
Structured Pruning for Large Language Models Using Coupled
Components Elimination and Minor Fine-tuning

Anonymous ACL submission

Abstract

Large language models (LLMs) have demon-001
strated powerful capabilities in natural lan-002
guage processing, yet their vast number of pa-003
rameters poses challenges for deployment and004
inference efficiency. Structured model pruning005
emerges as a viable approach to reduce model006
size and accelerate inference, without requir-007
ing specialized operators and libraries for de-008
ployment. However, structured pruning often009
severely weakens the model’s capability. De-010
spite repetitive fine-tuning can restore the capa-011
bility to a certain extent, it impairs LLMs’ util-012
ity as versatile problem solvers. To address this013
issue, we propose a novel structured pruning014
algorithm tailored for LLMs. It derives the im-015
portance of different components, namely rows016
and columns in parameter matrices, based on in-017
termediate data dependencies. Then it removes018
coupled components across different layers si-019
multaneously and preserves dependency rela-020
tionships within remaining parameters, avoid-021
ing significant performance degradation. The022
pruned model requires only few epochs of fine-023
tuning to restore its performance, ensuring the024
model’s ability to generalize. Empirical eval-025
uations on LLaMA, Vicuna, and ChatGLM3026
demonstrate our algorithm’s efficacy, yielding027
20% parameter reduction while retaining at028
least 94.4% of original performance metrics.029

1 Introduction030

Large language models (LLMs) have demonstrated031

powerful capabilities in solving a variety of gen-032

eral problems (OpenAI, 2023; Xue et al., 2020),033

particularly in language understanding and gener-034

ating. However, the large number of parameters035

(Radford et al., 2018, 2019; Brown et al., 2020)036

in LLMs poses significant challenges for deploy-037

ment and inference efficiency. Structured pruning038

(Wang et al., 2019; Xia et al., 2022; Zafrir et al.,039

2021) has been proved to be a viable approach to040

compress deep neural networks. It removes entire041

structural components of the neural network, with- 042

out requiring specialized operators and libraries for 043

executing the pruned model, so that it is convenient 044

for deployment and acceleration. 045

Despite structured pruning algorithms have long 046

been investigated (Lagunas et al., 2021; He et al., 047

2020; Kurtic et al., 2022), they face new challenges 048

when tackling LLMs. Existing state-of-the-art 049

pruning algorithms follow an iterative scheme (Han 050

et al., 2015a; Louizos et al., 2017; Xia et al., 2022; 051

Zafrir et al., 2021) for specific tasks. This scheme 052

conducts iterative evaluating, pruning and fine- 053

tuning on a large model for a single task, achieving 054

low performance degradation. However, due to the 055

repetitive fine-tuning on a single task, the pruned 056

model has much less generalization ability on other 057

tasks. This is a particularly serious issue for LLMs, 058

since they are expected to be general-purpose mod- 059

els solving extensive problems. Simply extending 060

the fine-tuning on more corpus and tasks to reserve 061

the generalization ability is still challenging (Ma 062

et al., 2023), because LLMs require huge volume 063

of training corpus. 064

In this study, we propose a novel structured prun- 065

ing algorithm tailored for LLMs. In contrast to 066

existing iterative pruning works, our algorithm first 067

conducts iterative evaluating and pruning, until 068

the desired sparsity level is achieved. After com- 069

pleting all the iterations of evaluating and pruning, 070

it then conducts one stage of fine-tuning, which 071

involves few epochs of training on a small dataset. 072

The intuition of our algorithm is to limit the fine- 073

tuning operations as few as possible, so that the 074

pruned model will not import too much bias to- 075

wards specific tasks. 076

To ensure that the remaining parameters are con- 077

sistently important and do not need repetitive fine- 078

tuning to restore performance, we need to precisely 079

evaluate the importance of structured components, 080

namely rows and columns in parameter matrices. 081

More concretely, our algorithm derives the im- 082

1

Embedding

Multi-head
Attention

LayerNorm

FFN

LayerNorm

LM Head

Lyn x

Q K V O

X

QK VO

Y

Hdn x

U G

D

X

UG

Y

T

Inference

Evaluation

T

Pruning

T T

Figure 1: During the pruning process, we determine whether a component should be pruned according to the
inference error caused by removing the component and its coupled components from intermediate results.

portance and uncertainty of different components083

based on intermediate data dependencies, as shown084

in Figure (1). According to the Transformer-based085

model architecture, we can identify the coupled086

components that have data dependency on pruned087

components. These coupled components across088

different layers can be removed simultaneously,089

and the dependency relationships within remain-090

ing parameters can be still preserved, avoiding sig-091

nificant performance degradation. Moreover, we092

employ LoRA (Hu et al., 2022) fine-tuning to re-093

store model performance, and use LoRA gradients094

(Zhang et al., 2023) instead of full-scale fine-tuning095

gradients to reduce the computational overhead dur-096

ing pruning. The model pruned by our algorithm097

preserves the original architecture with smaller pa-098

rameter matrices, thus it is compatible to any other099

Transformer-specific optimization techniques, e.g,100

FlashAttention (Dao et al., 2022; Dao, 2023). We101

have validated our algorithm on LLaMA (Touvron102

et al., 2023), Vicuna (Chiang et al., 2023), and103

ChatGLM3 (Zeng et al., 2022; Du et al., 2022),104

achieving about 20% parameter reduction while105

retaining at least 94.4% of original performance106

metrics.107

Contribution. In this paper, (i) we proposes a108

new structured pruning algorithm for LLMs that109

uses minimal fine-tuning to recover model perfor-110

mance. The algorithm effectively reduces the num-111

ber of parameters while maintaining model general-112

ization. (ii) We propose a novel evaluation method113

that evaluates the impact of structured pruning on114

an LLM by evaluating coupled components instead115

of individual weights. (iii) We conduct our algo-116

rithm on representative LLMs, including LLaMA,117

Vicuna, and ChatGLM3. By reducing the param-118

eter count by 20%, we maintain at least 94.4% of 119

the model’s performance while reducing MACs by 120

20%. 121

2 Related Work 122

2.1 Iterative Pruning 123

Iterative pruning is a type of algorithm that iter- 124

atively evaluates, prunes, and fine-tunes a neural 125

network model. The process involves calculating 126

scores for each weight in the model based on spe- 127

cific criteria, pruning weights with lower scores, 128

and fine-tuning the pruned model on a dataset. 129

PLATON (Zhang et al., 2022a) is a typical iterative 130

pruning method for (Devlin et al., 2019) and ViT 131

(Dosovitskiy et al., 2020). It considers the sensitiv- 132

ity and uncertainty of different model components 133

during evaluation, improving the accuracy of the 134

evaluation process. Although iterative pruning has 135

been proved to be effective for task-specific mod- 136

els, it faces difficulty for general-purpose LLMs 137

due to the repeated fine-tuning. 138

2.2 LoRA 139

LoRA is an efficient fine-tuning algorithm for 140

LLMs. Due to the large size of the parameter ma- 141

trices in LLMs, the computational cost of full fine- 142

tuning is often prohibitively high. In LoRA fine- 143

tuning, a data bypass is created for the target pa- 144

rameter W0: W = W0+BA, where W0 ∈ Rn×m, 145

B ∈ Rn×r, A ∈ Rr×m, and r ≪ min(n,m). Typ- 146

ically, the parameters in A are initialized with a 147

random Gaussian distribution, and the parameters 148

in B are set to 0. During the subsequent fine-tuning 149

process, the parameters in W0 are frozen, and only 150

the parameters in A and B are fine-tuned. LLM- 151

Prunner (Ma et al., 2023) is a structured pruning al- 152

2

gorithm for LLMs. It combines efficient LoRA fine-153

tuning to recover the performance of the pruned154

model with fewer fine-tuning epochs. LoRAPrune155

(Zhang et al., 2023) is a non-structured pruning156

algorithm for LLMs. Due to the high cost of ob-157

taining gradients in LLM, LoRAPrune leverages158

LoRA gradients instead of full fine-tuning gradi-159

ents to reduce computational overhead.160

3 Method161

Our pruning consists of three steps. (i) Partitioning162

the model into kernels and features, and grouping163

the coupled components formed by kernels. (ii)164

Iteratively evaluating and pruning coupled compo-165

nents and features until the desired sparsity level166

is achieved. (iii) After all evaluating and pruning167

finish, a fine-tuning stage is conducted to restore168

the model performance.169

3.1 Partition of Kernels and Features170

In our algorithm, the pruning granularity is rows or171

columns in the parameter matrices. The function-172

ality of a rows or a column varies in different pa-173

rameter matrices. For example, in the Transformer174

architecture, each word in a sentence is transformed175

into a word vector with dm features, the parame-176

ter matrix V ∈ Rdm×dk of the Transformesr, each177

row encounters all the weights in the word vectors178

during computation. However, each column en-179

counters only one weight in the word vector (Fang180

et al., 2023). Therefore, we divide them into ker-181

nels and features based on their functionalities in182

the inference computation. If a row (or column)183

receives all the features of the word vector, we refer184

to that row (or column) as a kernel. For example,185

each row in the Q ∈ Rdk×dm of a single head, as186

well as each column in O ∈ Rdm×dk . If a row187

(or column) receives a specific feature of the word188

vector, we refer to it as a feature. For example,189

each row in O, or each column in Up ∈ Rim×dm190

in LLaMA’s intermediate layers.191

3.2 Evaluation of Importance192

Evaluating coupled components. In the multi-193

head attention mechanism of Transformer, the com-194

putation of a single head can be represented by the195

following equation Eq. (1):196

Attn = Softmax
(
XtQtKX√

dk

)
XtV tOt, (1)197

where Q,K, V ∈ Rdk×dm represent the Query,198

Key, and Value of a single head in the multi-head at-199

tention mechanism, respectively, and O ∈ Rdm×dk 200

represents the projection matrix used to receive the 201

output of that attention head. X ∈ Rdm×len repre- 202

sents the sequence of word vectors, where len is 203

the length of the vector sequence. We can observe 204

that Q and K are coupled together, and V and O 205

are coupled together in the equation. The effective 206

parameters in the multi-head attention mechanism 207

are QtK and V tOt. Hence, when evaluating the 208

coupled components of the self-attention layer, we 209

group Q,K for evaluation, and V,O for another 210

evaluation. For the evaluation of coupled com- 211

ponents, we take Q and K as an example. We 212

consider Q and K as a sum of multiple kernels, 213

i.e., Q = [qt1, q
t
2, ..., q

t
dk
]t, K = [kt1, k

t
2, ..., k

t
dk
]t, 214

where Q,K ∈ Rdk×dm , and qi, ki(i ∈ [1, dk]) are 215

row vectors of dimension dm. In this case, we 216

expand QtK in Eq.(2): 217

QtK =

dk∑
i=1

qtiki. (2) 218

If we prune one qi, we can observe that the corre- 219

sponding ki will no longer be effective in the infer- 220

ence process and should be pruned simultaneously. 221

We have found the coupled component qtiki gener- 222

ated by Q and K. The same applies to the grouping 223

of V tOt, where the coupled components become 224

vtio
t
i. In the intermediate layers of the model, we 225

can also find a similar relationship. In previous 226

models such as BERT (Devlin et al., 2019), GPT- 227

Neo (Black et al., 2022) and OPT (Zhang et al., 228

2022b), a two-layer structure was commonly used, 229

which can be represented by the equation Eq.(3): 230

Out = fc2F (fc1X). (3) 231

Here, fc1 ∈ Rim×dm and fc2 ∈ Rdm×im. F rep- 232

resents the activation function. The partitioning 233

method at this stage is the same as the partitioning 234

for QtK. In the LLaMA and ChatGLM3, a three- 235

layer structure was used in the intermediate layers, 236

which can be represented by the equation Eq.(4): 237

Out = Down(F (GateX)⊙ UpX). (4) 238

Here, Gate, Up ∈ Rim×dm , and Down ∈ 239

Rdm×im. In the LLaMA model, we cannot directly 240

partition the kernels in the three parameter matri- 241

ces through computation. However, we can ob- 242

serve that when any kernel in any of these three 243

matrices is zero, the corresponding kernels in the 244

remaining two matrices will no longer be effec- 245

tive. Therefore, we approximate the coupled com- 246

ponent (di, gi, ui) as two sub-components: dig
t
i 247

3

and diu
t
i, where di, gi, ui correspond to the kernels248

in Down,Gate, Up, respectively. During the scor-249

ing process, we use the sum of scores of the sub-250

components digti and diu
t
i to represent the score of251

the coupled component (di, gi, ui).252

After grouping the kernels, these coupled com-253

ponents can be represented as the multiplication254

of a column vector α and a row vector β. We de-255

note such coupled components as C = αβ, where256

C ∈ Rdm×dm . During the evaluation process, we257

evaluate the importance of the coupled component258

C by measuring the error in neural network predic-259

tion when removing this group of coupled compo-260

nents. This is defined as the importance IC (Ma261

et al., 2023) and can be calculated as Eq.(5):262

IC =

∣∣∣∣∣∑
c∈C

L(c)− L(c = 0)

∣∣∣∣∣
=

∣∣∣∣∣∑
c∈C

∂L
∂c

c− 1

2

(
∂2L
∂c2

c2
)
+O(c3)

∣∣∣∣∣ .
(5)263

For the second-order error term
(
∂2L
∂c2

c2
)

, we ap-264

proximate it as
(
∂L
∂c c

)2
based on (Ma et al., 2023;265

Yang et al., 2023). Therefore, we have Eq.(6):266

IC ≈

∣∣∣∣∣∑
c∈C

∂L
∂c

c− 1

2

(
∂L
∂c

c

)2
∣∣∣∣∣ . (6)267

Additionally, we refer to the evaluation method pro-268

posed by PLATON (Zhang et al., 2022a), which269

combines the sensitivity of the network to deter-270

mine the final score for the coupled components.271

The scoring process is as Eq.(7):272

Ī
(t)
C = x1Ī

(t−1)
C + (1− x1)I

(t)
C ,

U
(t)
C = |I(t)C − Ī

(t)
C |,

Ū
(t)
C = x2Ū

(t−1)
C + (1− x2)U

(t)
C ,

SC =
∑
t

Ī
(t)
C Ū

(t)
C .

(7)273

Here, t represents the current iteration of evalua-274

tion for the variable. ĪC represents the smoothed275

treatment of importance changes during fine-tuning276

(Molchanov et al., 2019; Liang et al., 2021) . UC277

represents the uncertainty of current importance278

for the coupled component (Zhang et al., 2022a).279

ŪC represents the upper bound confidence for ĪC280

(Zhang et al., 2022a). Finally, SC is the final score281

for the coupled component. The hyperparameters282

x1 and x2 are chosen as 0.5 in our experiments.283

Evaluating Features. According to the descrip-284

tion in the (Fang et al., 2023), in structured pruning,285

if we want to prune a feature at a specific position, 286

we need to prune the corresponding features at that 287

position in all parameter matrices of the model. 288

Therefore, we only need to group all corresponding 289

features at the same position in the model. When 290

we remove a feature from the model, the resulting 291

error can be approximated as Eq.(8): 292

If ≈
∑
C

∣∣∣∣∣∣
∑

c∈C[:,f]∪C[f,:]

∂L
∂c

c− 1

2

(
∂L
∂c

c

)2

∣∣∣∣∣∣ . (8) 293

Here, C refers to the QtK and V tOt for each at- 294

tention head in each layer. Taking the grouping of 295

QtK as an example, we consider Q and K in the 296

multi-head attention mechanism as the superposi- 297

tion of multiple features, i.e., Q = [q1, q2, ..., qdm] 298

and K = [k1, k2, ..., kdm], where qi and ki are col- 299

umn vectors of dimension dk. If we set all the 300

values at position j to zero, it is equivalent to set- 301

ting all the values in the j-th row and j-th column 302

of the matrix QtK to zero. 303

In the evaluation of features, we do not con- 304

sider the impact of intermediate layers. The impor- 305

tance of features is mainly determined by the self- 306

attention process of the model, while the role of 307

intermediate layers is to superimpose multiple self- 308

attention processes (de Wynter and Perry, 2020). In 309

our experiments with BERT and ViT (Dosovitskiy 310

et al., 2020), we find that evaluating features us- 311

ing only self-attention layers already achieves good 312

results. Additionally, because the partitioning of 313

intermediate layers in LLaMA does not strictly con- 314

sider the computation process, it may also affect 315

the accuracy of the evaluation. 316

We also incorporate the scoring process from the 317

PLATON algorithm into the feature evaluation, as 318

shown in Equation Eq.(7). In this case, the coupled 319

components C are replaced by features f . 320

3.3 Pruning 321

In pruning self-attention layers, we adopt a simple 322

uniform strategy to remove unimportant compo- 323

nents. Our pruning strategy for self-attention lay- 324

ers is to remove the lowest-scoring self-attention 325

head for each self-attention layer in each iteration. 326

The score of a self-attention head is the sum of the 327

scores of its constituent Q,K, V , and O kernels. 328

For the pruning of intermediate layers, we also 329

adopt a uniform pruning strategy. In each iteration, 330

a fixed number of kernels are pruned for all parame- 331

ter matrices in these layers. We have observed that 332

for most Transformer models, there is a constant 333

4

Remaining Ratio tune Method WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Ratio=100% - LLaMA-7B 12.62 22.14 73.18 78.35 72.99 67.01 67.45 41.38 42.40 63.25

Ratio=20% w/o
LP-Channel 74.63 153.75 62.75 62.73 41.40 51.07 41.38 27.90 30.40 45.38
LP-Block 19.24 34.09 62.54 75.41 65.99 60.30 61.57 36.69 39.20 57.39

Ours 37.90 74.30 66.57 73.39 62.11 62.90 58.24 35.75 36.20 56.45

Ratio=20% w/
LP-Channel 22.02 38.67 59.08 73.39 64.02 60.54 57.95 35.58 38.40 55.57
LP-Block 17.39 30.20 66.79 77.58 68.48 64.96 64.06 37.88 39.00 59.82

Ours 22.00 42.58 72.26 75.13 68.87 66.53 63.29 38.73 41.40 60.88
Ratio=24% w/o Ours 34.55 72.14 63.36 69.96 55.92 60.37 53.19 33.70 35.40 53.12
Ratio=24% w/ Ours 25.01 46.79 68.47 73.88 65.88 63.53 59.63 35.58 38.00 57.85

Table 1: LLaMA pruning experiments. The evaluation metric for WikiText2 and PTB tests is perplexity, which is the
smaller the better. The evaluation metric for other tasks is accuracy, which is higher the better. In the experiments,
"w/o" indicates that the model did not undergo fine-tuning after the pruning process, and "w/" indicates that the
model underwent fine-tuning after the pruning process.

ratio between the number of kernels im in each in-334

termediate layer and the number of headnum × dk335

in the self-attention layers (de Wynter and Perry,336

2020). For example, this ratio is 4 for OPT models337

(Zhang et al., 2022b) and around 2.7 for LLaMA338

models. Therefore, in each iteration, we prune339

r × dk kernels for each parameter matrix in the in-340

termediate layers, where r = im/(headnum×dk).341

For features, we need to remove the features in342

the same positions of all parameter matrices of the343

model (Fang et al., 2023). We only need to score344

all features in each iteration and remove the lowest-345

scoring features. Since most parameter matrices in346

the self-attention layers of Transformer models are347

square matrices, for simplicity, we prune dk fea-348

tures in each pruning operation, which ensures that349

the parameter matrices in the pruned self-attention350

layers are still square matrices.351

Algorithm 1 LLMs Structure Pruning
Input: pre-trained model, number of iterations
Output: pruned model

def EvalandPruning (PreTrainModel)
Partition and Eval kernels and features
for i in [0 : LayerNum)

Remove the head with the lowest score
Remove the r × dk kernels in FFN

end # end for
Remove dk features in every weight matrix
Change the model size

return PrunedModel # end def

Main()
model← initial model
for i in [0 : iterations)
model := EvalandPruning(model)

end # end for
FinalModel:= Finetune(model)

return FinalModel # end Main

3.4 Overall Process352

This section summaries the overall process of our353

pruning algorithm, as shown in Alg.(1). It begins354

by partitioning the parameters using the approach 355

outlined in section 3.1. Subsequently, we employ 356

an iterative evaluation and pruning strategy, where 357

the parameters are evaluated using the methods 358

described in section 3.2, and the model is pruned 359

using the approach detailed in section 3.3. Once 360

the evaluation and pruning process is completed, 361

we proceed with fine-tuning to restore the model’s 362

performance. 363

4 Experiments 364

4.1 LLaMA and Vicuna Pruning Experiments 365

We conduct experiments on the LLaMA-7B and 366

Vicuna-7B which have identical architectures. We 367

test the performance of these models at sparsity 368

levels of 20% and 24%. The evaluation tasks we 369

used are WikiText2 (Merity et al., 2016), PTB 370

(Marcus et al., 1993), BoolQ (Clark et al., 2019), 371

PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 372

2019), WinoGrande (Sakaguchi et al., 2021), ARC- 373

e, ARC-c (Clark et al., 2018), and OBQA (Mi- 374

haylov et al., 2018). The evaluation metrics for 375

WikiText2 and PTB tests are perplexity, which is 376

the smaller the better. The evaluation metric (Gao 377

et al., 2023) for other tasks is accuracy, which is 378

higher the better. We compare the results with the 379

structurally pruned LLM-Pruner. The experimental 380

results are shown in Tables 1 and 2. All experi- 381

ments are conducted on two Nvidia A100 GPUs. 382

Experimental Details. In every evaluation iter- 383

ation of LLaMA and Vicuna, we randomly take 10 384

sentences of length 64 from the C4 (Dodge et al., 385

2021) dataset to obtain gradient and magnitude in- 386

formation. Our algorithm uses LoRA gradients 387

instead of actual gradients. Since the parameters in 388

the LoRA matrix are randomly initialized, we first 389

train the LoRA parameter matrix for 5 iterations 390

with the 10 sentences after concatenating the LoRA 391

5

parameter matrices. After the pre-processing of the392

LoRA parameter matrix, we collect the gradient393

and magnitude information generated by inputting394

these 10 sentences into the model for evaluation.395

In every prunning iteration, one self-attention396

head is pruned for all self-attention layers, and397

320 kernels were removed for gate-proj, up-proj,398

and down-proj in each layer. Additionally, 128399

features (model’s dk = 128) were removed from400

all parameter matrices.401

To obtain the models with sparsity levels of 20%,402

we initially performed 3 iterations of evaluation403

and pruning. After the completion of the third404

iteration of evaluation-pruning, we obtained the405

20% sparse model without fine-tuning. We can406

further increase the sparsity to 24% in the same407

way, just by changing the number of evaluation-408

pruning iterations from 3 to 4. Then we fine-tune409

this model for 4 epochs on the Alpaca (Taori et al.,410

2023) to restore its performance.411

Experimental Analysis. In the LLaMA prun-412

ing experiments, we observe that our pruning algo-413

rithm performs well even at lower sparsity levels,414

even without fine-tuning. At sparsity levels of 20%415

and 24%, our algorithm surpasses LLM-Pruner’s416

Channel mode at 20% sparsity. After pruning and417

fine-tuning, our algorithm achieves slightly higher418

perplexity in the WikiText2 and PTB tasks at a419

20% sparsity level. Our algorithm outperforms420

LLM-Pruner’s Channel and Block modes in aver-421

age scores from BoolQ to OBQA, reaching 96%422

of the performance of the unpruned network. At423

a sparsity level of 24%, our algorithm, after fine-424

tuning, outperforms LLM-Pruner’s Channel mode425

at 20% sparsity in average scores from BoolQ to426

OBQA, with an average score of 91% compared to427

the unpruned network.428

In the Vicuna pruning experiments, our algo-429

rithm exhibits similar performance. At a sparsity430

level of 20%, our algorithm’s perplexity perfor-431

mance in WikiText2 and PTB is comparable to432

LLM-Pruner’s Block mode. Our algorithm outper-433

forms LLM-Pruner’s Block mode in average scores434

from BoolQ to OBQA, reaching 94% of the perfor-435

mance of the unpruned network. Additionally, at436

a sparsity level of 24%, our pruned network, after437

fine-tuning, shows no significant difference com-438

pared to LLM-Pruner’s Block mode 20% sparsity439

model. The average score from BoolQ to OBQA440

only decreases by 0.17 points compared to LLM-441

Pruner, while achieving the performance of the442

original unpruned network 92%.443

The inference performance and storage overhead 444

of our pruned models are presented in Table 3. The 445

evaluation is conducted following the methodology 446

described in the (Ma et al., 2023). At sparsity lev- 447

els of 20%, although our algorithm retains more 448

remaining parameters, it doesn’t exhibit a signifi- 449

cant difference in memory consumption compared 450

to LLM-Pruner. Our computational complexity 451

falls between LLM-Pruner’s Channel mode and 452

Block mode. Therefore, our algorithm theoreti- 453

cally offers better acceleration performance than 454

LLM-Pruner’s Block mode. 455

4.2 ChatGLM3 Pruning Experiment 456

We conduct experiments on the ChatGLM3. We 457

test the model on the datasets same to LLaMA and 458

Vicuna to evaluate its performance at sparsity lev- 459

els of 10% and 20%. We compare our pruning 460

algorithm with random pruning and L2 (Han et al., 461

2015b; Li et al., 2016) weight pruning. All exper- 462

iments are conducted on two Nvidia A100 GPUs. 463

464

Experimental Details. Differing from many 465

Transformer-based models, like LlaMA, BERT, 466

ViT, etc., ChatGLM3 has a unique structure in its 467

self-attention layers. In ChatGLM3-6B, there are 468

32 Query heads and only 2 Key and Value heads 469

in the multi-head self-attention mechanism. Dur- 470

ing inference, the model replicates the Key and 471

Value heads 16 times to match the number of Query 472

heads, and the subsequent computation follows the 473

same process as other Transformer models. We 474

make appropriate adjustments to our pruning algo- 475

rithm to accommodate ChatGLM3’s computation 476

approach. 477

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Pruning

Q1 Q2 Q4 Q5 Q7 Q8

Reorder

Q1 Q2 Q5 Q4 Q7 Q8

……

……

……

Figure 2: We reorder the remaining pruned Query heads.
The processing of parameter matrix O follows the same
approach.

We observe that in ChatGLM3, odd-numbered 478

Query heads correspond to odd-numbered Key 479

and Value heads, and the same applies to even- 480

numbered heads. Therefore, our previous pruning 481

strategy becomes removing the Query head with 482

6

Remaining Ratio tune Method WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Ratio=100% - Vicuna-7B 16.11 61.37 76.57 77.75 70.64 67.40 65.11 41.21 40.80 62.78

Ratio=20% w/o
LP-Channel 71.75 198.88 51.77 63.93 42.558 55.17 43.94 29.27 33.40 45.72
LP-Block 26.51 90.87 62.97 74.76 63.40 55.88 64.23 38.14 36.60 58.57

Ours 28.50 92.56 69.69 73.77 58.72 61.79 62.92 35.06 35.40 56.76

Ratio=20% w/
LP-Block 19.47 76.55 66.45 75.84 65.05 60.38 62.37 36.43 39.80 58.05

Ours 22.89 73.23 70.73 74.48 66.29 63.22 65.19 36.00 38.80 59.24
Ratio=24% w/o Ours 34.30 113.18 67.43 70.56 53.34 58.87 58.37 31.99 34.00 53.50
Ratio=24% w/ Ours 26.20 84.12 69.11 73.23 63.52 63.69 63.08 34.98 37.60 57.88

Table 2: The Vicuna pruning experiments.

Method Ratio #Params #MACs Memory
- - 6.7B 424.0G 12884.5MiB

LP-Channel
20%

5.4B 323.7G 10488.4MiB
LP-Block 5.4B 367.5G 10375.5MiB

Ours 5.5B 351.7G 10687.2MiB
Ours 24% 5.2B 328.7G 9998.0MiB

Table 3: Statistic for LLaMA and Vicuna.

the lowest score among all odd-numbered heads,483

the Query head with the lowest score among all484

even-numbered heads, and their corresponding pa-485

rameter matrix O. The Key and Value heads remain486

unchanged. After pruning, as the order of Query487

heads may change from odd to even or vice versa,488

we rearrange the Query heads and the parameter489

matrix O according to their parity as Figure2.490

The model evaluation and fine-tuning process491

are the same as in the LLaMA and Vicuna pruning.492

The 10% sparse model underwent one iteration493

of evaluation and pruning, while the 20% sparse494

model underwent two iterations of evaluation and495

pruning. After evaluation and pruning, all models496

are fine-tuned on the Alpaca dataset for 4 epochs.497

For the random pruning and L2 weight prun-498

ing experiments, we also use the same grouping499

method. The only difference is that during the cou-500

pled components and feature evaluation, we don’t501

consider the coupling relationship and only per-502

form random pruning or evaluate based on the sum503

of L2 values of the kernels containing parameters.504

Experimental Analysis. Our pruning algorithm505

achieves almost no decrease in average scores from506

BoolQ to OBQA at a sparsity level of 10%. At a507

sparsity level of 20%, our model retains 94% of508

the original model’s performance. Furthermore,509

by comparing our algorithm with L2 weight prun-510

ing, we find that algorithms like L2 pruning, which511

are based on pruning based on the magnitude of512

model parameters, are almost ineffective in struc-513

tured pruning tasks for LLMs. This evaluation514

method doesn’t consider the dependencies between515

different coupled components, making it unsuitable516

for such coarse-grained structured pruning. Our al- 517

gorithm, on the other hand, considers the coupling 518

relationship between different components and the 519

errors that may arise in the model’s inference pro- 520

cess after eliminating these components. Therefore, 521

it performs better in structured pruning tasks for 522

LLMs. 523

The inference performance and storage overhead 524

of our pruned models are shown in Table 5. Our 525

algorithm reduces MACs overhead by 30% at a 526

sparsity level of 20%. 527

4.3 More Analysis 528

Global Pruning vs. Layer-wise Pruning. During 529

coupled component elimination, we can employ 530

layer-wise sorted pruning or global sorted pruning 531

methods. However, during our initial experimen- 532

tation with global ranking, we find that the global 533

sorting approach was not effective. In our pruning 534

experiments, we observe that most low-scoring cou- 535

pled components are concentrated in the first two 536

layers. However, removing these coupled compo- 537

nents results in a significant performance degrada- 538

tion. Additionally, the pruning in LLM-Pruner ex- 539

cludes these layers, there is a need for prior knowl- 540

edge (Ma et al., 2023) in determining the regions 541

of the model that cannot be pruned. Therefore, we 542

adopt a simpler strategy of uniform pruning (Sun 543

et al., 2023) for every layer. 544

Kernel vs. Head. When pruning the self- 545

attention layers, we have two options: removing 546

the same number of kernels for each self-attention 547

head or maintaining the same number of kernels 548

per layer but removing one self-attention head in 549

each layer. Based on our experiments with BERT 550

and ViT in Figure3, the latter option performs bet- 551

ter when the number of parameters keeps the same. 552

This is because the distribution of importance in 553

the model is not uniform, and low-importance ker- 554

nels are often concentrated within the same self- 555

attention head. We observe this phenomenon in 556

LLaMA and Vicuna as well. Therefore, our prun- 557

7

Pruning Ratio tune Method WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Ratio=0% - ChatGLM3-6B 108.15 169.49 69.54 71.10 56.59 60.69 49.03 31.74 37.40 53.72

Ratio=10% w/o
Random 338.39 247.57 55.31 66.48 43.77 55.16 47.10 28.41 38.00 47.74

L2 57580.39 50814.52 53.70 53.10 25.19 49.48 26.26 24.14 36.00 38.26
Ours 176.24 234.40 51.10 67.57 48.41 55.64 46.21 29.77 36.60 47.89

Ratio=10% w/ Ours 75.80 95.44 74.31 71.59 52.14 55.56 50.16 32.16 38.20 53.44

Ratio=20% w/o
Random 967.15 775.58 50.15 60.25 37.46 42.35 34.64 23.46 35.20 40.50

L2 113621.15 110125.40 49.09 52.82 25.15 49.09 25.29 23.03 35.80 37.18
Ours 575.63 702.52 38.07 63.16 38.22 53.11 39.56 28.07 35.00 42.17

Ratio=20% w/ Ours 112.46 140.51 69.54 68.17 47.40 56.35 46.29 30.63 36.60 50.71

Table 4: The pruning experiment for ChatGLM3-6B.

Method Ratio #Params #MACs Memory
- - 6.2B 382.5G 11944.8MiB

Ours 10% 5.5B 337.4G 10542.7MiB
Ours 20% 4.8B 295.1G 9249.1MiB

Table 5: Statistic for ChatGLM3.

400 500 600 700
76

78

80

82

84
Bert-MNLI ACC

Kernel
Head

400 500 600 700

72.5

75.0

77.5

80.0

82.5

85.0
ViT-Cifar100 ACC

Kernel
Head

3200 3400 3600 3800 4000
40

50

60

70

LLaMA-BoolQ ACC

Kernel
Head

3200 3400 3600 3800 4000

50

60

70

Vicuna-BoolQ ACC

Kernel
Head

Figure 3: Pruning experiments on BERT, ViT, LLaMA
and Vicuna, where the x-axis represents the parameter
size of the self-attention layers and the y-axis represents
the accuracy of the tasks.

ing strategy for self-attention layers is to remove558

the lowest-scoring head in each iteration.559

Comparison to LLM-Prunner. Our algorithm560

shares similarities with LLM-Prunner’s Channel561

mode in terms of pruning granularity. Our al-562

gorithm prunes features and removes one self-563

attention head per layer, reducing the size of pa-564

rameter matrices and the number of self-attention565

computations, leading to a significant reduction in566

MACs. However, due to the negative impact from567

feature pruning, a more accurate evaluation is nec-568

essary. Our algorithm evaluates intermediate com-569

putation results during inference, offering a more570

accurate assessment of the impact of structured571

pruning on model inference performance, com-572

pared to LLM-Prunner’s element-wise evaluation573

and summation.574

LLM-Prunner’s Block mode and our individual575

kernel-level pruning share similarities in terms of 576

smaller pruning granularity. These operations have 577

minimal impact on the model and enable more fine- 578

grained optimization. However, LLM-Prunner’s 579

Block mode uses a global pruning strategy, exclud- 580

ing the first two layers and relying on prior knowl- 581

edge. In contrast, our algorithm simplifies the pro- 582

cess by evaluating multiple kernels as self-attention 583

heads, eliminating the need for prior knowledge. 584

Furthermore, LLM-Prunner’s Block mode alters 585

the structure of certain layers in the model, thus 586

it cannot adopt off-the-shelf libraries for conve- 587

nient implementation and deployment. In contrast, 588

our algorithm only modifies the size of parameter 589

matrices and reduces the number of self-attention 590

computations while preserving the model’s struc- 591

ture. Therefore, our pruned model keeps compati- 592

ble to existing deep learning programming frame- 593

works, as well as all optimization techniques for 594

Transformer-based models. 595

5 Conclusion 596

In this paper, we propose a structured pruning algo- 597

rithm for LLMs. Our algorithm categorizes parame- 598

ters into kernels and features based on their relation- 599

ships between parameter matrices and word vectors 600

in computations. We evaluated these components 601

considering their coupling relationships and the 602

computational characteristics of Transformer ar- 603

chitecture. Experimental evaluations on LLaMA, 604

Vicuna, and ChatGLM3 models demonstrated that 605

our algorithm achieves compression to 20% of the 606

original size with minor performance degradation. 607

Our algorithm preserves the model structure, fa- 608

cilitating integration with other optimization tech- 609

niques and practical deployment. 610

8

Limitations611

Our algorithm employed a simple uniform pruning612

scheme across different layers of an LLM, which613

allows us to avoid acquiring prior knowledge and614

assumes equal importance for each layer in the615

model. However, most previous global pruning616

schemes imply an uneven distribution of impor-617

tance across different layers of the model, which618

we did not further explore. In addition, we em-619

ployed a more empirical approach for intermediate620

layer pruning, without further exploring the spe-621

cific number of kernel pairs to be pruned in each622

layer. Our future work will focus on improving623

these aspects.624

References625

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,626
et al. 2020. Piqa: Reasoning about physical com-627
monsense in natural language. In Proceedings of the628
AAAI conference on artificial intelligence, volume 34,629
pages 7432–7439.630

Sid Black, Stella Biderman, Eric Hallahan, Quentin631
Anthony, Leo Gao, Laurence Golding, Horace He,632
Connor Leahy, Kyle McDonell, Jason Phang, et al.633
2022. Gpt-neox-20b: An open-source autoregressive634
language model. arXiv preprint arXiv:2204.06745.635

Tom Brown, Benjamin Mann, Nick Ryder, Melanie636
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind637
Neelakantan, Pranav Shyam, Girish Sastry, Amanda638
Askell, et al. 2020. Language models are few-shot639
learners. Advances in neural information processing640
systems, 33:1877–1901.641

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,642
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan643
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.644
2023. Vicuna: An open-source chatbot impressing645
gpt-4 with 90%* chatgpt quality. See https://vicuna.646
lmsys. org (accessed 14 April 2023).647

Christopher Clark, Kenton Lee, Ming-Wei Chang,648
Tom Kwiatkowski, Michael Collins, and Kristina649
Toutanova. 2019. Boolq: Exploring the surprising650
difficulty of natural yes/no questions. arXiv preprint651
arXiv:1905.10044.652

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,653
Ashish Sabharwal, Carissa Schoenick, and Oyvind654
Tafjord. 2018. Think you have solved question an-655
swering? try arc, the ai2 reasoning challenge. arXiv656
preprint arXiv:1803.05457.657

Tri Dao. 2023. Flashattention-2: Faster attention with658
better parallelism and work partitioning. arXiv659
preprint arXiv:2307.08691.660

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and661
Christopher Ré. 2022. Flashattention: Fast and662

memory-efficient exact attention with io-awareness. 663
Advances in Neural Information Processing Systems, 664
35:16344–16359. 665

Adrian de Wynter and Daniel J Perry. 2020. Optimal 666
subarchitecture extraction for bert. arXiv preprint 667
arXiv:2010.10499. 668

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 669
Kristina Toutanova. 2019. BERT: Pre-training of 670
deep bidirectional transformers for language under- 671
standing. In Proceedings of the 2019 Conference of 672
the North American Chapter of the Association for 673
Computational Linguistics: Human Language Tech- 674
nologies, Volume 1 (Long and Short Papers), pages 675
4171–4186, Minneapolis, Minnesota. Association for 676
Computational Linguistics. 677

Jesse Dodge, Maarten Sap, Ana Marasović, William 678
Agnew, Gabriel Ilharco, Dirk Groeneveld, Mar- 679
garet Mitchell, and Matt Gardner. 2021. Docu- 680
menting large webtext corpora: A case study on 681
the colossal clean crawled corpus. arXiv preprint 682
arXiv:2104.08758. 683

Alexey Dosovitskiy, Lucas Beyer, Alexander 684
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, 685
Thomas Unterthiner, Mostafa Dehghani, Matthias 686
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. 687
An image is worth 16x16 words: Transformers 688
for image recognition at scale. arXiv preprint 689
arXiv:2010.11929. 690

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, 691
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm: 692
General language model pretraining with autoregres- 693
sive blank infilling. In Proceedings of the 60th An- 694
nual Meeting of the Association for Computational 695
Linguistics (Volume 1: Long Papers), pages 320–335. 696

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, 697
and Xinchao Wang. 2023. Depgraph: Towards any 698
structural pruning. In Proceedings of the IEEE/CVF 699
Conference on Computer Vision and Pattern Recog- 700
nition, pages 16091–16101. 701

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 702
Sid Black, Anthony DiPofi, Charles Foster, Laurence 703
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 704
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 705
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 706
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 707
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 708
2023. A framework for few-shot language model 709
evaluation. 710

Song Han, Huizi Mao, and William J Dally. 2015a. 711
Deep compression: Compressing deep neural net- 712
works with pruning, trained quantization and huff- 713
man coding. arXiv preprint arXiv:1510.00149. 714

Song Han, Jeff Pool, John Tran, and William Dally. 715
2015b. Learning both weights and connections for 716
efficient neural network. Advances in neural infor- 717
mation processing systems, 28. 718

9

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and719
Weizhu Chen. 2020. Deberta: Decoding-enhanced720
bert with disentangled attention. arXiv preprint721
arXiv:2006.03654.722

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan723
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and724
Weizhu Chen. 2022. LoRA: Low-rank adaptation of725
large language models. In International Conference726
on Learning Representations.727

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran-728
tar, Mark Kurtz, Benjamin Fineran, Michael Goin,729
and Dan Alistarh. 2022. The optimal bert surgeon:730
Scalable and accurate second-order pruning for large731
language models. arXiv preprint arXiv:2203.07259.732

François Lagunas, Ella Charlaix, Victor Sanh, and733
Alexander Rush. 2021. Block pruning for faster trans-734
formers. In Proceedings of the 2021 Conference on735
Empirical Methods in Natural Language Process-736
ing, pages 10619–10629, Online and Punta Cana,737
Dominican Republic. Association for Computational738
Linguistics.739

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,740
and Hans Peter Graf. 2016. Pruning filters for effi-741
cient convnets. arXiv preprint arXiv:1608.08710.742

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming743
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and744
Weizhu Chen. 2021. Super tickets in pre-trained lan-745
guage models: From model compression to improv-746
ing generalization. arXiv preprint arXiv:2105.12002.747

Christos Louizos, Max Welling, and Diederik P Kingma.748
2017. Learning sparse neural networks through l_0749
regularization. arXiv preprint arXiv:1712.01312.750

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.751
Llm-pruner: On the structural pruning of large lan-752
guage models. In Advances in Neural Information753
Processing Systems.754

Mitchell Marcus, Beatrice Santorini, and Mary Ann755
Marcinkiewicz. 1993. Building a large annotated756
corpus of english: The penn treebank.757

Stephen Merity, Caiming Xiong, James Bradbury, and758
Richard Socher. 2016. Pointer sentinel mixture mod-759
els. arXiv preprint arXiv:1609.07843.760

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish761
Sabharwal. 2018. Can a suit of armor conduct elec-762
tricity? a new dataset for open book question answer-763
ing. arXiv preprint arXiv:1809.02789.764

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri765
Frosio, and Jan Kautz. 2019. Importance estima-766
tion for neural network pruning. In Proceedings of767
the IEEE/CVF conference on computer vision and768
pattern recognition, pages 11264–11272.769

R OpenAI. 2023. Gpt-4 technical report. arxiv770
2303.08774. View in Article, 2:13.771

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya 772
Sutskever, et al. 2018. Improving language under- 773
standing by generative pre-training. 774

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 775
Dario Amodei, Ilya Sutskever, et al. 2019. Language 776
models are unsupervised multitask learners. OpenAI 777
blog, 1(8):9. 778

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 779
ula, and Yejin Choi. 2021. Winogrande: An adver- 780
sarial winograd schema challenge at scale. Commu- 781
nications of the ACM, 64(9):99–106. 782

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico 783
Kolter. 2023. A simple and effective pruning ap- 784
proach for large language models. arXiv preprint 785
arXiv:2306.11695. 786

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 787
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 788
and Tatsunori B Hashimoto. 2023. Stanford alpaca: 789
An instruction-following llama model. 790

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 791
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 792
Baptiste Rozière, Naman Goyal, Eric Hambro, 793
Faisal Azhar, et al. 2023. Llama: Open and effi- 794
cient foundation language models. arXiv preprint 795
arXiv:2302.13971. 796

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019. 797
Structured pruning of large language models. arXiv 798
preprint arXiv:1910.04732. 799

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022. 800
Structured pruning learns compact and accurate mod- 801
els. arXiv preprint arXiv:2204.00408. 802

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, 803
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and 804
Colin Raffel. 2020. mt5: A massively multilingual 805
pre-trained text-to-text transformer. arXiv preprint 806
arXiv:2010.11934. 807

Huanrui Yang, Hongxu Yin, Maying Shen, Pavlo 808
Molchanov, Hai Li, and Jan Kautz. 2023. Global vi- 809
sion transformer pruning with hessian-aware saliency. 810
In Proceedings of the IEEE/CVF Conference on Com- 811
puter Vision and Pattern Recognition, pages 18547– 812
18557. 813

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, 814
and Moshe Wasserblat. 2021. Prune once for all: 815
Sparse pre-trained language models. arXiv preprint 816
arXiv:2111.05754. 817

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 818
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 819
machine really finish your sentence? arXiv preprint 820
arXiv:1905.07830. 821

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, 822
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, 823
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: 824
An open bilingual pre-trained model. arXiv preprint 825
arXiv:2210.02414. 826

10

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2021.emnlp-main.829

Mingyang Zhang, Chunhua Shen, Zhen Yang, Linlin827
Ou, Xinyi Yu, Bohan Zhuang, et al. 2023. Prun-828
ing meets low-rank parameter-efficient fine-tuning.829
arXiv preprint arXiv:2305.18403.830

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander831
Bukharin, Pengcheng He, Weizhu Chen, and Tuo832
Zhao. 2022a. Platon: Pruning large transformer833
models with upper confidence bound of weight im-834
portance. In International Conference on Machine835
Learning, pages 26809–26823. PMLR.836

Susan Zhang, Stephen Roller, Naman Goyal, Mikel837
Artetxe, Moya Chen, Shuohui Chen, Christopher De-838
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.839
2022b. Opt: Open pre-trained transformer language840
models. arXiv preprint arXiv:2205.01068.841

11

	Introduction
	Related Work
	Iterative Pruning
	LoRA

	Method
	Partition of Kernels and Features
	Evaluation of Importance
	Pruning
	Overall Process

	Experiments
	LLaMA and Vicuna Pruning Experiments
	ChatGLM3 Pruning Experiment
	More Analysis

	Conclusion

