)−∇fk

r
+O(∥r∥).

Substituting v = ∇fk and using this approximation in Equation 9 gives us

∇g(xk) ≈ ∇fk + 2λ
∇f(xk + r∇fk)−∇fk

r
= (1− ν)∇fk + ν∇f(xk + r∇fk) (13)
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where ν = 2λ/r. We call this version CGD with Finite Differences (CGD-FD).
Note that this requires two gradient calls in every iteration, which might be

prohibitive. Towards this it is natural to consider a stopping criterion to revert
back to using steepest direction whenever the improvement through CGD-FD
iterates is low. This is done to avoid the extra gradient evaluations after the
optimizer has moved to a sufficiently optimal point in the domain. Such criteria
are particularly helpful in loss functions where gradient evaluations are costly
and therefore, budgeted. This also gives us the freedom to play around with
which direction to choose (steepest or CGD-FD) and quantify when to switch
to the other. For instance, we initially only move in the directions suggested
by CGD-FD and switch to steepest once we make a good-enough drop in the
function value from the initial point.

In our experiments, we only use CGD-FD for the first b iterations (out of the
total budget T ) to strive for a good-drop in function values initially. While doing
so, we also ensure that we only move in the direction pk (CGD-FD, Equation 13)
if it is a descent direction. Otherwise, we stop using CGD-FD and use the steepest
direction henceforth. We summarize our CGD-FD method in Algorithm 2.

Algorithm 2 Constrained Gradient Descent using Finite Differences (CGD-FD)
Input: Objective function f : D → R, initial point x0, max iterations T , step-size α,
regularization coefficients λ, stopping threshold b.
Output: Final point xT .
1: ν ← 2λ/r, use_cgd ← true
2: Gradient Evaluations c← 0 ▷ Can be interpreted as cost
3: for k = 0, . . . , T − 1 do
4: if c = T then return xk ▷ if budget has been exhausted
5: if use_cgd then
6: pk ← −(1− ν)∇fk − ν∇f(xk + r∇fk)
7: c← c+ 2
8: if ∇fT

k pk < 0 then ▷ Check if pk is a Descent Direction
9: xk+1 ← xk + αpk

10: else
11: xk+1 ← xk − α∇fk
12: use_cgd ← false
13: else
14: xk+1 ← xk − α∇fk
15: c← c+ 1
16: if k ≥ b then
17: use_cgd ← false
18: return xT

3.3 CGD-QN: Quasi-Newton Variants of CGD

We consider quasi-Newton variants of CGD (CGD-QN) where a positive-definite
approximation of the Hessian is maintained. The update step for CGD-QN is
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given as: xk+1 = xk −α
(
In + 2λkG̃k

)
∇fk where G̃k is the Hessian approxima-

tion at step k, which is updated after every step. Particularly Equations 4 and
5 correspond to the updates of DFP and BFGS variants of CGD respectively.

Algorithm 3 Constrained Gradient Descent: Quasi Newton (CGD-QN)
Input: Objective function f : D → R, initial point x0, max iterations T , step-size α,
regularization coefficient λ.
Output: Final point xT .
1: G̃0 ← In
2: for iteration k = 0, . . . , T − 1 do
3: pk ← −

(
In + 2λkG̃k

)
∇fk

4: if ∇fT
k pk < 0 then ▷ Check if pk is a Descent Direction

5: xk+1 ← xk + αpk

6: else
7: xk+1 ← xk − α∇fk
8: Update G̃ according to the QN method used. For CGD-DFP and CGD-BFGS

follow the updates in Equations 4 and 5 respectively.
9: return xT

4 Numerical Experiments

We test CGD-FD and CGD-QN on synthetic test functions from Virtual Library
of Simulation Experiments: Test Functions and Datasets 1.

For our experiments we chose total budget T = 40 and the stopping threshold
b as T/4. For the hyperparameter λ, we empirically tested different schedules
and strategies for different kinds of functions. We observed that using constant λ
works well with convex functions. For some non-convex functions, an increasing
schedule is preferred. We denote this as L(a, b) which is an increasing linear
schedule of T values going from a to b. For the step-size α, a constant-value was
found to be suitable in all our experiments.

To measure the initial drop in function value, we compare the Improvement
for the first step of CGD-FD vs the first step of steepest descent. Improvement
(in %) is given as f(x0)−f(x1)

f(x0)
∗ 100.

Table 1 summarizes our findings and Fig. 3 visualizes function values vs
gradient evaluations for the chosen test functions for experiments on CGD-FD.
Observe that in the first step of optimizing Quadratic function (Fig. 3a), CGD-
FD has a 97.91% decrease in value compared to that of GD which only had
an initial improvement of about 18.89%. Similar pattern can also be seen for
other functions. This gives us the insight that CGD-FD penalizes the original
function well enough to concentrate most of the decrease in value within the
1 http://www.sfu.ca/~ssurjano

http://www.sfu.ca/~ssurjano


CGD: Modifying the Loss Landscape by Gradient Regularization 11

Table 1. Initial Improvements (in %) over test functions (Dimensions=n) for choices
of α and λ with a budget T = 40 and stopping threshold b = T/4.

Test Function n λ α GD CGD-FD

Quadratic function 10 0.4 0.01 18.89 97.91
Rotated hyper-ellipsoid function 5 0.5 0.01 15.94 82.76
Levy function 2 L(0.01, 0.1) 0.05 23.73 63.21
Branin function 2 0.07 0.01 37.53 87.07
Griewank function 2 40.0 0.01 0.01 0.08
Matyas function 2 10.0 0.01 1.83 34.40
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(a) Quadratic function
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Fig. 3. Experiments for CGD-FD vs GD: Function value f(·)−f∗ vs Gradient Evalua-
tions. Note: The x-axis of each plot is not iterations but number of gradients evaluated.

first few steps of the trajectory itself. Also, notice that in Griewank function
(Fig. 3e) even though the initial step improvement is low (= 0.08%), we still
see a much rapid decrease in value within the first 10 steps compared to that
of the GD trajectory. Thus, using CGD-FD with appropriate penalization can
provide for great boosts in function value well within the starting iterates of the
optimization procedure.

Experiments for CGD-QN : We ran CGD-BFGS and CGD-DFP methods against
BFGS and DFP for T = 40. The function values vs iterations are visualized in
Fig. 4. We observe that for most suitable choices of λ, CGD-DFP and CGD-
BFGS exhibit similar behaviour and hence, their trajectories coincide. Another



12 S. Saxena et al.

thing to observe is that in CGD-QN methods, most improvements aren’t con-
centrated in the initial steps since Hessian approximation is still not very great
here. Instead the improvements are more gradual and appear over further steps.
For example, in Zakharov function (Fig. 4a), we can observe that all methods
follow the same decrease in function value for the first 1–2 steps and then the
CGD-QN methods start to drop more in value. In EggHolder function (Fig. 4c)
this effect is most pronounced where the improvements are very gradual but
providing with better results than their vanilla counterparts.
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Fig. 4. Experiments for CGD-QN vs QN methods: Function value f(·)− f∗ vs itera-
tions.

5 Reinterpretation of Explicit Gradient Regularization
(EGR)

Barrett and Dherin [1] proposed Explicit Gradient Regularization (EGR)
where the original loss function is regularized with the square of L2-norm of
the gradient. This regularized objective is then optimized with the intention
that the model’s parameters will converge to a flat-minima and thus, be more
generalizable. However, an understanding of why this happens is missing.

We explain EGR through the example visualized in Fig. 5 (Left). Based on
our formulation explained in Section 3, we can interpret the gradient-regularized
function as a steeper version of the original loss function wherein the minima
remain same. Due to the gradient penalty, a steep minimum (in the original
loss function) would turn steeper while the increase in steepness wouldn’t be
this high at a flatter minimum. Thus, at a constant step-size, the optimizer will
likely overshoot over the sharper minimum due to the extremely high gradient
value, while still being able to converge to the less-steeper and preferred flat
minimum point. In Fig. 5 (Left) we see how GD gets stuck at a suboptimal
point of the function while CGD (GD over the penalized loss function) is able
to avoid this point and converges to a better (more optimal) minimum point.

EGR has the drawbacks of having fictitious minima identified in Lemma 1.
Since, the loss landscape of neural networks is highly uneven [11], it’s likely that
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Fig. 5. (Left) CGD is able to move to a better local minimum by moving along the
negative gradients over the modified loss function. (Right) Local maxima of the original
loss function turning into local minima of the penalized loss function.

artificial stationary points are introduced and the optimizer might converge at
local-maxima points since their nature changes with regularization. For exam-
ple, in Fig. 5 (Right) we observe artificial stationary points being introduced
between local-minima and local-maxima of the original loss function while some
local-maxima also turn into local-minima of the penalized loss function. There-
fore, one needs to ensure that there are suitable fixes for these scenarios for
better performance. Specifically, the direction along of the penalized loss func-
tion, −∇g(·) should be a descent direction and that we shouldn’t stop at points
where ∇g(·) = 0 but ∇f(·) ̸= 0 as discussed in Lemma 1.

Another downfall with EGR is that it requires hessian evaluation for each
mini-batch while training. This might become a costly operation for bigger mod-
els and hence some approximation of the hessian should be used. Another thing
we observe from the experimental results for CGD-FD, is that the improvement
through optimizing the regularized function is mostly only during the initial
steps. Hence, one should only use EGR for some initial steps to reach a good-
enough starting point while not exhausting the budget for gradient evaluations.

6 Future Works

In this work, we considered a new line search method that penalizes the norm
of the gradient and provides iterates that have lower gradient norm compared
to vanilla gradient descent. We identify properties of this algorithm, provide a
variant that does not require Hessian and illustrate connections to the widely
popular explicit gradient regularization literature.

There are several future directions arising from this work. We would like
to investigate in greater detail the role of different penalty functions h(·). We
would also like to investigate applications of this method in more diverse settings
like reinforcement learning and even Bayesian optimization. We hope this work
sparks more discussions on gradient regularization helping in neural network
generalization.
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A How CGD affects the Condition Number of Quadratic
Function

Let the quadratic function be f (x) = 1
2x

TQx − bTx where Q ≻ 0. Let l ≜
λmin(Q) and L ≜ λmax(Q).

From Equation 9 we know xk+1 = xk − αBk∇fk where Bk = I + 2λQ and
∇f (xk) = Qxk − b. Thus, the error at each iterate can be given as:

∥ek+1∥ = ∥xk+1 − x∗∥ = ∥xk − αBk∇fk − x∗∥
= ∥xk − αBk (Qxk − b)− x∗∥
= ∥(I − αBkQ)xk + αBkb− x∗∥
= ∥(I − αBkQ)xk + αBkb− x∗ + (αBkQx∗ − αBkQx∗)∥
= ∥(I − αBkQ) (xk − x∗) + αBk (b−Qx∗)∥ (on rearrangement)
= ∥(I − αBkQ) ek∥ (Gradient at x∗ = 0)
≤ ∥I − αBkQ∥ ∥ek∥ (14)

Since I and Q commute, we have (1+2λl)I ≼ Bk ≼ (1+2λL)I. Also since both
Q and Bk are symmetric positive-definite matrices, ∥BkQ∥ has the following
bounds:

λmin (Bk)λmin(Q) ≤ ∥BkQ∥ ≤ λmax (Bk)λmax(Q) (15)

∴ ∥I − αBkQ∥ ≤ (1− αλmin (Bk)λmin(Q)) = 1− α(1 + 2λl)l

So in Equation 14,

∥xk+1 − x∗∥ ≤ (1− α(1 + 2λl)l) ∥xk − x∗∥
≤ (1− α(1 + 2λl)l)

k ∥x0 − x∗∥

From Equation 15, substitute α as:

α =
2

λmax(Bk)λmax(Q) + λmin(Bk)λmin(Q)
=

2

(1 + 2λL)L+ (1 + 2λl)l
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⇒ ∥xk+1 − x∗∥ ≤
(
(1 + 2λL)L− (1 + 2λl)l

(1 + 2λL)L+ (1 + 2λl)l

)k

∥x0 − x∗∥

=

(
λmax(Bk)λmax(Q)− λmin(Bk)λmin(Q)

λmax(Bk)λmax(Q) + λmin(Bk)λmin(Q)

)k

∥x0 − x∗∥

=

(
κ− 1

κ+ 1

)k

∥x0 − x∗∥

where κ = κ(Bk)κ(Q) where κ(A) ≜ λmax(A)
λmin(A) is the condition number of matrix

A.
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