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ABSTRACT

In distributed training of machine learning models, gradient descent with local iterative
steps is a very popular method to mitigate communication burden, commonly known
as Local (Stochastic) Gradient Descent (Local-(S)GD). In the interpolation regime,
Local-GD can converge to zero training loss. However, with many potential solutions
corresponding to zero training loss, it is not known which solution Local-GD converges
to. In this work we answer this question by analyzing implicit bias of Local-GD for
classification tasks with linearly separable data. In the case of highly heterogeneous
data, it has been observed empirically that local models can diverge significantly
from each other (also known as “client drift”). However, for the interpolation regime,
our analysis shows that the aggregated global model resultant from Local-GD with
arbitrary number of local steps converges exactly to the model that would result in
if all data were in one place (centralized trained model) in direction. Our result gives
the exact rate of convergence to the centralized model with respect to the number of
local steps. We also obtain this same implicit bias with a learning rate independent
of number of local steps with a Modified Local-GD algorithm. Our analysis provides
a new view to understand why Local-GD can still work very well with a very large
number of local steps even for heterogeneous data. Lastly we also discuss the extension
of our results to Local SGD and non-separable data.

1 INTRODUCTION

In this era of large machine learning models, distributed training is an essential part of machine learning
pipelines. It can happen in a data center with thousands of connected compute nodes Sergeev & Del Balso
(2018); Huang et al. (2019), or across several data centers and millions of mobile devices in federated learn-
ing Konečnỳ et al. (2016); Kairouz et al. (2019). In such a network, the communication cost is usually the
bottleneck in the whole system. To alleviate the communication burden, and also to preserve privacy to some
extent, one common strategy is to perform multiple local updates before sending the information to other
nodes, which is called Local Gradient Descent (Local-GD) McMahan et al. (2017); Stich (2019); Lin et al.
(2019). In a network withM compute nodes, the goal is to train a global model to fit the distributed datasets:

min
w∈Rd

f(w) with f(w)≡ 1

M

M∑
i=1

fi(w), (1)

where w∈Rd is the single model to be trained and fi(w) is the local loss function for ith compute node.
The local loss fi(w) is the average of the loss function evaluated at model w for the high-dimensional
samples and their corresponding labels, {xs,ys}s∈Si , where Si is the local dataset, and Ni= |Si| is the
number of local samples. The samples of the local dataset are obtained iid from the local distribution Di.

In each round of Local-GD, a central node sends its current model, referred to as the global model, to
all compute nodes. Each compute node runs L local gradient descent steps on the global model using
its loss fi on this model to obtain a local model. Each compute node sends its local model back to the
central node, where these local models are aggregated, by averaging, to obtain the global model for the
next round. The detailed algorithm of Local-GD is described in Algorithms 1.

In modern machine learning, most deep neural networks, where Local-GD has impressive performance,
operate in the overparameterized regime, where the dimension d of the model is more than the total
number of samples MN . In this case, there are multiple solutions corresponding to zero training loss.
The main question here is:
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Q: Which solution would the aggregated model trained by Local-GD converge to?

Contributions. In this work, we answer this question by analyzing implicit bias of Local-GD on classifica-
tion tasks for linearly separable data. From the implicit bias of Local-GD, we can characterize the dynamics
of the global model across rounds. We compare the global model with the centralized model obtained from
running gradient descent (GD) on a dataset consisting of all distributed datasets as if all these datasets were
located on the central node. The centralized model is obtained from existing results for the implicit bias of
linearly separable data Soudry et al. (2018). But these results cannot be directly applied to Local-GD. For
globally linearly separable dataset, we show that the global model converges to the centralized model with
any arbitrary number of local steps on heterogeneous data. As a consequence of our result on the implicit
bias of Local-GD, we can derive the rate of convergence to centralized model as O( 1

logLk), and the training
loss converges at the rate of O( 1

Lk), where k is number of rounds (see Theorems 2) for a constant learning
rate η=O( 1L) (this learning rate is common in existing analysis of distributed learning Karimireddy et al.
(2020); Koloskova et al. (2020); Crawshaw et al. (2025)). The meaning of this work lies in: 1). providing
a theoretical explanation to the phenomenon that Local-GD can work well with a very large number of
local steps in practice; 2). showing the local steps can benefit the convergence rate for smooth, convex
functions (such as, logistic loss); this could not be derived from previous analysis in vanilla Local-GD.

For a learning rate independent of L, we can guarantee that the global model can converge to the centralized
model, but for a weakly regularized loss and with a Modified Local-GD algorithm (see Section 4.4. This
result provides the implicit bias of Local-GD without the restrictive learning rate of O(1/L).

Comparisons. Increasing local steps L does not improve worst-case amount of communication for smooth,
convex optimization (Woodworth et al., 2020, Theorem 5),(Koloskova et al., 2020, Theorem 6). For
the specific problem of distributed logistic regression, (Crawshaw et al., 2025, Corollary 3) show that a
two-stage Local-GD algorithm can improve this worst-case bound. However, their first stage still requires
η=O( 1L), and they can only show that the loss converges, but not the solution the model converges to. In
contrast, our Theorem 2 exactly characterizes the global model for Local-GD for any L, and recovers their
result as a direct corollary. Another line of work Gu et al. (2023; 2024) approximates Local-Stochastic
Gradient Descent (localSGD) by an SDE to obtain an appropriate scaling between L and η. Note that
we perform Local-GD with no stochastic noise, and our analysis is exact for finite η. Further, Gu et al.
(2023; 2024) do not characterize the exact implicit bias, which we do for linearly separable data. For
overparameterized non-linear models, several works Deng et al. (2022b); Song et al. (2023); Maralappanavar
et al. (2025) analyze convergence in loss value of Local-GD, but do not provide any guarantees on the global
model. Additionally, several works compare the performance of Local-GD and GD on whole dataset Patel
et al. (2024); Woodworth et al. (2020) with differences in certain regimes. For overparametrized linear
models, we establish that there is no difference between the final model learned by either of these methods.
Due to space constraints, we defer a more detailed overview of Related Works to Appendix A.

Practical Implications. In the existing convergence analysis of Local-GD, the number of local steps L
should not be very large for heterogeneous data Stich (2019); Li et al. (2020b). In practical implementation
of distributed training on large models, the performance of Local-GD is surprisingly good even with
heterogeneous data distribution McMahan et al. (2017); Charles et al. (2021). Also, the number of local
steps can be very large in Local-GD type algorithms and real-world systems, for example, up to 500 local
steps in distributed training of large language models (LLM) Douillard et al. (2023); Jaghouar et al. (2024).
Since our results show the Local-GD can converge to centralized model with arbitrary number of local
steps, it helps explain why Local-GD can still work well with a large number of local steps in practice.
In this work we consider linear models as an appropriate starting point to investigate the implicit bias of
Local-GD. A popular example of linear models used in practical machine learning pipelines is fine-tuning
last layer on pretrained large models or adding linear layers in transfer learning Donahue et al. (2014);
Kornblith et al. (2019) and deployment of LLM Devlin (2018); Jiang et al. (2020). Thus we also add
an experiment of fine-tuning last layer of neural network to show broader impact of our analysis.

2 MOTIVATING OBSERVATION IN LINEAR REGRESSION

In this section we first give some observations in linear regression as a motivating example. The behavior
of linear regression is very well-understood in high-dimensional statistics.

Setting: At each compute node i, the dataset Si consists of N tuples of samples and their corresponding la-
bels, (x,y)∈Rd×R. Denote Xi=[xi1,xi2,...,xiN ]T ∈RN×d as the data matrix at i-th compute node, and
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Algorithm 1 LOCAL-GD.
1: Input: learning rate η.
2: Initialize w0

0
3: for k=0 to K−1 do
4: The aggregator sends global model wk

0 to all compute nodes.
5: for i=1 to i=M do
6: compute node i updates local model starting from wk

0 : wk,0
i =wk

0 .
7: for l=0 to L−1 do
8: wk,l+1

i =wk,l
i −η∇fi(w

k,l
i ).

9: end for
10: compute node i sends back the updated local model wk+1

i =wk,L
i .

11: end for
12: The aggregator aggregates all the local models: wk+1

0 = 1
M

∑M
i=1w

k+1
i .

13: end for
14: Output: wK

0 .

yi=[yi1,yi2,...,yiN ]∈RN as the label vector. Let Xc=[XT
1 ,...,X

T
M ]T ∈RMN×d be the data matrix con-

sisting of all the local data, and yc=[yT1 ,...,y
T
M ]T ∈RMN×1 be the label vector consisting of the local labels.

We consider a special case of Local-GD in Algorithm 1 where the number of local steps is very large.
At each round, the aggregator sends the global model w0 to all the compute nodes. Each compute node
minimizes the squared loss fi(wi)=

1
2N ∥yi−Xiwi∥2 by a large number of gradient descent steps until

convergence. Then each compute node sends back the local model and the aggregator aggregates all the
local models to get the updated global model.

Underparameterized Regime: When the number of local samples is larger than the dimension d, it is
known that local model would converge to the ordinary least square solution wk+1

i =(XT
i Xi)

−1XT
i yi

regardless of initial point wk
i . In the meanwhile, the centralized model with all the training samples

is wc = (XT
c Xc)

−1XT
c yc. However, the average of local models w0 =

∑M
i=1(X

T
i Xi)

−1XT
i yi is not

identical to the centralized model unless the data is homogeneously distributed and all XT
i Xi are

proportional. So a large number of local steps can hurt the convergence to centralized model with
heterogeneous data distribution.

Overparameterized Regime: When the dimension is larger than the number of samples at each compute
node (d>N), there are multiple solutions corresponding to zero squared loss. However, it is known that
gradient descent would converge to the minimum norm solution in the feasible set, which corresponds
to a minimum Euclidean distance to the initial point Gunasekar et al. (2018a); Evron et al. (2022), i.e.,
the solution of the optimization problem

min
wi

∥wi−wk
0∥2 s.t. Xiwi=yi. (2)

We can obtain the closed form solution as wk+1
i =(I−Pi)w

k
0+X†

i yi, where Pi≜XT
i (XiX

T
i )

−1Xi and
X†

i ≜XT
i (XiX

T
i )

−1. We observe that Pi is the projection operator to the row space of Xi, and X†
i is

the pseudo inverse of Xi. Meanwhile the centralized model converges to the minimum norm solution
wc=XT

c (XcX
T
c )

−1yc. Denote P̄ = 1
M

∑M
i=1Pi. In the training process the difference between global

model and centralized model is iteratively projected onto the null space of span of row spaces of Xis. It
implies that the difference on the span of data matrix gradually decreases until zero. Based on the evolution
of the difference, we can prove the following theorem:
Theorem 1. For the linear regression problem, suppose the initial point w0

0 is 0 and d>MN and the min-
imum eigenvalue θmin of P̄ is larger than 0, then the output of Local-GD, wK

0 , converges to the centralized
solution wc as the number of communication rounds K→∞ as ∥wK

0 −wc∥≤(1−θmin)
K∥wc∥.

The proof is deferred in Appendix C. The key step is to show the initial difference is already in the data
space, and no residual in the null space of row spaces of Xis. The convergence to the centralized model is at
exponential rate. Due to the linearity of the regression problem, we can theoretically show the global model
can exactly converge to the centralized model with implicit bias on overparameterized regime. It implies
that, even if we use a large number of local steps to exactly solve the local problems on very heterogeneous
data, the performance of Local-GD is equivalent to train a model with all the data in one place.
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3 IMPLICIT BIAS OF LOCAL-GD FOR CLASSIFICATION

For classification task, we also would like to know whether the global model can converge to the centralized
model with any number of local steps. Now we investigate a binary classification task with linear models.

3.1 SETTING

Suppose, for each compute node i, the dataset Si consists of Ni tuples of samples and their corresponding
labels, (x,y) ∈Rd×{+1,−1}. We denote Xi ∈RNi×d as the data matrix at i-th compute node, and
yi∈{+1,−1}Ni as the label vector. The global dataset is the set of M local datasets S=∪M

i=1Si.

We consider a linear model w∈Rd for the binary classification task. The local loss at i-th compute node is

fi(w)=
∑
s∈Si

g(ysx
T
s w), (3)

where g(u) is a loss function decreasing to zero when u→∞, such as logistic loss g(u)=ln(1+e−u).

We study LocalGD with an arbitrary number of gradient descent steps. To describe our main results, we
have the following notations and assumptions. We denote the whole data matrix as X ∈RN×d, where
N=

∑M
i=1Ni. We write σmax=

√
θmax(XTX) as the maximum singular value of data matrix X, where

θ represents eigenvalues of a square matrix. We need an assumption of global separability on whole dataset.
Assumption 1. For all the data samples (xs,ys)∈S, there exists w∈Rd such that ysxTs w>0.

Note that linear separability is a common assumption in the analysis of learning in overparameterized
regime Nacson et al. (2019); Soudry et al. (2018); Evron et al. (2023). For our distributed case, this
implies that all clients share at least 1 minimizer, which imposes an extremely mild condition on the data
heterogeneity among clients. In the overparametrized setting, d≥mn, hence, there are likely several such
solutions separating the whole dataset. Since there are multiple solutions separating the whole dataset,
we define a particular max-margin solution on global dataset:

ŵ=argmin
w∈Rd

∥w∥ s.t. ysx
T
s w≥1, ∀s∈S. (4)

It has been proven that gradient descent would implicitly lead the linear model to this max-margin solution
in direction, i.e., convergence of model direction to ŵ/∥ŵ∥ Soudry et al. (2018). We define the maximum
margin as

γ= max
w∈Rd,∥w∥=1

min
s

ysx
T
s w (5)

which is strictly positive since the global dataset is linearly separable. The data points reaching this margin
are support vectors of the global dataset.

To establish convergence, we require additional regularity assumptions on the loss function.
Assumption 2. The loss function g(u) is a positive, differentiable, β-smooth function, monotonically
decreasing to zero, and limsupu→∞g′<0.
Assumption 3. The negative loss derivative −g′(u) has a tight exponential tail. That is, there exists
positive constants µ+, µ− and ū such that ∀u>ū:

(1−exp(−µ−u))e
−u≤−g′(u)≤(1+exp(−µ+u))e

−u. (6)

Note that these assumptions are also used in centralized learning of overparameterized models Soudry
et al. (2018); Nacson et al. (2019); Evron et al. (2023), and the logistic loss satisfies all the assumptions.
With our setting completely defined, we state our main results.

3.2 LOSS CONVERGENCE AND IMPLICIT BIAS OF LOCAL-GD

Our main result is on the asymptotic convergence of the model parameter w0 and loss f(w) for Local-GD.

Theorem 2. Under assumptions 1, 2, 3, if the learning rate satisfies η<min
(

1
2Lσ2

maxβ
, γ2

4Lσ3
maxβ(γ+σmax)

)
,

then for the process of Local-GD, we have,
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• Every data point is classified correctly finally: limk→∞xTs w
k
0=∞,∀s∈S.

• The global model obtained from Local-GD will behave as

wk
0=log(Lk)ŵ+ρk, and,

∥∥∥∥ wk
0

∥wk
0∥

− ŵ

∥ŵ∥

∥∥∥∥=O

(
1

logLk

)
(7)

and ∥ρk∥<∞ for all k. This implies, the normalized global model converges to the global
max-margin solution.

• The loss function f(wk
0) decreases to zero as f(wk

0)=O
(

1
Lk

)
.

The proof is deferred to Appendix D. The technical challenges lie in that we need to control the residual term
ρk with the local steps and aggregations, which are handled by a refined analysis in distributed context. This
theorem implies the global model can eventually correctly classify all the training samples after many rounds
of communication. Given that centralized model also converges to the global max-margin solution from
prior results, the global model from Local-GD actually converges to the exact centralized model in direction.
Further, this holds for a step size η∝ 1

L , and does not require any additional modifications to the objective,
for instance, any regularization on the difference between local and global models during local steps.

Impact of local steps. In this analysis, the number of local steps can be arbitrary. Although the magnitude
of model vector would diverge to infinity, the direction of aggregated model still converges to the direction
of global max-margin solution. Thus, the number of local steps does not influence the asymptotic
convergence to the centralized model, which is very different from underparameterized regime. This result
also shows the local steps can be beneficial for convergence to the global max-margin solution as both
the loss and the directional error decrease with total number of gradient descent steps(Lk) at rates 1

Lk and
1

log(Lk) respectively. Additionally, our convergence rates also match those obtained for GD in centralized
learning Soudry et al. (2018) with total number of steps Lk. This demonstrates that our analysis is tight.

Further, for constant γ, if we use the same number of local steps, L=Θ(
√

M
ϵ ) as two-stage Local-GD in

(Crawshaw et al., 2025, Corollary 3), then we require the same number of rounds O(
√

M
ϵ ) of Local-GD

to achieve f(wk
0)≤ ϵ. Note that we can improve our dependence on ϵ beyond O(

√
ϵ) to any O(ϵ−a)

for any a∈ (0,1) by setting L=Θ(
√
Mϵ1−a) in our result, which cannot be shown from the analysis

of two-stage Local-GD in Crawshaw et al. (2025).

Learning Rate. Theorems 2 needs the learning rate to be small as O(1/L), which has also been used by
existing works Karimireddy et al. (2020); Koloskova et al. (2020); Crawshaw et al. (2025) on Local-GD and
Local-SGD. This means the model does not move so far after one round of local iterations. Next, we would
see whether the global model still converges to max-margin solution with a learning rate independent of L.

3.3 DISCUSSIONS

Extension to Local SGD. It is straightforward to extend our analysis of Local-GD to Local SGD
that chooses samples without replacement. At each local step of i-th compute node, the update is
wk,l+1
i =wk,l

i −η 1
B

∑
s∈Si,l

∇g(ysx
T
s w

k,l
i ), where Si,l is the mini-batch of samples at l-th local step and

B= |Si,l| is the batch size. We consider the following setting of sampling:
Assumption 4 (Sampling without replacement.). At every communication round, each compute node
run stochastic gradient descent with E epochs, where E is an positive integer. Within each epoch, the
mini-batches {Si,0,Si,1,...,Si,l′} partition the local dataset Si, where l′=N/B is the number of local steps
for one epoch.

Under this setting, each sample is exactly chosen once inside one epoch of local updates. At each round,
the local datasets are passed E times, which is a practically common way. To extend our analysis to
Local SGD, we can regard one local dataset as a “batch” in SGD for sampling without replacement. And
then we perform multiple gradient steps in the same “batch”, not only one step of gradient descent in
SGD. In Local SGD, each step is a gradient descent step on a mini batch of local datasets, but we still
run the gradient descent steps for E “local steps”. Therefore, we can obtain the same asymptotic results
as Theorem 2 for Local SGD without any change of the proof framework.

Separability Assumption. In this paper we mainly focus on the linearly separable data, which is a
standard assumption in implicit bias analysis and also widely used in recent works Zhang et al. (2024);
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Crawshaw et al. (2025); Jung et al. (2025). For non-separable case, Ji & Telgarsky (2019a) has shown
gradient descent converges to a ray along the direction of max-margin solution of largest linearly separable
subset. However, there is still an assumption on the data: in fact, one needs a positive margin on the
separable part of data to show both convergence in risk or parameters. Nevertheless, Ji & Telgarsky (2019a)
clearly shows strict linear separability is not the main reason for the convergence of gradient descent
to a max-margin solution. Since even without this assumption, GD still converges to a variant form of
max-margin solution. It is possible to use the same idea in Local-GD. Intuitively, in the case where local
datasets are linearly separable but global dataset is non-separable, although local training would guide local
models to local max-margin solutions, the aggregations would force the global model to converge to the
max-margin solution of largest linearly separable subset of global dataset, which is the centralized solution.

4 IMPLICIT BIAS OF LOCAL-GD WITH LEARNING RATE INDEPENDENT OF L

4.1 SETTING

In this section, we consider Local-GD in a slightly different setting. We aim to solve a local optimization
problem with exponential loss and a weakly regularized term for each compute node. The local problem
is solved exactly (to reach the local optima) with a large number of local steps.

Algorithm. At each round, the aggregator sends the global model w0 to all the compute nodes. Each
compute node minimizes an exponential loss with a weakly regularized term by many gradient descent
steps until convergence. That is, each compute node solves the following problem:

min
w∈Rd

fi(w) where fi(w)≡
∑
s∈Si

exp
(
−ysx

T
s w
)
+
λ

2
∥w−wk

0∥2 (8)

where λ is a regularization parameter close to 0.

Then each compute node sends back the local model and the aggregator aggregates all the local models
to get the updated global model (i.e., they follow Algorithm 1 with fi(wi) as specified here).

Regularization methods are very common in distributed learning to force the local models move not too far
from global model Li et al. (2020a; 2021); T Dinh et al. (2020). Here we consider the weakly regularized
term, λ→0, to give theoretical insights of Local-GD on classification tasks. Experimentally the λ is set
to be extremely small that does not affect the minimization of exponential loss. For the local loss functions,
we have one assumption on smoothness:
Assumption 5. For each compute node, the local loss function fi(w) is B-smooth for any round of local
steps k.

Learning Rate. In the following analysis of implicit bias, we actually exploit the property of local
minimizers. Since local problem (8) is a strongly convex problem for λ>0, we can run local gradient
descent to find the unique minimizer with a learning rate η≤ 2

B for a large number of local steps L. That’s
the only requirement of learning rate, which is not dependent of number of local steps L. In other words, the
learning rate is only needed to be sufficiently small to ensure local convergence at each round of Local-GD.

4.2 IMPLICIT BIAS OF LOCAL-GD AND RELATION TO PPM

We consider the whole algorithmic process of Local-GD on classification and use another auxiliary
sequence of global models, denoted as w̄k

0 ,k=0,1,2,.... Starting from an initial point w̄0
0, the central node

sends global model w̄k
0 to all the compute nodes at k-th iteration round. Each compute node solves the

following Local Max-Margin problem to obtain w̄k+1
i :

w̄k+1
i =argmin

w∈Rd
∥w−w̄k

0∥ s.t. ysx
T
s w≥1, ∀s∈Si. (9)

Then the compute node sends the local model back. The central node averages the local models to get
w̄k+1
0 = 1

M

∑M
i=1w̄

k+1
i . We can show the solution wK

0 obtained in Local-GD converges in direction to
the global model from Local Max-Margin problems w̄K

0 .
Lemma 1. For almost all datasets sampled from a continuous distribution satisfying Assumption 1, with
initialization w0

0 = w̄0
0 =0, we have wk

0 → ln
(
1
λ

)
w̄k
0 , and the residual ∥wk

0− ln
(
1
λ

)
w̄k
0∥=O(klnln 1

λ),

6
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as λ→0. It implies that at any round k=o
(

ln(1/λ)
lnln(1/λ)

)
, wk

0 converges in direction to w̄k
0:

lim
λ→0

wk
0

∥wk
0∥

=
w̄k
0

∥w̄k
0∥

. (10)

The proof is deferred in Appendix E. The proof sketch is similar to the continual learning work Evron
et al. (2023), but we have to handle the parallel local updates for each dataset from the same initial model
and the aggregation, which is different from the sequential updates where for each dataset the model is
trained from the previous model and there is no need to do aggregation.

Based on this equivalence between Local-GD for linear classification and Local Max-Margin scheme,
we can further analyze the performance of Local-GD with a large number of local steps. Instead of a
closed-form solution for the Local Max-Margin problem (9), we treat it as a projection of the aggregated
global model onto a convex set Ci: w̄k+1

i =Pi(w̄
k
0), which is formed by the constraints in (9) and exactly

the local feasible set defined in Assumption 1. Here we slightly overload the notation Pi, which was used
as the projection matrix in linear regression since the readers can get a sense of the same effect of them
in Local-GD. The aggregation is actually to average the local projected points: w̄k+1

0 = 1
M

∑M
i=1Pi(w̄

k
0).

The sequence of Local Max-Margin schemes is therefore projections to local (convex) feasible sets
followed by aggregation, which is the Parallel Projection Method (PPM) in literature Gilbert (1972);
Combettes (1994). Using Lemma 1, we establish the relation between Local-GD and PPM: the model
from Local-GD converges to the model from PPM in direction.

4.3 CONVERGENCE TO GLOBAL FEASIBLE SET

Now we use the properties of PPM to characterize the performance of Local-GD in classification. In
Combettes (1994), the convergence of PPM has been provided for a relaxed version. The direct average
considered in this work can be seen as a special case of the relaxed version, and the following lemma holds.
Lemma 2 (Theorem 1 and Proposition 8, Combettes (1994)). Suppose all the local feasible sets
Ci,i=1,2,... are closed and convex, and the intersection C̄ is not empty. Then for any initial point w̄0

0,
the global model w̄0 generated by PPM converges to a point in the global feasible set C̄.

This lemma guarantees that w̄K
0 will converge to the intersection of the convex sets after many rounds

of iteration, however we are not sure which exact point it would converge to.

Combining Lemma 1, Lemma 2 and the fact that centralized model would converge to the minimum norm
solution in global feasible set, we immediately have:
Theorem 3. For linear classification problem with exponential loss, suppose initial point is w0

0=0. The
aggregated global model wK

0 obtained by Local-GD with a large number of local steps converges in
direction to one point in the global feasible set C̄, while the centralized model converges in direction to
the minimum norm point in the same set.

Here we cannot guarantee the global model obtained by Local-GD with a learning rate independent of L
to converge exactly to the centralized model in classification, but show that it converges to the same global
feasible set as the centralized solution. To theoretically support that the Local-GD model converges to
the centralized model, we propose a slightly Modified Local-GD by just changing the aggregation method,
and showing that it converges to the centralized model exactly.

4.4 MODIFIED LOCAL-GD: CONVERGENCE TO CENTRALIZED MODEL

In Combettes (1996) it was shown that if the aggregation method is modified to incorporate the influence
of the initial point w̄0

0 in PPM, then the sequence generated by PPM will converge to a specific point in
global feasible set C̄ with minimum distance to this initial point. Denote Pc(·) as the projection operator
onto the global feasible set C̄. Formally we have the following lemma.
Lemma 3 (Theorem 5.3, Combettes (1996)). Suppose C̄ is not empty. For any initial point w̄0

0, when
the local models are aggregated as

w̄k+1
0 =(1−αk+1)w̄0

0+αk+1

(
1

M

M∑
i=1

Pi(w̄
k
0)

)
, (11)
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where {αk} satisfy (i)limk→∞αk =1,(ii)
∑

k≥0(1−αk) =∞,(iii)
∑

k≥0 |αk+1−αk|<∞, then the
global model generated by PPM will converge to the point Pc(w̄

0
0).

The sequence generated by PPM would converge to the point in global feasible set, C̄, with minimum
distance to w̄0

0. The modified aggregation method is a linear combination of initial point and current average
of local projected points. One example of the sequence {αk} satisfying the conditions is αk=1− 1

k+1 .

If we start from w̄0
0=0, then the point Pc(w̄

0
0) is exactly the minimum norm point in the global feasible set.

It shows the PPM can exactly converge to the minimum norm point as the centralized model. Based on this
result, we propose a Modified Local-GD algorithm, with the replacement of Line 9 in Algorithm 1 with

wk+1
0 =(1−αk)w0

0+αk

(
1

M

M∑
i=1

wk
i

)
. (12)

We still need to prove a lemma analogous to Lemma 1 to establish the equivalence between Modified
Local-GD and Modified PPM, which is omitted here due to space limit (Please refer to Appendix E and
the proof is very similar to proof in Lemma 1). From the equivalence, Lemma 3, and implicit bias of
the centralized model, we can have the following theorem:

Theorem 4. For linear classification problem with local loss (8), suppose the initial point is w0
0=0. Then

the global model wK
0 obtained by Modified Local-GD converges in direction to the centralized model

obtained from (4).

Unlike the vanilla Local-GD, which is only guaranteed to converge to the global feasible set, the Modified
Local-GD is guaranteed to converge to the centralized model in direction. Note that if we start from w̄0

0=0,
the aggregation in Modified Local-GD becomes wk+1

0 = k
k+1

(
1
M

∑M
i=1w

k
i

)
, which is just a scaling of

vanilla aggregation with a parameter less than 1. Thus we can see experimentally they usually converge
to the same point and Modified Local-GD converges slightly slower. With Modified Local-GD, we can
theoretically show the global model still converges to centralized model in direction with a learning rate
independent of L.

5 EXPERIMENTS

We conducted various experiments on linear classification and neural network fine-tuning. We compared
the global model, i.e., the output of Local-GD (Algorithm 1), with the centralized model, i.e., the model ob-
tained from running GD on a dataset consisting of all distributed datasets at one place, in different scenarios.

5.1 LINEAR CLASSIFICATION

For linear classification, we have 10 compute nodes with 50 training samples at each. The dataset is
generated as yij=sign(xTijw

∗
i ), where ground truth model is w∗

i =w∗+zi, and w∗ is a Gaussian vector
randomly chosen, zi is a Gaussian noise. The data matrix Xi is a Gaussian matrix. This setting makes sure
the datasets across compute nodes are different from each other, meanwhile they are not totally different
such that there may be a non-empty global feasible set.

We tested four models for linear classification. The global model (G) is trained exactly with Local-GD
and logistic loss. The centralized model (C) is trained with gradient descent on the global dataset. The
global model from Modified Local-GD (G-Mod) is trained with exponential loss and regularization term
as λ=0.0001. The centralized SVM model (S) (max-margin solution) is obtained by solving problem
(4) via standard scikit-learn package. Note that centralized model and SVM model are the final trained
model in the plots. The learning rate of (local) gradient descent is η=0.01. Since our theory claimed
the convergence is established in direction, the difference here for two models w1,w2 is defined after
normalization ∥w1/∥w1∥−w2/∥w2∥∥.

In Fig. 1(a), we show the difference between global model from Local-GD and centralized model with
different number of local steps. The model dimension is chosen as d=1500, ensuring it is globally over-
parameterized. The centralized model is trained with 20000 gradient descent steps. It is seen the difference
can approach zero for all the L, and larger L can result in faster convergence to the centralized model.
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Figure 1: (a) Difference between global model and centralized model with L. (b) Difference between
global model and centralized model with R. (c) Difference between global model and centralized model
with d. (d) Difference from SVM model with d. (e) Difference between global linear layer and centralized
linear layer with R. (f) Test accuracy of neural network fine-tuning.

In Figs. 1(b), 1(c), 1(d), the number of local steps is fixed as L = 150 for Local-GD and Modified
Local-GD, and the number of communication rounds is fixed as R=120 for all the dimensions. Fig. 1(b)
shows the difference between these models with respect to the number of rounds R when dimension is
d=1500. We can see both global model and modified global model converges to the centralized model
in direction, and the centralized model is close to the SVM model but there is small gap. Fig. 1(c) displays
the difference with respect to dimension d. It is seen the difference between global model and centralized
model gradually decreases with larger dimensions. The modified global model is almost the same as
the centralized model but the gap is slightly larger since it converges slower than vanilla global model
with same number of rounds. Fig. 1(d) shows the difference from SVM model with dimension. The gap
between the models to SVM model also decreases with larger d.

5.2 FINE-TUNING OF PRETRAINED NEURAL NETWORK

We further fine-tuned the ResNet50 model pretrained with ImageNet dataset on CIFAR10 dataset. Only
the final linear layer is trained during the process, while the rest of model is fixed. The 50000 samples are
distributed on 10 compute nodes. For i-th compute node, the half of local dataset belongs to the same class,
and the other half consists of rest of 9 classes evenly, which forms a heterogeneous data distribution. The
centralized model is trained with the whole CIFAR10 dataset. The models are trained with cross entropy loss
and Local SGD. The learning rate is 0.01 and the batch size is 128. The number of local steps is L=60 and
number of communication rounds isR=60. The centralized model is trained with the same learning rate for
3600 steps. We plot the difference between the linear layer and test accuracy with number of rounds in Fig.
1(e) and 1(f). Again the difference is defined in direction. We can see the difference gradually decreases
to a small error floor and the accuracy of global models and centralized model is very similar at last.

Due to page limit, we put more experimental results on linear regression, linear classification with Dirichlet
distribution in Appendix B.

6 CONCLUSIONS

In this work we analyzed the implicit bias of GD in distributed setting, and characterized the dynamics
of the global model trained from Local-GD. We showed that Local-GD can converge to a centrally trained
model for linearly separable data with a constant learning rate O(1/L), and a Modified Local-GD can
have the same convergence for a learning rate independent of L. Our analysis provided a new perspective
why Local-GD works well in practice even with a large number of local steps on heterogeneous data.
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REPRODUCIBILITY STATEMENT

This paper is mainly a theoretical work. The assumptions 1-5 are clearly explained in the main text. The
proofs of Section 2 are included in Appendix C. The proof of Theorem 2 is included in Appendix D. The
proofs of lemmas and theorems in Section 4 are included in Appendix E.
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Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2661–2671, 2019.

Yiwen Kou, Zixiang Chen, and Quanquan Gu. Implicit bias of gradient descent for two-layer relu and leaky
relu networks on nearly-orthogonal data. Advances in Neural Information Processing Systems, 36, 2024.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems,
2:429–450, 2020a.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In International Conference on Machine Learning, pp. 6357–6368. PMLR,
2021.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
FedAvg on non-IID data. In International Conference on Learning Representations, 2020b.

Sen Lin, Peizhong Ju, Yingbin Liang, and Ness Shroff. Theory on forgetting and generalization of
continual learning. In International Conference on Machine Learning, pp. 21078–21100. PMLR, 2023.

Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches, use
local SGD. In International Conference on Learning Representations, 2019.

Shruti P Maralappanavar, Prashant Khanduri, and Bharath B N. Linear convergence of decentralized
fedavg for PL objectives: The interpolation regime. Transactions on Machine Learning Research, 2025.
ISSN 2835-8856. URL https://openreview.net/forum?id=Og3VxBFhwj.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence
and statistics, pp. 1273–1282. PMLR, 2017.

Mor Shpigel Nacson, Nathan Srebro, and Daniel Soudry. Stochastic gradient descent on separable data:
Exact convergence with a fixed learning rate. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 3051–3059. PMLR, 2019.

Kumar Kshitij Patel, Margalit Glasgow, Ali Zindari, Lingxiao Wang, Sebastian U Stich, Ziheng
Cheng, Nirmit Joshi, and Nathan Srebro. The limits and potentials of local sgd for distributed
heterogeneous learning with intermittent communication. In Shipra Agrawal and Aaron Roth
(eds.), Proceedings of Thirty Seventh Conference on Learning Theory, volume 247 of Pro-
ceedings of Machine Learning Research, pp. 4115–4157. PMLR, 30 Jun–03 Jul 2024. URL
https://proceedings.mlr.press/v247/patel24a.html.

12

https://proceedings.mlr.press/v119/koloskova20a.html
https://openreview.net/forum?id=Og3VxBFhwj
https://proceedings.mlr.press/v247/patel24a.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tiancheng Qin, S Rasoul Etesami, and César A Uribe. Faster convergence of local sgd for
over-parameterized models. arXiv preprint arXiv:2201.12719, 2022.

Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
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A RELATED WORK

Convergence of Local-GD. When data distribution is homogeneous, many works have been done to
establish convergence analysis for Local (Stochastic) GD Stich (2019); Yu et al. (2019); Khaled et al. (2020).
With a “properly” small number of local steps, the dominating convergence rate is not affected. Further
various assumptions have been made to handle data heterogeneity and develop convergence analysis Li et al.
(2020b); Karimireddy et al. (2020); Khaled et al. (2020); Reddi et al. (2021); Wang et al. (2020); Crawshaw
et al. (2023). For strongly convex and smooth loss functions, the number of local steps should not be larger
than O(

√
T) for i.i.d data Stich (2019) and non-i.i.d. data Li et al. (2020b). However, in practice Local-GD

(FedAvg) works well in many applications McMahan et al. (2017); Charles et al. (2021), even in training
large language models Douillard et al. (2023); Jaghouar et al. (2024). In Wang et al. (2024), the authors
argue that the previous theoretical assumption does not align with practice and proposed a client consensus
hypothesis to explain the effectiveness of FedAvg in heterogeneous data. But they do not consider the
impact of overparameterization on distributed training. There are some works incorporating the property
of zero training loss of overparameterized neural networks into the conventional convergence analysis
of FedAvg Huang et al. (2021); Deng et al. (2022a); Song et al. (2023); Qin et al. (2022). However, they
do not guarantee which point FedAvg can converge to. Our work is different from these works as: 1. We
analyze which point the Local-GD can converge to, which is a more elementary problem before obtaining
the convergence rate; 2. We use implicit bias as a technical tool to analyze the overparameterized FL.

Implicit Bias. Soudry et al. (2018) is the first work to show the gradient descent converges to a max-margin
direction on linearly separable data with a linear model and exponentially-tailed loss function. Ji &
Telgarsky (2019a) has provided an alternative analysis and extended this to non-separable data. The theory
of implicit bias has been further developed, for example, for wide two-layer neural networks Chizat &
Bach (2020), deep linear models Ji & Telgarsky (2019b), linear convolutional networks Gunasekar et al.
(2018b), two-layer ReLU networks Kou et al. (2024) etc. Beyond gradient descent, more algorithms
have been considered, including gradient descent with momentum Gunasekar et al. (2018a), SGD Nacson
et al. (2019), Adam Cattaneo et al. (2023), AdamW Xie & Li (2024). Recently, implicit bias has also
been used to characterize the dynamics of continual learning, on linear regression Evron et al. (2022);
Goldfarb & Hand (2023); Lin et al. (2023), and linear classification Evron et al. (2023); Jung et al. (2025).
In Evron et al. (2023), gradient descent on continually learned tasks is related to Projections onto Convex
Sets (POCS) and shown to converge to a sequential max-margin scheme. In our work we consider the
implicit bias of gradient descent in distributed setting, which is related to a different parallel projection
scheme by projecting onto constraint sets simultaneously.

Parallel Projection. Parallel projection methods are a family of algorithms to find a common point
across multiple constraint sets by projecting onto these sets in parallel. These methods are widely used
in feasibility problems in signal processing and image reconstruction Bauschke & Combettes (2011).
The straightforward average of multiple projections is known as the simultaneous iterative reconstruction
technique (SIRT) in Gilbert (1972). Then de Pierro & Iusem (1984) studied the convergence of PPM for a
relaxed version, and Combettes (1994) further generalized the result to inconsistent feasibility problems. In
Combettes (1997), an extrapolated parallel projection method was proposed to accelerate the convergence.
We note that Jhunjhunwala et al. (2023) used this extrapolation to accelerate FedAvg. However, it was
just inspired by the similarity between parallel projection method and FedAvg, while in this work we
rigorously prove the relation between PPM and FedAvg using implicit bias of gradient descent.
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B ADDITIONAL EXPERIMENTS

B.1 EXPERIMENTS ON LINEAR REGRESSION

We simulated 10 compute nodes, each with 50 training samples. The label vector yi at i-th compute node
is exactly generated as (13), where ground truth model w∗

i is Gaussian vector with each element following
N (0,4). Each ground truth model at different compute nodes is independently generated, thus the datasets
can be very different from each other. The data matrix Xi also follows Gaussian distribution, with each
element being N (0,1), and zi is a Gaussian vector with N (0,0.04). In Local-GD, the number of local
steps is L=200, number of rounds is also R=200, and the learning rate η=0.0001. Actually it just take
a few local steps to converge locally at each round, but we set a large number of local steps to show it
can be large at O(

√
T), where T =L∗R is the number of total iterations. We tested the global model

(G) from Local-GD on squared loss, centralized model (C) trained from global dataset on squared loss,
closed form of global model (G-Closed) in (17), closed form of centralized model (C-Closed) as solution
of problem (18). The centralized model is trained 10000 steps with learning rate 0.0001.

Fig. 2(a) displays the difference between global model and centralized model, global model and its closed
form, and centralized model and its closed form, with respect to model dimension. The difference between
two models is ∥w1−w2∥/d. Since it is always locally overparameterized, the difference between global
model and the closed form is always zero. The difference between global model and centralized model
has an obvious peak around 500, which is the number of total samples. The phenomenon that global model
converges exactly to centralized model only happens when the model is sufficiently overparameterized.
Fig. 2(b) shows the generalization error of global model and centralized model in linear regression. Since
the data matrix is Gaussian, the generalization error of model w can be computed as 1

M

∑M
i=1∥w−w∗

i ∥2.
We plot the generalization error divided by d. It is shown the global model and centralized model can
get the same performance when model is sufficiently overparameterized.
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Figure 2: (a) Difference between global and centralized models plotted against increasing dimension. (b)
Generalization error with respect to dimension.

B.2 LINEAR CLASSIFICATION WITH DIRICHLET DISTRIBUTION

In federated learning, the Dirichlet distribution is usually used to generate heterogeneous datasets across the
compute nodes Hsu et al. (2019); Chen & Chao (2021); Reguieg et al. (2023). For binary classification prob-
lem, the Dirichlet distribution Dir(α) is used to unbalance the positive and negative samples. In the experi-
ments we have 10 compute nodes. We generate 500 samples as yi=sign(xTi w

∗) for i∈ [500] and use Dir(α)
to distribute the 500 samples across 10 compute nodes. Note that the number of samples at each compute
node is not necessarily identical. Fig. 3 shows performance of Local-GD for linear classification with differ-
ent parameterα in Dirichlet distribution. The λ is set to be 0.0001 and model dimension is fixed as d=1500.
The number of local stepsL is 150 and number of communication roundsR is 150. The learning rate is 0.01.
The centralized model is trained with the same learning rate for 22500 steps. We can see the global model
and modified global model still converge to the centralized model in direction and get similar test accuracy.
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(b) Test Accuracy with α=0.5.
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(d) Test Accuracy with α=0.3.

Figure 3: Local-GD on linear classification with Dirichlet distribution.

C LOCAL-GD FOR LINEAR REGRESSION IN OVERPARAMETERIZED REGIME

In this section we give a extended description of Section 2 about linear regression in overparameterized
regime.

C.1 SETTING

The behavior of linear regression is very well-understood in high-dimensional statistics; and we can clearly
convey our key message based on this fundamental setting.

At each compute node i, the dataset Si consists of N tuples of samples and their corresponding labels,
(x,y)∈Rd×R. We assume the label yij is generated by

yij=xTijw
∗
i +zij (13)

where w∗
i ∈ Rd is the ground truth model at i-th compute node, and zij is the added noise. Denote

Xi=[xi1,xi2,...,xiN ]T ∈RN×d as the data matrix at i-th compute node, and yi=[yi1,yi2,...,yiN ]∈RN

as the label vector, zi∈RN as the noise vector. In heterogeneous setting, the w∗
i can be very different to

each other. Note that the convergence to centralized model does not rely on the generative model. We just
make this assumption on generative model for deriving a more clear form of the aggregated global model.

Algorithm. At each round, the aggregator sends the global model w0 to all the compute nodes. Each
compute node minimizes the squared loss fi(wi) =

1
2N ∥yi −Xiwi∥2 by a large number of gradient

descent steps until convergence. Then each compute node sends back the local model and the aggregator
aggregates all the local models to get the updated global model. The detailed algorithm is Local-GD in
Algorithm 1 with fi(wi) replaced in the update. Since minimizing squared loss is a quadratic problem,
it is expected to reach convergence locally with a small number of gradient descent steps.

C.2 IMPLICIT BIAS OF LOCAL GD IN LINEAR REGRESSION

For each local problem, when the dimension of the model is larger than the number of samples at each com-
pute node (d>N), i.e., locally overparameterized, there are multiple solutions corresponding to zero squared
loss. However, gradient descent will lead the model converge to a specific solution, which corresponds to a
minimum Euclidean distance to the initial point Gunasekar et al. (2018a); Evron et al. (2022). Formally, the
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solutionwk+1
i obtained at k-th round and i-th node will converge to the solution of the optimization problem

min
wi

∥wi−wk
0∥2 s.t. Xiwi=yi. (14)

We can obtained the closed form solution of this optimization problem as (see Proof of Lemma 4 in
Appendix C.4.1)

wk+1
i =

(
I−XT

i (XiX
T
i )

−1Xi

)
wk
0+XT

i (XiX
T
i )

−1yi

=
(
I−XT

i (XiX
T
i )

−1Xi

)
wk
0

+XT
i (XiX

T
i )

−1Xiw
∗
i +XT

i (XiX
T
i )

−1zi. (15)

Denote Pi ≜ XT
i (XiX

T
i )

−1Xi and X†
i ≜ XT

i (XiX
T
i )

−1. The local model can be rewritten as
wk+1
i =(I−Pi)w

k
0 +Piw

∗
i +X†

i zi. We observe that Pi is the projection operator to the row space of
Xi, and X†

i is the pseudo inverse of Xi. After one round of iterations, the local model is actually an
interpolation between the initial global model wk

0 at this round and the ground-truth model w∗
i , plus

a noise term. We then obtain the closed form of global model by aggregation. After many rounds of
communication, we can obtain the final trained global model from Local-GD.
Lemma 4. When the local overparameterized linear regression problems are exactly solved by gradient
descent, then after K rounds of communication, the global model wK

0 obtained from Local-GD is

wK
0 =(I−P̄)Kw0

0+

K−1∑
k=0

(I−P̄)k(Q̄+Z̄), (16)

where P̄= 1
M

∑M
i=1Pi,Q̄= 1

M

∑M
i=1Piw

∗
i ,Z̄= 1

M

∑M
i=1X

†
i zi.

Note that P̄ ,Q̄,Z̄ are constant after the data is generated. Since we only know the {Xi,yi}Mi=1 in the
training process, we can also write it as

wK
0 =(I−P̄)Kw0

0+

K−1∑
k=0

(I−P̄)kȲ , (17)

where Ȳ = 1
M

∑M
i=1X

†
i yi. Then we can directly get the final model from the training set.

Singularity of P̄ . If P̄ is invertible, we can further simplify the form of global model. However, since
Pi ∈Rd×d is the projection operator onto row space of Xi, its rank is at most N. The P̄ is the average
of Pis, thus its rank is at most MN . Note that we consider the overparameterized regime both locally
and globally, i.e., d≫MN . Then P̄ is singular, and the sum

∑K−1
k=0 (I− P̄)k approaches KI when

d becomes very large. We cannot get more properties of the final global model from (17), but we can
compare it to the centralized model trained with all of the data.

C.3 CONVERGENCE TO CENTRALIZED MODEL

Let Xc = [XT
1 , ... , X

T
M ]T ∈ RMN×d be the data matrix consisting of all the local data, and

yc=[yT1 ,...,y
T
M ]T ∈RMN×1 be the label vector consisting of the local labels. If we train the centralized

model from initial point 0 with squared loss, then the gradient descent will lead the model to the solution
of the optimization problem

min
w

∥w∥2 s.t. Xcw=yc (18)

We can write the closed form of centralized model as wc=XT
c (XcX

T
c )

−1yc.

Due to the constraint in problem (18), for each compute node i, we have Xiwc= yi. We replace yi in
the local model (15), then we have

wk+1
i −wc=(I−Pi)(w

k
0−wc). (19)

The RHS is projecting the difference between global model and centralized model onto null space of Xi.
After averaging all the local models at the aggregator, we have

wk+1
0 −wc=(I−P̄)(wk

0−wc). (20)
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In the training process the difference between global model and centralized model is iteratively projected
onto the null space of span of row spaces of Xis. It implies that the difference on the span of data matrix
gradually decreases until zero. Based on the evolution of the difference, we can prove the Theorem 1
and we restate it here:
Theorem 5. For the linear regression problem, suppose the initial point w0

0 is 0 and d > MN and
the minimum eigenvalue of P̄ , λmin is larger than 0, then the global model obtained by Local-GD,
wK
0 , converges to the centralized solution wc as the number of communication rounds K → ∞ as

∥wK
0 −wc∥≤(1−λmin)

K∥wc∥.

The proof is in Appendix C.4.2. The key step is to show the initial difference is already in the data space,
and no residual in the null space of row spaces of Xis. The convergence to the centralized model is at
exponential rate.

Due to the linearity of the regression problem, we can theoretically show the global model can exactly
converge to the centralized model with implicit bias on overparameterized regime. Note that the proof
does not rely on the generative model and assumption on data heterogeneity. It implies that, even if we
use a large number of local steps to exactly solve the local problems on very heterogeneous data, the
performance of Local-GD is equivalent to train a model with all the data in one place.

C.4 PROOFS IN LINEAR REGRESSION

C.4.1 PROOF OF LEMMA 4

At each compute node, the local model converges to the solution of problem

min
wi

∥wi−wk
0∥2 s.t. Xiwi=yi. (21)

Using Lagrange multipliers, we can write the Lagrangian as

1

2
∥wi−wk

0∥2+βT (Xiwi−yi) (22)

Setting the derivative to 0, we know the optimal w̃i satisfies

w̃i−wk
0+XT

i β=0, (23)

and then

w̃i=wk
0−XT

i β. (24)

Also by the constraint yi=Xiw̃i, we can get

yi=Xiw
k
0−(XiX

T
i )β. (25)

Since the model is overparameterized (d>N), XiX
T
i ∈Rd×d is invertible. Then we have

β=−(XiX
T
i )

−1(yi−Xiw
k
0). (26)

Plugging the β back, we can get the closed form solution as

w̃i=wk
0+XT

i (XiX
T
i )

−1(yi−Xiw
k
0). (27)

We update the local model wk+1
i =w̃i.

We can also write the closed form solution as

wk+1
i =wk

0+XT
i (XiX

T
i )

−1(yi−Xiw
k
0)

=
(
I−XT

i (XiX
T
i )

−1Xi

)
wk
0+XT

i (XiX
T
i )

−1yi (28)

If we plug in the generative model yi=Xiw
∗
i +zi, then the solution is

wk+1
i =

(
I−XT

i (XiX
T
i )

−1Xi

)
wk
0+XT

i (XiX
T
i )

−1Xiw
∗
i +XT

i (XiX
T
i )

−1zi

=(I−Pi)w
k
0+Piw

∗
i +X†

i zi. (29)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where Pi=XT
i (XiX

T
i )

−1Xi is the projection operator to the row space of Xi, and X†
i =XT

i (XiX
T
i )

−1

is the pseudo inverse of Xi. It is an interpolation between the initial global model wk
0 and the local true

model w∗
i , plus a noise term.

After aggregating all the local models, the global model is

wk+1
0 =

1

m

m∑
i=1

(I−Pi)w
k
0+

1

m

m∑
i=1

Piw
∗
i +

1

m

m∑
i=1

X†
i zi

=(I−P̄)wk
0+Q̄+Z̄, (30)

where P̄= 1
m

∑m
i=1Pi,Q̄=

∑m
i=1Piw

∗
i ,Z̄= 1

m

∑m
i=1X

†
i zi.

After K rounds of communication, the global model is

wK
0 =(I−P̄)Kw0

0+

K−1∑
k=0

(I−P̄)(Q̄+Z̄). (31)

If we start from w0
0=0, then the solution will converge to

∑K−1
k=0 (I−P̄)(Q̄+Z̄).

C.4.2 PROOF OF THEOREM 1

We know the difference between global model and centralized model is iteratively projected onto the null
space of span of row spaces of Xis:

wk+1
0 −wc=(I−P̄)(wk

0−wc). (32)

We can formally describe it as follows. Since the problem is overparameterized globally, we can assume
each Xi has full rank N . We apply singular value decomposition (SVD) to Xi as Xi=UiΣiV

T
i , where

Ui∈RN×N ,Vi∈Rd×N . Then Pi=XT
i (XiX

T
i )

−1Xi=ViV
T
i , which is the projection matrix to the row

space of Xi.

We apply eigenvalue decomposition on P̄ to get P̄ =QΣQT , where Q∈Rd×n′
and n′ is the rank of P̄ .

It satisfies N ≤n′ ≤MN . Since P̄ is a linear combination of Pis, the space of column space of Q is
the space spanned by all the vectors vij,i=1,...,M,j=1,...,N .

We also construct a matrix Q′ ∈Rd×(d−n′), which consists of orthonomal vectors perpendicular to Q.
We can project the difference onto column space of Q and Q′ respectively.

QT (wk+1
0 −wc)=QT (I−QΣQT )(wk

0−wc)=(I−Σ)QT (wk
0−wc)

Q′T (wk+1
0 −wc)=Q′T (I−QΣQT )(wk

0−wc)=Q′T (wk
0−wc) (33)

After K rounds of communication, we can decomposite wK
0 −wc into two parts:

wK
0 −wc=QQT (wK

0 −wc)+Q′Q′T (wK
0 −wc). (34)

Then we can obtain

wK
0 −wc=QQT (wK

0 −wc)+Q′Q′T (wK
0 −wc)

=Q(I−Σ)KQT (w0
0−wc)+Q′Q′T (w0

0−wc).

It shows the initial difference on the column space of Q continues to decrease until zero if K is sufficiently
large. And the initial difference on the null space of Q remains constant.

To show the difference wK
0 −wc goes to zero entirely, we just need to choose an initial point such that

initial difference is on the column space of Q. When we choose w0
0=0, the initial difference is wc itself.

Moreover, the centralized solution wc=XT
c (XcX

T
c )

−1yc exactly lies in the data space spanned by vectors
{vij}M,N

i=1,j=1 since it is a linear combination of columns of XT
c . So if we start from w0

0=0, then wK
0 −wc

will go to zero when K is sufficiently large.

When starting from 0, the difference between the global model and the centralized model becomes
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∥wK
0 −wc∥2=∥Q(I−Σ)KQTwc∥2

=
(
Q(I−Σ)KQTwc

)T(
Q(I−Σ)KQTwc

)
=
(
QTwc

)T
(I−Σ)2K

(
QTwc

)
. (35)

Since I−Σ is a diagonal matrix, we can get

∥wK
0 −wc∥2≤(1−λmin)

2K∥QTwc∥2, (36)

where λmin is the minimum eigenvalue of matrix P̄ . Also since Q is an orthogonal matrix, we have
∥QTwc∥2=∥wc∥2. Then we can get

∥wK
0 −wc∥≤(1−λmin)

K∥wc∥. (37)

It shows the difference between trained global model and centralized model converge to zero at an
exponential rate.
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D PROOFS OF IMPLICIT BIAS FOR LINEAR CLASSIFICATION IN SECTION 3

We give the detailed proofs of Theorem 2 in this section. The proof framework is inspired by the analysis
of implicit bias of SGD Nacson et al. (2019). Intuitively, we can regard one local dataset as a “batch” in
SGD for sampling without replacement. But we perform multiple gradient steps in the same “batch”, not
just one step of gradient descent. The challenge is to handle local steps in the same local dataset and the
aggregation after one round of local training. Here we restate the Theorem 2.

Theorem 6. Under assumptions 1, 2, 3, if the learning rate satisfies η≤min
(

1
2Lσ2

maxβ
, γ2

4Lσ3
maxβ(γ+σmax)

)
,

then for the process of Local-GD, we have,

• Claim 1: Every data point is classified correctly finally: limk→∞xTs w
k
0=∞,∀s∈S.

• Claim 2: The global model obtained from Local-GD will behave as

wk
0=log(Lk)ŵ+ρk, and,

∥∥∥∥ wk
0

∥wk
0∥

− ŵ

∥ŵ∥

∥∥∥∥=O

(
1

logLk

)
(38)

and ∥ρk∥<∞ for all k. This implies, the normalized global model converges to the global
max-margin solution.

• Claim 3: The loss function f(wk
0) decreases to zero as f(wk

0)=O
(

1
Lk

)
.

For the three claims in Theorem 2, we will give separable (but sequential) proofs below.In the proofs of
linear classification, for ease of notation, we redefine the samples ysxs to xs to subsume the labels.

D.1 PROOF OF CLAIM 1

In this proof, we rely on the key property of linearly separable data.

Lemma 5 (Lemma 2 and (17) in Nacson et al. (2019)). Suppose that Assumptions 1 and 2 hold. For
any w∈Rd,

∥∇f(w)∥≥ γ

M

√∑
s∈S

[g′(xTs w)]
2.

Lemma 6. Suppose that Assumptions 1 and 2 hold and k∈N. Then we have

∥wk,l
i −wk

0+η
(
l∇fi(w

k
0)
)
∥≤ η2Lσ3

maxβMl

γ(1−lηβσ2
max)

∥∇f(wk
0)∥. (39)

∥wk,l
i −wk

0∥≤
ηLσmaxM

γ(1−lηβσ2
max)

∥∇f(wk
0)∥. (40)

∥∇f(wk,l
i )−∇f(wk

0)∥≤
ηLσ3

maxβM

γ(1−lηβσ2
max)

∥∇f(wk
0)∥. (41)

The proof can be seen in Section D.1.1.

Note that f(w)= 1
M

∑M
i=1fi(w)=

1
M

∑
s∈Sg(x

T
s w), and g(u) is a β-smooth function from Assumption

2. Then f(w) is a βσ2
max

M -smooth function. Then we can get

f(wk+1
0 )−f(wk

0)−
σ2
maxβ

2M
∥wk+1

0 −wk
0∥2

≤⟨∇f(wk
0),(w

k+1
0 −wk

0)⟩
=⟨∇f(wk

0),w
k+1
0 −wk

0−ηL∇f(wk
0)+ηL∇f(wk

0)⟩
≤−ηL∥∇f(wk

0)∥2+∥∇f(wk
0)∥∥wk+1

0 −wk
0+ηL∇f(wk

0)∥, (42)

where the second inequality is from Cauchy-Schwarz inequality.
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For the second term, we have

∥wk+1
0 −wk

0+ηL∇f(wk
0)∥

=∥ 1

M

M∑
i=1

wk+1
i −wk

0+ηL
1

M

M∑
i=1

∇fi(w
k
0)∥

≤ 1

M

M∑
i=1

∥wk+1
i −wk

0+ηL∇fi(w
k
0)∥

≤ 1

M

M∑
i=1

η2L2σ3
maxβM

γ(1−Lηβσ2
max)

∥∇f(wk
0)∥

=
η2L2σ3

maxβM

γ(1−Lηβσ2
max)

∥∇f(wk
0)∥ (43)

where the first inequality is triangle inequality and second inequality is from Lemma 6.

We also have

∥wk+1
0 −wk

0∥2=∥ 1

M

M∑
i=1

wk+1
i −wk

0∥2

≤ 1

M

M∑
i=1

∥wk+1
i −wk

0∥2

≤ η2L2σ2
maxM

2

γ2(1−Lηβσ2
max)

2
∥∇f(wk

0)∥2 (44)

where the second inequality is from Lemma 6. Plug above two inequalities into (42), we can get

f(wk+1
0 )−f(wk

0)≤−ηL

(
1− ηLσ3

maxβM

γ(1−Lηβσ2
max)

− ηLσ4
maxβM

2γ2(1−Lηβσ2
max)

2

)
∥∇f(wk

0)∥2 (45)

If we choose η≤ 1
2Lσ2

maxβ
, then 1

1−Lηβσ2
max

≤2. Thus we can obtain

f(wk+1
0 )−f(wk

0)≤−ηL

(
1−ηLσ3

maxβM(
2

γ
+
2σmax

γ2
)

)
∥∇f(wk

0)∥2

=−ηL(1−ηLβ′)∥∇f(wk
0)∥2 (46)

where β′=
2σ3

maxβM(γ+σmax)
γ2 .

If we also choose η≤ 1
2Lβ′ , then

f(wk+1
0 )−f(wk

0)≤−ηL

2
∥∇f(wk

0)∥2, (47)

which means the loss continues to decrease.

Combining the two condition on step size, we require

η≤min

(
1

2Lσ2
maxβ

,
γ2

4Lσ3
maxβ(γ+σmax)

)
. (48)

Summing up from k=0 to ∞, we have
∞∑
k=0

∥∇f(wk
0)∥2≤

2(f(w0
0)−f(w∞

0 ))

ηL
≤ 2f(w0

0)

ηL
<∞ (49)

The boundedness means limk→∞ ∥∇f(wk
0)∥2 = 0. From Lemma 5, we can also know

limk→∞g′(xTs w
k
0)=0,∀s∈S. From Assumption 2, g′(u)→0 only when u→∞, thus xTs w

k
0→∞,∀s∈

S, which means all the training samples can be correctly classified. This proves Claim 1 in Theorem 2.
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We also bound the change of weights across iterations here, which is useful in the proof of Claim 2. since
∇fi(w)=

∑
s∈Si

g′(xTs w)xs we can have

1

M

M∑
i=1

∥wk,l+1
i −wk,l

i ∥= 1

M

M∑
i=1

η∥∇fi(w
k,l
i )∥

=
1

M

M∑
i=1

η∥
∑
s∈Si

g′(xTs w
k,l
i xs)∥

≤ 1

M

M∑
i=1

ησmax

√∑
s∈Si

(
g′(xTs w

k,l
i )
)2

≤ 1

M

M∑
i=1

ησmax

√∑
s∈S

(
g′(xTs w

k,l
i )
)2

≤ησmax

Mγ

M∑
i=1

∥∇f(wk,l
i )∥, (50)

where the first inequality is from the fact ∥
∑

s∈S asxs∥ ≤ σmax

√∑
s∈Sa

2
s for ∀as ∈ R, the second

inequality is due to Si⊂S, and the final inequality is from Lemma 5. Further we can obtain

∥∇f(wk,l
i )∥≤∥∇f(wk

0)∥+∥∇f(wk,l
i )−∇f(wt

0))∥

≤∥∇f(wk
0)∥+

ηLσ3
maxβM

γ(1−lηβσ2
max)

∥∇f(wk
0)∥

=

(
1+

ηLσ3
maxβM

γ(1−lηβσ2
max)

)
∥∇f(wk

0)∥ (51)

where the second inequality is from Lemma 6. Then we have

1

M

M∑
i=1

∥wk,l+1
i −wk,l

i ∥2≤ 1

M

M∑
i=1

η2σ2
max

γ2

(
1+

ηLσ3
maxβM

γ(1−lηβσ2
max)

)2

∥∇f(wk
0)∥2

≤η2σ2
max

γ2

(
1+

ηLσ3
maxβM

γ(1−Lηβσ2
max)

)2

∥∇f(wk
0)∥2 (52)

Summing up all the changes, we can finally have

1

M

∞∑
k=0

L−1∑
l=1

M∑
i=1

∥wk,l+1
i −wk,l

i ∥2≤ η2σ2
maxL

γ2

(
1+

ηLσ3
maxβM

γ(1−Lηβσ2
max)

)2 ∞∑
k=0

∥∇f(wk
0)∥2<∞. (53)

D.1.1 PROOF OF LEMMA 6

Proof. We start from the update rule:

wk,l
i =wk

0−η

(
l−1∑
l′=0

∇fi(w
k,l′

i )

)
. (54)
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Define ∆:=wk,l
i −wk

0+η
(
l∇fi(w

k
0)
)
. Then by triangle inequality, we have

∥∆∥=∥−η

l−1∑
l′=0

∇fi(w
t,l′

i )+ηl∇fi(w
k
0))∥

=η∥
l−1∑
l′=0

(
∇fi(w

k,l′

i )−∇fi(w
k
0)
)
∥

≤η

l−1∑
l′=0

∥fi(wk,l′

i )−∇fi(w
k
0)∥

≤ηβi

l−1∑
l′=0

∥wk,l′

i −wk
0∥ (55)

where βi is the smoothness parameter of fi(w). Since each local dataset of a subset of global dataset,
∀i∈ [1,M ],βi≤βσmax.

In addition, since ∇fi(w)=
∑

s∈Si
g′(xTs w)xs we can have

∥wk,l
i −wk

0∥
=∥wk,l

i −wk
0+ηl∇fi(w

k
0)−ηl∇fi(w

k
0)∥

≤∥wk,l
i −wk

0+ηl∇fi(w
k
0)∥+η∥l

∑
s∈Si

g′(xTs w
k
0)xs∥

≤∥∆∥+ηlσmax

√∑
s∈Si

(
g′(xTs w

k
0)
)2

≤∥∆∥+ηLσmax

√∑
s∈S

(
g′(xTs w

k
0)
)2

≤∥∆∥+ ηLσmaxM

γ
∥f(wk

0)∥ (56)

where the second inequality is from the fact ∥
∑

s∈Sasxs∥ ≤ σmax

√∑
s∈Sa

2
s for ∀as ∈ R, the third

inequality is due to Si⊂S, and the final inequality is from Lemma 5. Then we plug in ∥∆∥ and get

∥wk,l
i −wk

0∥≤ηβσ2
max

l−1∑
l′=0

∥wk,l′

i −wk
0∥+

ηLσmaxM

γ
∥f(wk

0)∥. (57)

Now we use another lemma from Nacson et al. (2019):

Lemma 7 (Lemma 4 in Nacson et al. (2019)). Let ϵ and θ be positive constants. If δk≤θ+ϵ
∑k−1

u=0δu, then

δk≤
θ

1−kϵ
and

k−1∑
u=0

δu≤
kθ

1−kϵ
.

Directly applying this lemma to (57), we can obtain

∥wk,l
i −wk

0∥≤
ηLσmaxM

γ(1−lηβσ2
max)

∥∇f(wk
0)∥. (58)

Then we further have

∥∆∥≤ηβσ2
max

l−1∑
l′=0

∥wk,l′

i −wk
0∥≤

η2Lσ3
maxβMl

γ(1−lηβσ2
max)

∥∇f(wk
0)∥. (59)

By smoothness, we also have

∥∇f(wk,l
i )−∇f(wk

0)∥≤σ2
maxβ∥w

k,l
i −wk

0∥≤
ηLσ3

maxβM

γ(1−lηβσ2
max)

∥∇f(wk
0)∥. (60)
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D.2 PROOF OF CLAIM 2

In this section, we prove our implicit bias result. Recall that ŵ is the global max-margin solution defined
in (4). We denote the set of support vectors in S as V . Thus the max-margin solution is ŵ=

∑
s∈Sαsxs,

where αs>0,∀s∈V ;αs=0,∀s /∈V . We further define a vector w̃, which satisfies
αs=ηexp(−xTs w̃) ∀s∈V. (61)

From Lemma 12 in Soudry et al. (2018), this solution exists for almost every dataset. We also denote
the minimum margin to a non-support vector as

θ=min
s/∈V

xTs ŵ>1. (62)

We will use the following Lemma:
Lemma 8. There exists mi(k,l) such that

L

k−1∑
u=1

1

u

1

M

∑
s∈V

αsxs+
l

k

∑
s∈Vi

αsxs=
L

M
log(k)ŵ+

L

M
ζŵ+mi(k,l), ∀l∈ [1,L] (63)

mi(k+1,0)≜
1

M

M∑
i=1

mi(k,L), ∀i∈ [1,M ] (64)

where ∥mi(k,l)∥= o(k−1) and ∥mi(k,l+1)−mi(k,l)∥=O(k−1). ζ is Euler-Mascheroni constant,
which is used to calculate

∑k
u=1

1
u=logk+ζ+O(k−1).

Now we define rk,li ,ρk,li as

wk,l
i =log(Lk)ŵ+ρk,li

=log(Lk)ŵ+w̃+
M

L
mi(k,l)+rk,li , ∀l∈ [1,L]. (65)

Also, define rk+1
0 = 1

M

∑M
i=1r

k,L
i and ρk+1= 1

M

∑M
i=1ρ

k,L
i . Thus

wk
0=

1

M

M∑
i=1

wk,L
i =log(Lk)ŵ+ρk=log(Lk)ŵ+w̃+

M

L

1

M

M∑
i=1

mi(k,l)+rk0 (66)

We also define
ρk,0i =ρk, rk,0i =rk0 (67)

Then for l=0, we have

wk+1,0
i =wk+1

0 =log(Lk)ŵ+w̃+mi(k+1,0)+rk+1,0
i . (68)

We aim to bound ∥ρk∥, and we can see that it is enough to prove ∥rk0∥ is bounded to achieve this goal.

We first write for a constant k1>0 (defined later) and all K≥k1

∥rK0 ∥2−∥rk1
0 ∥2=

K∑
u=k1

∥ru+1
0 ∥2−∥ru0∥2

≤
K∑

u=k1

1

M

M∑
i=1

(
∥ru,Li ∥2−∥ru,0i ∥2

)

=
1

M

K∑
u=k1

L−1∑
l=0

M∑
i=1

∥ru,l+1
i ∥2−∥ru,li ∥2

=
1

M

K∑
u=k1

L−1∑
l=0

M∑
i=1

2
〈
ru,l+1
i −ru,li ,ru,li

〉
+∥ru,l+1

i −ru,li ∥2 (69)

We will handle the inner product and squared norm items respectively. Here we need a lemma to
characterize the behavior of inner product ⟨ru,l+1

i −ru,li ,ru,li ⟩, which can be adapted from a lemma in
Nacson et al. (2019) and its proof is omitted here:
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Lemma 9 (Lemma 6 in Nacson et al. (2019)). Under Assumptions 1, 2, 3, ∃̃t,C1,C2>0 such that ∀t>t̃,

⟨rk,l+1
i −rk,li ,rk,li ⟩≤C1t

−θ+C2t
−1−0.5µ̃,∀l∈ [0,L−1] (70)

, where µ̃=min{µ+,µ−,0.25}.

Let ak,li =M
L (mi(k,l+1)−mi(k,l)) and we know ∥ak,li ∥=O(k−1) from Lemma 8. Then we can handle

the squared norm item:

1

M

K∑
u=k1

L−1∑
l=0

M∑
i=1

∥ru,l+1
i −ru,li ∥2

=
1

M

K∑
u=k1

L−1∑
l=0

M∑
i=1

∥wk,l+1
i −wk,l

i −ak,li ∥2

=
1

M

K∑
u=k1

L−1∑
l=0

M∑
i=1

∥wu,l+1
i −wu,l

i ∥2+ 1

M

K∑
u=k1

L−1∑
l=0

M∑
i=1

2
〈
wu,l
i −wu,l+1

i ,at,ki

〉
+

1

M

K∑
u=k1

L−1∑
l=0

M∑
i=1

∥au,li ∥2

≤ 1

M

T∑
u=k1

L−1∑
l=0

M∑
i=1

∥wu,l+1
i −wu,l

i ∥2+ 2

M

√√√√ K∑
u=k1

L−1∑
l=0

M∑
i=1

∥wu,l+1
i −wu,l

i ∥2
K∑

u=k1

L−1∑
l=0

M∑
i=1

∥au,li ∥2

+
1

M

K∑
u=k1

L−1∑
l=0

M∑
i=1

∥au,li ∥2 (71)

Since ∥ak,li ∥=O(k−1), we can find a k1 such that ∀k≥k1,∀l∈ [0,L−1],∀i∈ [1,M ] we have ∥ak,li ∥≤k−1.
Also, we know 1

M

∑K
k=t1

∑L−1
l=0

∑M
i=1∥w

k,l+1
i −wk,l

i ∥2<∞ from the proof of Claim 1 (53). Then we
can obtain

1

M

K∑
k=k1

L−1∑
l=0

M∑
i=1

∥rk,l+1
i −rk,li ∥2

≤ 1

M

K∑
k=k1

L−1∑
l=0

M∑
i=1

∥wk,l+1
i −wk,l

i ∥2+2

√√√√ 1

M

K∑
k=k1

L−1∑
l=0

M∑
i=1

∥wk,l+1
i −wk,l

i ∥2
K∑

k=k1

L−1∑
l=0

M∑
i=1

k−2

+
1

M

K∑
k=k1

L−1∑
l=0

M∑
i=1

k−2

<∞. (72)

With Lemma 9 and the fact that ∀c>1,
∑∞

u=1u
−c<∞, we can finally get

∥rk0∥2−∥rk1
0 ∥2≤ 1

M

K∑
k=k1

L−1∑
l=0

M∑
i=1

(
2
〈
ru,l+1
i −ru,li ,ru,li

〉
+∥ru,l+1

i −ru,li ∥2
)
<∞. (73)

The ∥rk0∥2 is bounded, then ∥ρk∥ is also bounded. We can know wk
0 converges to ŵ in direction:

wk+1
0 =log(Lk)ŵ+ρk.
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Now we can get the convergence rate of the direction.

wk+1
0

∥wk+1
0 ∥

=
log(Lk)ŵ+ρk√

ρkTρk+ŵT ŵlog2(Lk)+2ρkT ŵlog(Lk)

=
ρk/log(Lk)+ŵ

∥ŵ∥
√
1+ 2ρkT ŵ

∥ŵ∥2log(Lk)+
∥ρk∥2

∥ŵ∥2log2(Lk)

=
1

∥ŵ∥

(
ρk

log(Lk)
+ŵ

)[
1− ρkT ŵ

∥ŵ∥2log(Lk)
+

(
3

2

(
ρkT ŵ

∥ŵ∥2

)2

− ∥ρk∥2

2∥ŵ∥2

)
1

log2(Lk)
+O

(
1

log3(Lk)

)]

=
ŵ

∥ŵ∥
+

(
ρk

∥ŵ∥
− ŵ

∥ŵ∥
ρkT ŵ

∥ŵ∥2

)
1

log(Lk)
+O(

1

log2(Lk)
)

=
ŵ

∥ŵ∥
+

(
I− ŵŵT

∥ŵ∥2

)
ρk

∥ŵ∥
1

log(Lk)
+O(

1

log2(Lk)
), (74)

where the third equality is from 1√
1+x

=1− 1
2x+

3
4x

2+O(x3). Thus we can get∥∥∥∥ wk
0

∥wk
0∥

− ŵ

∥ŵ∥

∥∥∥∥=O

(
1

log(Lk)

)
. (75)

D.2.1 PROOF OF LEMMA 8

Proof. We first write

L

k−1∑
u=1

1

u

1

M

∑
s∈V

αsxs+
l

k

∑
s∈Vi

αsxs

=
L

M
ŵ

k−1∑
u=1

1

u
+

l

k

∑
s∈Vi

αsxs

=
L

M
ŵ(log(k)+ζ+O(k−1))+

l

k

∑
s∈Vi

αsxs

=
L

M
log(k)ŵ+

Lζ

M
ŵ+O(k−1)ŵ+

l

k

∑
s∈Vi

αsxs, (76)

where the first equality is definition of ŵ, the second equality is from the fact

k∑
u=1

1

u
=logk+ζ+O(k−1) (77)

and logk−log(k−1)=O(k−1). (78)

Then we define

mi(k,l)=L

k−1∑
u=1

1

u

1

M

∑
s∈V

αsxs+
l

k

∑
s∈Vi

αsxs−
L

M
log(k)ŵ−Lζ

M
ŵ, ∀l∈ [1,L] (79)

and

mi(k+1,0)=
1

M

M∑
i=1

mi(k,L)=L

k∑
u=1

1

u

1

M

∑
s∈V

αsxs−
L

M
log(k)ŵ−Lζ

M
ŵ, ∀i∈ [1,M ]. (80)
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We can obviously see ∥mi(k, l)∥ = O(k−1)ŵ + l
k

∑
s∈Vi

αsxs since mi(k, l) = O(k−1)ŵ+ and
mi(k+1,0)=O(k−1)ŵ. For the difference, we can get

∥mi(k,l+1)−mi(k,l)∥=∥1
k

∑
s∈Vi

αsxs∥=O(k−1), ∀l∈ [1,L−1] (81)

∥mi(k,1)−mi(k,0)∥=∥1
k

∑
s∈Vi

αsxs−
L

M
(log(k+1)−logk)∥=O(k−1). (82)

D.3 PROOF OF CLAIM 3

In the proof of Claim 1, we already know f(wk
0) would continue to decrease to zero when k→∞. Now

we establish the convergence rate of f(wk
0). Recall V is the set of support vectors and θ is the minimum

margin for non-support vectors. From Assumptions 2 and 3, we can get

f(wk
0)≤

1

M

∑
s∈S

(
1+exp(−µ+x

T
s w

k
0)
)
exp(−xTs w

k
0)

=
1

M

∑
s∈S

(
1+exp(−µ+x

T
s (ŵlog(Lk)+ρk))

)
exp(−xTs (ŵlog(Lk)+ρk))

=
1

M

∑
s∈S

(
1+(Lk)−µ+xT

s wk
0 exp(−µ+x

T
s ρ

k)
)
exp(−xTs ρ

k)(Lk)−xT
s ŵ

=
1

MLk

∑
s∈V

exp(−xTs ρ
k)+O((Lk)−max(θ,1+µ+)). (83)

Thus the training loss f(wk
0)=O

(
1
Lk

)
.
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E PROOFS
OF IMPLICIT BIAS WITH LEARNING RATE INDEPENDENT OF L IN SECTION 4

In this section we also redefine the samples yijxij to xij to subsume the labels. With abuse of notation,
we use Si to denote the set of support vectors in i-th compute node and S is the set of support vectors
in global dataset. The number of samples N is identical for all the compute nodes, and the local dataset
is {xij,yij}Nj=1. Since the loss function is fixed as exponential loss in this section, the β in this section
refers coefficient of support vectors, not smoothness parameter.

E.1 PROOFS OF LEMMA 1

We assume ∥wk
0−ln( 1λ)w̄

k
0∥=O(klnln 1

λ). In this case, since ln 1
λ grows faster, when λ→0, we can have

limλ→0
wk

0

∥wk
0∥

=
w̄k

0

∥w̄k
0∥

for any k at order o
(

ln(1/λ)
lnln(1/λ)

)
. We will prove it by induction. We define global

and local residuals as rk=wk
0−ln( 1λ)w̄

k
0 and rki =wk

i −ln( 1λ)w̄
k
i .

When k=0, since w0
0=w̄0

0=0, r0i =0 and the assumption trivially holds.

When k≥1, we have

∥rk∥=
∥∥∥∥wk

0−ln(
1

λ
)w̄k

0

∥∥∥∥= 1

M

∥∥∥∥∥
M∑
i=1

wk
i −ln(

1

λ
)w̄k

i

∥∥∥∥∥
≤ 1

M

M∑
i=1

∥∥∥∥wk
i −ln(

1

λ
)w̄k

i

∥∥∥∥= 1

M

M∑
i=1

∥rki ∥. (84)

where the inequality is triangle inequality. We then focus on the local residual rki . We choose an O(1)
vector w̃k

i and a sign ski ∈{−1,+1} to show∥∥rki ∥∥=∥∥∥∥wk
i −
[(

ln(
1

λ
)+ski lnln(

1

λ
)

)
w̄k
i +w̃k

i

]
+ski lnln(

1

λ
)w̄k

i +w̃k
i

∥∥∥∥
≤
∥∥∥∥wk

i −
[(

ln(
1

λ
)+ski lnln(

1

λ
)

)
w̄k
i +w̃k

i

]∥∥∥∥+lnln(
1

λ
)∥w̄k

i ∥+∥w̃k
i ∥ (85)

Recall the wk
i is the solution of optimization problem

argmin
wi

fi(wi)=

N∑
j=1

exp
(
−xTijwi

)
+
λ

2
∥wi−wk−1

0 ∥2, (86)

and the loss function fi(wi) is a λ-strongly convex function. Thus we have

∥wk
i −w∥≤ 1

λ
∥∇fi(w)∥, for any w. (87)

Then back to 85, we have∥∥rki ∥∥≤1

λ

∥∥∥∥∇fi

[(
ln(

1

λ
)+ski lnln(

1

λ
)

)
w̄k
i +w̃k

i

]∥∥∥∥︸ ︷︷ ︸
∥Ai∥

+lnln(
1

λ
)∥w̄k

i ∥+∥w̃k
i ∥. (88)

Next we need to show the first term Ai is at O((k−1)lnln( 1λ)), and also since ∥w̄k
i ∥ and ∥w̃k

i ∥ are O(1)

vectors, then ∥rki ∥ is at order O(klnln( 1λ)). After averaging, ∥rk∥ is also at order O(klnln( 1λ)). This
confirms the assumption made for induction.

Now we focus on the term Ai. The gradient of function fi(w) is

∇fi(wi)=
∑
j

−xijexp(−xTijwi)+λ(wi−wk−1
0 ). (89)
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The term Ai is

Ai=
1

λ
∇fi

[(
ln(

1

λ
)+ski lnln(

1

λ
)

)
w̄k
i +w̃k

i

]
=− 1

λ

∑
j

xijexp

(
xTijln

(
λln−ski (

1

λ
)

)
w̄k
i

)
exp(−xTijw̃

k
i )+

(
ln(

1

λ
)+ski lnln(

1

λ
)

)
w̄k
i +w̃k

i −wk−1
0

=− 1

λ

∑
j

xij

(
λln−ski (

1

λ
)

)xT
ijw̄

k
i

exp(−xTijw̃
k
i )+

(
ln(

1

λ
)+ski lnln(

1

λ
)

)
w̄k
i +w̃k

i −wk−1
0 . (90)

Then we define the set of support vectors as Sk
i = {xij|xTijw̄k

i = 1}. Recall that we assume
rk−1=wk−1

0 −ln( 1λ)w̄
k−1
0 is at order O((k−1)lnln( 1λ)). We can obtain

Ai=− 1

λ

(
λln−ski (

1

λ
)

)1 ∑
xij∈Sk

i

xijexp(−xTijw̃
k
i )−

1

λ

∑
xij /∈Sk

i

xij

(
λln−ski (

1

λ
)

)xT
ijw̄

k
i

exp(−xTijw̃
k
i )

+ln(
1

λ
)(w̄k

i −w̄k−1
0 )−rk−1+ski lnln(

1

λ
)w̄k

i +w̃k
i

=−ln−ski (
1

λ
)
∑

xij∈Sk
i

xijexp(−xTijw̃
k
i )−

∑
xij /∈Sk

i

xijλ
xT
ijw̄

k
i −1

(
ln(

1

λ
)

)−ski x
T
ijw̄

k
i

exp(−xTijw̃
k
i )

+ln(
1

λ
)(w̄k

i −w̄k−1
0 )−rk−1+ski lnln(

1

λ
)w̄k

i +w̃k
i . (91)

By the triangle inequality, we have

∥Ai∥≤

∥∥∥∥∥∥ln( 1λ)(w̄k
i −w̄k−1

0 )−ln−ski (
1

λ
)
∑

xij∈Sk
i

xijexp(−xTijw̃
k
i )

∥∥∥∥∥∥︸ ︷︷ ︸
B1

+

∥∥∥∥∥∥
∑

xij /∈Sk
i

xijλ
xT
ijw̄

k
i −1

(
ln(

1

λ
)

)−ski x
T
ijw̄

k
i

exp(−xTijw̃
k
i )

∥∥∥∥∥∥︸ ︷︷ ︸
B2

+ ∥rk−1∥︸ ︷︷ ︸
O((k−1)lnln( 1

λ ))

+lnln(
1

λ
)∥w̄k

i ∥︸ ︷︷ ︸
O(1)

+∥w̃k
i ∥︸ ︷︷ ︸

O(1)

. (92)

We just need to show B1 and B2 approach to 0 then ∥Ai∥ can approach to O(klnln( 1λ)).

We divide it into two cases.

1. When w̄k
i = P(w̄k−1

0 ) ≠ w̄k−1
0 , meaning w̄k−1

0 is not in the convex set Ci. In this case we choose
ski =−1 then

B1=

∥∥∥∥∥∥ln( 1λ)(w̄k
i −w̄k−1

0 )−ln(
1

λ
)
∑

xij∈Sk
i

xijexp(−xTijw̃
k
i )

∥∥∥∥∥∥
=ln(

1

λ
)

∥∥∥∥∥∥(w̄k
i −w̄k−1

0 )−
∑

xij∈Sk
i

xijexp(−xTijw̃
k
i )

∥∥∥∥∥∥. (93)

We now want to choose w̃k
i to make B1 as 0. Since w̄k

i is the solution of SVM problem (9), by the KKT
condition of SVM problem, it can be written as

w̄k
i =w̄k−1

0 +
∑

xij∈Sk
i

βijxij (94)
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whereβij is the dual varible corresponding toxij in the set of support vectors. Thus we want to choose w̃k
i as∑

xij∈Sk
i

exp(−xTijw̃
k
i )xij=

∑
xij∈Sk

i

βijxij. (95)

We can prove such a w̃k
i almost surely exists in Lemma 10.

For the term B2, since limλ→0λ
c−1lnc( 1λ)→ 0 for any constant c> 1, and xTijw̄

k
i −1> 0 for any xij

being not a support vector, then we can see

B2=

∥∥∥∥∥∥
∑

xij /∈Sk
i

xijλ
xT
ijw̄

k
i −1

(
ln(

1

λ
)

)xT
ijw̄

k
i

exp(−xTijw̃
k
i )

∥∥∥∥∥∥ λ→0−−−→0. (96)

Here we choose w̃k
i and ski to make B1=0 and B2→0.

2. When w̄k
i =P(w̄k−1

0 )= w̄k−1
0 , meaning w̄k−1

0 is already in the convex set Ci. Then w̄k
i −w̄k−1

0 =0.
In this case we choose w̃k

i =0 and ski =+1. We can have

B1=ln−1(
1

λ
)

∥∥∥∥∥∥
∑

xij∈Sk
i

xij

∥∥∥∥∥∥ λ→0−−−→, (97)

since ln−1( 1λ)
λ→0−−−→0 and

∥∥∥∑xij∈Sk
i
xij

∥∥∥ is O(1).

And since xTijw̄
k
i −1>0 for any xij being not a support vector, we have

B2=

∥∥∥∥∥∥
∑

xij /∈Sk
i

xijλ
xT
ijw̄

k
i −1

(
ln(

1

λ
)

)−xT
ijw̄

k
i

∥∥∥∥∥∥ λ→0−−−→0, (98)

where λx
T
ijw̄

k
i −1 λ→0−−−→ 0 and

(
ln( 1λ)

)−xT
ijw̄

k
i λ→0−−−→ 0. Thus we choose w̃k

i and ski to make B1→ 0 and
B2→0.

Plugging 92 back into 88, we can obtain

∥rki ∥≤∥Ak
i ∥+lnln(

1

λ
)∥w̄k

i ∥+∥w̃k
i ∥

≤B1+B2︸ ︷︷ ︸
→0

+2lnln(
1

λ
)∥w̄k

i ∥+2∥w̃k
i ∥+∥rk−1∥

≤2lnln(
1

λ
)∥w̄k

i ∥+2∥w̃k
i ∥+∥rk−1∥. (99)

By the assumption ∥rk−1∥ = O((k − 1) ln ln( 1λ)) and ∥w̄k
i ∥ = O(1), ∥w̃k

i ∥ = O(1), we have
∥rki ∥=O(klnln( 1λ)).

From 84, we finally obtain

∥rk∥≤ 1

M
∥rki ∥=O(klnln(

1

λ
)), (100)

which confirms our assumption. Then we have limλ→0
wk

0

∥wk
0∥

=
w̄k

0

∥w̄k
0∥

for any k at order o
(

ln(1/λ)
lnln(1/λ)

)
.

E.2 PROOFS OF AUXILIARY LEMMAS

Lemma 10. For the sequence {w̄k
0} generated by sequential SVM problems 9 and aggregations, and

for almost all datasets sampled from M continuous distributions, the unique dual solution βk
i ∈R|Si|×1

satisfying the KKT conditions of SVM problem 9 has non-zero elements. Then there exists w̃k
i satisfying

XSiw̃
k
i =−lnβk

i .
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For almost all datasets, a hyperplane can be determined by d points. Thus there are at most d support
vectors and the set of support vectors is linearly independent.

Proof. By the KKT condition of SVM problem, we can write the solution as

w̄k
i =w̄k−1

0 +
∑

xij∈Si

βk
ijxij=w̄k−1

0 +XT
Si
βk
i . (101)

where XSi
∈R|Si|×d is the data matrix with all the support vectors, and βk

i ∈R|Si|×1 is the dual variable
vector. Thus we can obtain

βk
i =
(
XSiX

T
Si

)−1
XSi(w̄

k
i −w̄k−1

0 )=
(
XSiX

T
Si

)−11Si−
(
XSiX

T
Si

)−1
XSiw̄

k−1
0 , (102)

where XSiX
T
Si

is invertible since XSi has full row rank |Si|, and the second equality is from XSiw̄
k
i =1Si

with 1Si
∈R|Si|×1 being all one vector. Plugging βk

i back, we have

w̄k
i =
[
I−XT

Si

(
XSi

XT
Si

)−1
XSi

]
w̄k−1
0 +XT

Si

(
XSi

XT
Si

)−11Si
. (103)

After averaging, the global model is

w̄k
0=

[
I− 1

M

M∑
i=1

XT
Si

(
XSiX

T
Si

)−1
XSi

]
w̄k−1
0 +

1

M

M∑
i=1

XT
Si

(
XSiX

T
Si

)−11Si. (104)

It implies w̄k
0 is a rational function in the components of X1, X2, ... , XM , and also βk

i is also
a rational function in the components of data matrices. So its entries can be expressed as
βk
ij = pkij(X1,X2, ... ,XM)/qkij(X1,X2, ... ,XM) for some polynomials pkij, q

k
ij. Note that βk

ij = 0

only if pkij(X1,X2, ... ,XM) = 0, and the components of X1,X2, ... ,XM must constitute a root of
polynomial pkij. However, the root of any polynomial has measure zero, unless the polynomial is the zero
polynomial, i.e., pkij(X1,X2,...,XM)=0 for any X1,X2,...,XM .

Next we need to show pkij cannot be zero polynomials. To do this, we just need to construct a specific
X1,X2,...,XM where the pkij is not zero polynomial. Denote ei∈Rd as the i-th standard unit vector, and
v1,v2,...,vM be the number of support vectors at M compute nodes. We construct the datasets as

Xi=ri[e1,e2,...,evi]
T , for all i. (105)

where ri are positive constants that will be chosen later. For these datasets, the set of support vector is
dataset itself, i.e., XSi

=Xi. We can calculate

XiX
T
i =r2i Ivi, X

T
i Xi=r2i

[
Ivi 0
0 0(d−vi)×(d−vi)

]
, XT

i 1Si
=ri

[
1vi

0d−vi

]
(106)

Thus we have

w̄k
i =

(
Id−

[
Ivi 0
0 0(d−vi)×(d−vi)

])
w̄k−1
0 +

1

ri

[
1vi

0d−vi

]
. (107)

After averaging, the global model in 104 becomes

w̄k
0=



0
. . .

0
a1

. . .
avmax−vmin

1
. . .

1


︸ ︷︷ ︸

A

w̄k−1
0 +


b1
...

bvmax

0d−vmax


︸ ︷︷ ︸

b

. (108)
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where aj ∈{ 1
M , 2

M ,...,M−1
M } is a constant in the range (0,1), bj = 1

M

∑
i∈Bj

1
ri

is a positive constant and

Bj ∈ [M ] is a set consisting of some compute nodes. Note that A and b are fixed in the iterations and
A is a diagonal matrix.

By recursively applying w̄k
0=Aw̄k−1

0 +b, due to w̄0
0=0, we can obtain

w̄k
0=
(
I+A+A2+···+Ak−1

)
b. (109)

Since A is diagonal, the summation is

k−1∑
j=0

Aj=



1
. . .

1 ∑k−1
j=0a

j
1

. . . ∑k−1
j=0a

j
vmax−vmin

k
. . .

k


(110)

Recall that

βk
i =
(
XiX

T
i

)−11vi−
(
XiX

T
i

)−1
Xiw̄

k−1
0

=
1

r2i
1vi−

1

r2i
(w̄k−1

0 )vi =
1

r2i

(
1vi−(w̄k−1

0 )vi
)
. (111)

where (w̄k−1
0 )vi is the vector with first vi elements of w̄k−1

0 .

We need every element of βk
i to be positive, so that we require every element of (w̄k−1

0 )vi is less than
1. Then it holds for any i-th compute node, thus we require every element of (w̄k−1

0 )vmax
is less than 1.

Since w̄k−1
0 =

(∑k−2
j=0A

j
)
b, the largest value of (w̄k−1

0 )vmax
satisfies

(w̄k−1
0 )largest≤

k−2∑
j=0

(
M−1

M

)j

× 1

M

M∑
i=1

1

r2i

=M

(
1−
(
M−1

M

)k−1
)
∗ 1

M

M∑
i=1

1

r2i
(112)

because the maximum value of aj is M−1
M and the maximum value of bj is 1

M

∑M
i=1

1
r2i

.

Thus we require

M∑
i=1

1

ri
<

1

1−
(
M−1
M

)k−1
. (113)

Since
(
M−1
M

)k−1→0 when k→∞, we only require the LHS is less than the lower bound of RHS:

M∑
i=1

1

ri
<1. (114)

Therefore we can choose ri=M+1 to make it happen.

Then we can obtain βk
ij>0 holds for any support vector xij and any round k. And the w̃k

i simply satisfies
XSiw̃

k
i =−lnβk

i .
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E.3 LEMMA AND PROOFS IN SECTION 4.4

Here we provide a lemma of Modified Local-GD similar to Lemma 1 of vanilla Local-GD.
Lemma 11. For almost all datasets sampled from a continuous distribution satisfying Assumption 1,
we train the global model w0 from Modified Local-GD and w̄0 from Modified PPM. The parameter
is chosen as αk=1− 1

k+1 . With initialization w0
0 = w̄0

0 =0, we have wk
0 → ln

(
1
λ

)
w̄k
0 , and the residual

∥wk
0−ln

(
1
λ

)
w̄k
0∥=O(klnln 1

λ), as λ→0. It implies that at any round k=o
(

ln(1/λ)
lnln(1/λ)

)
, wk

0 converges

in direction to w̄k
0:

lim
λ→0

wk
0

∥wk
0∥

=
w̄k
0

∥w̄k
0∥

. (115)

Proof. With initialization w0
0=w̄0

0=0, the Modified Local-GD is just a scaling of vanilla Local-GD:

wk+1
0 =

k

k+1

1

M

M∑
i=1

wk+1
i . (116)

Also, the Modified PPM is a scaling of vanilla PPM: w̄k+1
0 = k

k+1
1
M

∑M
i=1w̄

k+1
i .

When k≥1, we can know the residual between Modified Local-GD and Modified PPM is

∥rk∥=
∥∥∥∥wk

0−ln(
1

λ
)w̄k

0

∥∥∥∥= k

k+1

1

M

∥∥∥∥∥
M∑
i=1

wk
i −ln(

1

λ
)w̄k

i

∥∥∥∥∥
≤ 1

M

M∑
i=1

∥∥∥∥wk
i −ln(

1

λ
)w̄k

i

∥∥∥∥= 1

M

M∑
i=1

∥rki ∥. (117)

Then we can follow the same process in the proof of Lemma 1 to obtain

∥rk∥≤ 1

M
∥rki ∥=O(klnln(

1

λ
)), (118)

As a result we have limλ→0
wk

0

∥wk
0∥

=
w̄k

0

∥w̄k
0∥

.
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