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ABSTRACT

Autonomous systems for software engineering are now capable of fixing bugs
and developing features. These systems are commonly evaluated on SWE-
bench (Jimenez et al., 2024a), which assesses their ability to solve software issues
from GitHub repositories. However, SWE-bench uses only Python repositories,
with problem statements presented predominantly as text and lacking visual el-
ements such as images. This limited coverage motivates our inquiry into how
existing systems might perform on unrepresented software engineering domains
(e.g., front-end, game development, DevOps), which use different programming
languages and paradigms. Therefore, we propose SWE-bench Multimodal (SWE-
bench M), to evaluate systems on their ability to fix bugs in visual, user-facing
JavaScript software. SWE-bench M features 617 task instances collected from
17 JavaScript libraries used for web interface design, diagramming, data visual-
ization, syntax highlighting, and interactive mapping. Each SWE-bench M task
instance contains at least one image in its problem statement or unit tests. Our
analysis finds that top-performing SWE-bench systems struggle with SWE-bench
M, revealing limitations in visual problem-solving and cross-language generaliza-
tion. Lastly, we show that SWE-agent’s flexible language-agnostic features enable
it to substantially outperform alternatives on SWE-bench M, resolving 12% of task
instances compared to 6% for the next best system.

1 INTRODUCTION

Language models (LMs) are being increasingly deployed to assist software engineers (Bagalkote,
2024; Yepis & StackOverflow, 2024). As LMs gain in prominence, the research community has
been expanding from building LM-based assistants that work at the code line or function level (Chen
et al., 2021; Hendrycks et al., 2021) to building autonomous systems that can maintain and improve
large codebases with hundreds of files and thousands of lines (Wang et al., 2024b; Xia et al., 2024;
Yang et al., 2024; Zhang et al., 2024b). These systems provide LMs with tools and environments
that let them engage in multi-step interactions to solve complex software development tasks.

SWE-bench (Jimenez et al., 2024a) is the most popular benchmark for evaluating the performance
of these systems. Drawn from GitHub issues and pull requests, SWE-bench task instances capture a
range of software bugs and verify solution behavior by executing unit tests. Since the introduction of
SWE-bench in October 2023, state-of-the-art performance on SWE-bench Lite, the most commonly
used subset of SWE-bench, has soared from 3% to 43% (Jimenez et al., 2024b).

However, with respect to the broader landscape of software engineering, SWE-bench reflects only a
fraction of real-world applications. Its 17 repositories are predominantly written in Python. Task in-
stance codebases tend to be structured similarly because every repository is a PyPI package. Though
SWE-bench features several commonly used backend and data science libraries, many other use
cases are not represented. In addition, many domains of software development rely on visual assets,
such as user interface design, gaming, virtual reality, and data visualizations (Foley & Van Dam,
1982; Shneiderman, 1998), but only 5.6% of SWE-bench tasks contain an image.

In light of these limitations, this paper poses the research question: “Do autonomous programming
systems generalize to new software domains?”
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Figure 1: Four task instances from SWE-bench Multimodal. JavaScript repositories featured in
SWE-bench M introduce new categories of software development challenges, such as the use cases
shown above, along with performance profiling, creative coding, and more. In addition to multi-
modal comprehension, SWE-bench M contains more multi-language issues for both programming
(JavaScript, TypeScript, HTML, CSS), and natural (English, Chinese) languages.

A popular sub-field capturing several of these unexplored dimensions is front-end web develop-
ment, which focuses on building user-facing applications and websites with visual and interactive
elements Si et al. (2024). Here, coding problems frequently contain both textual and visual com-
ponents (Cherubini et al., 2007; Moody, 2009). As of 2023, JavaScript, the primary vehicle for
front-end development, was the most popular programming language for the last decade (Daigle
& GitHub, 2023). The JavaScript ecosystem encompasses a wide range of frameworks, such as
Node.js, React, and Angular, each embodying unique architectural principles (Wittern et al., 2016).

In this work, we introduce SWE-bench Multimodal (SWE-bench M), a dataset of 619 task in-
stances focused on visual JavaScript problems. Like SWE-bench, we derive instances from real-
world issues on GitHub. Unlike SWE-bench, our collection targets JavaScript-based, user-facing
applications, such as UI design systems, web app development, interactive mapping, and syntax
highlighters. Furthermore, we filter exclusively for task instances that contain images or videos in
their problem descriptions or testing scenarios. Finally, through verification by human experts, we
find that for 83.5% of task instances, images are necessary for solving the corresponding issue.

We discover that existing systems perform significantly worse on SWE-bench M than they do on
SWE-bench, due in large part to the challenges of visual problem solving and JavaScript’s diverse
development practices. The performance results on SWE-bench M appear to vary depending on the
diverse types of images and challenges presented. Different visual elements, such as code snippets,
website screenshots, and diagrams, seem to require distinct comprehension abilities. Furthermore,
JavaScript’s support for object oriented, functional, and procedural programming introduces sub-
stantial variance in how codebase and file structures, which standardized solutions struggle with.

Our efforts to adapt existing baselines highlight generalizability as a desirable but overlooked con-
sideration for building LM systems. Current systems evaluated on SWE-bench rely heavily on
Python-only parsers to perform fault localization steps independent of an LM (Örwall, 2024; Xia
et al., 2024; Zhang et al., 2024b). These approaches either force system builders to re-engineer
tools for other programming languages or fail entirely when similar tools are not available. Among
our takeaways, we offer suggestions for building agent systems that operate efficiently in numerous
programming languages and repositories with visual content.

2 SWE-BENCH MULTIMODAL

We first review SWE-bench’s task formulation and limitations (Section 2.1) and describe how SWE-
bench M builds upon this work. We then discuss SWE-bench M’s data collection heuristics (Sec-
tion 2.2). Finally, we thoroughly characterize SWE-bench M (Section 2.3), highlighting the novel
challenges it poses to LM agent-based software development.
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Table 1: Comparison of repository-level coding benchmarks. We characterize benchmarks by
their number of repositories (# Repos), programming languages (Lang.), whether they employ
execution-based evaluation (Exec.), and include tasks with image content (Images). Programming
languages for front-end apps and visual assets are novel attributes introduced by SWE-bench M.

Dataset # Repos Lang. Exec. Images

RepoEval (Zhang et al., 2023b) 14 Python
RepoBench (Liu et al., 2023b) 10K+ Python, Java
SWE-bench (Jimenez et al., 2024a) 17 Python

SWE-bench Multimodal 17 JavaScript

2.1 PRELIMINARIES

Formulations. SWE-bench (Jimenez et al., 2024a) has emerged as a popular LM agent benchmark.
By drawing from real GitHub workflows, task instances reflect diverse, practical software challenges
and require systems to ingest meaningful, long-form inputs. Repository-level coding also involves
meticulous refactoring of interwoven modules, each with dependency trees spanning multiple source
files. SWE-bench’s collection strategy yields human-written unit tests that ensure robust evaluation.

SWE-bench consists of 2,294 task instances derived from pull requests (PRs) collected across 12
open source Python repositories. Each task instance corresponds to a PR and one or more resolved
issues; issue(s) describe a bug or feature request, and the PR contains the corresponding solution
code along with unit tests validating its correctness. The unit tests fail before the solution code is
applied to the codebase but pass afterwards, also referred to as fail-to-pass (F2P) tests. Additional
auxiliary pass-to-pass (P2P) tests verify that the codebase’s existing functionality is maintained.

A task worker is shown the codebase and the issue, also called the problem statement. The worker
must then modify the codebase to solve the problem. The proposed modification is run against both
F2P and P2P tests to check if (1) the issue is fixed and (2) prior working behavior is not broken. If
all unit tests pass, the task instance is considered resolved.

Limitations. Within the SWE-bench task formulation, several facets of software development re-
main unexplored. This work primarily investigates two such facets. First, SWE-bench task instances
are predominantly text only, and there are no discussions of the implications of the interplay between
images and videos with software development. For the 5.6% of SWE-bench task instances with an
image, it is unclear what these images portray and whether they are necessary to solving the task.
To fill this gap, we focus on task instances with visual elements and demonstrate the significance
of multi-modal reasoning in software engineering evaluations. Second, SWE-bench is comprised
exclusively of Python repositories. We show that a benchmark containing SWE-bench-style task in-
stances from an alternative programming language, i.e., JavaScript, highlights previously unconsid-
ered complexities (e.g., web development, asynchronous programming, DOM/state manipulation).

2.2 COLLECTION

JavaScript repositories have a high concentration of visual assets due to its popularity for full stack
web development and browser manipulation. We summarize our modifications to SWE-bench’s task
collection pipeline to identify task instances with visual components. See Appendix B for details.

1. Find user-facing JavaScript repositories. Using GitHub’s search feature, we look for JavaScript
repositories with 5,000 or more stars and 500 or more pull requests. We then manually pick 17
repositories, filtering for user-facing libraries that have a visual aspect, such as mapping, plotting,
or syntax highlighting. We scrape 135k PRs from these selected repositories. Every repository’s
source code is at least 70% JavaScript or TypeScript code, with the remainder usually being HTML
or Cascading Style Sheets (CSS). None of the selected repositories have Python code.

2. Filter for issues that have visuals in their description or unit tests. We first look for PRs with
one or more issues. We then filter these [issue(s), PR] pairs down to ones with visual assets in either
the issue or testing code. Specifically, we inspect the issue text and test patch for working hyperlinks

3
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Figure 2: SWE-bench M Test Split Distribu-
tion of 517 task instances from 12 open source
GitHub repositories written mainly in JavaScript.

Table 2: Median values of different attributes
of a SWE-bench M task instance.

Median

Issue Text Length (Words) 105

Codebase # Lines (non-test) 549K
# Files (non-test) 1799

Gold Patch
# Lines edited 27
# Files edited 2
# Funcs edited 3

Tests # Fail to Pass 1
# Pass to Pass 5

Images
Aspect Ratio 5:3
File Size (KB) 42.95
Resolution (Pixels) 262K

that point to an image (e.g., jpg, png) or video (e.g., gif, mov). From 135k PRs, this new filtering
criteria yields 1,478 candidate task instances.

3. Set up the environment for each repository. SWE-bench’s Docker containers do not support
JavaScript out of the box. Therefore, we first add foundational infrastructure, such as Node.js and
Chrome, to support JavaScript execution, visual testing, and webpage rendering in-browser. Next,
for each repository, we read its public contribution guidelines and then write tailored installation and
testing scripts. This process requires several rounds of manual trial and error not only to validate the
setup procedure, but also to overcome undocumented obstacles. Designing environments suited to
run the majority of task instances took an average of ten hours of manual labor per repository. We
are able to install the repository and execute tests for 679 of the 1478 task instances.

4. Remove inconsistent tests. During manual inspection, we found that a small percentage of tests
exhibited inconsistency, i.e., given the same patch, a test’s output (pass or fail) was inconsistent
across multiple evaluation runs. This phenomenon was also reported in SWE-bench (Brown et al.,
2024). To eliminate such cases, we run validation per task instance 10 times and remove tests with
inconsistent results, reducing 679 candidates to 643 viable instances.

5. Human validation. To remove impossible task instances and perform dataset characterization
that is difficult to conduct automatically, the authors manually inspect each task instance. We iden-
tify the kinds of image(s) provided and assess how necessary image(s) are to solving a task. We
include the annotation procedure and queries in Appendix D. Annotators removed 24 impossible
tasks for a final total of 619 task instances. We discuss takeaways from annotations in Section 2.3.

2.3 FEATURES

SWE-bench M is a dataset of 619 multimodal, JavaScript task instances collected from 17 open-
source GitHub repositories. It contains a diverse set of libraries, including ones for data visual-
ization, building diagrams, website UI components, displaying maps, and syntax highlighting. As
shown in Figure 2, the test split consists of 517 task instances from 12 repositories. The development
split contains 102 task instances from 5 repositories.

Diversity of images. Across all SWE-bench M task instances, there are 862 “problem statement”
images, meaning the image hyperlink is in the issue text. These images feature a multitude of
visual processing challenges. Our annotation procedure grouped these images into seven distinct
categories. Interpreting UI issues in website screenshots (401 images), such as malformed front-
end layouts or accessibility issues, involves spotting design flaws and assessing spatial relationships
between elements. Grounding visual cues from code screenshots (194) and error messages (54) to
specific codebase entities can provide hints for bug localization. Images of diagrams (107), art (38),
maps (35), and data visualizations (28) depict repository-specific challenges that address properly
generating complex statistical, geographic, and creative content.
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Videos, actual/expected reference images. SWE-bench M task instances often have multiple pic-
tures (221 instances) or videos (70) to succinctly communicate helpful context and reproduction
steps. For instance, gifs illustrate issues for 43 instances from bpmn-js, a diagramming toolkit.
Unexpected behaviors are easily depicted by recording diagram interactions, drag-and-drop actions,
and zooming in/out. 67 instances from carbon, a UI design system, contain “actual” and “ex-
pected” image pairs that highlight visual discrepancies and incorrect implementations.

Visual testing. A subset of 69 SWE-bench M task instances test submissions’ functional correctness
with pixel-level visual testing. This approach renders web pages and then compares screenshots
pixel-by-pixel, identifying visual differences that functional unit tests cannot detect.

Necessity of images. To gauge the importance of problem statements’ images, we pose two ques-
tions to human annotators. First, does an image convey more information than the text in the image?
For instance, a syntax-highlighting bug screenshot would show several lines of code, but the text col-
oring is an important visual element. Annotators answer “Yes” to this question for 80% of problem
statement images. Second, is it feasible to solve a task instance without its associated image(s)? Of
557 instances with image(s), 83.5% were considered crucial for resolving the corresponding task.
When provided, images are essential for diagnosing software bugs, and the information they convey
is necessarily visual. See Appendices D.2 and D.3 for details.

Difficulty curve. Human annotators estimated the time it would take for a developer to solve the task
instances in the benchmark. This analysis shows that SWE-bench M features a range of difficulty
levels, with tasks classified as follows: 13% take less than 15 minutes, 43% take 15 minutes to an
hour, 38% take 1-4 hours, and 6% take more than 4 hours. Comparing these ratios to a similar study
performed on SWE-bench (Chowdhury et al., 2024) shows that SWE-bench M tasks are longer on
average overall. Reference solutions in SWE-bench M also edit more files, functions, and lines than
in SWE-bench. See Appendices A.3 and D.4 for details.

3 EVALUATING ON SWE-BENCH M

We now discuss the challenge of generalization for existing open-source solutions for SWE-bench
and describe how we have adapted these methods for evaluation on SWE-bench M (Section 3.1).
Additionally, we provide details about our the setup of our experiments (Section 3.2).

3.1 DO EXISTING SYSTEMS GENERALIZE?

We attempted to run existing open-source systems that perform well on SWE-bench (Jimenez et al.,
2024b) on SWE-bench M. However, when adapting these systems to SWE-bench M, we found that
several solutions were so heavily tailored to Python and SWE-bench to the point that they were
unusable for JavaScript repositories and SWE-bench M evaluation.

Our observations from exploring a number of existing solutions led us to identify generalizability
as a desirable but overlooked property of automated software engineering systems. Specifically, do
existing agent systems perform well on bugs that are not similar to the ones found in SWE-bench
(i.e., non-Python or issues that include images)?

Though current LMs perform well in multiple programming languages (Cassano et al., 2022), a
rigidly defined system can force LMs to follow a particular problem solving pipeline that restricts
its capabilities. Although such workflow-oriented systems may work well for a specific type of
repository or even programming language, they can fail when confronted with minor distribution
shifts outside their original design parameters. Simply put, the shift from Python to JavaScript or
the addition of the image modality exceeds the abilities of many existing approaches.

We attempt to adapt the top four open-source systems on the SWE-bench leaderboard (Jimenez et al.,
2024b) to work on SWE-bench M tasks. For each system, we discuss below whether adaptations
were feasible based on the preceding questions and the changes we made, if applicable.

SWE-agent (Yang et al., 2024) is a lightweight framework connecting an LM to an operating sys-
tem and shell process. It integrates a text-based agent-computer interface (ACI) for LMs to edit
files in addition to the ability to execute shell commands. The primary modifications necessary for
SWE-bench was adapting the message processing and history functionality to work with images
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for multimodal LMs. To explore the effects of further adaptation, we evaluate three ACI config-
urations for SWE-agent: (1) SWE-agent Base, the original SWE-agent ACI, initially designed for
evaluation on Python and SWE-bench tasks; (2) SWE-agent JS, which converts SWE-agent Base’s
editing interface to detect JavaScript edit errors, mirroring the linting feature used by SWE-agent
for Python files; and (3) SWE-agent M, which extends the SWE-agent JS ACI to provide a simple
web browser, screenshot, and image viewing capabilities, allowing models to visually reproduce
image-based issues and verify changes or generated images.

Agentless (Xia et al., 2024) proposes a two stage localize-then-repair pipeline. A repository is first
pre-processed with the Python ast module into a simplified overview of the repository’s structure.
Based on this syntax tree, the LM can then view files’ content and select which files to fix. In the
repair stage, based on the identified files, the LM then generates multiple candidate patches. The
most commonly repeated solution among the candidates is its final submission.

The main adaptation needed is swapping out the Python ast module with a custom JavaScript
parser written from scratch. Based on feedback from one of the authors, we also update Python-
centric prompts with more JavaScript-oriented instructions. Without these changes, Agentless gets
0% resolved on SWE-bench M’s development split. We denote our adapted version Agentless JS.

AutoCodeRover (Zhang et al., 2024b) employs a two-phase approach similar to Agentless. The first
phase involves a customized retrieval process where an LM performs multiple iterative searches.
This is followed by a patch generation and testing phase, where an LM, provided with the search
history and results, generates and refines a code patch using results from executing tests.

We found that most tools AutoCodeRover provides to the agent rely heavily on Python-specific
program analysis features and even prior knowledge of the particular repositories included in SWE-
bench. We ultimately chose not to benchmark AutoCodeRover since its specialized tools would
require extensive redesign for SWE-bench M, likely resulting in a fundamentally different system.

Moatless (Örwall, 2024) subscribes to the localize-then-repair workflow, but does not use an LM
for localization. Instead, code files are first converted in abstract syntax trees (AST). These ASTs
are then aggregated into a single, searchable code graph represented as a Faiss index (Johnson et al.,
2019). The LM then queries this index to generate a repair.

We worked off the author’s in-progress implementation for generating ASTs from JavaScript and
TypeScript files1. Although the code graph representation is language agnostic, the input AST repre-
sentation needed to generate the Faiss index is heavily based on Python’s object oriented design. As
reflected by the magnitude of the pull request’s changes, writing an equivalent parser for JavaScript
that (1) reflects the code and (2) subscribes to the index’s input format is non-trivial due to usage of
functional and declarative programs being more commonplace. We do not benchmark Moatless.

RAG. Jimenez et al. (2024a) proposed a retrieval augmented baseline using BM25 (Robertson &
Zaragoza, 2009) from which we inherit the document formatting, retrieval method, and prompt
structure. We adapt the prompt template used in Jimenez et al. (2024a) to use a JavaScript example
for patch generation instead of Python. We also include a new section in the prompt for inserting
reproduction code collected from links in the problem statement, as described in B.3.

3.2 EXPERIMENT SETUP

Models. Resolving SWE-bench M issues with existing systems requires handling very long con-
texts, processing images and text simultaneously, and producing sophisticated structured outputs.
Given these constraints, we focus all of our evaluations on GPT-4o (gpt-4o-2024-08-06) (Ope-
nAI, 2024) and Claude 3.5 Sonnet (claude-3-5-sonnet-20240620) (Anthropic, 2024), the two
most well-supported mulitmodal LMs for long-context RAG and agent systems. Though alternative
models continue to improve, they currently lack the combination of long-context handling, mul-
timodal processing, and structured prediction abilities required to work with existing autonomous
software engineering systems.

Baselines. Based on our Section 3.1 findings, we benchmark the performance of five baselines:
Retrieval Augmented Generation (RAG), SWE-agent (Base, JS, M), and Agentless JS. Each of our
baseline systems were adapted and developed using the development split of SWE-bench M. We

1https://github.com/aorwall/moatless-tools/pull/34
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Table 3: Performance comparison of various baselines on SWE-bench M. The table shows re-
sults for different software development agent frameworks, including SWE-agent (with multimodal
and JavaScript-specific variations) and a retrieval augmented generation (RAG) approach. Each sys-
tem’s success rate (% Resolved) and average cost ($ Avg. Cost) per task are reported.

System Model % Resolved $ Avg. Cost

SWE-agent M GPT-4o 12.2 2.94
Claude 3.5 Sonnet 11.4 3.11

SWE-agent JS GPT-4o 9.2 0.99
Claude 3.5 Sonnet 12.0 3.11

SWE-agent Base GPT-4o 12.0 2.07
Claude 3.5 Sonnet 12.2 1.52

Agentless JS GPT-4o 3.1 0.38
Claude 3.5 Sonnet 6.2 0.42

RAG GPT-4o 6.0 0.17
Claude 3.5 Sonnet 5.0 0.15

describe more about how the final test configurations, including hyperparameters, were selected in
Appendices C.1 and C.2.

Metrics. We report two evaluation metrics: (1) % Resolved, the main performance metric, which
represents the proportion of successfully resolved task instances and (2) Avg. $ Cost, the mean
per-instance inference cost incurred from running the baseline, as used in Yang et al. (2024).

4 RESULTS

We compare the performance of each baseline system in Table 3. While overall performance on
SWE-bench M is relatively low, we observe a substantial performance gap between the interactive
SWE-agent systems (11.5 % resolved on average) and the Agentless and RAG baselines, which
achieve 3.9 and 5.5 % resolved on average respectively.

Across all SWE-agent configurations, we observe similar absolute performance, suggesting that
the JavaScript-specific customizations in SWE-agent JS and SWE-agent M had minimal impact
on performance. Additionally, we also observe minimal performance differences when swapping
the underlying LM (GPT-4o or Claude 3.5 Sonnet) within a system. However, a study of SWE-
agent ablations on the development set reveals that the added multimodal tooling can improve agent
performance in some cases, though the overall picture remains ambiguous.

An analysis of solution rates segmented by the date each task instance was originally solved, is
performed in Appendix C.3. It finds no evidence for a test set advantage from solutions leaking into
the LM training sets: we show for example, that SWE-agent M using GPT-4o performs better on
task instances based on issues that were resolved after its knowledge cutoff date.

4.1 ANALYSIS

We present insights into how images influence system performance, evaluate the impact of multi-
modal actions in SWE-agent M, and explore the generalization of different approaches to automated
software engineering. All analyses are conducted on the development set of SWE-bench M.

Resolving SWE-bench M issues requires improved visual understanding. Table 4 compares
the performance of the RAG and SWE-agent JS systems, with and without images. The results
reveal a significant performance decrease when models lack access to visual information. Table 5
analyzes performance based on the two key questions from our human validation: “Do the images
contain more information than just text?” and “Are the images necessary to solve this task?” (For
detail, see Appendices D.2 and D.3, respectively.) As expected, system performance generally
improves when images are provided with the problem statement. In addition, for instances where
annotators deemed images necessary to solve the task, performance plummets without visual input.
Performance changes vary based on image content. When images contain primarily text, SWE-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

agent JS maintains 23.1% performance with or without images. Larger performance drops occur
when images contain non-textual elements. For non-textual visuals, performance drops from 13.0%
to 8.7% without images for SWE-agent JS. Visual elements, especially those that are non-textual,
appear to provide additional context that substantially improves system performance.

Table 4: Performance of RAG and SWE-agent JS with (W/) and without (W/o) Images. The
consistent improvement across both models and systems emphasizes the critical role of multimodal
inputs, particularly for complex tasks requiring visual reasoning.

System Model W/ Images W/o Images

SWE-agent JS GPT-4o 11.0 8.0
Claude Sonnet 3.5 16.0 13.0

RAG GPT-4o 10.0 8.0
Claude Sonnet 3.5 14.1 11.2

Table 5: System performance segmented by annotator response. We show performance for
SWE-agent JS and RAG using Claude 3.5 Sonnet broken down by response to human validation
questions detailed in Appendix D.2 and D.3. Each performance value corresponds to the perfor-
mance of the configuration (e.g. SWE-agent JS with images) on the subset of instances correspond-
ing to the annotation class for each question. The questions in the tables have been simplified from
the original for readability.

Does the image contain more
information than just text?

System With Images? Yes No

SWE-agent JS 13.0 23.1
8.7 23.1

RAG 11.6 13.8
6.1 16.2

Are the images necessary
to solve this task?

System With Images? Yes No

SWE-agent JS 17.6 11.1
8.8 22.2

RAG 12.4 11.9
9.1 8.1

Localization modules are overly engineered for Python. As discussed in Section 3.1, except for
SWE-agent, the systems that we study (Agentless, Moatless, and AutoCodeRover) impose fixed,
procedural problem-solving workflows. Every system starts with a bug localization step that relies
on abstract syntax tree (AST) parsing libraries to identify programmatic symbols.

These Python-specific modules do not work for other languages. Overcoming this design is contin-
gent upon either finding or creating a similarly reliable tool. For Moatless and AutoCodeRover, no
such replacement tool exists; reimplementation was prohibitively laborious and would have resulted
in a system with little resemblance to the original. For Agentless, replacing invocations of the Python
ast package with the JavaScript tree-sitter library still yielded a 0% resolve rate on the de-
velopment split; this is due to Python-centric assumptions the localization module makes about the
AST representations. Therefore, we wrote a custom JavaScript parser from scratch compatible with
the Agentless logic, which took 15 hours of labor.

However, because the original design of Agentless is influenced by Python, fundamental differences
between Python and JavaScript’s design patterns (e.g., multiple programming styles, object proto-
types, arrow functions) lead to many failure modes during localization, resulting in Agentless JS’s
low performance (4.6% in Table 3). For instance, for grommet grommet-6749, the localization
module, designed based on Python’s imperative and object-oriented style, does not recognize Tab,
the buggy component, because it was defined declaratively as an arrow function. In the subsequent
repair phase, Agentless JS writes a completely new Tab imperatively, while the reference solution
makes a minor change to its existing declarative implementation. We also found that given the raw
code, GPT-4o correctly identified Tab as the buggy component.

We calculate the F1 Score for file localization on the development split with Claude Sonnet 3.5 as
the base LM. Agentless JS achieves a score of 0.142, while SWE-agent gets 0.367. Flaws with
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M (GPT-4o)

JS (GPT-4o)

JS - no imgs (GPT-4o)

M (Claude)

JS (Claude)

JS - no imgs (Claude)

10%

11%

9%

8%

16%

12%

3

7%

1

2

46%

15%

15%

32%

10%

14%

41%

74%

76%

54%

73%

71%

Successful submission
Successful despite early
termination due to cost

Terminated due to cost/error
False submission

Figure 3: SWE-agent performance across configurations. The frequency of outcomes by success
and exit status of SWE-agent under different configurations on the development set. Configurations
include multimodal (M), JavaScript-specific (JS), and no images, for both GPT-4o and Claude 3.5
Sonnet models. A similar analysis by repository is shown in Figure 8.

language-specific design are only amplified in SWE-bench M. Unlike SWE-bench solutions, which
edit only Python files, 28% of reference solutions in SWE-bench M edit multiple files types (e.g.,
TypeScript, HTML, CSS, Lua). Adapting current solutions requires writing unique AST generator
and navigator functions to pre-process code files for many languages.

From these observations, we hypothesize that generalizable LM-based systems for software engi-
neering will emphasize interaction, not problem solving. Instead of inserting LMs at specific points
of a workflow, our results show the superiority of an LM-first approach that focuses on building
tools that enhance an LM’s ability to navigate and manipulate an environment. SWE-agent’s supe-
rior performance and Agentless’s localization struggles suggest that the burden of problem solving
should remain on the LM instead of being offloaded to manually engineered pipelines.

Multimodal tools increase task complexity but can improve agent performance. To evaluate
the impact of the presence of images on agent behavior, we conduct an analysis of the SWE-agent
trajectories generated while resolving the development set. We run SWE-agent in three different
configurations: SWE-agent M, SWE-agent JS, and SWE-agent JS without image inputs. The web-
specific tools introduced in SWE-agent M lead to approximately 20% of actions being dedicated
to building and taking screenshots of websites, though this proportion varies significantly across
repositories (see Figures 6 and 7). SWE-agent M with GPT-4o builds websites and takes screenshots
for 38.3% of the instances. For these instances, an average of 7.5 screenshots are taken, showing that
the multimodal tooling is used as part of an iterative problem-solving process for some instances.

However, reproducing issues and verifying solutions by building and taking screenshots of websites
makes the task for SWE-agent M more complex than directly performing and submitting edits as
in SWE-agent JS. This is reflected in an almost threefold increase of attempts that are terminated
because they exceed their cost limit (see Figure 3). The web-specific tools lead to degraded perfor-
mance with Claude 3.5 Sonnet, while GPT-4o improves, even though some of its successes are from
runs that are terminated prematurely due to costs.

Another key figure for agent performance is the fraction of correct submissions, as incorrect submis-
sions increase manual reviewing workload. To increase this fraction, submissions from SWE-agent
runs that were terminated prematurely due to cost can be excluded, as they have a lower probability
to be correct. In this setup, adding multimodal tools almost doubles the fraction of correct submis-
sions with GPT-4o to 19.6% compared to 10.4% without image inputs. This result is not observed
in the Claude 3.5 Sonnet-based SWE-agent.

Together, these findings show that LM agents can use web-based multimodal tools to reproduce
issues and verify solutions, in some cases increasing success rates or solution correctness. However,
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using these tools to their full potential requires complex workflows that are still challenging for
agents and result in an ambiguous record overall.

5 RELATED WORK

Multimodal Code Benchmarks. Code generation, the task of synthesizing code from natural lan-
guage, has served as a long-standing measure of LM performance (Austin et al., 2021; Chen et al.,
2021; Hendrycks et al., 2021). As performance on these benchmarks has plateaued—Claude Sonnet
3.5 achieves 92% on HumanEval—subsequent works have extended this task along different di-
mensions to increase difficulty, such as more robust evaluation (Liu et al., 2023a; Jain et al., 2024),
multilinguality (Cassano et al., 2022; Wang et al., 2023a; Zheng et al., 2024), open-domain gener-
ation (Wang et al., 2023b; Zhuo et al., 2024), data science (Lai et al., 2022; Yin et al., 2022; Cao
et al., 2024), understanding execution traces (Gu et al., 2024; Muennighoff et al., 2024), repository
comprehension (Liu et al., 2023b; Zhang et al., 2023b), cybersecurity (Yang et al., 2023b; Zhang
et al., 2024a; Shao et al., 2024; Abramovich et al., 2024), and efficiency (Huang et al., 2024; Liu
et al., 2024; Waghjale et al., 2024). SWE-bench M represents a merger of two promising directions:
software engineering (Jimenez et al., 2024a) and multimodal code generation (Li et al., 2024; Si
et al., 2024; Wu et al., 2024; Nishina & Matsui, 2024). By drawing on real-world problems from
GitHub, SWE-bench M overcomes the synthetic and short-form limitations inherent in code gener-
ation task formulation. In addition, SWE-bench M represents a significant multimodal upgrade to
SWE-bench, which has already become a popular benchmark for LM evaluation.

LM Agents for Web and Code. Prior to the proliferation of LMs, earlier works explored translating
between user interfaces and front-end code (HTML/CSS/JavaScript) (Beltramelli, 2018; Robinson,
2019). More recently, LM agents (Yao et al., 2023b; Sumers et al., 2024) have been increasingly
employed and evaluated on various tasks (Wang et al., 2024a; Xie et al., 2024). Two popular use
cases, web or application navigation (Hong et al., 2023; Soselia et al., 2023; Yan et al., 2023; Yao
et al., 2023a; Zhang et al., 2023a; Koh et al., 2024; Putta et al., 2024; Rawles et al., 2024; Press
et al., 2024; Yoran et al., 2024) and software engineering (Yang et al., 2023a; 2024; Zhang et al.,
2024b; Xia et al., 2024), have typically been studied separately. To the best of our knowledge, SWE-
bench M is the first benchmark that meaningfully couples these two tasks. Though prior approaches
have provided web browsing tools to programming agents (Wang et al., 2024b), such tools usually
represent webpages in text form and were not designed with a clear downstream objective. SWE-
bench M demonstrates how agents can iterate meaningfully between code updates and their effects
rendered as images or in a browser.

6 CONCLUSION

This work introduces SWE-bench Multimodal (SWE-bench M), the first benchmark to evaluate
coding agents on real-world software engineering tasks involving visual elements. SWE-bench M
contains 619 task instances from 17 user-facing JavaScript repositories, including ones for web
user interface design, data visualization, art and mapping. Our analysis reveals that SWE-bench
M contains diverse visual challenges and increases task complexity compared to SWE-bench. Fur-
thermore, existing systems perform poorly on it, with the top resolve rate reaching only 12.2%;
SWE-bench M presents repository-level programming tasks that are challenging even for state-of-
the-art systems built on top of the strongest LMs. Incorporating multimodality in SWE-bench M
not only expands the coverage of exciting, practical challenges in software engineering, but it also
encourages practitioners to develop more general-purpose, language-agnostic solutions that do not
overfit to SWE-bench or Python repositories.
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APPENDIX

In the appendix, we provide additional details about the collection process for curating SWE-bench
M, more characterizations of the SWE-bench M dataset, supplementary experiments and ablations
of LM agent performance on SWE-bench M, limitations and more.

A DATASET

A.1 DEVELOPMENT SPLIT

As shown in Figure 4, the SWE-bench M development split consists of 100 tasks instances from
5 open source repositories largely written in the JavaScript family of programming languages (e.g.
js, jsx, ts, tsx). Repositories were chosen for the development split based on two criteria. First,
the number of task instances is about one-fifth the size of the test split. Second, each repository
has an “equivalent” test repository, meaning for each repository in the development set, there is a
repository with a similar purpose in the test set. This parallelism is meant to make solutions crafted
on the development set more transferable to the test set.

We have observed that, in practice, practitioners developing solutions to the SWE-bench task have
often iterated on task instances from the test split of the dataset. For those interested in working
on SWE-bench M, we encourage practitioners to follow the preferable practice of iterating on the
development split, and then only evaluate on the test split once the approach is finalized.

Web Frameworks
Syntax Highlighting
Creative Coding

Figure 4: Distribution of SWE-bench M devel-
opment set tasks (in parenthesis) across 5 open
source GitHub repositories.

Table 6: Median values of different attributes of
a SWE-bench M task instance.

Median

Issue Text Length (Words) 145

Codebase # Lines (non-test) 228K
# Files (non-test) 1,324

Gold Patch
# Lines edited 35
# Files edited 2
# Funcs edited 3

Tests # Fail to Pass 2
# Pass to Pass 7

As reflected in Table 2 compared to Table 6, a task instance from the development split has a slightly
longer issue text, but also a smaller codebase in terms of number of lines and files. The median
number of files (2) and functions (3) edited is identical. Development split task instances change
slightly more lines, and have generally have somewhat more Fail-to-Pass and Pass-to-Pass tests.

A.2 ADDITIONAL CHARACTERIZATIONS

We provide further characterizations about the SWE-bench M dataset. In this section, we include
both extended discussions of filtering criteria and features discussed in Sections 2.2 and 2.3 as well
as additional, noteworthy details not mentioned in the main paper.

Visual Testing. A total of 69 task instances from Chart.js, a data visualization framework, and
openlayers, an interactive mapping library, verify functional correctness with pixel-level visual
testing. Across this subset of instances, there are 273 reference screenshots for visual testing.

Within the JavaScript development ecosystem, visual testing like this is commonplace, with Pup-
peteer 2 and Pixelmatch 3 being two popular libraries. Such libraries are necessary because they
provide several sensible advantages over a simple binary comparison of two images to check if

2https://github.com/puppeteer/puppeteer
3https://github.com/mapbox/pixelmatch
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they’re identical. Generally, the overarching reason is that a direct diff is too strict and doesn’t
account for the discrepancies of how different browser render user interfaces and webpages.

There are several additional benefits. First, such libraries provide the ability to specify tolerances for
minor pixel level differences that might arise from anti-aliasing or sub-pixel rendering (Kotsarenko,
2018). Second, visual testing libraries allow for targeting certain components of a webpage. Specif-
ically, Puppeteer has tools for taking screenshots of specified sub-parts of a page, and Pixelmatch
allows for region-specific comparisons of images. This use case is particularly important for selec-
tively ignoring dynamic website content, such as timestamps or ads, that is irrelevant to the code.

Task instances by year. In the following Table 7, we show the number of task instances for each
repository across different years. Task instances are distributed fairly uniformly, with the majority of
tasks being from 2019 to 2022. Some repositories have a higher distribution of older task instances,
such as lighthouse and wp-calypso.

Table 7: Number of task instances per year for each repository represented in SWE-bench M.

Repository ≤ 2018 2019 2020 2021 2022 2023 2024

bpmn-js 0 22 6 4 18 4 0
carbon 0 36 30 30 24 12 2
eslint 4 3 0 3 0 1 0
grommet 3 1 0 1 11 5 0
highlight.js 0 0 14 21 4 0 0
lighthouse 25 12 7 3 3 4 0
next 3 9 11 10 4 0 2
openlayers 3 4 12 16 22 14 8
prettier 3 1 3 1 1 3 1
prism 5 6 8 14 5 0 0
quarto-cli 0 0 0 0 8 16 0
scratch-gui 7 2 0 0 1 1 0

Chart.js 0 0 2 17 3 2 0
marked 2 2 6 1 2 1 0
p5.js 1 4 1 1 6 3 0
react-pdf 1 1 0 8 0 1 0
wp-calypso 26 11 0 0 0 0 0

Total 83 114 100 130 112 67 13

Asset collection. For each task instance, we download all image, video, and reproduction code
assets referenced by hyperlinks in the issue. This step, not done in SWE-bench, ensures that problem
statements are reproducible in the future even if these hyperlinks expire.

Multilingual problem statements. 55 task instances have languages other than English in the prob-
lem statement text or images, with Mandarin Chinese being the second most frequently occurring
language (38 task instances). The next repository, a design component library based on React,
contributes the most of these instances, with 26 task instances. This is in large part due to the fact
that the repository’s owner is the Alibaba Design team. Although not explicitly emphasized in SWE-
bench M’s collection process, we find that collecting from repositories owned by maintainers whose
primary language is not English is a fruitful source of multilingual SWE-bench style task instances.

References solutions edit multiple file types. In SWE-bench, all reference solutions edit exclu-
sively Python files. In SWE-bench M, 174 task instances have references solutions that modify two
or more file types. We did not consider non-code files such as text, Markdown, or images files when
calculating the counts. We list the frequencies for the different sets of file types edited by reference
solutions in Table 8.

A.3 ADDITIONAL ANALYSES

We provide further details and breakdowns of the SWE-bench M dataset, such as repository specific
statistics and additional information from scraping task instance information on GitHub.

17
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Table 8: Counts for the number of task instances with reference solutions that edit a specific set of
file types. 28% of SWE-bench M task instances modify two or more files types.

File Types Edited Count
js 400
js, scss 52
jsx 19
ts, js 18
js, jsx 16
html, js 14
ts 10

File Types Edited Count
js, scss, jsx 8
lua 8
js, hbs, scss 6
html, js, css 4
scss, jsx 4
js, lock 3
js, css 3

Repository Statistics. Following Tables 2 and 6, we show the same median statistics for each
repository in Table 9. The discrepancies in the issue text length, codebase size, and gold patch
changes can be directly attributed to the codebases themselves - relative to the original online sources
for the code and issue text, the SWE-bench M collection process does not affect these values at
all. On the other hand, the differences in the number of tests per repository, particularly Pass-
to-Pass tests, is an outcome of how the testing specifications and test log parsing are manually
specified. Two factors lead to these differences. First, for some repositories, the entire testing suite
is run (e.g., highlight.js, p5.js, quarto-cli), while for the majority of repositories, only
specific test files, usually derived from file paths modified by the test patch, are run (e.g., carbon,
openlayers, wp-calypso). Consequently, for the latter set of repositories, the number of Pass-
to-Pass tests is usually few to none. Second, the granularity of test logging is also different across
codebases. The primary distinction is that while some test logs show Pass/Fail on a per-file basis,
other test logs will show Pass/Fail on a per-test case basis where one files has multiple test cases.

Table 9: Median values for metrics about each task instance, mirroring the statistics shown in
Tables 2 and 6. Repositories from the test set are listed above the separator, while development set
repositories are listed below. “Fail to Pass” is abbreviated as “F2P.” “Pass to Pass” is “P2P.”

Issue Text Codebase Gold Patch Tests

Repository Length Lines Files Lines Files Funcs F2P P2P

GoogleChrome/lighthouse 94 1076K 834 29 2 3 1 1
PrismJS/prism 79 184K 2,721 12 2 2 1 9
alibaba-fusion/next 14 200K 1,731 57 5 5 3 25
bpmn-io/bpmn-js 92 99K 593 15 1 2 1 0
carbon-design-system/carbon 116 822K 4,250 45 3 4 1 33
eslint/eslint 324 398K 1,567 23 1 2 2 0
grommet/grommet 105 612K 1,186 8 1 1 1 77
highlightjs/highlight.js 139 105K 1,476 16 2 2 2 1,641
openlayers/openlayers 128 544K 1,761 32 2 3 1 0
prettier/prettier 105 348K 6,855 48 2 5 1 0
quarto-dev/quarto-cli 202 1399K 3,639 12 2 2 1 434
scratchfoundation/scratch-gui 148 100K 514 562 12 9 1 0

Automattic/wp-calypso 121 562K 7,990 76 3 5 2 11
chartjs/Chart.js 148 154K 1,376 18 1 2 1 0
diegomura/react-pdf 88 188K 806 39 2 2 1 210
markedjs/marked 89 38K 283 11 1 1 1 0
processing/p5.js 254 436K 1,009 30 2 4 12 2,373

As shown in Figure 5, we include plots of the cumulative distribution functions for the statistics
presented in Table 9 across all task instances from both the development and test splits. We also do
the same calculations for the SWE-bench dataset (2519 task instances total) and overlay the CDFs
for each statistic. The frequencies are normalized to a range of zero to one.
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Figure 5: Normalized cumulative distribution functions for different task instance statistics. We
compare these statistics between SWE-bench M (blue) and SWE-bench (orange).

While the median number of files and functions is low, with a majority of changes being local
and limited to a few lines, there is a long tail of tasks that edit multiple files and functions. The
distribution of edits is unlike SWE-bench’s. In SWE-bench, 83% of task instances edit one file, and
65% edit one function. In SWE-bench M, just 40% of task instances change one file, and 32.5%
change one function. On average, the changes by reference solutions in SWE-bench M are larger
than those in SWE-bench, with multi-file edits being more commonplace.

The average SWE-bench M codebase is somewhat smaller than a SWE-bench repository. The me-
dian SWE-bench M codebase has 200k fewer lines of code than its SWE-bench counterpart (535k
compared to 734k). However, in the long tail, SWE-bench M has codebases that are larger in terms
of both number of files and lines.

Testing compared to SWE-bench is quite similar. For SWE-bench, 80% of task instances have two
or fewer fail to pass tests compared to 75% for SWE-bench M. Finally, another noticeable trend is
that SWE-bench M issues tend to be shorter than SWE-bench problem statements. This trend can
be attributed to the inclusion of images as a complementary form of communication.

GitHub Issue Tags. For every issue collected in the SWE-bench M dataset, we check what labels,
if any, were assigned to each issue. These human-annotated labels provide further insight into the
kinds of fixes and contributions that a SWE-bench M task instance makes to the codebase. Table 10
summarizes the categories of tags along with the counts of individual tags.

Table 10: Categories of 1018 tags associated with 535 issues associated with one of the 517 task
instances from the test split of SWE-bench M (499 task instances have 1 issue, and 18 have 2).

Category Count Examples

Bug 267 “bug” (207); “type: bug” (56)
Feature 79 “type: enhancement” (44); “enhancement” (19); “feature request” (10);

“feature” (6);
Other 672 “a11y” (40); “language” (37); “help welcome” (35);

“language-definitions” (32); “role: dev” (32); “good first issue” (28);
“package: react” (21); “package: @carbon/react” (14); modeling (13);

While bug fixes are the most popular type of tag in terms of raw frequency, they only constitute a
quarter of all tags. In addition to features, there are a variety of more repository specific bug fixes
that highlight the diversity of the types of fixes corresponding to SWE-bench M task instances. For
example, the “a11y” tag, shorthand for “accessibility”, is used in both the carbon and bpmn-js
repositories. Issues with this tag usually describe how the accessibility features of a UI component
from the JavaScript library is either missing or defective. The “language” and “language-definitions”
tags are used by syntax highlighting libraries including highlight.js and prism. Issues with
this tag refer to bugs where language-specific symbols are not being highlighted correctly in a code
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editor. The “modeling” tag, used exclusively in the bpmn-js repository, refers to unexpected
behavior the user encounters when manipulating bpmn-js diagrams. Every SWE-bench M task
instance associated with an issue that has this tag contains either a video or annotated picture that
captures the phenomenon via screen recording and/or describes what the expected action should be.
Such problem statement require not only visual reasoning acumen, but also the ability to ground
accompanying issue description text in the visual elements.

Table 11: Categories of 186 tags associated with 109 issues associated with one of the 100 task
instances from the development split of SWE-bench M (91 task instances have 1 issue, 9 have 2).

Category Count Examples

Bug 52 “type: bug” (21); “[Type] Bug” (17); “bug” (14);
Feature 45 “[Type] Enhancement” (9); “[Feature] Signup & Account Creation” (6);

“[Feature] Plans & Upgrades” (6);
Other 89 “Area:WebGL” (13); “L1 - broken” (7); “released” (6); “L2 - annoying” (5);

“Store” (5); “FixTheFlows” (5);

Mirroring Table 10, we redo the analysis of the distribution of tags for issues associated with task
instances from the development set in Table 11. The findings for the development set are similar to
the conclusions drawn from the test set. Bug fixes constitute a quarter of all found tags. The majority
of tags, categorized under “Other”, are specifically to subsets of 1+ repositories and reflect more fine-
grained, interesting purposes. For example, the “Area:WebGL” tag, which is specific to p5.js,
refers to problems that arise when using WebGL, a popular API for rendering 2/3-D graphics, to
render p5.js components. Such problems require visual reasoning to fully comprehend; usually,
the problem is related to how the component is created properly when using the default P2D renderer,
but not when WebGL is used instead.

A.4 LICENSING

We fully list the license associated with each repository included in the SWE-bench M dataset in
Table 12. These licenses all allow for non-commercial use of a repository’s code and content, which
the collection and evaluation processes of SWE-bench M respects.

Table 12: Summary and licenses for all GitHub repositories represented in SWE-bench M. Test
split repositories are listed above the delimiter, while development split repositories are listed below.

Repository Summary License

carbon-design-system/carbon A design system built by IBM Apache-2.0
GoogleChrome/lighthouse Automated auditing, perf. metrics for web Apache-2.0
grommet/grommet React-based framework for web app dev. Apache-2.0
openlayers/openlayers High-performance, feature-packed library BSD-2-Clause

for all your mapping needs
highlightjs/highlight.js JS syntax highlighter with lang. auto-detection BSD-3-Clause
scratchfoundation/scratch-gui GUI to create + run Scratch 3.0 projects BSD-3-Clause
bpmn-io/bpmn-js BPMN 2.0 rendering toolkit + web modeler Custom
quarto-dev/quarto-cli Open-source scientific and technical Custom

publishing system built on Pandoc.
alibaba-fusion/next Configurable component library for web MIT
eslint/eslint Find and fix problems in JS code. MIT
PrismJS/prism Lightweight, robust syntax highlighter MIT
prettier/prettier Prettier is an opinionated code formatter. MIT

markedjs/marked Markdown parser and compiler. Custom
Automattic/wp-calypso JavaScript and API powered WordPress.com GPL-2.0
processing/p5.js JS library for learning to code, create art LGPL-2.1
chartjs/Chart.js Simple HTML5 Charts w/ <canvas> tag MIT
diegomura/react-pdf Create PDF files using React MIT
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B COLLECTION

Additional information about new dataset curation processes introduced for SWE-bench M are in-
cluded here, such as the reasons for and number of task instances removed due to inconsistency
testing, challenges of setting up automatic evaluations for JavaScript repositories, and the procedure
with which digital assets were automatically downloaded.

B.1 STATISTICS

In Table 13, we provide a summary of the number of pull requests that were eventually successfully
converted into viable SWE-bench M task instances along with how many pull requests were removed
per step of the filtering process.

Table 13: Per repository, the number of pull requests eventually converted into viable SWE-
bench M task instances and task instances kept per stage of the filtering process. The red
subscript denotes the number of task instances that were filtered out at this stage with respect to the
total from the previous stage.

Inconsistent Manual
PRs Crawled Conversion Validation Test Filter

GoogleChrome/lighthouse 6,022 116↓5906 55↓61 55 -0 54↓1
PrismJS/prism 1,942 52↓1890 42↓10 38↓4 38 -0
alibaba-fusion/next 2,133 85↓2048 50↓35 50 -0 39↓11
bpmn-io/bpmn-js 820 86↓734 54↓32 54 -0 54 -0
carbon-design-system/carbon 8,096 196↓7900 143↓53 134↓9 134 -0
eslint/eslint 7,454 42↓7412 11↓31 11 -0 11 -0
grommet/grommet 3,848 68↓3780 22↓46 22 -0 21↓1
highlightjs/highlight.js 1,955 60↓1895 39↓21 39 -0 39 -0
openlayers/openlayers 9,466 143↓9323 88↓55 80↓8 79↓1
prettier/prettier 9,424 34↓9390 13↓21 13 -0 13 -0
quarto-dev/quarto-cli 1,620 60↓1560 25↓35 25 -0 24↓1
scratchfoundation/scratch-gui 6,347 38↓6309 11↓27 11 -0 11 -0

Automattic/wp-calypso 61,165 214↓60951 37↓177 37 -0 37 -0
chartjs/Chart.js 3,792 200↓3592 33↓167 24↓9 24 -0
diegomura/react-pdf 784 22↓762 11↓11 11 -0 11 -0
markedjs/marked 1,816 16↓1800 14↓2 14 -0 14 -0
processing/p5.js 3,186 42↓3144 27↓15 16↓11 16 -0

Total 134,866 1,478↓133388 679↓799 643↓36 619↓24

B.2 INCONSISTENCY TESTING

All task instances in SWE-bench M should yield consistent test case results, so we use a simple
scheme to filter out candidate task instances that are inconsistent. For each task instance, we run the
test cases five consecutive times and check whether 1) all runs contain the same test cases, and 2) all
runs contain the same passing test cases and failing test cases. If either condition is false, we filter
out the task instance.

B.3 RESOURCE COLLECTION

Besides text, issue descriptions can contain

1. Images, often in the form of web browser screenshots detailing bugs or specifications of
new features. For issues describing unexpected user interface behaviors that involve com-
plex mouse actions (dragging, etc.) or a longer sequence of reproduction steps, animated
images (GIFs) are often used.
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2. Links to online integrated development environments (IDEs) for testing and showcasing
HTML, CSS, and JavaScript code snippets. Around 17% of the instances contain at least
one such link, and 15% contain more than one.

While images can be directly downloaded, copying the resources from the online IDEs is more
involved. We handle four different such IDEs, codesandbox.io (63), jsfiddle.net (25), codepen.io
(21), stackblitz.com (5), and editor.p5js.org where numbers indicate the number of occurrences in
the final dataset.

The IDEs typically consist of three panes for the code in the three respective languages and an
additional preview pane. Furthermore, menus provide options to link external resources, such as
JavaScript and CSS libraries, from content delivery networks. Depending on the occurrence of
the IDE, we have written extraction scripts (downloading and parsing source code or using web
browser automation tools) or manually downloaded content to obtain all resources. Most snippets
are a combination of HTML, CSS, and JavaScript, while others take the form of React apps. For
the former category, the online IDEs apply a variety of heuristics to interpret the HTML (linking
external resources, adding missing tags, etc.), so we similarly apply a series of postprocessing steps
to ensure that the websites can be immediately served without additional steps.

C EXPERIMENTS

In this section, we include additional details concerning the experiments and ablations we ran on
the SWE-bench M dataset. We provide information such as how the optimal context window for
retrieval augmented generation was selected and the refactoring efforts required for making software
development agent scaffolds compatible with SWE-bench M task instances. We also show more
detailed analyses of experimental results, such as solve rates by repository and year.

C.1 BASELINE ADAPTATIONS

Here we provide further technical details on how we adapted each of the software development
scaffolds for evaluation on SWE-bench MM.

Retrieval Augmented Generation. We largely inherit the retrieval pipeline, prompts, and format-
ting for RAG from those used in Jimenez et al. (2024a). This includes building a standard BM25
index using pyserini. Adaptations include the inclusion of “reproduction code” where present ref-
erenced in links as described in Appendix B.3 and adapting the patch generation example in the
prompt from a Python example to an equivalent JavaScript example.

Lastly, we perform some minor reformatting of issue text. We convert all images to Markdown-style
links with the following format:

![alt text - or image url if not provided](image url)

Agentless (Xia et al., 2024) is split into two main phases, localization and repair, the former of
which is heavily dependent on Python-specific constructs. The original localization phase relies on
the Python ast module to collect the line numbers of all function and class declarations. Unfor-
tunately, ast is specific to the Python abstract syntax grammar, and therefore cannot be applied
to other languages such as Typescript and Javascript. We also found that the Esprima library for
parsing Javascript code had issues with Typescript code, so we used the Tree-sitter parsing library,
which supports a wide variety of languages. Due to differences in function variants in Python vs.
Javascript (e.g. arrow functions in Javascript), we also added extra parsing steps in the localization
step. Furthermore, Agentless uses several in-context Python code snippets for both the localization
and repair phases – we replace all prompts with Javascript equivalents. Finally, when we provide
the repository structure as input to the model, we replace their tab-indented nested repository struc-
ture with full file paths – we found this to be extremely important in ensuring the models do not
hallucinate false file paths.

The original Agentless work generates a list of candidate solutions and manually checks whether
they 1) pass syntax checks and 2) pass all pass-to-pass P2P tests. We do not include these filters
for our implementation of Agentless because 1) we found syntax parsing to be inconsistent between
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different versions of Javascript, leading to many valid candidate solutions being filtered unless a
particular parser was used per instance and 2) we were interested in a fully automated framework.
Finally, the original Agentless implementation did not implement support for Claude models, in-
cluding how to handle extraneous outputs when querying for structured outputs. We added extra
functionality to support Claude outputs for our experiments while remaining faithful to the original
implementation.

Aider (Gauthier, 2024) similarly parses an abstract syntax tree for Python code to help the language
model localize code with a limited context window – however, they use Tree-sitter instead of the
ast module, enabling their framework to generalize easier to other languages. Other than adding
the Javascript / Typescript versions of Tree-sitter, we do not modify Aider. Unlike Agentless, which
simultaneously generates multiple candidates and does not require a syntax-checking step, Aider
uses syntax-checking and linting in an iterative fashion to produce plausible generations. We found
that due to syntax differences in Javascript versions, the parser would often invalidate correct or
syntactically valid solutions generated by the language model, leading us not to use the baseline in
its current form.

AutoCodeRover (Zhang et al., 2024b) also uses the ast module to generate an abstract syntax
tree (AST) for Python code in its context-retrieval phase. Furthermore, it defines a set of APIs that
the agent can use to traverse the AST. In our attempted implementation, we replace the ast module
with the Tree-sitter library and some extra custom functions, and re-define the APIs to interface with
the Javascript AST while retaining the same stratified search functionality as the original method.
We found the traversal APIs to be too specific to the ast module, as the structure of the Tree-sitter
Javascript AST was entirely different, leading to faulty localization.

To re-purpose AutoCodeRover for SWE-Bench M, a faithful implementation would require entirely
swapping out the localization / code-searching APIs.

Moatless (Örwall, 2024) employs a multi stage pipeline for solving task instances. Similar to Agent-
less, Moatless also generates an AST of the desired language, and converts this AST into a custom
code graph object that they use for their search and localization APIs. Because this code graph object
is, in theory, language agnostic, it enables flexibility in applying Moatless to different programming
languages. However, while the authors wrote code for converting a Python-generated AST to their
code graph, we noticed that performing an analogous conversion for Javascript/Typescript does not
capture all of the relevant design patterns (e.g. arrow functions). Thus, we chose not to use Moatless
as a baseline.

SWE-agent Base. SWE-agent involves relatively few Python specific tools and components. The
most notable exception to this is that for tasks in the original SWE-bench dataset, it sets up the OS
environment with the necessary dependencies and installs the packages locally to provide the agent
with a local testbed for experimenting with changes. To enable similar behavior in Javascript, we
also install package dependencies and build the project locally when applicable. We also globally
link the package name to the local repository when the instance contains an npm package.

New for SWE-bench M, we supply agents with “reproduction code” from links available in the
problem statement. As described in Appendix B.3, these links and assets can contain useful code for
reproducing issues locally. For each link containing reproduction code, we create a directory in the
repository directory where the agent starts, and paste the code into the corresponding files (usually
‘index.html’, ‘script.js’, and ‘style.css’). Finally, we initialize those repositories as an npm package
and link the package from main repository directory so the agent may use the package as installed
locally.

SWE-agent JS. Extending SWE-agent Base, SWE-agent JS adapts the base edit command to work
more effectively with JavaScript and related programming languages. In particular, the original
SWE-agent edit command includes a component that performs an linting operation after every edit
an agent applies to a Python file. This linting operation checks whether the resulting file would
be syntactically correct and can detect certain other mistakes such as a reference to an undnefined
variable. During editing, SWE-agent will “roll-back” an edit if it is found to be invalid according to
the linting operation. It then reports this error to the agent and requests that the agent to correct and
try its intended edit again.
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Table 14: Specialized tools provided to the agent for web interaction and image handling. Required
arguments are enclosed in <> and optional arguments are in [].

Command Documentation

open webpage
<website dir>

Opens the webpage in a new display window us-
ing Google Chrome. website dir is the directory
where an index.html file exists and will be served.

restart webpage
<website dir>

Restarts the webpage with the given directory.
website dir is the directory where an index.html
file exists and will be served.

close webpage Closes the open webpage.

screenshot [<num images>]
[<interval>]

Takes screenshots of the display. num images (op-
tional, default 1) is the number of screenshots to take.
interval (optional, default 1.0) is the interval be-
tween screenshots in seconds.

open image <image path>
[<image path> ...]

Opens the image(s) in base64 format to be fed to the
LM. Multiple image paths can be provided.

M
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JS
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JS - no imgs
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JS
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30%

18%
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search read modify website other

Figure 6: Action space of SWE-agent with different configurations for Claude 3.5 Sonnet and GPT-
4o using the three configurations mentioned in Section 4 on the development set. For a version of
this figure stratified by repositories, see Figure 7.

To adapt this for SWE-bench M, we use ESLint with the local repositories configuration files, to
primarily detect fundamental syntax errors. While typically ESLint is capable of enforcing a wide
variety of rules, we found that relying too heavily on these rules from the projects’ configuration
substantially degraded performance.

SWE-agent M. Further extending SWE-agent JS, SWE-agent M introduces a variety of new com-
mands and features ot the ACI, which we show in Table 14. These new commands require some
environmental support for simulating displays. We simulate a display for the X window system
using Xvfb, and take screenshots with xwd.

C.2 BASELINE CONFIGURATIONS

SWE-agent. Due to the expense and flexibilty in developing new SWE-agent interfaces, we de-
veloped new features and for SWE-agent JS and SWE-agent M primarily iterating while validating
performance on a small subset of the development set. By default, for long trajectories, SWE-agent
“collapses” past environment observations by replacing the content of old observations with a single
line: “n lines omitted”. SWE-agent will usually show the model the last five observations, and col-
lapse all observations prior to that except the initial problem statement and demonstration. For the
final configuration evaluated for each system, we perform a very small grid search over two different
options for the number of past observations to show in {5, 9}. We perform this search on a set of 50
instances from the development set and show the results of this search in Table 15.

Retrieval Augmented Generation. For RAG systems, the amount of context we provide, either
in terms of the number of documents or simply the absolute length of the context retrieved, is an
important hyperparameter that may affect a model’s performance. As in Jimenez et al. (2024a),
we determine the final RAG system to evaluate by performing a grid search over three possible
context lengths in {32K, 64K, 100K} and the inclusion or not of images as input with the problem
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Figure 7: Action space of SWE-agent with different configurations for Claude 3.5 Sonnet and GPT-
4o using the three configurations mentioned in Section 4 on the development set broken down by
repository.
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Figure 8: Frequency of outcomes by success and exit status of SWE-agent under different configu-
rations on the development set.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 15: Hyperparameter search for SWE-agent system for non-collapsed history length.

Model System History Length % Resolved

Claude 3.5 Sonnet

SWE-agent Base 5 18%
9 14%

SWE-agent JS 5 28%
9 18%

SWE-agent M 5 24%
9 16%

GPT-4o

SWE-agent Base 5 18%
9 12%

SWE-agent JS 5 24%
9 10%

SWE-agent M 5 26%
9 16%

Table 16: Hyperparameter search for RAG models with differing lengths of context and image input.

Model Retrieval Context With Images % Resolved

Claude 3.5 Sonnet

32K 9.4±1.1

7.8±2.6

64K 11.2±1.3

14.1±2.6

100K 7.6±2.7

13.7±1.8

GPT-4o

32K 6.7±2.1

6.9±2.0

64K 6.7±1.9

7.6±2.2

100K 8.0±1.5

10.0±2.2

statement. We run each configuration 5 times on the development set and select the configuration
with the best mean performance. We report the results of this grid search in Table 16, highlighting
the performance of our selected configuration.

C.3 FURTHER ANALYSES

Here, we include additional analyses of the experimental results and performance by different base-
lines on SWE-bench M.

Resolved by Repository. We show the resolved rates per repository accomplished by different
baselines in Table 17.
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Table 17: % Resolved Rates by repository for different baselines. All performance numbers
listed here use GPT-4o as the base model. Performance for the test split repositories (above de-
limiter) are pass@1, while performance for the development split repositories (below delimiter)
represents the best result achieved from a hyperparameter search.

Repository Count SWE-agent M Agentless JS RAG

GoogleChrome/lighthouse 54 5.6 7.4 1.9
PrismJS/prism 38 0.0 0.0 0.0
alibaba-fusion/next 39 0.0 2.6 0.0
bpmn-io/bpmn-js 54 27.8 11.1 13.0
carbon-design-system/carbon 134 1.5 0.7 0.0
eslint/eslint 11 0.0 0.0 0.0
grommet/grommet 21 0.0 0.0 0.0
highlightjs/highlight.js 39 2.6 2.6 0.0
openlayers/openlayers 79 51.9 3.8 30.4
prettier/prettier 13 7.7 0.0 0.0
quarto-dev/quarto-cli 24 0.0 0.0 0.0
scratchfoundation/scratch-gui 11 0.0 0.0 0.0

Automattic/wp-calypso 37 0.0 0.0 2.2
chartjs/Chart.js 24 20.8 0.0 11.7
diegomura/react-pdf 11 0.0 0.0 0.0
markedjs/marked 14 7.1 0.0 20.0
processing/p5.js 16 25.0 6.2 23.8
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Temporal analysis does not reveal any indication of solution leakage. Table 18 shows resolution
rates for different baselines by year. While agentless with GPT-4o shows somewhat increased per-
formance for older task instances, all other system shows significantly higher performance on newer
instances with a pronounced peak in 2024. However, the instances of the different repositories have
uneven temporal distributions and average resolution rates (see Tables 7 and 17), making it difficult
to interpret the yearly solution rates. For example, 8 out of the 13 instances from 2024 are from
openlayers/openlayers, which has by far the highest solution rates with SWE-agent M and
agentless across all years.

To account for this, we calculate average resolution rates before and after the GPT-4o training cutoff
(October 2023). We then compare the post resolution rates to the pre-resolution rates reweighted to
the post-cutoff repository distribution4. The results are shown in Table 19 and show that the post-
cutoff performance of all tested systems exceeds that of the pre-cutoff even when accounting for the
shift in repository distribution.

Since Claude 3.5 Sonnet’s training cutoff of April 2024 would leave too few instances, a similar
analysis is not feasible. However, SWE-agent M with Claude 3.5 Sonnet follows a very similar
trend as SWE-agent M with GPT-4o and shows an even more pronounced performance jump in
2024.

Table 18: % Resolved performance for SWE-bench M test split task instances from different
years. Each row corresponds to a year, while each column is the agent’s performance for task
instances from that year.

SWE-agent M SWE-agent M Agentless JS RAG
Year Count (Claude) (GPT-4o) (GPT-4o) (GPT-4o)

2017 22 4.5 4.5 9.1 4.5
2018 31 0.0 0.0 3.2 0.0
2019 96 9.4 7.3 3.1 1.0
2020 91 8.8 4.4 5.5 2.2
2021 103 13.6 11.7 2.9 3.9
2022 101 12.9 19.8 1.0 13.9
2023 60 13.3 20.0 0.0 6.7
2024 13 46.2 53.8 7.7 46.2

Table 19: % Resolved Rates with GPT-4o before and after training cutoff. This table shows
the performance for the SWE-bench M test split task instances before and after the GPT-4o training
cutoff date (October 2023). Pre-cutoff (reweighted) is the pre-cutoff performance reweighted to the
post-cutoff repository distribution (see text).

SWE-agent M Agentless JS RAG

Pre-cutoff 11.0 3.0 5.0
Pre-cutoff (reweighted) 27.6 3.1 13.6
Post-cutoff 47.1 5.9 41.2

4i.e., we calculate
∑

repo f
repo
post η

repo
pre , where f repo

post is the fraction of instances of a specific repository among the
post-cutoff instances and ηrepo

pre is the corresponding pre-cutoff solution rate.
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D HUMAN VALIDATION

We provide full details about the human validation process for SWE-bench M task instances. We
include each question with corresponding examples that were provided to the papers’ authors. We
also show additional analyses about the authors’ answers and agreement.

D.1 IMAGE CATEGORIZATION

This question aims to categorize the types of visual content commonly associated with open-source
software issues. By classifying images across a diverse range of repositories, we aim to analyze the
visual ways in which developers convey information about software development. To accomplish
this, we randomly sampled 50 images from the dataset and manually derived 8 categories from
these samples. Human participants then manually inspected and labeled all images with one of the
categories.

Prompt: Classify the image as one of these categories: (1) Code Snippet Screenshot (2) Web Inter-
face (UI/UX Element) (3) Map/Geospatial Visualization (4) Diagram (5) Data Visualization (Plots)
(6) Artwork / Photography (7) Error Message (8) Miscellaneous.

Here are examples of each category of images.

(a) Code Snippet Screenshot (b) Web Interface (UI/UX Element) (c) Map/Geospatial Visualization

(d) Diagram (e) Data Visualization (f) Artwork / Photography

(g) Error Message (h) Miscellaneous

The images are from the following task instances:

1. Code: PrismJS prism-1500
2. Webpage: carbon-design-system carbon-6964

3. Geospatial: openlayers openlayers-10545

4. Diagram: bpmn-io bpmn-js-1542

5. Data Viz.: chartjs Chart.js-9101
6. Art: quarto-dev quarto-cli-5547
7. Error Trace: diegomura react-pdf-1285

8. Other: openlayers openlayers-12393
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Table 20: Response to Q1: Image Categorization indicate the majority of images are code and
website screenshots. Other categories tend to be more repository-specific.

Code Website Geospatial Diagram Data Viz. Art Errors Other Total

bpmn-js 1 13 1 54 1 1 1 1 69
carbon 21 136 0 36 0 0 30 1 224
Chart.js 5 2 0 0 18 0 1 0 26
eslint 10 0 0 1 0 0 2 0 13
grommet 3 25 0 2 2 0 0 0 32
highlight.js 62 4 0 4 0 0 0 0 70
lighthouse 5 55 0 0 5 0 3 0 68
marked 1 22 0 0 0 2 0 0 25
next 11 36 0 0 0 0 6 0 53
openlayers 6 6 35 0 0 0 2 0 49
p5.js 5 0 0 3 0 22 2 0 32
prettier 9 3 0 0 1 3 0 0 16
prism 41 3 0 3 0 0 0 0 47
quarto-cli 7 22 0 2 1 10 0 1 43
react-pdf 6 7 0 2 1 0 4 0 20
scratch-gui 0 12 0 0 0 1 0 0 13
wp-calypso 1 55 0 0 0 0 3 0 59

Total 194 401 35 107 28 38 54 2 859

Results: We applied this labeling procedure to the 862 problem statement images across all SWE-
bench M task instances. The counts for each of the categories are presented below in Table 20.

The majority of SWE-bench M images are screenshots of webpages or code. These categories
dominate because they are most often used to point out problems with linting (e.g. eslint,
highlight.js, prism, prominently feature code-related images due to their focus on code anal-
ysis and syntax highlighting) and incorrectly rendered web elements (e.g. carbon, lighthouse,
next, wp-calypso, as these tools are used to address issues in web design, layout and perfor-
mance). The representation for other categories correlates heavily with specific repositories. In
other words, images falling under a certain category are usually distributed across at most two to
three repositories. For example, diagrams tend to be found in bpmn-js, a tool for creating BPMN
(Business Process Model and Notation) diagrams, and carbon, which often uses design component
specifications to communicate details about web elements, such as spacing and size.

Geospatial images, including maps or location-based data, are exclusive found in openlayers.
Data visualization, such as charts or graphs, are predominantly found in the Chart.js repository,
which specializes in creating data-driven visual content. Additionally, creative coding repositories
like p5.js often include images related to artistic outputs, those images typically include visual
glitches or unexpected rendering behaviors. Lastly, categories such as errors are found sporadically
across repositories and represent instances where tools fail to operate correctly, such as compilation
failures. Based on these findings, we conclude that SWE-bench M features a wide range of images
that capture various aspects of software development, with code and webpage screenshots domi-
nating the dataset. At the same time, certain types of images are tightly coupled with the specific
functionalities of individual repositories, reflecting the unique focus and purpose of each project.

D.2 IS AN IMAGE REPRESENTABLE AS TEXT?

How important is it for a SWE-bench M image to be an image? To answer this, we attempt to
quantify the proportion of images that are solely text. For these images, it may not be necessary
for the image’s information to be communicated visually. For instance, it’s possible that a large
proportion of images are screenshots of code or error messages, some of which could be represented
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perfectly as text. If this is the case, the fact that the information is presented as image becomes
somewhat trivial.

To clarify, we are not asking whether the image can be processed with Optical Character Recognition
(OCR) or verbalized, as such approaches would still likely result in a loss of information and are hard
to answer without considering the problem context. For instance, for syntax highlighting libraries,
although many images are code screenshots, there could be color highlighting of different characters
that is crucial to understanding the problem correctly. Therefore, while traditional OCR could turn
the code in the image into text, it would fail to capture additional visual details. Asking whether the
same image can be verbalized is also not straightforward, as the answer could likely depend on the
type of problem being solved and what information about the image is actually necessary. In a small
labeling trial, we also found that answers are sensitive to the annotator’s subjectivity, reflected by
low inter-annotator agreement.

Similar to Q1: Image Categorization, we ask a human participant to look at the image and respond
with either “Yes” if the image can be represented faithfully as text, and “No” otherwise. A more
detailed discussion of how to decide is included in the following prompt.

Prompt: Can you assess if this image can be faithfully represented with text? A faithful represen-
tation means that the contents of the image can be represented as text with no loss in information.
An image fits this criteria if (1) The image only contains text (2) The text in the image is mostly or
entirely monochrome, and (3) The image does not contain any meaningful visuals or patterns inde-
pendent of text that could be important to know for solving a problem. Please only respond with
[1/0], 1 meaning “Yes” and 0 meaning “No”. Do not include any additional justification or text.

Here are examples of images that can and cannot be conveyed effectively with OCR.

(a) Label: No (b) Label: No (c) Label: No

(d) Label: No (e) Label: No (f) Label: Yes

Figure 10: Examples of images that cannot (top row) and can (bottom row) be processed into text
by OCR software. Typically, code and webpages are OCR-able while diagrams, plots, and art are
not.

• Top Left (scratchfoundation scratch-gui-8891): The eye icons cannot be
represented as text. While there is text, it does not take up much of the image.

• Top Middle (chartjs Chart.js-8567): The bar plot cannot be converted into text.
• Top Right (processing p5.js-3709): This is an graphic with no text in it.
• Bottom Left (openlayers openlayers-11649): Although a significant portion of

this image is made up of text, the code syntax coloring is an aspect of the image that cannot
be conveyed effectively in a text representation. In addition, the black highlighting and
striped background cannot be portrayed as text.

• Bottom Middle (diegomura react-pdf-1285): Similar to the bottom left image,
this is also “No” because of the text coloring.

• Bottom Right (PrismJS prism-2782): The contents of this image can be faithfully
represented as text, as the majority of it is colored red. The main purpose of this screenshot
is to communicate an error message. There are no meaningful visual elements.

Results: We again answer these questions for problem statement images in SWE-bench M. Out of
862 problem statement images, 691 (80%) were labeled as “No”, while 171 (20%) were labeled as
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Figure 11: Responses to whether an image can be represented with text per repository.
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Figure 12: Responses to whether an image can be represented with text per image category.

“Yes”. Below, we present two figures. Figure 11 shows the labeling results per repository. Figure 12
shows the labeling results with respect to image category.

With the exception of prettier, across repositories, the majority of images were labeled as not
representable with text, with several repositories having no images labeled “Yes” (e.g. bpmn-js,
highlight.js, quarto-cli). The principal component that corresponds to whether an image
can be labeled is the image category. As shown in Table 12, different image categories have varying
rates of whether or not the image can be represented with text. Error messages are more often labeled
“Yes” than not. A smaller proportion of web and code screenshots were labeled “Yes”. Although
at first glance it may seem like this proportion should be higher, through the annotation procedure,
we found out that for code, text color and highlighting are often very important signals for solving
task instances, particularly linting repositories such as prism and eslint. For web screenshots,
while there is usually text on a webpage, the spatial arrangement of web components is a critical
aspect of understanding problems in design framework libraries, such as carbon and next. For
the remaining categories, low to no images are labeled as being representable in text.

Based on our findings, we conclude that information from problem statement images in SWE-bench
M frequently must be represented as images. The rate at which images are not just screenshots of
text varies by repository and image category. Images that are errors are more often representable as
text. Other categories are less often due to either a complete absence of text or the text coloring and
organization being an important part of understanding the problem being communicated.

D.3 IMAGE NECESSITY.

We elicit human feedback on how necessary images are to solving the task at hand. This question
attempts to directly determine how the visual asset(s) provided with a problem statement are actually
necessary to solving a GitHub issue when provided. We label the 557 SWE-bench M task instances
that have one or more images in its problem statement.

For the annotation procedure, a human participant is asked to look at each task instance’s problem
statement, codebase, gold patch, and test patch, and judged whether it could be solved. They should
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then look at the associated problem statement image(s) and assign a label according to the procedure
described below. Task instances with no images in the problem statement are not considered for this
question. If a task instance is deemed generally unsolvable, it is removed from the dataset.

Prompt: For each task instance, please determine whether its associated images are necessary to
solving the problem described by this task instance. The following workflow is recommended:

1. Read the problem statement. If you’d like, check the codebase, gold patch, and test patch
as needed. Make a mental note of whether the task instance can be solved.

2. Then, look at the image(s) associated with the task instance. Now, re-answer whether the
task instance can be solved.

3. Provide answer according to the following logic:

• “Yes”: If the answer changed from “No” to “Yes”, then the image is necessary.
• “No”: If the answer remained “Yes”, the image is not necessary to solve the task.
• Remove: If the answer before and after seeing the image was both “No”, please note

this and we will remove the task instance.

Below, we provide examples of task instances where the image is necessary to solving the task
(PrismJS prism-3442), and where it is not (quarto-dev quarto-cli-6659).

PrismJS prism-3442. A screenshot of code is provided for this task instance. It is shown together
with the corresponding problem statement in the text box below.

The main contribution of this image is the syntax highlighting. Specifically, it shows the undesired
effect of Prism highlighting the quotes with the incorrect color. The double quotes around “Month”,
“Days”, and “Jan” should not be highlighted gray.

Without the screenshot, it is not exactly clear how the quotes are being highlighted incorrectly. For
instance, it’s unclear what color corresponds to “highlighted as punctuation”. In the absence of
the image, while it is still possible that an experienced maintainer of this repository could make
educated guesses about the exact nature of the bug or reproduce it exactly, the image provides
concrete evidence of what the user is experiencing.

PrismJS prism-3442: [language-markup] Quotes in HTML attribute values are highlighted

**Information:**
- Prism version: Latest (reproducible on test.html)
- Plugins: none
- Environment: Browser

Quotes are highlighted as punctuation inside HTML attributes. E.g. this:

“‘html
<google-chart data=’[[”Month”, ”Days”], [”Jan”, 31]]’></google-chart>
“‘

is highlighted as:

We might decide that this is a feature, not a bug, but figured I’d flag this in case, as it looked wrong to
me.

On the other hand, the image in quarto-dev quarto-cli-6659’s problem statement is not
necessary.
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The provided image is an arbitrary link that is used in the reproduction code shown in the issue
description. While the image is helpful in that it is readily usable by a developer for recreating the
problem, there is no additional information being conveyed by the image’s content that helps with
understanding the task at hand.

quarto-dev quarto-cli-6659: Figures from R code blocks don’t render if ‘fig-cap:
!expr . . . ‘ evaluates to ‘character(0)‘

With Quarto 1.4.330, quarto-r 1.2, and knitr 1.43 on R 4.2.1, the command ‘quarto render exam-
ple.qmd –to html‘ renders the following Quarto document as expected:

“‘r
#| fig-cap: !expr caption
caption = ”hello world”
knitr::include graphics(”http://arfer.net/mlp/img/rara-jiggs.png”)
“‘
But if ‘caption = ”hello world”‘ is changed to ‘caption = character(0)‘, the figure disappears from the
output.

I originally hit this issue with a mistaken ‘sprintf‘ call, which can produce a zero-length character
vector.

Results: Out of 557 task instances, 465 were labeled as the image being necessary to solving the
problem. The remaining 93 were labeled as “No”, meaning the image is not necessary. The follow-
ing Figure 13 shows the labeling splits for this question by repository.

Figure 13: Responses to whether an image is necessary to solve a task instance per repository.
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Annotations suggest the significant majority (83.5%) of problem statement images are necessary to
solving the problem at hand. Several repositories have zero issues with unessential images.

Annotators attributed several factors that affected their decision making. First, if the task instance
included reproduction code, annotators were more likely to rate the task instance as not requiring
the image. For these cases, the image was redundant because running the reproduction code would
produce the exact effect that the image was capturing. Second, a repository’s contributing guidelines
influences the role of the image. For instance, some repositories will explicitly ask for an image
or screenshot that details the error message, which is why for repositories such as bpmn-js and
lighthouse, there are zero occurrences of unessential images. On the other hand, images are
sometimes provided under an ”Additional Information” section, in which case the image is helpful,
but not crucial. These observations also hold for reproduction code. Task instances from carbon,
p5.js, and next will often have links to online editors reproducing the described bug.
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D.4 TASK DIFFICULTY

Following the instructions used in Chowdhury et al. (2024), we label the difficulty of a task instance.
We define difficulty as the estimated amount of time it would take for an experienced developer to
accomplish this task. There are four possible labels for difficulty:

• <15 min fix (e.g., a trivial change adding some assertions to a function)

• 15 min–1 hour (e.g., a small change that requires a bit of thought)

• 1–4 hours (e.g., substantially rewriting a function or editing multiple files)

• >4 hours (e.g., a very esoteric issue that clearly requires a substantial amount of research
to fix, changing >100 lines of code)

For every estimate, we assume the developer is approaching the problem from the following context:

• The developer has neither worked on nor used the codebase before.

• The developer is familiar with JavaScript code and has experience working on JS related
frameworks (e.g., React).

• The developer has had a couple hours to become familiar with the codebase prior to starting
work on the task instance.

To label, each annotator looked at the full details of the task instance (problem statement, images,
gold patch, codebase) and made a best-effort judgment of how intensive the fix would be. Annotators
were asked to not consider the time spent on writing or modifying tests.

Because of the potential variance in annotators’ answers to this question along with the amount of
time it takes to comprehend a task instance before making a judgment, we do not label the entire
SWE-bench M dataset. Instead, we take 100 task instances from all of SWE-bench M, uniformly
sampling with respect to the ratios of task instances in each repository. Three annotators then label
each of the tasks with one of the four labels. For each task instance, the final difficulty level is
assigned to be whichever label has a majority vote. If there is no majority vote, the “middle” of the
three annotations (either 15 min–1 hour or 1-4 hours is used as the label.

Results: From this labeling procedure, 100 SWE-bench M task instances are labeled with differing
levels of difficulty, as shown in Table 21. The Fleiss’ kappa score is calculated to be 0.78, reflecting
a substantial amount of agreement between the three annotators who carried out labeling.

Table 21: Estimated level of difficulty for different splits of SWE-bench in addition to SWE-bench
M. Each number is the percentage of sampled task instances classified at that level of difficulty.

Dataset # Samples <15 min 15 min-1 hour 1-4 hours >4 hours

SWE-bench 1,699 24.5 53.3 19.4 2.8
Lite 231 37.7 56.3 6.1 0.0
Verified 500 38.8 52.2 8.4 0.6

SWE-bench M 100 13.0 43.0 38.0 6.0

After the labeling procedure was completed, annotators agreed that the strongest signals for estimat-
ing the level of difficulty came most frequently from three indicators.

First, smaller gold patches tend be labeled as requiring less time and visa versa. For instance,
for the 13 task instances labeled to take < 15 minutes, the gold patch change sizes (calculated as
Lines Added + Lines Removed) are [1, 3, 4, 1, 3, 2, 163, 5, 5, 10, 7, 6, 4]. The one aberration of ±163
lines is due to updates to an auto-generated package-lock.json. On the other hand, for task
instances requiring > 4 hours to fix, the gold patch sizes are [350, 186, 557, 367, 2682, 937].

Task instances with more descriptive problem statements tend to get rated as easier. The annota-
tors’ noted that more detailed descriptions and the presence of reproduction code made them more

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

inclined to reduce the estimated amount of time required. The images in the problem statement
also had an effect on the labeling. Annotators mentioned that screenshots of web elements and
source code helps developers localize errant code in a codebase faster. For instance in carbon and
next, many screenshots would point out spacing or coloring issues with a specific web component.
A screenshot is often informative for not only describing the problem, but also directly point out
which component folder the task worker should look into.

Finally, annotators noticed that sometimes, a small change can still take some time, particularly if
the edit is precise and requires a good amount of context to find. In addition to the size of a gold
patch edit, the quality of an edit, specifically the types of entities and symbols that were used in the
fix, influences the amount of time a problem takes. For instance, a larger edit that mostly consists
of JavaScript primitives is usually regarded as simpler than a shorter edit mostly made up of entities
from other parts of the codebase.

In conclusion, SWE-bench M presents task instances at a range of difficulties, from short quick fixes
to problems that require large scale refactoring of multiple modules in a codebase. The difficulty
distribution suggests that SWE-bench M can be effective for tracking improvements in model and
agent capabilities.

E LIMITATIONS

Broader scope To comprehensively evaluate multimodal AI systems, we curate 617 task instances
from 17 JavaScript libraries for SWE-Bench M. However, the scope could be broadened across three
key dimensions: (1) More programming languages: Besides JavaScript, multimodal content also
appears in issues related to code in other programming languages, such as Python, C++, or Rust.
(2) More modalities: While images and videos are likely the most commonly used media besides
text in GitHub issues, users can also upload audio files or other media and file types. (3) More
tasks: Our 617 tasks across 17 libraries cover various domains including web frameworks, data
visualization and syntax highlighting, however, there are many more JavaScript libraries in other
domains that could be added to the benchmark. We are excited about research broadening the scope
across these and other axes. However, here we focus on quality over quantity. Scope extensions
likely warrant separate dedicated future work, as we found that adding task instances to SWE-bench
M was a labor-intensive task.

Improved models and environments While we primarily focus on developing the benchmark
and evaluating current models, we also extend SWE-Agent to handle multimodal issues. There
remains substantial opportunity for future enhancements, both by advancing the underlying models
(e.g., leveraging future versions of GPT and Claude) and by enriching the agent’s environment with,
for example, better browsing capabilities or more tools. We look forward to seeing future work
along these lines to improve performance on SWE-Bench Multimodal beyond the systems that we
present.
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