
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images

Matthew D. Hoffman1 Tuan Anh Le1 Pavel Sountsov1

Google Research Google Research Google Research

Christopher Suter Ben Lee Vikash K. Mansinghka Rif A. Saurous
Google Research Google Research MIT, Google Research Google Research

Abstract

The problem of inferring object shape from a sin-
gle 2D image is underconstrained. Prior knowl-
edge about what objects are plausible can help,
but even given such prior knowledge there may
still be uncertainty about the shapes of occluded
parts of objects. Recently, conditional neural ra-
diance field (NeRF) models have been developed
that can learn to infer good point estimates of
3D models from single 2D images. The prob-
lem of inferring uncertainty estimates for these
models has received less attention. In this work,
we propose probabilistic NeRF (ProbNeRF), a
model and inference strategy for learning prob-
abilistic generative models of 3D objects’ shapes
and appearances, and for doing posterior infer-
ence to recover those properties from 2D im-
ages. ProbNeRF is trained as a variational au-
toencoder, but at test time we use Hamiltonian
Monte Carlo (HMC) for inference. Given one
or a few 2D images of an object (which may be
partially occluded), ProbNeRF is able not only to
accurately model the parts it sees, but also to pro-
pose realistic and diverse hypotheses about the
parts it does not see. We show that key to the
success of ProbNeRF are (i) a deterministic ren-
dering scheme, (ii) an annealed-HMC strategy,
(iii) a hypernetwork-based decoder architecture,
and (iv) doing inference over a full set of NeRF
weights, rather than just a low-dimensional code.

1 INTRODUCTION

Neural radiance fields (NeRFs; Mildenhall et al., 2020) are
remarkably good at estimating the 3D geometry of an ob-
ject from 2D images of that object. A neural network (typ-
ically a modest-size multilayer perceptron) maps from 5D

1Equal contribution.

position-direction inputs to a 4D color-density output; this
neural radiance field is plugged into a volumetric render-
ing equation (Blinn, 1982) to obtain images of the field
from various viewpoints, and trained to minimize the mean
squared error in RGB space between the rendered images
and the training images.

This procedure works well when the training images are
taken from enough viewpoints to fully constrain the geom-
etry of the scene or object being modeled. But it fails when
only one or two images are available; one cannot infer 3D
geometry from a single 2D image without prior knowledge
about what sorts of shapes are plausible. To address this
issue, various extensions of NeRF have incorporated im-
plicit and explicit priors, yielding impressive one- or few-
shot novel-view reconstructions and/or unconditional sam-
ples (Yu et al., 2021; Kosiorek et al., 2021; Rebain et al.,
2022a; Rematas et al., 2021; Dupont et al., 2022; Jang and
Agapito, 2021; Wang et al., 2021; Trevithick and Yang,
2021; Chen et al., 2021).

But even with a good shape prior, there may still be un-
certainty about the shape and appearance of unseen parts
of the object. Although existing approaches can infer rea-
sonable point estimates from a single image, they generally
fail to account for this uncertainty.

We propose probabilistic NeRF (ProbNeRF), a system for
learning priors on NeRF representations of 3D objects and
for doing inference on those representations. At a high
level, ProbNeRF is trained using the variational autoen-
coder (Kingma and Welling, 2014; Rezende et al., 2014)
framework, using amortized variational inference to speed
up training. At test time, we use Hamiltonian Monte Carlo
(Neal et al., 2011) to sample from the posterior over NeRFs
that are consistent with a set of input views. Several tech-
nical contributions proved necessary to achieving high-
fidelity reconstruction and robust shape uncertainty with
this design:

• Instead of the Monte Carlo rendering strategy em-
ployed by Mildenhall et al. (2020) and most subse-

ar
X

iv
:2

21
0.

17
41

5v
1

 [
cs

.C
V

]
 2

7
O

ct
 2

02
2

ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images

p1-384, d

z

HyperNet

NeRF
g(w+δ, rn)

δ

Alpha
blending

yn

rn

128

20868

128x128x3128x128x384x4128x128x384x3
128x128x3

20868

Ray-foam
intersections

Encoder

z
128

10x128x128x3

rn

Test-only

Train-only
surrogate
posterior

h(z, θ) q(yn, rn,φ)

Generative model

KL(Q||P)

Prior m(ζ)

perturbations

Noise
N(rgb, s2)

Fixed-size foam
128x128x128

yn

Context views
and cameras

Figure 1: High-level diagram of the ProbNeRF generative process and training procedure. See Section 2 for details.

quent work, we use an exact renderer based on the
work of (Chen et al., 2022). HMC works well with
this renderer, but rejects nearly all of its proposals with
the standard renderer.

• We employ a temperature-annealing strategy in our
HMC sampler to make it more robust to isolated
modes that arise from the non-log-concave likelihood.

• We employ a two-stage hypernetwork-based decoder,
rather than a single-network strategy such as latent
concatenation. This design lets us represent each ob-
ject using a relatively small NeRF, which dramatically
reduces per-pixel rendering costs (and therefore the
cost of iterative test-time inference).

• In addition to a low-dimensional latent code, we treat
the raw weights of each object’s NeRF representation
as random variables to be inferred. This eliminates
the latent-code bottleneck from our model, allowing
high-fidelity reconstruction of novel objects.

2 METHOD

In this section, we describe the ProbNeRF generative pro-
cess, training procedure, and test-time inference procedure,
as well as the neural architectures that implement them.

2.1 Generative Process

Let fw(x, v) be a function that, given some neural network
weights w, a position x ∈ R3, and a viewing direction v ∈
S2, outputs a density σ ∈ R+ and an RGB color c ∈ [0, 1]3.
Let g(w, r) be a rendering function that maps from a ray
r and the conditional field fw to a color y ∈ [0, 1]3 by
querying fw at various points along the ray r. (The renderer
we use is defined in detail in Section 2.5.)

ProbNeRF assumes that, given a set of rays r1:N a set of
pixels y1:N is generated by the following process: sample
an abstract object code z from a standard normal distribu-
tion pushed forward through an invertible RealNVP map

m (Dinh et al., 2017), run it through a hypernetwork to get
a set of NeRF weights w, perturb those weights with low-
variance Gaussian noise, render the resulting model, and
add some pixelwise Gaussian noise. More formally,

z̃ ∼ N (0, I); z = m(z̃; ζ); w = h(z; θ); (1)

δ ∼ N (0, I); w̃ = w +
√
αδ; yn ∼ N (g(w̃, rn), s

2),

where m(·; ζ) is an invertible RealNVP (Dinh et al., 2017)
function with parameters ζ, z ∈ RK is a latent code that
summarizes the object’s shape and appearance, h(z; θ) is a
hypernetwork with parameters θ that maps from codes z to
NeRF weights w, and α and s2 are scalar variance parame-
ters. The generative process is summarized in Figure 1.

This generative process is similar to the one assumed by
Kosiorek et al. (2021); Dupont et al. (2022): a latent code
z is sampled from a learned prior defined by a RealNVP,
and used to index a learned family of NeRFs. There are
two main differences. The first difference is architectural:
we use a hypernetwork (Ha et al., 2017) to generate a full
set of NeRF weights instead of concatenating the latent
code z to the input and activations1. This hypernetwork ap-
proach generalizes the latent-concatenation approach, and
recent theoretical results (Galanti and Wolf, 2020) argue
that hypernetworks should allow us to achieve a similar
level of expressivity to the latent-concatenation strategy us-
ing a smaller architecture for f—intuitively, putting many
parameters into a large, expressive hypernetwork makes it
easier to learn a mapping to a compact function represen-
tation. This leads to large savings at both train and test
time if we need to render many rays per object, since we
can amortize the cost of an expensive mapping from z to w
over hundreds or thousands of rays, each of which requires
many function evaluations to render. For comparison, the
NeRF architecture employed by Dupont et al. (2022) is an
MLP with 15 layers of 512 hidden units, whereas in our ex-
periments we get competitive results using a four-hidden-

1Dupont et al. (2022) frame their approach in terms of FiLM-
style modulations (Perez et al., 2018) rather than concatenation;
we show in the supplement that their latent-shift strategy is equiv-
alent to concatenating a latent code to the activations at each layer.

Hoffman, Le, Sountsov, Suter, Lee, Mansinghka, Saurous

Co
nd

. v
ie

w

Ground truth Sample 1 Sample 2 Sample 3 Variance Sample 1 Sample 2 Sample 3 Variance

Te
st

 v
ie

w
1

Te
st

 v
ie

w
2

Co
nd

. v
ie

w
Te

st
 v

ie
w

1
Te

st
 v

ie
w

2

HMC VI

Figure 2: Conditioned on either the left half a view of a GHUM body (top left) or a back view of an SRN car (1st column,
4th row), HMC produces samples (columns 2–4) that are realistic, consistent with the conditioned-on view, and diverse
as shown by the per-pixel variance (column 5). VI produces realistic and consistent samples (columns 6–8), but they
have almost no diversity (last column). Renderings from novel views (rows 2–3/5–6) highlight the diversity of the HMC
samples, in e.g. the poses of the left arm and the left leg or the variation of the car’s shape, spoiler and color.

layer architecture with 64 hidden units—a cost savings of
more than two orders of magnitude per function evaluation.
Without this reduction in rendering costs, iterative MCMC
methods for test-time inference would be impractical.

The second main difference between the ProbNeRF gen-
erative process and previous generative models of NeRFs
is that we allow for small perturbations of the weights w.
This is essentially a measure to address misspecification
(cf. e.g., Kleijn and van der Vaart, 2012); it ensures that
our prior on NeRFs has positive support on the full range
of functions {fw̃ | w̃ ∈ RD}, rather than the much smaller
manifold of functions {fw | w = h(z; θ) for some z ∈
RK}. We choose the variance α = 0.0252 on the weights
to be small enough not to introduce noticeable artifacts,
but large enough that the likelihood signal from a high-
resolution image can overwhelm the prior preference to
stay near the manifold defined by the mapping from z to
w. That way, even if the range of the hypernetwork does
not include a parameter vector w that accurately represents

an object (for example, due to limited capacity or overfit-
ting), the posterior p(w̃ | r, y) will still concentrate around
a good set of parameters w̃ with more data.

2.2 Training Procedure

We train ProbNeRF models using a variational autoencoder
(Kingma and Welling, 2014; Rezende et al., 2014) strategy,
with a simplified generative process that omits the pertur-
bation from w to w̃:

z̃ ∼ N (0, I); z = m(z̃; ζ); w = h(z; θ);

yn ∼ N (g(w, rn), s
2).

(2)

We omit these perturbations at training time to force the
model to learn hypernet parameters θ and RealNVP pa-
rameters ζ that can explain the training data well without
relying on perturbations. The perturbations δ are intended
to allow the model as an inference-time “last resort” to ex-
plain factors of variation that were not in the training set; at
training time we do not want δ to explain away variations

ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images

that could be explained using z, since the model lacks a
mechanism to learn a meaningful prior on δ.

To compute a variational approximation q(z | y, r) to the
posterior p(z | y, r), we use a convolutional neural net-
work (CNN; LeCun and Bengio, 1998) to map from each
RGB image and camera matrix to a diagonal-covariance
K-dimensional Gaussian potential, parameterized as loca-
tions µj and precisions τj for the jth image; these poten-
tials are meant to approximate the influence of the like-
lihood function on the posterior (Johnson et al., 2016;
Sønderby et al., 2016). We combine these J potentials
with a learned “prior” potential parameterized by location
µ0 and precisions τ0 via the Gaussian update formulas

τ̂ =
∑J

j=0 τj ; µ̂ = τ̂−1
∑J

j=0 τjµj (3)

and set q(zk | y, r) = N (zk; µ̂k, τ̂
−1
k).

We train the encoder parameters φ, the hypernet parame-
ters θ, and the RealNVP parameters ζ by maximizing the
evidence lower bound (ELBO) using Adam (Kingma and
Ba, 2015):

L = Eq[log p(y | z, r)− log q(z|y,r)
p(z)]

= Eq

[
log p(y | z, r)− log q(z|y,r)

N (m−1(z);0,I)| dm−1

dz |

]
.

(4)

We train on minibatches of 8 objects and 10 randomly se-
lected images per object to give the encoder enough infor-
mation to infer a good latent code z. The encoder sees all
10 images, but to reduce rendering costs we compute an
unbiased estimate of the log-likelihood log p(y | z, r) from
a random subsample of 1024 rays per object.

2.3 Architectures

For each object’s NeRF, we use two MLPs, each with two
hidden layers of width 64. The first MLP maps from posi-
tion to density; the second maps from position, view direc-
tion, and density to color. All positions and view directions
are first transformed using a 10th-order sinusoidal encod-
ing (Mildenhall et al., 2020). The number of parameters
per object is 20,868, relatively few for a NeRF.

The RealNVP network that implements the mapping from
z̃ to z comprises two pairs of coupling layers. Each cou-
pling layer is implemented as an MLP with one 512-unit
hidden layer that shifts and rescales half of the variables
conditioned on the other half; each pair of coupling layers
updates a complementary set of variables. The variables
are randomly permuted after each pair of coupling layers.

The hypernetwork that maps from the 128-dimensional
code z to the 20,868 NeRF weights is a two-layer 512-
hidden-unit MLP. This mapping uses a similar number of
FLOPs to rendering a few pixels (see Section 2.5).

The encoder network applies a 5-layer CNN to each image
and a two-layer MLP to its camera-world matrix, then lin-
early maps the concatenated the image and camera activa-
tions to locations and log-scales for each image’s Gaussian
potential. (Full architectural details in supplement.)

All networks use ReLU nonlinearities.

2.4 Test-Time Inference

The training procedure outlined above is able to learn a
good RealNVP prior on codes and to reconstruct training-
set examples accurately. However, we found that the
trained encoder generalizes poorly to held-out examples—
it is useful scaffolding for training the model, but fails to
accurately reconstruct objects it was not trained on. Fur-
thermore, variational inference is well known to underesti-
mate posterior uncertainty (e.g., Yao et al., 2018), and one
of our primary goals is to capture uncertainty about object
shape and appearance.

As an alternative, at inference time we turn to Hamilto-
nian Monte Carlo (HMC; Neal et al., 2011), a gradient-
based Markov chain Monte Carlo (MCMC) method that
uses momentum to mitigate poor conditioning of the tar-
get log-density function. Rather than sample in z, w̃ space,
we use the noncentered parameterization and sample from
p(z̃, δ | y, r) (Betancourt and Girolami, 2015), since the
joint prior for z̃ and δ is a well-behaved spherical normal.
(Note that only the prior’s contribution to the posterior is
simple; the likelihood still makes things difficult.)

HMC is a powerful MCMC algorithm, but it can still get
trapped in isolated modes of the posterior. Running multi-
ple chains in parallel can provide samples from multiple
modes, but it may be that some chains find (but cannot
escape from) modes that have negligible mass under the
posterior. A conditioning problem also arises in inverse
problems where some degrees of freedom are poorly con-
strained by the likelihood: as the level of observation noise
decreases it becomes necessary to use a smaller step size,
but the distance in the latent space between independent
samples may stay almost constant (Langmore et al., 2021).

To make our sampling procedure more robust to mi-
nor modes and poor conditioning, we use a temperature-
annealing strategy (e.g., Kirkpatrick et al., 1983; Neal,
2001). Over the course of T HMC iterations, we re-
duce the observation-noise scale s logarithmically from a
high initial value s0 to a low final value sT , with st =

s
(T−t)/T
0 s

t/T
T (for a Gaussian likelihood, this is equivalent

to annealing the “temperature” of the likelihood). That is,
we start out targeting a distribution that is close to the prior,
and gradually increase the influence of the likelihood until
we are targeting the posterior. We also anneal the step size
so that it is proportional to st. This procedure lets the sam-
pler explore the latent space thoroughly at higher temper-

Hoffman, Le, Sountsov, Suter, Lee, Mansinghka, Saurous

cond view held-out views
0

10

20

30

PSNR | SRN cars back view

cond view held-out views
0

100

200

FID | SRN cars back view

cond view held-out views
0.000

0.002

0.004

0.006
Var[RGB] | SRN cars back view

cond view held-out views
0

10

20

30

PSNR | SRN cars 3/4 view

cond view held-out views
0

100

200

FID | SRN cars 3/4 view

cond view held-out views
0.000

0.002

0.004

0.006
Var[RGB] | SRN cars 3/4 view

cond view held-out views
0

20

40
PSNR | GHUM cropped

cond view held-out views
0

20

40
FID | GHUM cropped

cond view held-out views
0.0000

0.0005

0.0010

0.0015
Var[RGB] | GHUM cropped

VI P(z | y, r) HMC P(z | y, r) VI P(z, | y, r) HMC P(z, | y, r) Functa

Figure 3: Posterior-predictive metrics for VI and HMC on the ProbNeRF model and MAP inference on Functa (where
appropriate) on held-out data for SRN Cars and GHUM. For SRN cars, the top two rows condition on a uninformative
back view and an informative 3/4 view respectively, and evaluate on 3 held-out views. For GHUM the bottom row is
conditioned on the left-half crop of a front view, evaluated on 4 held-out views. We compare VI and HMC on full ProbNeRF
(p(z̃, δ | y, r)) and an ablation where the δ is omitted (p(z̃ | y, r, δ = 0)). The first column shows reconstruction quality in
PSNR. The middle column is FID score, measuring whether reconstructions look like test examples from the corresponding
view(s). The last column shows the variance of RGB values in the reconstructed images, measuring posterior diversity.

atures before settling into a state that achieves low recon-
struction error. In Section 3.3.2, we show that this anneal-
ing procedure yields more-consistent results than running
HMC at a low fixed temperature.

2.5 Exact Rendering

NeRFs (Mildenhall et al., 2020) generally employ a
stochastic quadrature approximation of the rendering inte-
gral. Although this procedure is deterministic at test time,
we have found empirically that its gradients are not reliable
enough to use in HMC (see Section 3.3.1).

While stochastic-gradient methods are robust to the noise
from this procedure, standard HMC methods are not (Be-
tancourt, 2015). Stochastic-gradient HMC methods do ex-
ist (Ma et al., 2015), but require omitting the Metropolis
correction, which perturbs the stationary distribution unless
one uses a small step size and/or can accurately estimate the
(high-dimensional) covariance of the gradient noise.

Instead, we employ a simplified version of the renderer
used in Chen et al. (2022). We assume all density is
concentrated in a “foam” consisting of the surfaces of a
128x128x128 lattice of cubes. Since there is no density
inside the cubes, we can render a ray by enumerating all

ray-cube intersection points, computing opacities and col-
ors at each intersection, and alpha-compositing the result.
This simplification avoids the need to map the latent code
to grid vertices as in Chen et al. (2022). Rendering a ray
requires at most 128 × 3 = 384 function evaluations (not
1283). In Section 3.3.1 we show that this renderer works
well with HMC, while HMC with the standard quadrature
scheme cannot achieve high acceptance rates.

3 EXPERIMENTS

In this section, we qualitatively and quantitatively evalu-
ate ProbNeRF’s ability to generate realistic-looking con-
ditional and unconditional samples, as measured by FID
score (Heusel et al., 2017); accurately reconstruct the views
we condition on; and, given a single image, generate di-
verse and plausible hypotheses about what an object looks
like from other views. We also apply a set of ablations to
demonstrate the value of using an exact renderer when do-
ing MCMC, using temperature annealing in our HMC pro-
cedure, and doing posterior inference over the raw NeRF
weights as well as the latent code.

We evaluate ProbNeRF on two datasets: SRN Cars (Sitz-
mann et al., 2019), and a set of renderings from the GHUM

ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images

generative model (Xu et al., 2020). We use the standard
SRN Cars dataset with 2458 train cars and 704 test cars.
GHUM is a generative model fit on a dataset of 60,000
photo-realistic body scans that comprises of normally dis-
tributed latent codes corresponding to the facial expression,
body pose, and body shape which are decoded into a 3D
mesh which can be rendered given a camera pose. To iso-
late the representation of uncertainty over body poses, we
construct a dataset by sampling a code for body pose while
setting the facial expression and body shape codes to zero.
We generate 2500 training examples, each containing 50
views from cameras pointing to the middle of the body with
poses sampled uniformly from a fixed-radius circle around
the body, parallel to the ground plane and elevated to the
middle of the body. We generate 100 test examples, each
containing 50 views in a similar way except the camera
poses are equally spaced points on the circle. All images
have resolution 128×128. All models were trained for one
million iterations with an observation noise scale s = 0.1.

3.1 Posterior Inference

We want ProbNeRF to accurately reconstruct the view it
is conditioned on and produce realistic and diverse recon-
structions of held out views. To quantitatively assess this,
we measure reconstruction quality using the PSNR metric
(Wang et al., 2004), realism using the FID score (Heusel
et al., 2017), and diversity using average per-pixel variance.

We compare ProbNeRF with baseline methods along the
inference and the modeling axes. For inference, we com-
pare ProbNeRF’s HMC inference procedure with an it-
erative mean-field variational inference (VI) procedure fit
using Adam and sticking-the-landing gradients (Roeder
et al., 2017). For modeling, we compare ProbNeRF with
“Functa” (Dupont et al., 2022) which proposes separately
extracting a compressed representation—a functum—for
each training example and doing probabilistic modeling
and inference on top of the functa.

To compare between HMC and VI, we use the same trained
ProbNeRF model and for each test example pick a con-
ditioning view (y, r) and a set of H = 4 held out views
{(y′h, r′h)}Hh=1. For both HMC and VI, we produce a set
of L samples {(z̃`, δ`)}L`=1 targeting the single view poste-
rior p(z̃, δ|y, r) which are used to produce renderings from
the conditioning view y` = g(w̃`, r) and from the held-out
view y′`h = g(w̃`, r

′
h). We chose a perturbation variance

α of 0.0252 by rendering perturbed weights with different
amounts of Gaussian noise and choosing the largest vari-
ance that did not produce significant artifacts.

In HMC, we obtain samples by running 8 independent
chains with the annealing procedure described in Sec-
tion 2.4 and taking the last 16 samples in each chain. In
all experiments, we run annealed HMC for T = 100 steps
with 100 leapfrog steps per HMC step, for a total of 10,000

Figure 4: Unconditional GHUM and SRN Cars samples.

gradient evaluations. The noise scale s is annealed from
s0 = 5 to sT = 0.1 In VI, we approximate the posterior
using an independent normal distribution for each element
of the latent variable (z̃, δ) parameterized by the location
µ and log scale log σ. We maximize the evidence lower
bound with respect to (µ, log σ) using 1500 gradient steps
and generate 16 samples using the final parameters.

We find that while both HMC and VI produce high-quality
(high PSNR) and realistic (low FID) reconstructions, HMC
produces significantly more-diverse held-out reconstruc-
tions (higher mean per-pixel variance) for both SRN Cars
and GHUM (Fig. 3). This is qualitatively illustrated in
Fig. 2 where we show three samples for each HMC and
VI rendered from the conditioning view and two held out
views alongside the per-pixel variance shown as a heatmap
(more HMC samples can be found in the supplement).
HMC samples show diversity in the pose of the left arm
and the left leg in the GHUM example and in the varia-
tion of the spoiler, bumper and taillights in the SRN Cars
example. VI samples show almost no diversity.

To compare between ProbNeRF and Functa, we train a
Functa model on SRN Cars using the open-sourced code
to obtain a functaset of training-set modulations. We fit
the RealNVP prior used for our model instead of a neu-
ral spline flow (Durkan et al., 2019) or denoising diffusion
probabilistic model (Ho et al., 2020), as done in Functa,
since the prior-fitting code is not released. We note that
this may be a source of difference in our reproduction. For
each test example, we obtain a modulation code by per-
forming a 1000-step gradient-based MAP search given the
observed view (y, r) as per equation 2 in (Dupont et al.,
2022). These modulation codes are then rendered for the
conditioned view and the held-out views.

We find that Functa produces less-accurate, less-realistic,
and less-diverse reconstructions on both conditioned on
and held-out views than ProbNeRF (Fig. 3).

3.2 Generative Modeling

Our unconditional samples look realistic for both GHUM
and SRN Cars (Fig. 4; more in the supplementary material).
SRN Cars samples are on par with Functa in FID when it

Hoffman, Le, Sountsov, Suter, Lee, Mansinghka, Saurous

ProbNeRF Functa Functa (DDPM) π-GAN

FID ↓ 84.6 158.1 80.3 36.7

Table 1: FID for SRN Cars prior samples.

is trained using a denoising diffusion probabilistic model
(DDPM) prior (Ho et al., 2020) (Table 1). Both ProbNeRF
and Functa have a worse FID than π-GAN (Chan et al.,
2021) which focuses only on generation and cannot be triv-
ially extended to do uncertainty-aware inference. We hy-
pothesize that the gap between our retrained Functa model
and the results reported by Dupont et al. (2022) are due to
the lower expressivity of the RealNVP prior compared to a
DDPM prior (although DDPMs are much more expensive
to sample from and do posterior inference with).

3.3 Ablations

3.3.1 Exact Renderer

10 4 10 3 10 2

step size (log scale)

0.0

0.5

1.0

m
ea

n
ac

ce
pt

 ra
tio

Quadrature
Foam

Figure 5: HMC acceptance rates for quadrature and foam
renderers.

To demonstrate the difficulty of doing HMC with the ap-
proximate quadrature-based volumetric renderer (Milden-
hall et al., 2020) versus the exact foam renderer (Sec-
tion 2.5), we first trained models using the quadrature- and
foam-based renderers on SRN cars. We evaluate HMC on
each of these models using the appropriate renderer as fol-
lows. We sample a fixed z̃, δ pair from the prior for each
model and render a single view y of the resulting NeRF;
conditioned on this view, z̃, δ is a sample from the posterior
p(z̃, δ | y, r). For each of a variety of step sizes, we then
run 8 HMC chains with 10 leapfrog steps initialized from
this sample and targeting p(z̃, δ | y, r) for 20 iterations,
and report the average Metropolis acceptance rate across
the chains on the last iteration. HMC sampling using the
quadrature renderer suffers from low acceptance rates even
with tiny step sizes, while the foam renderer yields high
acceptance rates for small-enough step sizes (Fig. 5).

3.3.2 Temperature Annealing

In this section we qualitatively demonstrate the value of our
annealed-HMC strategy. Conditioning on the rear view of
an ambulance, we ran HMC with annealing as described
in Section 2.4, and compare with HMC initialized in the
same way but without annealing and with a fixed step size

Co
nd

. v
ie

w

Ground Truth Lowest MSE Med. MSE Highest MSE

Te
st

 v
ie

w
Co

nd
. v

ie
w

Te
st

 v
ie

w
An

ne
al

ed
 H

M
C

Fi
xe

d-
Te

m
pe

ra
tu

re
 H

M
C

Figure 6: Renderings of samples generated by annealed
and fixed-temperature HMC conditioned on an image of
the rear of an ambulance (columns 2–4) and corresponding
ground-truth images (column 1). Rows 1 and 3 show the
conditioned-on view, rows 2 and 4 show a held-out view.
Samples are selected to have the lowest (column 2), 4th-
lowest (column 3), or highest (column 4) squared-error re-
construction of the conditioned-on view. Samples from all
8 chains are in the supplement.

of 0.0005 (we found it necessary to use a lower step size for
fixed-temperature HMC to ensure reasonable acceptance
rates across all chains). We ran both methods with 8 paral-
lel chains. Fig. 6 shows the last samples from each method.

The annealed-HMC procedure’s samples are both more
consistent and more faithful to the ground truth. This result
is consistent with the hypothesis that the annealing proce-
dure allows HMC to avoid low-mass modes of the posterior
and focus on more-plausible explanations of the data.

3.3.3 Inference Over Raw NeRF Weights

In addition to running HMC on ProbNeRF targeting both
the latent code and the raw NeRF weights, p(z̃, δ|y, r),
we run HMC on ProbNeRF targeting only the latent code,
p(z̃|y, r). Like in Section 3.1, we obtain L = 8 samples
by running L independent chains. We pick the 16 samples
from each chain and render reconstructions from the con-
ditioning view and H = 4 held-out views.

We show that performing inference over the raw NeRF
weights significantly increases the quality (higher PSNR)
and realism (lower FID) of the conditioned-on view recon-
struction while not having negative effects on held-out view

ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images

reconstruction performance (Fig. 3). Further, when condi-
tioning on high-information views, the quality and realism
of held-out views improves relative to when we only infer
the latent code. This supports our hypothesis that adding
raw NeRF weights as latent variables increases the support
with a positive prior over the radiance fields which lets our
system adapt to novel views given sufficiently informative
observations. Importantly, despite doing test-time infer-
ence in a model that is different from the model used dur-
ing training does not harm performance on reconstruction
of far away held-out views or prior sampling. For GHUM,
the discrepancy between ProbNeRF and latent-only Prob-
NeRF conditioned-on view reconstruction quality is not as
large, which we attribute to (i) a smaller discrepancy be-
tween training and test distributions and (ii) both models
being able to fit the training distribution well.

4 RELATED WORK

Neural fields for novel-scene inference. While classic
NeRFs (Mildenhall et al., 2020) are only fit on single
scenes, there have been many recent extensions allowing
novel scene or novel object inference. CodeNeRF (Jang
and Agapito, 2021) and LOLNeRF (Rebain et al., 2022a)
condition neural fields by concatenating inputs with per-
scene latent codes, and learn priors that are able to generate
coherent 3D geometry. PixelNeRF (Yu et al., 2021), IBR-
Net (Wang et al., 2021), GRF (Trevithick and Yang, 2021),
and MVSNeRF (Chen et al., 2021) exploit the geometry
of the conditioning view, known as “local conditioning”,
to inform novel-view reconstructions. As noted by Saj-
jadi et al. (2022), local conditioning generalizes less well
to views far from observations, and is more computation-
ally expensive. Sajjadi et al. (2022) explore using attention-
based mechanisms alongside a set-based latent representa-
tion which Rebain et al. (2022b) observes to be generally
superior to concatenation or hypernetwork-based methods.
However, hypernetworks are shown to perform nearly as
well as attention mechanisms, and attention is expensive,
especially for iterative posterior inference (Kosiorek et al.,
2021). Scene representation networks (Sitzmann et al.,
2019) also use hypernetwork conditioning, although on a
different neural representation. Similar to ShaRF (Rematas
et al., 2021), we also find that test-time inference of NeRF
weights alongside latent codes improves reconstructions,
especially when input images are highly informative.

Probabilistic neural scene representations. Like ProbN-
eRF, these methods go beyond single point estimates and
can represent multiple plausible scenes consistent with the
potentially low-information views. Generative Query Net-
works (Eslami et al., 2018; Rosenbaum et al., 2018) also
train a VAE system but use a convolutional decoder which
doesn’t enforce multi-view consistency. NeRF-VAE (Ko-
siorek et al., 2021) also combines VAEs and NeRFs, but
relies on latent-concatenation conditioning and amortized

VI, resulting in low-diversity novel-view reconstructions.
Concurrently with our work, Anonymous (2023) extends
NeRF-VAE to produce larger posterior diversity by using
normalizing flows, attention, and set-based latent represen-
tations; we were unable to evaluate it at the time of sub-
mission. GAUDI (Bautista et al., 2022) fits a diffusion-
based conditional generative model that can sample diverse
and plausible large-scale real world scenes given few ob-
served views, although the conditioning mechanism must
be trained from paired data, whereas ProbNeRF can condi-
tion on arbitrary sets of pixels and camera positions. 3DiM
(Watson et al., 2022) is a diffusion-based image-to-image
model that can synthesize diverse novel views of scenes,
but it does not guarantee multi-view consistency.

Other NeRF generative models. Schwarz et al. (2020);
Niemeyer and Geiger (2021); Chan et al. (2021) train NeRF
generative models using a discriminator loss from gener-
ative adversarial nets (GANs) (Goodfellow et al., 2014)
which produce high-quality, diverse samples. However,
GAN-style training often results in models that struggle
at reconstruction (Wu et al., 2017). DreamFusion (Poole
et al., 2022) generates impressive NeRF scenes given a text
prompt, but also does not focus on inference from images.

Exact rendering. DIVeR (Wu et al., 2021) introduces a
deterministic and exact renderer based on integrating tri-
linearly interpolated features exactly on a voxel grid. This
requires four times as many function evaluations or table
lookups per intersected voxel as the MobileNeRF strategy
we adapt (Chen et al., 2022).

Probabilistic programming for computer vision. Al-
though several probabilistic programming approaches to
computer vision use test-time Monte Carlo inference
(Mansinghka et al., 2013; Le et al., 2017; Kulkarni et al.,
2015; Gothoskar et al., 2021), they mainly focus on find-
ing one probable scene interpretation per 2D image (though
Mansinghka et al. (2013) demonstrate limited domain-
specific uncertainty reporting on a restricted class of road
scenes). In contrast, ProbNeRF characterizes shape and ap-
pearance uncertainty for open-ended classes of 3D objects.

5 DISCUSSION

Given a single low-information view of a novel object,
ProbNeRF can not only produce reasonable point estimates
of that object’s shape and appearance, but can also guess
what range of shapes and appearances are consistent with
the available data. Making these sorts of diverse (but co-
herent) guesses about unseen features of objects is a fun-
damental problem in in vision. ProbNeRF shows that it
is possible to simultaneously achieve high-fidelity recon-
struction and robust characterization of uncertainty within
the NeRF framework. One next step for future research
could be to quantify tradeoffs between model fidelity, infer-
ence efficiency, and uncertainty characterization, to support

Hoffman, Le, Sountsov, Suter, Lee, Mansinghka, Saurous

variations on ProbNeRF suitable for real-time applications
in robotics. More broadly, we hope ProbNeRF encourages
more research at the interface of Bayesian inference, 3D
graphics, and computer vision, enabling computer vision
systems that entertain diverse hypotheses about the world.

Acknowledgments

Thanks to Katie Colins, Varun Jampani, Adam Kosiorek,
Despoina Paschalidou, and Sharad Vikram for their helpful
comments, and to Alex Alemi, Kevin Murphy, and Andrea
Tagliasacchi for their timely and helpful feedback on the
manuscript.

References

Anonymous (2023). Laser: Latent set representations for
3d generative modeling. In Submitted to The Eleventh
International Conference on Learning Representations.
under review.

Bautista, M. A., Guo, P., Abnar, S., Talbott, W., Toshev,
A., Chen, Z., Dinh, L., Zhai, S., Goh, H., Ulbricht, D.,
et al. (2022). Gaudi: A neural architect for immersive 3d
scene generation. arXiv preprint arXiv:2207.13751.

Betancourt, M. (2015). The fundamental incompatibility
of scalable hamiltonian monte carlo and naive data sub-
sampling. In Proceedings of the 32nd International Con-
ference on Machine Learning, pages 533–540.

Betancourt, M. and Girolami, M. (2015). Hamiltonian
monte carlo for hierarchical models. Current trends in
Bayesian methodology with applications, 79(30):2–4.

Blinn, J. F. (1982). Light reflection functions for simula-
tion of clouds and dusty surfaces. SIGGRAPH Comput.
Graph., 16(3):21–29.

Chan, E. R., Monteiro, M., Kellnhofer, P., Wu, J., and Wet-
zstein, G. (2021). pi-gan: Periodic implicit generative
adversarial networks for 3d-aware image synthesis. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 5799–5809.

Chen, A., Xu, Z., Zhao, F., Zhang, X., Xiang, F., Yu, J., and
Su, H. (2021). Mvsnerf: Fast generalizable radiance field
reconstruction from multi-view stereo. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 14124–14133.

Chen, Z., Funkhouser, T., Hedman, P., and Tagliasacchi, A.
(2022). Mobilenerf: Exploiting the polygon rasterization
pipeline for efficient neural field rendering on mobile ar-
chitectures. arXiv preprint arXiv:2208.00277.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Den-
sity estimation using real NVP. In 5th International Con-
ference on Learning Representations.

Dupont, E., Kim, H., Eslami, S. A., Rezende, D. J., and
Rosenbaum, D. (2022). From data to functa: Your data

point is a function and you can treat it like one. In Inter-
national Conference on Machine Learning, pages 5694–
5725. PMLR.

Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G.
(2019). Neural spline flows. Advances in neural infor-
mation processing systems, 32.

Eslami, S. A., Jimenez Rezende, D., Besse, F., Viola, F.,
Morcos, A. S., Garnelo, M., Ruderman, A., Rusu, A. A.,
Danihelka, I., Gregor, K., et al. (2018). Neural scene
representation and rendering. Science, 360(6394):1204–
1210.

Galanti, T. and Wolf, L. (2020). On the modularity of hy-
pernetworks. Advances in Neural Information Process-
ing Systems, 33:10409–10419.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A. C., and Ben-
gio, Y. (2014). Generative adversarial nets. In NeurIPS.

Gothoskar, N., Cusumano-Towner, M., Zinberg, B.,
Ghavamizadeh, M., Pollok, F., Garrett, A., Tenen-
baum, J., Gutfreund, D., and Mansinghka, V. (2021).
3dp3: 3d scene perception via probabilistic program-
ming. Advances in Neural Information Processing Sys-
tems, 34:9600–9612.

Ha, D., Dai, A. M., and Le, Q. V. (2017). Hypernet-
works. In International Conference on Learning Rep-
resentations.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. (2017). GANs trained by a two time-scale
update rule converge to a local nash equilibrium. Ad-
vances in neural information processing systems, 30.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion
probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851.

Jang, W. and Agapito, L. (2021). Codenerf: Disentangled
neural radiance fields for object categories. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 12949–12958.

Johnson, M. J., Duvenaud, D. K., Wiltschko, A., Adams,
R. P., and Datta, S. R. (2016). Composing graphical
models with neural networks for structured representa-
tions and fast inference. Advances in neural information
processing systems, 29.

Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In International Conference on
Learning Representations.

Kingma, D. P. and Welling, M. (2014). Auto-encoding
variational bayes. In 2nd International Conference on
Learning Representations.

Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P.
(1983). Optimization by simulated annealing. science,
220(4598):671–680.

ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images

Kleijn, B. J. and van der Vaart, A. W. (2012). The
bernstein-von-mises theorem under misspecification.
Electronic Journal of Statistics, 6:354–381.

Kosiorek, A. R., Strathmann, H., Zoran, D., Moreno,
P., Schneider, R., Mokrá, S., and Rezende, D. J.
(2021). Nerf-vae: A geometry aware 3d scene gener-
ative model. In International Conference on Machine
Learning, pages 5742–5752. PMLR.

Kulkarni, T. D., Kohli, P., Tenenbaum, J. B., and Mans-
inghka, V. (2015). Picture: A probabilistic programming
language for scene perception. In Proceedings of the ieee
conference on computer vision and pattern recognition,
pages 4390–4399.

Langmore, I., Dikovsky, M., Geraedts, S., Norgaard, P.,
and von Behren, R. (2021). Hamiltonian monte carlo
in inverse problems; ill-conditioning and multi-modality.
arXiv preprint arXiv:2103.07515.

Le, T. A., Baydin, A. G., and Wood, F. (2017). Inference
compilation and universal probabilistic programming. In
Artificial Intelligence and Statistics, pages 1338–1348.
PMLR.

LeCun, Y. and Bengio, Y. (1998). Convolutional networks
for images, speech, and time series. In The handbook of
brain theory and neural networks, pages 255–258.

Ma, Y.-A., Chen, T., and Fox, E. (2015). A complete recipe
for stochastic gradient mcmc. Advances in neural infor-
mation processing systems, 28.

Mansinghka, V. K., Kulkarni, T. D., Perov, Y. N., and
Tenenbaum, J. (2013). Approximate bayesian image in-
terpretation using generative probabilistic graphics pro-
grams. Advances in Neural Information Processing Sys-
tems, 26.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. (2020). Nerf: Represent-
ing scenes as neural radiance fields for view synthesis.
In European conference on computer vision, pages 405–
421. Springer.

Neal, R. M. (2001). Annealed importance sampling. Statis-
tics and computing, 11(2):125–139.

Neal, R. M. et al. (2011). MCMC using Hamiltonian
dynamics. Handbook of markov chain monte carlo,
2(11):2.

Niemeyer, M. and Geiger, A. (2021). Giraffe: Representing
scenes as compositional generative neural feature fields.
In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and
Courville, A. C. (2018). Film: Visual reasoning with
a general conditioning layer. In AAAI.

Poole, B., Jain, A., Barron, J. T., and Mildenhall, B.
(2022). Dreamfusion: Text-to-3d using 2d diffusion.
arXiv preprint arXiv:2209.14988.

Rebain, D., Matthews, M., Yi, K. M., Lagun, D., and
Tagliasacchi, A. (2022a). Lolnerf: Learn from one look.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 1558–1567.

Rebain, D., Matthews, M. J., Yi, K. M., Sharma, G., Lagun,
D., and Tagliasacchi, A. (2022b). Attention beats con-
catenation for conditioning neural fields. arXiv preprint
arXiv:2209.10684.

Rematas, K., Martin-Brualla, R., and Ferrari, V. (2021).
Sharf: Shape-conditioned radiance fields from a single
view. In International Conference on Machine Learning,
pages 8948–8958. PMLR.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014).
Stochastic backpropagation and approximate inference
in deep generative models. In Proceedings of the 31st
International Conference on Machine Learning, pages
1278–1286.

Roeder, G., Wu, Y., and Duvenaud, D. K. (2017). Sticking
the landing: Simple, lower-variance gradient estimators
for variational inference. Advances in Neural Informa-
tion Processing Systems, 30.

Rosenbaum, D., Besse, F., Viola, F., Rezende, D. J., and
Eslami, S. M. A. (2018). Learning models for visual 3d
localization with implicit mapping.

Sajjadi, M. S., Meyer, H., Pot, E., Bergmann, U., Gr-
eff, K., Radwan, N., Vora, S., Lučić, M., Duckworth,
D., Dosovitskiy, A., et al. (2022). Scene representa-
tion transformer: Geometry-free novel view synthesis
through set-latent scene representations. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6229–6238.

Schwarz, K., Liao, Y., Niemeyer, M., and Geiger, A.
(2020). Graf: Generative radiance fields for 3d-aware
image synthesis. Advances in Neural Information Pro-
cessing Systems, 33:20154–20166.

Sitzmann, V., Zollhöfer, M., and Wetzstein, G. (2019).
Scene representation networks: Continuous 3d-
structure-aware neural scene representations. Advances
in Neural Information Processing Systems, 32.

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K.,
and Winther, O. (2016). Ladder variational autoen-
coders. Advances in neural information processing sys-
tems, 29.

Trevithick, A. and Yang, B. (2021). Grf: Learning a general
radiance field for 3d representation and rendering. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 15182–15192.

Wang, Q., Wang, Z., Genova, K., Srinivasan, P. P., Zhou,
H., Barron, J. T., Martin-Brualla, R., Snavely, N., and
Funkhouser, T. (2021). Ibrnet: Learning multi-view
image-based rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 4690–4699.

Hoffman, Le, Sountsov, Suter, Lee, Mansinghka, Saurous

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: from error visibility
to structural similarity. IEEE transactions on image pro-
cessing, 13(4):600–612.

Watson, D., Chan, W., Martin-Brualla, R., Ho, J.,
Tagliasacchi, A., and Norouzi, M. (2022). Novel view
synthesis with diffusion models.

Wu, L., Lee, J. Y., Bhattad, A., Wang, Y., and Forsyth, D.
(2021). DIVeR: Real-time and accurate neural radiance
fields with deterministic integration for volume render-
ing.

Wu, Y., Burda, Y., Salakhutdinov, R., and Grosse, R.
(2017). On the quantitative analysis of decoder-based
generative models. In International Conference on
Learning Representations.

Xu, H., Bazavan, E. G., Zanfir, A., Freeman, W. T., Suk-
thankar, R., and Sminchisescu, C. (2020). Ghum &
ghuml: Generative 3d human shape and articulated pose
models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6184–
6193.

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018).
Yes, but did it work?: Evaluating variational infer-
ence. In International Conference on Machine Learning,
pages 5581–5590. PMLR.

Yu, A., Ye, V., Tancik, M., and Kanazawa, A. (2021). pix-
elnerf: Neural radiance fields from one or few images. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4578–4587.

ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images

Appendix A Additional figures

Figures 7, 8, 9, and 10 show eight uncurated samples from HMC and VI for GHUM and SRN Cars (cf. Fig. 2). Figures 11,
12, 13, and 14 show eight uncurated HMC and VI samples generated by conditioning on uncropped single-view images
of two SRN cars. Both HMC and VI produce models that are realistic and consistent with the observed data, but samples
from the variational distribution obtained by VI are all essentially the same, while HMC produces samples with noticeable
diversity in pose (for GHUM) and shape and color (for SRN Cars).

Figures 15 and 16 show uncurated unconditional samples from the trained models.

Fig. 17 shows uncurated samples conditioned on the rear view of an ambulance (cf. Fig. 6) generated using HMC with
temperature annealing and with a fixed temperature. Annealed HMC consistently finds solutions that are consistent with
the conditioned-on view; fixed-temperature HMC does not.

Co
nd

. v
ie

w

Ground truth Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8

Te
st

 v
ie

w
1

Te
st

 v
ie

w
2

Figure 7: Uncurated GHUM HMC samples.

Co
nd

. v
ie

w

Ground truth Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8

Te
st

 v
ie

w
1

Te
st

 v
ie

w
2

Figure 8: Uncurated GHUM VI samples.

Appendix B Architecture details

In this section we briefly describe the architectural details of ProbNerf neural nets. Fig. 18 contains the architectures used
in this work.

HyperNet h(z; θ) is a simple MLP with two shared hidden layers, followed by a learnable linear projection and reshape
operations to produce the parameters of the two NeRF networks.

Hoffman, Le, Sountsov, Suter, Lee, Mansinghka, Saurous

Co
nd

. v
ie

w
Ground truth Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8

Te
st

 v
ie

w
1

Te
st

 v
ie

w
2

Figure 9: Uncurated SRN Cars HMC Samples

Co
nd

. v
ie

w

Ground truth Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8

Te
st

 v
ie

w
1

Te
st

 v
ie

w
2

Figure 10: Uncurated SRN Cars VI samples.

Co
nd

. v
ie

w

Ground truth Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8

Te
st

 v
ie

w
1

Te
st

 v
ie

w
2

Figure 11: Full-view grey SRN Cars HMC samples.

RealNVP m(z̃; ζ) consists of 4 RealNVP blocks which act on a latent vector split into 2 parts (designated as z0 and z1 in
the diagram). The split sense is reversed between the RealNVP blocks.

NeRF The NeRF is split into two sub-networks, one for density and one for color. The input position p and ray direction d

ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images

Co
nd

. v
ie

w
Ground truth Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8

Te
st

 v
ie

w
1

Te
st

 v
ie

w
2

Figure 12: Uncurated full-view grey SRN Cars VI samples.

Co
nd

. v
ie

w

Ground truth Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8

Te
st

 v
ie

w
1

Te
st

 v
ie

w
2

Figure 13: Uncurated full-view green SRN Cars HMC samples.

Co
nd

. v
ie

w

Ground truth Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8

Te
st

 v
ie

w
1

Te
st

 v
ie

w
2

Figure 14: Uncurated full-view green SRN Cars VI samples.

are encoded using a 10th order sinusoidal positional encoding. For a scalar component of the input vector xi we produce a
feature:

fi = {sin(2jπxi + 0.5k)|j ∈ [0, 10), k ∈ [0, 1]}. (5)

Hoffman, Le, Sountsov, Suter, Lee, Mansinghka, Saurous

Figure 15: GHUM unconditional samples.

ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images

Figure 16: SRN Cars unconditional samples.

Hoffman, Le, Sountsov, Suter, Lee, Mansinghka, Saurous

Co
nd

. v
ie

w

Ground Truth Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8

Te
st

 v
ie

w
1

Te
st

 v
ie

w
2

Co
nd

. v
ie

w
Te

st
 v

ie
w

1
Te

st
 v

ie
w

2

An
ne

al
ed

 H
M

C
Fi

xe
d-

Te
m

pe
ra

tu
re

 H
M

C

Figure 17: Uncurated annealed and fixed-temperature HMC samples.

ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images

p

posenc 0,10

dense, relu

dense, softplus

density

p

posenc 0,10

dense, relu

dense, relu

dense, sigmoid

rgb

ddensity

concat

z

dense, relu

dense, relu

dense
12x

dense, relu

3

64

64

1

3

1

3

63 63 63

127

64

64

3

128

512

params

512

conv 3x3, 2x2, relu

128x128x3

conv 3x3, 2x2, relu

conv 3x3, 2x2, relu

conv 3x3, 2x2, relu

conv 3x3, 2x2, relu

avg_pool 2x2, 2x2

concat

cam_to_world

dense, relu

dense

64x64x16

32x32x32

16x16x64

8x8x128

4x4x256

2x2x256

4x4

512

512

1536

rgb

1536

dense, expdense

128 128

μ σ

HyperNet

NeRF density NeRF color

Encoder
z0

dense, relu

64

dense dense, exp

512 512

RealNVP Block (4x)

z1 shift + scale

z'0

z'1
64

64 64

64

posenc 0,10

Figure 18: Neural Nets used in ProbNerf

We flatten and concatenate this array with the original input value to produce a 21 element feature vector for each xi. To
convert output density σ ∈ R+ to α ∈ [0, 1] we squash it as α = 1− exp(−σ/128), where 128 is the grid size.

Encoder Each potential of the variational posterior is modeled as a diagonal covariance Gaussian with mean µ and scale
σ computed via a CNN.

Appendix C Equivalence of linear latent-shift modulations and latent concatenation

The linear shift-only modulations used by Dupont et al. (2022) work as follows for an MLP: given a latent vector z, for
each layer’s output pre-nonlinearity activations a(i) (treating the input as an activation vector a(0)), add a shift vector
s(i) = V (i)z that is a linear function of z to get a′(i) = a(i) + s(i), and propagate a′ forward through the network instead
of a.

The same effect can be achieved by concatenating z to the activations a′(i) at each level i of the network. The resulting
computation is

a′(i) =W (i)(σ(a′(i−1))>, z>)> + b(i)

, W̃ (i)σ(a′(i−1)) + b(i) + V (i)z

≡ a(i) + s(i),

(6)

whereW (i) denotes the weight matrix at layer i, b(i) denotes the biases at layer i, σ denotes a nonlinear activation function,
and we define W̃ (i) and V (i) to be the submatrices ofW (i) that are multiplied by the previous layer’s activations σ(a′(i−1))
and the concatenated latents z respectively.

	1 INTRODUCTION
	2 METHOD
	2.1 Generative Process
	2.2 Training Procedure
	2.3 Architectures
	2.4 Test-Time Inference
	2.5 Exact Rendering

	3 EXPERIMENTS
	3.1 Posterior Inference
	3.2 Generative Modeling
	3.3 Ablations
	3.3.1 Exact Renderer
	3.3.2 Temperature Annealing
	3.3.3 Inference Over Raw NeRF Weights

	4 RELATED WORK
	5 DISCUSSION
	A Additional figures
	B Architecture details
	C Equivalence of linear latent-shift modulations and latent concatenation

