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ABSTRACT

In distributed training of machine learning models, gradient descent with local iterative
steps is a very popular method to mitigate communication burden, commonly known
as Local (Stochastic) Gradient Descent (Local-(S)GD). In the interpolation regime,
Local-GD can converge to zero training loss. However, with many potential solutions
corresponding to zero training loss, it is not known which solution Local-GD converges
to. In this work we answer this question by analyzing implicit bias of Local-GD for
classification tasks with linearly separable data. In the case of highly heterogeneous
data, it has been observed empirically that local models can diverge significantly from
each other (also known as “client drift”). However, for the interpolation regime, our
analysis shows that the aggregated global model resultant from Local-GD with arbitrary
number of local steps converges exactly to the model that would result in if all data
were in one place (centralized trained model) in direction. Our result gives the exact
rate of convergence to the centralized model with respect to the number of local steps.
We also obtain this same implicit bias with a learning rate independent of number of
local steps with a Modified Local-GD algorithm for the case local problems are exactly
solved. Our analysis provides a new view to understand why Local-GD can still work
very well with a very large number of local steps even for heterogeneous data. Lastly
we also discuss the extension of our results to Local SGD and non-separable data.

1 INTRODUCTION

In this era of large machine learning models, distributed training is an essential part of machine learning
pipelines. It can happen in a data center with thousands of connected compute nodes [Sergeev & Del Balso
(2018); Huang et al.| (2019), or across several data centers and millions of mobile devices in federated learn-
ing Konecny et al|(2016); |[Kairouz et al.[{(2019). In such a network, the communication cost is usually the
bottleneck in the whole system. To alleviate the communication burden, and also to preserve privacy to some
extent, one common strategy is to perform multiple local updates before sending the information to other
nodes, which is called Local Gradient Descent (Local-GD) McMahan et al.[(2017); |Stich| (2019); [Lin et al.
(2019). In a network with M compute nodes, the goal is to train a global model to fit the distributed datasets:

| M
min f(w) with f(w)EMZfl(w>’ )]
i=1

weRE

where w € R? is the single model to be trained and f;(w) is the local loss function for i*" compute node.

The local loss f;(w) is the average of the loss function evaluated at model w for the high-dimensional
samples and their corresponding labels, {zs,ys }scs,, where S; is the local dataset, and N; =15, is the
number of local samples. The samples of the local dataset are obtained iid from the local distribution D;.

In each round of Local-GD, a central node sends its current model, referred to as the global model, to
all compute nodes. Each compute node runs L local gradient descent steps on the global model using
its loss f; on this model to obtain a local model. Each compute node sends its local model back to the
central node, where these local models are aggregated, by averaging, to obtain the global model for the
next round. The detailed algorithm of Local-GD is described in Algorithms|I}

In modern machine learning, most deep neural networks, where Local-GD has impressive performance,
operate in the overparameterized regime, where the dimension d of the model is more than the total
number of samples M N. In this case, there are multiple solutions corresponding to zero training loss.
The main question here is:
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Q: Which solution would the aggregated model trained by Local-GD converge to?

Contributions. In this work, we answer this question by analyzing implicit bias of Local-GD on classifica-
tion tasks for linearly separable data. From the implicit bias of Local-GD, we can characterize the dynamics
of the global model across rounds. We compare the global model with the centralized model obtained from
running gradient descent (GD) on a dataset consisting of all distributed datasets as if all these datasets were
located on the central node. The centralized model is obtained from existing results for the implicit bias of
linearly separable data [Soudry et al.| (2018). But these results cannot be directly applied to Local-GD. For
globally linearly separable dataset, we show that the global model converges to the centralized model with
any arbitrary number of local steps on heterogeneous data. As a consequence of our result on the implicit

bias of Local-GD, we can derive the rate of convergence to centralized model as O(@ ), and the training

loss converges at the rate of O(ﬁ), where £ is number of rounds (see Theorems @) for a constant learning
rate n= (’)(%) (this learning rate is common in existing analysis of distributed learning [Karimireddy et al.
(2020); |[Koloskova et al.|[(2020); |(Crawshaw et al.| (2025))). The meaning of this work lies in: 1). providing
a theoretical explanation to the phenomenon that Local-GD can work well with a very large number of
local steps in practice; 2). showing the local steps can benefit the convergence rate for smooth, convex
functions (such as, logistic loss); this could not be derived from previous analysis in vanilla Local-GD.

For a learning rate independent of L, we consider a special case where each local problem with a weakly
regularized term is exactly solved, which indicates the behavior of Local-GD with a very large number
of local steps. With a Modified Local-GD algorithm (see Section f.4] we can guarantee that the global
model can converge to the centralized model. This result provides the implicit bias of massive local updates
without the restrictive learning rate of O(1/L).

Comparisons. Increasing local steps L does not improve worst-case amount of communication for smooth,
convex optimization (Woodworth et al., 2020, Theorem 5),(Koloskova et al., 2020, Theorem 6). For
the specific problem of distributed logistic regression, (Crawshaw et al.,[2025| Corollary 3) show that a
two-stage Local-GD algorithm can improve this worst-case bound. However, their first stage still requires
n= (’)(%), and they can only show that the loss converges, but not the solution the model converges to. In
contrast, our Theorem 2] exactly characterizes the global model for Local-GD for any L, and recovers their
result as a direct corollary. Another line of work (Gu et al.| (2023; 2024) approximates Local-Stochastic
Gradient Descent (localSGD) by an SDE to obtain an appropriate scaling between L and 7. Note that
we perform Local-GD with no stochastic noise, and our analysis is exact for finite 7. Further, (Gu et al.
(2023} [2024)) do not characterize the exact implicit bias, which we do for linearly separable data. For
overparameterized non-linear models, several works Deng et al.| (2022b);|Song et al.|(2023)); Maralappanavar
et al.|(2025) analyze convergence in loss value of Local-GD, but do not provide any guarantees on the global
model. Additionally, several works compare the performance of Local-GD and GD on whole dataset [Patel
et al.| (2024); Woodworth et al.[(2020) with differences in certain regimes. For overparametrized linear
models, we establish that there is no difference between the final model learned by either of these methods.

Practical Implications. In the existing convergence analysis of Local-GD, the number of local steps L
should not be very large for heterogeneous data Stich! (2019); ILi et al.| (2020b). In practical implementation
of distributed training on large models, the performance of Local-GD is surprisingly good even with
heterogeneous data distribution McMahan et al.|(2017); (Charles et al.|(2021). Also, the number of local
steps can be very large in Local-GD type algorithms and real-world systems, for example, up to 500 local
steps in distributed training of large language models (LLM) Douillard et al.| (2023)); Jaghouar et al.| (2024).
Since our results show the Local-GD can converge to centralized model with arbitrary number of local
steps, it helps explain why Local-GD can still work well with a large number of local steps in practice.
In this work we consider linear models as an appropriate starting point to investigate the implicit bias of
Local-GD. A popular example of linear models used in practical machine learning pipelines is fine-tuning
last layer on pretrained large models or adding linear layers in transfer learning [Donahue et al.| (2014);
Kornblith et al.| (2019) and deployment of LLM |Devlin| (2018); Jiang et al.| (2020). Thus we also add
an experiment of fine-tuning last layer of neural network to show broader impact of our analysis.

1.1 RELATED WORK

Convergence of Local-GD. When data distribution is homogeneous, many works have been done to
establish convergence analysis for Local (Stochastic) GD |Stich| (2019); |Yu et al.|(2019); Khaled et al.| (2020).
With a “properly” small number of local steps, the dominating convergence rate is not affected. Further
various assumptions have been made to handle data heterogeneity and develop convergence analysis|Li et al.
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(2020b)); Karimireddy et al.| (2020); Khaled et al.| (2020); Reddi et al.| (2021); [Wang et al.|(2020);|Crawshaw
et al.| (2023). For strongly convex and smooth loss functions, the number of local steps should not be larger
than O(\/T ) for i.i.d data|Stich| (2019) and non-i.i.d. dataLi et al.|(2020b). However, in practice Local-GD
(FedAvg) works well in many applications McMahan et al.| (2017); Charles et al.| (2021), even in training
large language models Douillard et al.[(2023); Jaghouar et al.| (2024). In Wang et al.| (2024), the authors
argue that the previous theoretical assumption does not align with practice and proposed a client consensus
hypothesis to explain the effectiveness of FedAvg in heterogeneous data. But they do not consider the
impact of overparameterization on distributed training. There are some works incorporating the property
of zero training loss of overparameterized neural networks into the conventional convergence analysis of
FedAvg|Huang et al.|(2021)); Deng et al.| (2022a); |Song et al.[(2023); |Qin et al.| (2022). However, they do not
guarantee which point FedAvg can converge to, which is especially important for overparameterized models
since there are multiple solutions with zero training loss. Our work is different from these works as: 1. We
analyze which point the Local-GD can converge to, which is a more elementary problem before obtaining
the convergence rate; 2. We use implicit bias as a technical tool to analyze the overparameterized FL.

Implicit Bias. Soudry et al.{(2018) is the first work to show the gradient descent converges to a max-margin
direction on linearly separable data with a linear model and exponentially-tailed loss function. Ji &
[Telgarsky| (2019a)) has provided an alternative analysis and extended this to non-separable data. The theory
of implicit bias has been further developed, for example, for wide two-layer neural networks (Chizat &
Bach| (2020), deep linear models [Ji & Telgarsky| (2019b)), linear convolutional networks |Gunasekar et al.
(2018b), two-layer ReLLU networks |[Kou et al.| (2024) etc. Beyond gradient descent, more algorithms
have been considered, including gradient descent with momentum Gunasekar et al.| (2018al), SGD [Nacson
et al.[(2019), Adam [Cattaneo et al.[(2023), AdamW [Xie & Li|(2024). Recently, implicit bias has also
been used to characterize the dynamics of continual learning, on linear regression |Evron et al.| (2022);
Goldfarb & Hand| (2023); [Lin et al.| (2023), and linear classification Evron et al.|(2023); Jung et al.|(2025).
In [Evron et al.[(2023)), gradient descent on continually learned tasks is related to Projections onto Convex
Sets (POCS) and shown to converge to a sequential max-margin scheme. In our work we consider the
implicit bias of gradient descent in distributed setting, which is related to a different parallel projection
scheme by projecting onto constraint sets simultaneously.

Parallel Projection. Parallel projection methods are a family of algorithms to find a common point
across multiple constraint sets by projecting onto these sets in parallel. These methods are widely used
in feasibility problems in signal processing and image reconstruction Bauschke & Combettes| (2011)).
The straightforward average of multiple projections is known as the simultaneous iterative reconstruction
technique (SIRT) in |Gilbert (1972). Then |de Pierro & Tuseml (1984) studied the convergence of PPM for a
relaxed version, and (Combettes| (1994)) further generalized the result to inconsistent feasibility problems. In
Combettes| (1997), an extrapolated parallel projection method was proposed to accelerate the convergence.
We note that Jhunjhunwala et al.| (2023) used this extrapolation to accelerate FedAvg. However, it was
just inspired by the similarity between parallel projection method and FedAvg, while in this work we
rigorously prove the relation between PPM and FedAvg using implicit bias of gradient descent.

Algorithm 1 LOCAL-GD.

1: Input: learning rate 7).
2: Initialize w)

3: for k=0to K—1do

4. The aggregator sends global model w§ to all compute nodes.

50 fori=1toi=M do

6: compute node i updates local model starting from wf: w*" =wf.
7
8

for (=0to L—1do
: wf’lﬂ:wf’l—ani(wf’l).
9: end for

10: compute node ¢ sends back the updated local model wf“ = wf L
11:  end for - —
12:  The aggregator aggregates all the local models: wg ™ = 47>, w; .
13: end for

14: Output: w(f.
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2 MOTIVATING OBSERVATION IN LINEAR REGRESSION

In this section we first give some observations in linear regression as a motivating example. The behavior
of linear regression is very well-understood in high-dimensional statistics.

Setting: At each compute node i, the dataset .S; consists of N tuples of samples and their corresponding la-
bels, (z,y) €ER? xR. Denote X; = [z;1,%2,...,xin] T € RN *? as the data matrix at i-th compute node, and
Yi = [Yi1,Yi2,-yin | ERY as the label vector. Let X, =[XT ... X1 ]T e RMN*d pe the data matrix con-
sisting of all the local data, and y. = [y7 ,...,yT,]T € RMN <1 be the label vector consisting of the local labels.

We consider a special case of Local-GD in Algorithm [I| where the number of local steps is very large.
At each round, the aggregator sends the global model wy to all the compute nodes. Each compute node
minimizes the squared loss f;(w;) = 5% ||y — Xjw;||? by a large number of gradient descent steps until
convergence. Then each compute node sends back the local model and the aggregator aggregates all the
local models to get the updated global model.

Underparameterized Regime: When the number of local samples is larger than the dimension d, it is
known that local model would converge to the ordinary least square solution wf ™ = (X7 X;)~* X'y,
regardless of initial point w¥. In the meanwhile, the centralized model with all the training samples
is we = (X7 X,) "' XTy,. However, the average of local models wo = 3" (X7 X;)~ 1 XTy; is not
identical to the centralized model unless the data is homogeneously distributed and all X! X; are
proportional. So a large number of local steps can hurt the convergence to centralized model with
heterogeneous data distribution.

Overparameterized Regime: When the dimension is larger than the number of samples at each compute
node (d> NN), there are multiple solutions corresponding to zero squared loss. However, it is known that
gradient descent would converge to the minimum norm solution in the feasible set, which corresponds
to a minimum Euclidean distance to the initial point|Gunasekar et al|(2018a)); [Evron et al|(2022), i.e.,
the solution of the optimization problem

min [fwi—wg|® st Xw; =y, @

w;

We can obtain the closed form solution as w ™ = (I— P, Jwk + X[ y;, where P, 2 X7 (X, X)X, and
X2 XT(X;XT)~1. We observe that P; is the projection operator to the row space of X;, and X is
the pseudo inverse of X;. Meanwhile the centralized model converges to the minimum norm solution
we=XT(X.XT)"y.. Denote P= 5" P,. In the training process the difference between global
model and centralized model is iteratively projected onto the null space of span of row spaces of X;s. It
implies that the difference on the span of data matrix gradually decreases until zero. Based on the evolution
of the difference, we can prove the following theorem:

Theorem 1. For the linear regression problem, suppose the initial point wQ is 0 and d > M N and the min-
imum eigenvalue 0,;,, of P is larger than 0, then the output of Local-GD, wi, converges to the centralized
solution w, as the number of communication rounds K — oo as ||wlf —we|| < (1—0min )X ||Jwe]|.

The proof is deferred in Appendix [B] The key step is to show the initial difference is already in the data
space, and no residual in the null space of row spaces of X;s. The convergence to the centralized model is at
exponential rate. Due to the linearity of the regression problem, we can theoretically show the global model
can exactly converge to the centralized model with implicit bias on overparameterized regime. It implies
that, even if we use a large number of local steps to exactly solve the local problems on very heterogeneous
data, the performance of Local-GD is equivalent to train a model with all the data in one place.

3 IMPLICIT BIAS OF LOCAL-GD FOR CLASSIFICATION

For classification task, we also would like to know whether the global model can converge to the centralized
model with any number of local steps. Now we investigate a binary classification task with linear models.

3.1 SETTING

Suppose, for each compute node i, the dataset S; consists of V; tuples of samples and their corresponding
labels, (7,y) € RY x {+1,—1}. We denote X; € RM:*4 a5 the data matrix at i-th compute node, and
Y; € {+1,—1}N i as the label vector. The global dataset is the set of M local datasets S'= Uij\ilSi.
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We consider a linear model w € R? for the binary classification task. The local loss at i-th compute node is

fiw)=>glyszlw), 3)

seS;
where g(u) is a loss function decreasing to zero when u — 0o, such as logistic loss g(u) =In(1+e™).
We study LocalGD with an arbitrary number of gradient descent steps. To describe our main results, we
have the following notations and assumptions. We denote the whole data matrix as X € RV*? where
N= ZglNi. We write 0ax = v/ Omax (X T X) as the maximum singular value of data matrix X, where
0 represents eigenvalues of a square matrix. We need an assumption of global separability on whole dataset.

Assumption 1. For all the data samples (z,y) € S, there exists w € R? such that y,27w > 0.

Note that linear separability is a common assumption in the analysis of learning in overparameterized
regime |[Nacson et al.| (2019); |Soudry et al.| (2018)); [Evron et al.| (2023). For our distributed case, this
implies that all clients share at least 1 minimizer, which imposes an extremely mild condition on the data
heterogeneity among clients. In the overparametrized setting, d >mn, hence, there are likely several such
solutions separating the whole dataset. Since there are multiple solutions separating the whole dataset,
we define a particular max-margin solution on global dataset:

w=argmin |lw| st yaxlw>1, VseS. 4)
weRd s

It has been proven that gradient descent would implicitly lead the linear model to this max-margin solution
in direction, i.e., convergence of model direction to @w/||w|| Soudry et al.| (2018). We define the maximum
margin as

= max minnyZw )
weR, Jw||=1 s

which is strictly positive since the global dataset is linearly separable. The data points reaching this margin
are support vectors of the global dataset.

To establish convergence, we require additional regularity assumptions on the loss function.

Assumption 2. The loss function g(u) is a positive, differentiable, 5-smooth function, monotonically
decreasing to zero, and limsup,,_, ¢’ <0.

Assumption 3. The negative loss derivative —¢’(u) has a tight exponential tail. That is, there exists
positive constants (., f— and @ such that Vu > u:

(1—exp(—p_u))e < —g'(u) < (1+exp(—pyu))e . 6)
Note that these assumptions are also used in centralized learning of overparameterized models Soudry:

et al. (2018)); [Nacson et al.| (2019); |[Evron et al.| (2023), and the logistic loss satisfies all the assumptions.
With our setting completely defined, we state our main results.

3.2 Lo0sSs CONVERGENCE AND IMPLICIT BIAS OF LOCAL-GD

Our main result is on the asymptotic convergence of the model parameter w and loss f(w) for Local-GD.

2
Theorem 2. Under assumptions E| E| if the learning rate satisfies n < min ( 5 nglnw 3 ILo7 g(,y — )
then for the process of Local-GD, we have,

e Every data point is classified correctly finally: limy,_, v wh =o00,Vs € S.

e The global model obtained from Local-GD will behave as

k. ~
k Lk Wy w 1
wy =log(Lk)w+p", and, H —— H:O<> @)
0 A RIE log Lk

and ||p*|| < oo for all k. This implies, the normalized global model converges to the global
max-margin solution.

* The loss function f(wg) decreases to zero as f(w§)=0(7z).
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The proof is deferred to Appendix[C| The technical challenges lie in that we need to control the residual term
p* with the local steps and aggregations, which are handled by a refined analysis in distributed context. This
theorem implies the global model can eventually correctly classify all the training samples after many rounds
of communication. Given that centralized model also converges to the global max-margin solution from
prior results, the global model from Local GD actually converges to the exact centralized model in direction.
Further, this holds for a step size noc + L , and does not require any additional modifications to the objective,
for instance, any regularization on the difference between local and global models during local steps.

Impact of local steps. In this analysis, the number of local steps can be arbitrary. Although the magnitude
of model vector would diverge to infinity, the direction of aggregated model still converges to the direction
of global max-margin solution. Thus, the number of local steps does not influence the asymptotic
convergence to the centralized model, which is very different from underparameterized regime. This result
also shows the local steps can be beneficial for convergence to the global max-margin solution as both
the loss and the directional error decrease with total number of gradient descent steps(Lk) at rates ﬁ and

m respectively. Additionally, our convergence rates also match those obtained for GD in centralized

learning Soudry et al.| (2018)) with total number of steps Lk. This demonstrates that our analysis is tight.
Further, for constant -, if we use the same number of local steps, L=0(/ ** ) as two-stage Local-GD in

(Crawshaw et al., 2025, Corollary 3), then we require the same number of rounds O(/ 4 ) of Local-GD

to achieve f (wO) <e. Note that both [Crawshaw et al.|(2025)) as well as our Theoremlrequlre the number
of rounds to be larger than some k after which asymptotics kick in. Therefore, we assume that e is small

enough that the number of rounds to be O(4 / M is much larger than this k.

Learning Rate. Theorems 2| needs the learning rate to be small as O(1/L), which has also been used by
existing works |Karimireddy et al.[(2020); Koloskova et al.|(2020); (Crawshaw et al.{(2025) on Local-GD and
Local-SGD. This means the model does not move so far after one round of local iterations. Next, we would
see whether the global model still converges to max-margin solution with a learning rate independent of L.

3.3 DISCUSSIONS

Extension to Local SGD. It is straightforward to extend our analysis of Local-GD to Local SGD
that chooses samples without replacement. At each local step of i-th compute node, the update is

f’”‘l :wf"l *W%Zsesi lVg(ystwf’l), where S; ; is the mini-batch of samples at {-th local step and

B=|S,,] is the batch size. We consider the following setting of sampling:

Assumption 4 (Sampling without replacement.). At every communication round, each compute node
run stochastic gradient descent with F epochs, where E is an positive integer. Within each epoch, the
mini-batches {.S; ,5; 1,...,5; 1 } partition the local dataset S;, where I’ = N/ B is the number of local steps
for one epoch.

Under this setting, each sample is exactly chosen once inside one epoch of local updates. At each round,
the local datasets are passed F times, which is a practically common way. To extend our analysis to
Local SGD, we can regard one local dataset as a “batch” in SGD for sampling without replacement. And
then we perform multiple gradient steps in the same “batch”, not only one step of gradient descent in
SGD. In Local SGD, each step is a gradient descent step on a mini batch of local datasets, but we still
run the gradient descent steps for £ “local steps”. Therefore, we can obtain the same asymptotic results
as Theorem 2] for Local SGD without any change of the proof framework.

Separability Assumption. In this paper we mainly focus on the linearly separable data, which is a
standard assumption in implicit bias analysis and also widely used in recent works Zhang et al.| (2024);
Crawshaw et al| (2025); Jung et al.| (2025). For non-separable case, Ji & Telgarsky| (2019a) has shown
gradient descent converges to a ray along the direction of max-margin solution of largest linearly separable
subset. However, there is still an assumption on the data: in fact, one needs a positive margin on the
separable part of data to show both convergence in risk or parameters. Nevertheless, Ji & Telgarsky|(2019a)
clearly shows strict linear separability is not the main reason for the convergence of gradient descent
to a max-margin solution. Since even without this assumption, GD still converges to a variant form of
max-margin solution. It is possible to use the same idea in Local-GD. Intuitively, in the case where local
datasets are linearly separable but global dataset is non-separable, although local training would guide local
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models to local max-margin solutions, the aggregations would force the global model to converge to the
max-margin solution of largest linearly separable subset of global dataset, which is the centralized solution.

4 IMPLICIT BIAS OF LOCAL-GD WITH LEARNING RATE INDEPENDENT OF L

4.1 SETTING

In this section, we consider Local-GD in a slightly different setting. We aim to solve a local optimization
problem with exponential loss and a weakly regularized term for each compute node. The local problem
is solved exactly (to reach the local optima) with a large number of local steps.

Algorithm. At each round, the aggregator sends the global model wy to all the compute nodes. Each
compute node minimizes an exponential loss with a weakly regularized term by many gradient descent
steps until convergence. That is, each compute node solves the following problem:

2 here f;( o - 2 8
u%ﬁlf( w) where f;(w QEZ;QXP —yss w) Hw wg| ®)

where ) is a regularization parameter close to 0.

Then each compute node sends back the local model and the aggregator aggregates all the local models
to get the updated global model (i.e., they follow Algorithm E]with fi(w;) as specified here).

Regularization methods are very common in distributed learning to force the local models move not too far
from global model |Li et al|(2020a} 2021)); T Dinh et al.| (2020). Here we consider the weakly regularized
term, A — 0, to give theoretical insights of Local-GD on classification tasks. Experimentally the ) is set
to be extremely small that does not affect the minimization of exponential loss. For the local loss functions,
we have one assumption on smoothness:

Assumption 5. For each compute node, the local loss function f;(w) is B-smooth for any round of local
steps k.

Learning Rate. In the following analysis of implicit bias, we actually exploit the property of local
minimizers. Since local problem is a strongly convex problem for A > 0, we can run local gradient
descent to find the unique minimizer with a learning rate n < = 2 for a large number of local steps L. That’s

the only requirement of learning rate, which is not dependent of number of local steps L. In other words, the
learning rate is only needed to be sufficiently small to ensure local convergence at each round of Local-GD.

4.2 IMPLICIT BIAS OF LOCAL-GD AND RELATION TO PPM

We consider the whole algorithmic process of Local-GD on classification and use another auxiliary
sequence of global models, denoted as @,k =0,1,2,.... Starting from an initial point @, the central node
sends global model w{ to all the compute nodes at k-th iteration round. Each compute node solves the
following Local Max-Margin problem to obtain w’”l

wf T =argmin |lw—afk| st yalw>1, Vs€S;. 9
weRd

Then the compute node sends the local model back. The central node averages the local models to get

Wit = =37 ZM . We can show the solution w{’ obtained in Local-GD converges in direction to

i=1W;
the global model from Local Max-Margin problems w(.

Lemma 1. For almost all datasets sampled from a continuous distribution satlsfymg Assumptzon [1] Wlth

initialization w§ = WY =0, we have wi — In(3) g, and the residual ||w§ —In (5 ) w}|| = O(klnn3),
as A\— 0. It implies that at any round k= o(lrllrfr(l%l/;‘))\) ) w§ converges in direction to w:
wk =k
lim — 0 (10)
A—>0||w I llwgll

The proof is deferred in Appendix |D} The proof sketch is similar to the continual learning work |[Evron
et al.[(2023)), but we have to handle the parallel local updates for each dataset from the same initial model
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and the aggregation, which is different from the sequential updates where for each dataset the model is
trained from the previous model and there is no need to do aggregation.

Based on this equivalence between Local-GD for linear classification and Local Max-Margin scheme,
we can further analyze the performance of Local-GD with a large number of local steps. Instead of a
closed-form solution for the Local Max-Margin problem (J), we treat it as a projection of the aggregated
global model onto a convex set C;: wf H=p (w?), which is formed by the constraints in @) and exactly
the local feasible set defined in Assumption[I} Here we slightly overload the notation P;, which was used
as the projection matrix in linear regression since the readers can get a sense of the same effect of them

in Local-GD. The aggregation is actually to average the local projected points: w’g“ = ﬁzj‘ilﬂ(w’g)

The sequence of Local Max-Margin schemes is therefore projections to local (convex) feasible sets
followed by aggregation, which is the Parallel Projection Method (PPM) in literature Gilbert (1972);
Combettes| (1994). Using Lemmal I} we establish the relation between Local-GD and PPM: the model
from Local-GD converges to the model from PPM in direction.

4.3 CONVERGENCE TO GLOBAL FEASIBLE SET

Now we use the properties of PPM to characterize the performance of Local-GD in classification. In
Combettes| (1994), the convergence of PPM has been provided for a relaxed version. The direct average
considered in this work can be seen as a special case of the relaxed version, and the following lemma holds.

Lemma 2 (Theorem 1 and Proposition 8, Combettes| (1994)). Suppose all the local feasible sets
Cii=1,2,... are closed and convex, and the intersection C is not empty. Then for any initial point @),
the global model wy generated by PPM converges to a point in the global feasible set C.

This lemma guarantees that w{ will converge to the intersection of the convex sets after many rounds
of iteration, however we are not sure which exact point it would converge to.

Combining Lemma [T} Lemma [2]and the fact that centralized model would converge to the minimum norm
solution in global feasible set, we immediately have:

Theorem 3. For linear classification problem with exponential loss, suppose initial point is w)=0. The
aggregated global model wi obtained by Local-GD with a large number of local steps converges in
direction to one point in the global feasible set C, while the centralized model converges in direction to
the minimum norm point in the same set.

Here we cannot guarantee the global model obtained by Local-GD with a learning rate independent of L
to converge exactly to the centralized model in classification, but show that it converges to the same global
feasible set as the centralized solution. To theoretically support that the Local-GD model converges to
the centralized model, we propose a slightly Modified Local-GD by just changing the aggregation method,
and showing that it converges to the centralized model exactly.

4.4 MODIFIED LOCAL-GD: CONVERGENCE TO CENTRALIZED MODEL

In Combettes| (1996) it was shown that if the aggregation method is modified to incorporate the influence
of the initial point @] in PPM, then the sequence generated by PPM will converge to a specific point in
global feasible set C' with minimum distance to this initial point. Denote P, (-) as the projection operator
onto the global feasible set C'. Formally we have the following lemma.

Lemma 3 (Theorem 5.3, Combettes (1996)). Suppose C' is not empty. For any initial point g, when
the local models are aggregated as

M
. 1 )
wg T = (1= wg+at ! (MZB(wé>> : (11)
=1

where {aF} satisfy (i)limy_oo 0 = 1,(i6) >, 5 (1 — ) = 00,(ii6) >~ | — aF| < 0o, then the

global model generated by PPM will converge to the point P.(i0).

The sequence generated by PPM would converge to the point in global feasible set, C', with minimum
distance to @]). The modified aggregation method is a linear combination of initial point and current average

of local projected points. One example of the sequence {a*} satisfying the conditions is o* =1— 15.
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If we start from w{ =0, then the point P.(@]) is exactly the minimum norm point in the global feasible set.
It shows the PPM can exactly converge to the minimum norm point as the centralized model. Based on this
result, we propose a Modified Local-GD algorithm, with the replacement of Line 9 in Algorithm [T| with

witl =(1-a w0+a< Zw) (12)

We still need to prove a lemma analogous to Lemma |1|to establish the equivalence between Modified
Local-GD and Modified PPM, which is omitted here due to space limit (Please refer to Appendix [Dand
the proof is very similar to proof in Lemmal ). From the equivalence, Lemma [3| and implicit bias of
the centralized model, we can have the following theorem:

Theorem 4. For lmear classification problem with local loss (@) suppose the initial point is wo =0. Then
the global model wlS obtained by Modified Local-GD converges in direction to the centralized model
obtained from ().

Unlike the vanilla Local-GD, which is only guaranteed to converge to the global feasible set, the Modified
Local-GD is guaranteed to converge to the centralized model in direction. Note that if we start from i) =0,

the aggregation in Modified Local-GD becomes w’o€+1 z il ( i El LW; ) which is just a scaling of

vanilla aggregation with a parameter less than 1. Thus we can see experimentally they usually converge
to the same point and Modified Local-GD converges slightly slower. With Modified Local-GD, we can
theoretically show the global model still converges to centralized model in direction with a learning rate
independent of L.

5 EXPERIMENTS

We conducted various experiments on linear classification and neural network fine-tuning. We compared
the global model, i.c., the output of Local-GD (Algorithm , with the centralized model, i.c., the model ob-
tained from running GD on a dataset consisting of all distributed datasets at one place, in different scenarios.

5.1 LINEAR CLASSIFICATION

For linear clas51ﬁcat10n we have 10 compute nodes with 50 training samples at each. The dataset is
generated as y;; = s1gn ), where ground truth model is w} =w*+z;, and w* is a Gaussian vector
randomly chosen, z; is a daussmn noise. The data matrix X; is a Gaussian matrix. This setting makes sure
the datasets across compute nodes are different from each other, meanwhile they are not totally different
such that there may be a non-empty global feasible set.

We tested four models for linear classification. The global model (G) is trained exactly with Local-GD
and logistic loss. The centralized model (C) is trained with gradient descent on the global dataset. The
global model from Modified Local-GD (G-Mod) is trained with exponential loss and regularization term
as A=0.0001. The centralized SVM model (S) (max-margin solution) is obtained by solving problem
(@) via standard scikit-learn package. Note that centralized model and SVM model are the final trained
model in the plots. The learning rate of (local) gradient descent is 7 =0.01. Since our theory claimed
the convergence is established in direction, the difference here for two models wy,ws is defined after
normalization ||wy /||wy || —ws/||w2]||-

In Fig. [I(a)} we show the difference between global model from Local-GD and centralized model with
different number of local steps. The model dimension is chosen as d = 1500, ensuring it is globally over-
parameterized. The centralized model is trained with 20000 gradient descent steps. It is seen the difference
can approach zero for all the L, and larger L can result in faster convergence to the centralized model.

In Figs. the number of local steps is fixed as L = 150 for Local-GD and Modified
Local-GD, and the number of communication rounds is fixed as R=120 for all the dimensions. Fig. @]
shows the difference between these models with respect to the number of rounds R when dimension is
d=1500. We can see both global model and modified global model converges to the centralized model
in direction, and the centralized model is close to the SVM model but there is small gap. Fig. displays
the difference with respect to dimension d. It is seen the difference between global model and centralized
model gradually decreases with larger dimensions. The modified global model is almost the same as
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Figure 1: (a) Difference between global model and centralized model with L. (b) Difference between
global model and centralized model with R. (c) Difference between global model and centralized model
with d. (d) Difference from SVM model with d. (e) Difference between global linear layer and centralized
linear layer with R. (f) Test accuracy of neural network fine-tuning.

the centralized model but the gap is slightly larger since it converges slower than vanilla global model
with same number of rounds. Fig. shows the difference from SVM model with dimension. The gap
between the models to SVM model also decreases with larger d.

5.2 FINE-TUNING OF PRETRAINED NEURAL NETWORK

We further fine-tuned the ResNet50 model pretrained with ImageNet dataset on CIFAR10 dataset. Only
the final linear layer is trained during the process, while the rest of model is fixed. The 50000 samples are
distributed on 10 compute nodes. For i-th compute node, the half of local dataset belongs to the same class,
and the other half consists of rest of 9 classes evenly, which forms a heterogeneous data distribution. The
centralized model is trained with the whole CIFAR10 dataset. The models are trained with cross entropy loss
and Local SGD. The learning rate is 0.01 and the batch size is 128. The number of local steps is L =60 and
number of communication rounds is R =60. The centralized model is trained with the same learning rate for
3600 steps. We plot the difference between the linear layer and test accuracy with number of rounds in Fig.
and[I(F)} Again the difference is defined in direction. We can see the difference gradually decreases
to a small error floor and the accuracy of global models and centralized model is very similar at last.

Due to page limit, we put more experimental results on linear regression, linear classification with Dirichlet
distribution in Appendix [A]

6 CONCLUSIONS

In this work we analyzed the implicit bias of GD in distributed setting, and characterized the dynamics
of the global model trained from Local-GD. We showed that Local-GD can converge to a centrally trained
model for linearly separable data with a constant learning rate O(1/L), and a Modified Local-GD can
have the same convergence for a learning rate independent of L. Our analysis provided a new perspective
why Local-GD works well in practice even with a large number of local steps on heterogeneous data.

10
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REPRODUCIBILITY STATEMENT

This paper is mainly a theoretical work. The assumptions 1-5 are clearly explained in the main text. The
proofs of Section 2] are included in Appendix [B] The proof of Theorem [2]is included in Appendix[C] The
proofs of lemmas and theorems in Section ] are included in Appendix [D]
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A ADDITIONAL EXPERIMENTS

A.1 EXPERIMENTS ON LINEAR REGRESSION

We simulated 10 compute nodes, each with 50 training samples. The label vector y; at ¢-th compute node
is exactly generated as , where ground truth model w;" is Gaussian vector with each element following
N (0,4). Each ground truth model at different compute nodes is independently generated, thus the datasets
can be very different from each other. The data matrix X; also follows Gaussian distribution, with each
element being A (0,1), and z; is a Gaussian vector with N (0,0.04). In Local-GD, the number of local
steps is L =200, number of rounds is also R =200, and the learning rate 7=0.0001. Actually it just take
a few local steps to converge locally at each round, but we set a large number of local steps to show it
can be large at O(v/T'), where T'= L* R is the number of total iterations. We tested the global model
(G) from Local-GD on squared loss, centralized model (C) trained from global dataset on squared loss,
closed form of global model (G-Closed) in (T7), closed form of centralized model (C-Closed) as solution
of problem (T8). The centralized model is trained 10000 steps with learning rate 0.0001.

Fig. PJa) displays the difference between global model and centralized model, global model and its closed
form, and centralized model and its closed form, with respect to model dimension. The difference between
two models is ||wy —ws||/d. Since it is always locally overparameterized, the difference between global
model and the closed form is always zero. The difference between global model and centralized model
has an obvious peak around 500, which is the number of total samples. The phenomenon that global model
converges exactly to centralized model only happens when the model is sufficiently overparameterized.
Fig. 2Jb) shows the generalization error of global model and centralized model in linear regression. Since
the data matrix is Gaussian, the generalization error of model w can be computed as ﬁzgl [|lw—wi]|?.
We plot the generalization error divided by d. It is shown the global model and centralized model can

get the same performance when model is sufficiently overparameterized.
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Figure 2: (a) Difference between global and centralized models plotted against increasing dimension. (b)
Generalization error with respect to dimension.

A.2 LINEAR CLASSIFICATION WITH DIRICHLET DISTRIBUTION

In federated learning, the Dirichlet distribution is usually used to generate heterogeneous datasets across the
compute nodes|Hsu et al.|(2019);|Chen & Chao|(2021);|Reguieg et al.|(2023). For binary classification prob-
lem, the Dirichlet distribution Dir(c) is used to unbalance the positive and negative samples. In the experi-
ments we have 10 compute nodes. We generate 500 samples as y; = sign(z 7 w*) for i € [500] and use Dir(cv)
to distribute the 500 samples across 10 compute nodes. Note that the number of samples at each compute
node is not necessarily identical. Fig. [3]shows performance of Local-GD for linear classification with differ-
ent parameter « in Dirichlet distribution. The ) is set to be 0.0001 and model dimension is fixed as d = 1500.
The number of local steps L is 150 and number of communication rounds R is 150. The learning rate is 0.01.
The centralized model is trained with the same learning rate for 22500 steps. We can see the global model
and modified global model still converge to the centralized model in direction and get similar test accuracy.

17



Under review as a conference paper at ICLR 2026

Difference Accuracy
0.45
8- Difference-G-C 064 SRSNARARERA LRSI
0.40 Difference-G-C-Mod 0.62 | € 092N 0eas™ .
0.60
035 >
g 30.58
g 5
§0.30
s Bose
30.25 ?0.54
ki
0.52 ~@- Accuracy-G
0.20 Accuracy-G-Mod
0.50 —— Accuracy-C
0.15 0.48 ¥~ Accuracy-S
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Number of Rounds Number of Rounds
(a) Difference with «=0.5. (b) Test Accuracy with «=0.5.
Difference Accuracy

0.45 @~ Difference-G-C 0.650 ﬁw
Difference-G-C-Mod

0.625

0.600

10.575

10.550

10.525

0.500 ~@- Accuracy-G
Accuracy-G-Mod
0.475 —— Accuracy-C
0.450 ~¥- Accuracy-S
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Number of Rounds Number of Rounds
(c) Difference with a=0.3. (d) Test Accuracy with «=0.3.

Figure 3: Local-GD on linear classification with Dirichlet distribution.

B LocAL-GD FOR LINEAR REGRESSION IN OVERPARAMETERIZED REGIME

In this section we give a extended description of Section [2{about linear regression in overparameterized
regime.

B.1 SETTING

The behavior of linear regression is very well-understood in high-dimensional statistics; and we can clearly
convey our key message based on this fundamental setting.

At each compute node 7, the dataset .S; consists of N tuples of samples and their corresponding labels,
(z,y) €ER? x R. We assume the label s 1s generated by

Yij =T W) 423 (13)

where w; € R? is the ground truth model at i-th compute node, and z;; is the added noise. Denote
X; = [r41,%49,...,zi5] T €RN*9 as the data matrix at i-th compute node, and ; = [yi1,¥i2,-.,yin] € RY
as the label vector, z; €RY as the noise vector. In heterogeneous setting, the w; can be very different to
each other. Note that the convergence to centralized model does not rely on the generative model. We just
make this assumption on generative model for deriving a more clear form of the aggregated global model.

Algorithm. At each round, the aggregator sends the global model wy to all the compute nodes. Each
compute node minimizes the squared loss f;(w;) = 5 [lys — Xiws||* by a large number of gradient
descent steps until convergence. Then each compute node sends back the local model and the aggregator
aggregates all the local models to get the updated global model. The detailed algorithm is Local-GD in
Algorithm 1| with f;(w;) replaced in the update. Since minimizing squared loss is a quadratic problem,
it is expected to reach convergence locally with a small number of gradient descent steps.

B.2 IMPLICIT BIAS OF LOCAL GD IN LINEAR REGRESSION

For each local problem, when the dimension of the model is larger than the number of samples at each com-
pute node (d > N), i.e., locally overparameterized, there are multiple solutions corresponding to zero squared
loss. However, gradient descent will lead the model converge to a specific solution, which corresponds to a
minimum Euclidean distance to the initial point|Gunasekar et al.|(2018a)); Evron et al.[(2022). Formally, the
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solution w *1 obtained at %-th round and i-th node will converge to the solution of the optimization problem

min  |Jw;—wh|® st Xawi=y;. (14)
w;

We can obtained the closed form solution of this optimization problem as (see Proof of Lemma []in
Appendix [B.4.1)
H=(I-XF (XX ' X)wh+ X (X xE) !
=(I-xF(X:Xx]) 7' X,)wh

+XT(X XD T X+ X (GXT) (15)
Denote P, & XT(X;X7)~'X; and XT XT(X;XT)~1. The local model can be rewritten as
w’“‘1 (I - P)wk+ Pw;+X, Tzl We observe that P; is the projection operator to the row space of

X;, and X j is the pseudo inverse of X;. After one round of iterations, the local model is actually an

interpolation between the initial global model w§ at this round and the ground-truth model w;, plus
a noise term. We then obtain the closed form of global model by aggregation. After many rounds of
communication, we can obtain the final trained global model from Local-GD.

Lemma 4. When the local overparameterized linear regression problems are exactly solved by gradient
descent, then after K rounds of communication, the global model wi obtained from Local-GD is

K-1

w =(I-P)Xuwg+ > (I-P)*(Q+2), (16)

k=0
D_ 1M pA_ 1M p w7 1M vt
where P= 375 2y PiQ= 372 Biwi 2 = 573251 X Zie

Note that P,Q,Z are constant after the data is generated. Since we only know the {X;,y;}}, in the
training process, we can also write it as

wi =(I-P)¥ +ZIP (17

where Y = ﬁZ%lX -Tyl-. Then we can directly get the final model from the training set.

Singularity of P. If P is invertible, we can further simplify the form of global model. However, since
P, € R9*? s the projection operator onto row space of X;, its rank is at most N. The P is the average
of P;s, thus its rank is at most M N. Note that we consider the overparametenzed regime both locally

and globally, i.e., d > MN. Then P is singular, and the sum ;' (I — P)* approaches K when
d becomes very large. We cannot get more properties of the final global model from (I7), but we can
compare it to the centralized model trained with all of the data.

B.3 CONVERGENCE TO CENTRALIZED MODEL

Let X, = [X{, ..., XL])T € RMN*d pe the data matrix consisting of all the local data, and

Ye=[yT ...yt )T e RMNX1 pe the label vector consisting of the local labels. If we train the centralized
model from initial point 0 with squared loss, then the gradient descent will lead the model to the solution
of the optimization problem

min ||Jw|® st Xaw=y, (18)

We can write the closed form of centralized model as w. =X (X, X1)"1y..

Due to the constraint in problem (T8)), for each compute node i, we have X;w. =y,;. We replace y; in
the local model (T3)), then we have

Wit —we=(I-P;)(wh —w,). (19)

The RHS is projecting the difference between global model and centralized model onto null space of X;.
After averaging all the local models at the aggregator, we have

Wit —we= (I—P)(wh —w,). (20)
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In the training process the difference between global model and centralized model is iteratively projected
onto the null space of span of row spaces of X;s. It implies that the difference on the span of data matrix
gradually decreases until zero. Based on the evolution of the difference, we can prove the Theorem T]
and we restate it here:

Theorem 5. For the linear regression problem, suppose the initial point wY is 0 and d > MN and
the minimum eigenvalue of P, Amin is larger than 0, then the global model obtained by Local-GD,
wl, converges to the centralized solution w. as the number of communication rounds K — oo as
Hw(l)(_wcuS(l_)‘min)Kchn-

The proof is in Appendix The key step is to show the initial difference is already in the data space,
and no residual in the null space of row spaces of X;s. The convergence to the centralized model is at
exponential rate.

Due to the linearity of the regression problem, we can theoretically show the global model can exactly
converge to the centralized model with implicit bias on overparameterized regime. Note that the proof
does not rely on the generative model and assumption on data heterogeneity. It implies that, even if we
use a large number of local steps to exactly solve the local problems on very heterogeneous data, the
performance of Local-GD is equivalent to train a model with all the data in one place.

B.4 PROOFS IN LINEAR REGRESSION

B.4.1 PROOF OF LEMMAH]
At each compute node, the local model converges to the solution of problem

min - [w;—wf|* st Xow;i=y;. @1)

Using Lagrange multipliers, we can write the Lagrangian as

%\\wi—w§||2+ﬁT<Xiwi—yi) @2
Setting the derivative to 0, we know the optimal w; satisfies
w;—wh+ X B=0, (23)
and then
w; =w§ — X! . 24)
Also by the constraint y; = X;w;, we can get
yi=Xwh —(X:X1)B. (25)
Since the model is overparameterized (d> N), X; X1 € R%*4 is invertible. Then we have
B=—(XX]) 7 (yi—Xgwf)- (26)
Plugging the 3 back, we can get the closed form solution as
@ =w+ X7 (GXT) T (yi— Xiw)- 27)
We update the local model w ™! = ;.

We can also write the closed form solution as
wit =wf+ X7 (XX yi— Xwh)
=(I-X7 (XX X wg+ X (X X))y (28)
If we plug in the generative model y; = X;w; +z;, then the solution is
wit =(I-X7 (X, X)X wh+ X7 (06X " Xw; + X (X XT) e
=(I—P)wlk+Puw:+X]z. (29)
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where P;= X7 (X;XT)~1X; is the projection operator to the row space of X;, and X = X7 (X, XT)~
is the pseudo inverse of X;. It is an interpolation between the initial global model w§ and the local true
model w;, plus a noise term.

After aggregating all the local models, the global model is

m

wgﬂZ%Za—mw@%iﬂwﬁéim

=1 =1 =1
=(I-P)uwj+Q+Z, 30)
where P= iZZLHaQ:ZZLBwE‘Z: iZZLXJZi'

After K rounds of communication, the global model is

K—-1
wif =(I-P)Xuf+ > (I-P)(Q+2). 31)
k=0

If we start from w] =0, then the solution will converge to ZkK;Ol (I-P)(Q+2Z2).

B.4.2 PROOF OF THEOREM[I]

We know the difference between global model and centralized model is iteratively projected onto the null
space of span of row spaces of Xs:

w’gﬂ—wC:(I—P) (wg—wc). (32)

We can formally describe it as follows. Since the problem is overparameterized globally, we can assume
each X; has full rank N. We apply singular value decomposition (SVD) to X; as X; =U,;>; VT, where
U; eRVN V, e RN Then P, = XTI (X;X])~1X;=V;V.T, which is the projection matrix to the row
space of X;.

We apply eigenvalue decomposition on P to get P=QYQ", where Q € R%*"" and n/ is the rank of P.
It satisfies N <n' < MN. Since P is a linear combination of P;s, the space of column space of Q is
the space spanned by all the vectors v;;,i=1,....,M,j=1,....N.

We also construct a matrix Q' € R4*(d=n") ' \which consists of orthonomal vectors perpendicular to Q.
We can project the difference onto column space of () and @)’ respectively.

Q" (wi ! —we) =QT (I-Q2Q") (w§ —we) = (I-2)Q" (w§ —we)
Q/T(w§+1 —we) = QIT (I_QZQT)(IU]& —we) = Q/T (wg —w) (33)

After K rounds of communication, we can decomposite w{ —w, into two parts:

wé(_wc:QQT(wé(_wc)+QlQlT(wé(_wC)' (34)
Then we can obtain
wl —we=QQ" (w —we)+Q' Q™ (wf —w.)
=Q(I-2)* Q" (w)—we) +Q' Q" (w) —w.).

It shows the initial difference on the column space of () continues to decrease until zero if K is sufficiently
large. And the initial difference on the null space of () remains constant.

To show the difference w{ —w, goes to zero entirely, we just need to choose an initial point such that
initial difference is on the column space of (). When we choose w8 =0, the initial difference is w,. itself.
Moreover, the centralized solution w, = X (X, X )~ 1y, exactly lies in the data space spanned by vectors

{wi; }glj\;zl since it is a linear combination of columns of X', So if we start from w3 =0, then wf —w,
will go to zero when K is sufficiently large.

When starting from 0, the difference between the global model and the centralized model becomes
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g —wel* =(QU— %)% Q" we||?

=(QU-2)*Q"w)" (QU-2)*Q"w)

—(@QTw.) (1) (QTw). (35)
Since I —3 is a diagonal matrix, we can get
”wé(_WCHQ§(1_>‘min)2K||QTw6H27 (36)

where A\, is the minimum eigenvalue of matrix P. Also since Q is an orthogonal matrix, we have
|QT w,||? = ||we||?. Then we can get

Hwé{*wcng(1*/\min)KHw6”- (37

It shows the difference between trained global model and centralized model converge to zero at an
exponential rate.
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C PROOFS OF IMPLICIT BIAS FOR LINEAR CLASSIFICATION IN SECTION

We give the detailed proofs of Theorem [2]in this section. The proof framework is inspired by the analysis
of implicit bias of SGD Nacson et al.| (2019). Intuitively, we can regard one local dataset as a “batch” in
SGD for sampling without replacement. But we perform multiple gradient steps in the same “batch”, not
just one step of gradient descent. The challenge is to handle local steps in the same local dataset and the
aggregation after one round of local training. Here we restate the Theorem 2}

2
Theorem 6. Under assumptions E| 5 if the learning rate satisfies n < min ( 5 Lg% B Lo ;(7 e— )

then for the process of Local-GD, we have,

* Claim 1: Every data point is classified correctly finally: limy,_,oozT wk =00 Vs€ S.
e Claim 2: The global model obtained from Local-GD will behave as

wh =log(Lk)w+p*, an H H ( ) (38)
0 [whll Tl logLk

and ||p*|| < oo for all k. This implies, the normalized global model converges to the global
max-margin solution.

e Claim 3: The loss function f(w§) decreases to zero as f(wf)=0(£).

For the three claims in Theorem 2] we will give separable (but sequential) proofs below.In the proofs of
linear classification, for ease of notation, we redefine the samples y,x 5 to x5 to subsume the labels.

C.1 PROOF OF CLAIM 1

In this proof, we rely on the key property of linearly separable data.
Lemma 5 (Lemma 2 and (17) in Nacson et al.| (2019)). Suppose that Assumptions [I)and 2] hold. For

any weR?,
V£ ()= /sezg[g%xwz.

Lemma 6. Suppose that Assumptions[I|and 2] hold and k € N. Then we have
maXBMl

e} 7w0+77(lVf2(w0))||_WHVJ”(U/@H. (39)
L max
i —won_%nwwo)u (40)
L M
197691 < TN @)

The proof can be seen in Section|[C.1.1]

Note that f(w)= 25N fi(w)= L3, csg(aTw), and g(u) is a f-smooth function from Assumption

2
Then f(w)is a %—smooth function. Then we can get

Pl flwh) 2 || o —wgll?

<V f (wp)(w k“*wé“))

<Vf(w0) k+1 _wo ULVf(wo)‘H?LVf(wo»
S—nLHVf(wo)||2+|\Vf(wo)||IIw'SH—woMLVf(w’S)\L 42)

where the second inequality is from Cauchy-Schwarz inequality.
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For the second term, we have

Jwh ™ —wh+nLV f(wh)|

1 & 1 &
k+1 k k
_”M;wi —wo"‘TiLM;Vfi(wo)H
1 M
<372l b L A )

2L2 3 M
_MZ Lm0 (k)

(1- Lnﬁa axc)
2L2 3 BM
—ma" V f(wp 43)
where the first inequality is tmangle inequality and second inequality is from Lemmal]
We also have
LM
T DA
1M
<372t ™ —ul?
2L2 2 a M2 o2
Tmox 44
(1 LﬂﬁUmax)z ||Vf(w0)|| ( )
where the second inequality is from Lemmalf] Plug above two inequalities into (42), we can get
nLJISImxﬂM nLo—maxﬂM k\(12
Fwkh— fwk)y<— L(l— V f(w (45)
() = ) < (1 — e ) IV )|
If we choose n < 5 Laé] —5 then T ﬁ —< < 2. Thus we can obtain
ki1 2 20’m&x 9
Flwg™) = f(wg) <—nL(1- nLUmaxBM( ) NIV fwg)]
:*nL(lfnLﬂ/)IIVf(wo)IIQ (46)
0'3 Omax
where 3/ = 2max3M (Y +Omax) A§§7+ ).
If we also choose n < STLE ﬂ/ , then
k1Y poo kY < _nL Y £ (w12 47
flwg™) = flwg) < 5 IV f (o))", 47)
which means the loss continues to decrease.
Combining the two condition on step size, we require
1 2
<mi . 48
”—mm(% e ’4Laﬁlax5M<w+omax>> @
Summing up from k=0 to oo, we have
(o)
2 < 20 @B) — f(w§e)) _ 2f(wp)
k(12 0 0 0
D _IVF@h)*< o <=L < (49)
The boundedness means limy o |Vf(w§)|?>. = 0. From Lemma I we can also know

limy— 00g’ (zTwh) =0,Vs € S. From Assumptlon | ¢/ (u)— 0 only when u— 0o, thus 27wk — 0o,Vs €
S, which means all the training samples can be correctly classified. This proves Claim 1 in Theorem@
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We also bound the change of weights across iterations here, which is useful in the proof of Claim 2. since
Vii(w)=3,cs.9 (T w)z, we can have

LM LM
kl+1 Kl k,l
Tl —w; ||:MZ77vai<wi )l
i=1 i

**ZHHZQ CATEN

i=1 s€ES;
_MZnamax Z( (T wf” )2
seS;
_MZnamm Z( xTw )
seS
g"(’%vaJf(wf’l)n, (50)
1=1

where the first inequality is from the fact ||} g as%s|| < Omaxy/D ,cga2 for Va, € R, the second
inequality is due to S; C .S, and the final inequality is from Lemma|5} Further we can obtain

IV i) <V (wb) |+ IV f (wih) = f(wh))|
UISIIEX
<||Vf(wo)||+(1l76)||vf( ol
_ InaxﬂM
_<1+(117730max)>||vﬂwg)” 639)

where the second inequality is from Lemma[6} Then we have

M M 2
1 k,l+1 k12 1 7720-12naxj 42 ( nLJnla /8IM ) k\ |12
— g w T —w T |F<— 5 1+ > Vf(w

i UmaxM2< N nLo},..BM
72 Y(1—=LnBo2,..)

) 195 wh)P 52)

Summing up all the changes, we can finally have

oo L—1 M 2 2 2 M 2
N0 a LM maxﬂ k|2
! R+l _ kl| < <1+ E IV f(wd)]] <oo. (53)
! %;; 7 (A=Lnborax) ) 1= ’

C.1.1 PROOF OF LEMMA[G

Proof. We start from the update rule:

-1
-1 (ZVﬂ(wf’”)) - (54)
I'=0
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Define A:=w}"' —wl+n(IV f;(w})). Then by triangle inequality, we have

-1
HAI=l=0> V£t )+l fi(wh))l

I'=0

-1
=0l 3 (V! )=V fiuh))|

I'=0

-1
<y | fiwi) =V filwp)|
=0

-1
<nBiy_|lwi" —uf| (55)
=0
where [3; is the smoothness parameter of f;(w). Since each local dataset of a subset of global dataset,
Vie [1 M} ﬁi <60'max~
In addition, since V f;(w) =3 ¢ g '(zTw)zs we can have
||wk,l

:||w’?’l—w§+nIVfi< A
< —wh -+l fi(wi) [+l g (L w)z,|

seS;

<A 490 mas, |3 (o (T wh))®
Sesi

<A +7 L0, [ (¢ @ Twf)’
seS

_on

L max
<A ||+ 22T )| (56)

where the second inequality is from the fact || Y g as2s|| < Omaxy/D_,cga2 for Va, € R, the third
inequality is due to S; C S, and the final inequality is from Lemma 5] Then we plug in || A || and get
-1

Kl k ol
lwf ! —wh || S nBoma Y llwi™ —wf |+ ="
=0

LomaxM
D2 Omax 2 fwh) - 57)

Now we use another lemma from |[Nacson et al.| (2019):

Lemma 7 (Lemma 4 in Nacson et al.{(2019)). Let € and 0 be positive constants. If 6, < 94—625;(1)6”, then

5k < _76 and Z(Su =1 ke

Directly applying this lemma to (57), we can obtain
nLUmax

w bl < 22TV f(w (58)
I oll < S —InBo? m&X)II Fg)l.
Then we further have
-1
Ml
< kli mmxﬁ k .
1Al < nﬁammx;)llw w0||_7(1 Info? max)IIVf(wo)H (59)
By smoothness, we also have
Lo, M
IV £ () =9 )| <02 Bl — ]| < ) IV f(wi)ll (60)

Y(1=nfod.y)
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C.2 PROOF OF CLAIM 2

In this section, we prove our implicit bias result. Recall that v is the global max-margin solution defined
in @) We denote the set of support vectors in S as V. Thus the max-margin solution is W=7 coss,
where a; >0,Vs € Via, =0,Vs ¢ V. We further define a vector w, which satisfies

=nexp(—zl @) VseV. (61)

From Lemma 12 in|Soudry et al. (2018), this solution exists for almost every dataset. We also denote
the minimum margin to a non-support vector as

0 =minz, Tip>1. (62)
s¢V
‘We will use the following Lemma:
Lemma 8. There exists m;(k,l) such that
—11 l L L
Lzaﬂzasxﬁ% > o, = 7lo8(k)i+ 2 Ctmi(kl), VIE[LL] (63)
u=1 seV seV;
mi(k+1,0)2— Zml (k,L), Vie[l,M] (64)
where ||m;(k,)|| = o(k™1) and ||m;(k,l+1) — mi(k,l)H = O(k™1Y). C is Euler-Mascheroni constant,

which is used to calculate Zﬁ:li =logk+(+O0(k™1).

Now we define rf l,pz
w; lzlog(Lk:)ﬁ)—&—pf’l
M
=log(Lk)i-+i+—mi(k, z)+r’” vie[l,L]. (65)

k+1_ M kL k41 _
Also, define 7 MZZ i and prtt= LS B Thys

wg = MZw“—log(Lk)erp =log(Lk) w+w+ Zml (k) +rg (66)
=1
We also define

pkofp , 7"]?"0:1"]8 (67)

K2

Then for [ =0, we have
wfﬂvo L —Jog(Lk)d+w—+m; (k-+1,0)4rF 0, (68)

We first write for a constant k1 >0 (deﬁned later) and all K > k4

g 11 = g 17 = ZII?‘““II2 Irg 11>

ukl

K 1 M
L 0
<3 > (IR lre)
u=k1 i=1
K L-1M
7222” ul+1||2 ’LLl”
u=k; [=0 =1
K L-1M

M ZZZQ< w41 Ztl7 ul>+||ru J+1 7,,;1‘,l||2 (69)

u=k1 =0 i=1

We will handle the inner product and squared norm items respectively. Here we need a lemma to
characterize the behavior of inner product (rl-"lﬂ " l,r“ l> which can be adapted from a lemma in

Nacson et al.| (2019) and its proof is omitted here:
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Lemma 9 (Adapted from Lemma 6 inNacson et al.| (2019)). Under Assumptions IZI EI 3t,01,C2>0
such that Vk >k,

02

(i =Py <O Lk) O ==k O e [o,L - 1] 70

, where i=min{ 14 ,u—,0.25}.

Let ol = 2L (my(k,J4+1)—my(k,1)) and we know [|m; (k,1+1) —m;(k,0)|| = O(k~') from Lemma
Then we can handle the squared norm item:

K L-1M
u,l+1 ul
TN
u=Fkq [=0 i=1
K L-1M
k,l+1 k,l k112
o D)D) el
u=k; 1=0 =1
K L-1M 1M K L-1M

7222”“’”1“ y,l”z ijz; 12< ul _ ul+1 tk> Zzznauz

ulcllOzl ukl i= uk1l011

T L-1M M K L-1M

K L-1
TS et 2y 35S
=0 i=

u k1 1=0i=1 u=k1 1 u=ky [=0 i=1
K L-1M

27 2 e

ukll 0 1=1

w12

(71)

Since ||a¥!||=0 (%) we can find a k; such that Vk > k; V€ [0,L.—1],Vi € [1,M] we have ||a)"!|| <

Also, we know MZkztl f=0121 1 ||wk 1 _ Zk !||2 < o from the proof of Claim 1 (53). Then we
can obtain

K L-1M

Z ZHrkl—i-l kl
Z

k=k1

M
1=01=1

1 K Lzzlf:ﬂ RIFL_ k|2 1o i§§:|‘wkl+l k) igiik 9

Ty 1 M= i=a M= i=a
| FLIM

+MZ Zﬁk 2

k=ki 1=0 i=1
<c0. (72)

With Lemma|§| and the fact that Ve > 1,7 u™¢ < oo, we can finally get

K L-1M

||7,O||2 |’I“01||2 ZZZ( < ul+1 ul ul>+||rul+1 u’l||2)<00. (73)

kkll 0 =1

The ||7%||? is bounded, then ||p*|| is also bounded. We can know w§ converges to w in direction:
wit =log(Lk)i+p".

Then we can analyze the dependence of ||o*|| on L. From (53) and the condition on learning rate
n=0(L~') we can know

K L-1M

MZZZW“ w2 <o(L~ Zwmmz (74)

k=Fkq [=0i=1
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Then we can write[/2] as

K L-1M
ZZZII
k k1 1=0i=1
o , K w2 E
NIV +2,| 0 an (w22 Z L
k=k1 k=k1 =k; k=k1

ZIIVf wg)||*+ ZHVf wg IIQZk 2+Zk (75)

k=Fk1 k=k1 k=k1 k=Fk1

From Lemma[)] since 6 > 1 we can know

<Tf’l+1 _rf,l,rf,l> < Cl (Lk)_e CQL ki_l 0.50 __ O(L—l)(k_—G +k—1—0.5ﬁ) (76)

Then we can obtain

751115 1>
K L-1M
ZZZ( < wl+1_ ul ul>+||rul+1 Tu,l||2)
M= k1 1=0 i=1
K
<O(1) ) (K +k~ 7"+ O(L levf wg)[[*+ ZHVf wg IIQZk 2+Zk ?
k=k1 k=k1 k=k: k=k1 k=k1
<00 77)
and the dominating term on L is O(1). By definition pz —log(Lk;)w+w+ L (k1) 41", we can get

prlH is bounded with k£ — oo and O(1) on L.

Now we can get the convergence rate of the direction.

whtt
11
B log(Lk)i+p*
\/ PFT pk +- T ilog? (Lk)+2p+T wlog(Lk)
oF Nlog(Lk)+w

20kT ‘k‘
Hw”\/ 1+ o foa(zm) t Talloe?@h)
1 k KT 3/ T4 2 k2 1 1
_ 1 < p +ﬁ)> T - (pAI;)) _HPA||2 i +0< i >
|| \ log(Lk) [w[[?log(LE) ~ \ 2\ [[w]] 2[|@|* ) log®(Lk) log®(Lk)
k
w

o w Pt w 1 1
=4 - — L +0( )
@] (IIwII @] |w||2>10g(Lk) log*(Lk)

i aaT\ pF 1 1
=t (I _ @) : 78
| ( |w||2> ]| log(Lk) (log2(Lk)) (78)

where the third equality is from \/7 =1—12+222+0(2?). Thus we can get

] ||w||H (1og k>>' 79
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C.2.1 PROOF OF LEMMA 8]

Proof. We first write

k—l
DIED YRR s
u:l

SGV seV;
k—1
L 1 1
:Mw er%Zaszg
=1 seV;
— L i log (k) +¢+O )+ 3
= (log 1 2 OtsTs
SGVf
L L¢
:MIOg(k)erMerO D4 — ;asms,

where the first equality is definition of w, the second equality is from the fact
k

Z% =logk+(+O(k™")

u=1
and logk—log(k—1)=0(k™").

Then we define

k=1 Lc
mi(k,l):LZ Zasxs % Zasxs log k)w Mﬁ/,
u=1

56\/ seV;

and

m;(k+1,0)= Zml k,L) LZ Zasms log k)w %

96\/

We can obviously see ||m;(k,l)||=O(k™1). For the difference, we can get

1 -1
[l (k1) —m; (K1) :”E ZasxSH =0(k™), Vle[l,L-1]

scV;
1 L _
(e 1) =ms K 0)| =l 3, — 1+ (log(k-+1)~logh) | = O(k ™).
seV;

C.3 PROOF OF CLAIM 3

W, Vie[l,M].

(80)

(81)

(82

(83)

(84)

(85)

(86)

In the proof of Claim 1, we already know f(wg) would continue to decrease to zero when k — oo. Now
we establish the convergence rate of f(wf). Recall V' is the set of support vectors and 6 is the minimum

margin for non-support vectors. From Assumptions |Z| and EL we can get

1
) < 3 (resp(- T ud)exp(—aTuf)
ses

=%Z(1+exp(—u+xsT(ﬁf10g(Lk)+p’“)))exp(—xf(1b10g(Lk)+pk))

ses

:ﬁz(uwk) e () exp(—T ) (L)

seS

*Z[QXP B) (L)~ @ (L)~ Pexp(—pyal pexp(—aT o

ses
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We can divide the dataset S into set V' with support vectors and the complementary set. For samples in
the set V', we have xTﬁ; =1 and we can write

> exp(—al pF) (L) 7 O (L) Pexp(—pyal pF)exp(—aT pF) (L) T

seV

Rl T k 1 T k

—S;/EGXP(*%P )+W€XP(*(1+#+)%P ) (88)

For samples not in the set V, we have 274 > 6 since 6 is the minimum margin for non-support vectors.
Then we can write

> exp(—al p)(Lk) =" P (Lk) 7 Pexp(—puaard pF)exp(—a pt) (L) 7
s¢V
1
Tk T k
_; Lk‘ eXp —Tg P )erexp(f(lﬂu)xsp ) (89)

Combining the two terms, we can have

1 . )
J ) <237 [exp(—a? o) (LR) = 4 (Lk) 7+ Pexp(—pua pJexp(—a T o) (Lk)
seS

+O((Lk)—IIlaX(9,1+M+)). (90)

1 .
= mZeXp(—wsTp")
seV

Thus the training loss f(w§)=0(;).
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D PROOFS
OF IMPLICIT BIAS WITH LEARNING RATE INDEPENDENT OF L IN SECTION

In this section we also redefine the samples y;;x;; to x;; to subsume the labels. With abuse of notation,
we use S; to denote the set of support vectors in i-th compute node and S is the set of support vectors
in global dataset. The number of samples [V is identical for all the compute nodes, and the local dataset
is {xi;,yi; }3N=1 Since the loss function is fixed as exponential loss in this section, the /3 in this section
refers coefficient of support vectors, not smoothness parameter.

D.1 PROOFS OF LEMMA[I]

We assume ||w0 fln( )wk||=O(kInln3 ). In this case, since In§ grows faster, when A— 0, we can have
limy o9 ”w 1= ”w ’“H for any k£ at order o<lir1’£%1/?;)> We will prove it by induction. We define global

k

and local residuals as 7% =w§ —In(§ )@k and r¥ =w? —In(3 )k

e

When k=0, since w)=1w) =0, 7 =0 and the assumption trivially holds.

When k> 1, we have

||r’f||—Hwo—1n k| =
1 M
<372 ||t —1n ler’“ll o1

where the inequality is triangle inequality. We then focus on the local residual 7¥. We choose an O(1)
vector wF and a sign s¥ € {—1,+1} to show

1 1 1
|r¥|| = In(<)+sfnln(5) |@f +@f | +s¥nn( <)@l +af
A A A
1 1
g‘ wh — Kln(/\)ntsflnln()\))ﬂ)f+ﬁ)f] ‘Jrlnln( M@k ||+ 1ok 92)
Recall the w is the solution of optimization problem
arg‘mmfl w;) Zexp —xl w;) é s —wf | (93)
3 o

and the loss function f;(w;) is a A-strongly convex function. Thus we have

1
lw —w]| < SIVfi(w)], forany w. (94)
Then back to[02] we have
1 1
Il <5 HWK (A)-l-sflnln()\))wf—&-@f] ‘-Hnln( Ma@f |+ @] (95)
[lA: |

Next we need to show the first term 4; is at O((k—1)Inln(5)), and also since ||@F|| and [|@F|| are O(1)

vectors, then ||7¥|| is at order O(kInIn(})). After averaging, ||r*| is also at order O(kInIn(})). This
confirms the assumption made for induction.

Now we focus on the term A;. The gradient of function f;(w) is

V fi(w;) Z xijexp( ch;-wi)—i—/\(wi—w]g*l). (96)
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The term A; is

1 1
=— Xinjexp <xz;ln ()\ln_s"ic (X)
J

,)exp( a?gwf) <ln(i)+sflnln(i))w +af —wh

1 _r LT T~k 1 k 1 k—1
_szij Aln (X) exp(—x;;W; )+ ln(X)—Fsi lnln(x) W wF —wh 97)
J

Then we define the set of support vectors as SF = {xw|x” » = 1}. Recall that we assume
rFt=wg ! —In(1)ws " is at order O((k—1)Inln(+)). We can obtain

i

—sF 1 Togy L sk 1 i T~k
A= ()\l ()\)) Z xijexp(fxijwi)—x Z xij(/\ln L(/\)) exp(— zz]wz)

fI:UGS;C IijQSf’
Lok _ke1y k1, k Lok ok
_HH(X)(U) —wy )T —l—silnln(x)wi +w;
k 1 T _k 1 _SI;xz;wf
=—In"%( Z Tijexp(—a;; Laky— Z N (ln()\)) exp(— argwlk)
MJES xi; ¢Sk
1 1
+ln(x)(ﬂjk—w§ H—r k_l—i—sflnln(x)fuf—l—ﬂ)f. (98)

By the triangle inequality, we have

e _k 1 _
[ Azl < hﬂ(A)(w'“—wéc H—In 1(X) Z zijexp(—x;wf)
;€S
B
—s/]-cz?ﬁ)’-“
H T a2 () et
zi;¢SF
B»
1 3
+ PN () |@F |+ @k (99)
—— A ~——
O((k—1)lnln(1)) o(1) o)

We just need to show By and B, approach to 0 then || 4;]| can approach to O(kInn()).

We divide it into two cases.

1. When @ = P(@f~") # @k, meaning @} " is not in the convex set C;. In this case we choose
s¥=—1 then

1
B = ln(x)(wk—wo Z x;jexp(— ” k)
wLJES'
1
=In(5) (@f—wf )= > wijexp(—afal)|. (100)
z;; €Sk

We now want to choose @ to make B; as 0. Since @? is the solution of SVM problem @), by the KKT
condition of SVM problem, it can be written as

of =wf M+ Y B (101)

ZEUESI
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where 3;; is the dual varible corresponding to x;; in the set of support vectors. Thus we want to choose ¥

Z exp(—a; 07 )i = Z Bijij- (102)

Iijes,{c CI?”€S

as

We can prove such a @} almost surely exists in Lemmam

For the term Bs, since limy_,o A~ In° ( ) — 0 for any constant ¢ > 1, and x” l —1>0 for any x;;
being not a support vector, then we can see

_k
1 fiju)q-
By=|| Y AT (m(ﬁ) exp(—aLal)|| 2% 0. (103)
zi;¢SF

Here we choose ﬂ)’.“ and s’»C to make B; =0 and By —0.

2. When @F = P(wf~ 1) we ", meaning @} ' is already in the convex set C;. Then @} —w} ' =0.
In this case we choose @ =0 and s} =+1. We can have

Syl 2%, (104)
Tij €S£C
since ln_l(%) 2290 and quvesﬂij’ is O(1).
And since a: —1>0 for any x;; being not a support vector, we have
1 —zT ok
> X! (ha(ﬁ) 2200, (105)
zi; €Sy
zLaf A—=0

where A75%1 =1 220 0 and (In(3)) “is
By —0.

Plugging[99|back into[95] we can obtain

272200, Thus we choose ﬁ)f and sf to make By — 0 and

511 < | AF ([ +nin( 5 )Ilw’“IHIIw’“II

<B +Bg+2lnln( )||wk||+2||wk||+||rk 4l
———

—0

<2lnln(< )Ilw’“ll+2Hw’“H+llr’“ . (106)

By the assumption ||7*~!|| = O((k — 1)In ln(i)) and ||wf|| = O(1),
I} =O(knn(5)).

From[91] we finally obtain

k|| = O(1), we have

1
I 5 I | =Okinin( ), (107)

( In(1/)) )
Inln(1/X) J*

k —k
which confirms our assumption. Then we have lim_,o H:—ﬁ” = ”zﬁ i
0 0

D.2 PROOFS OF AUXILIARY LEMMAS

Lemma 10. For the sequence {w}} generated by sequential SVM problems I and aggregations, and
for almost all datasets sampled from M continuous distributions, the unique dual solution 5’“ eRIS:lx1
sattsfymg the KKT conditions of SVM problem I has non-zero elements. Then there exists w satisfying
X, wF=—Ingr.
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For almost all datasets, a hyperplane can be determined by d points. Thus there are at most d support
vectors and the set of support vectors is linearly independent.

Proof. By the KKT condition of SVM problem, we can write the solution as

wf=wf '+ > Bha=wl T+ XE B (108)

Ti;€S;

where X, € RI%/*? is the data matrix with all the support vectors, and 3 € RIS:1*1 is the dual variable
vector. Thus we can obtain

B = (Xo, X5) ™ X, (@F —wf ) = (X, X5) s, — (X5, X5) ' Xg,@k ™", (109)

where X g, X is invertible since Xg, has full row rank |S;|, and the second equality is from Xg, wF=1g,
with 1g, € R!S:1%1 being all one vector. Plugging B back, we have

1

_ [I—Xgi (Xsixg)‘lxsi}w’g—wxg (Xs. XT) s, (110)

i

After averaging, the global model is

M
wE = lI_ZXS (Xs,.X5)™ XS]’“ 1y MZXS (Xs,XZ)™ "1s,. 11

=1 =1

It implies 1D§ is a rational function in the components of X1, X, ..., Xas, and also Bf is also
a rational function in the components of data matrices. So its entnes can be expressed as

k= pU<X1,X2, , Xnm)/q55(X1, X, ..., Xar) for some polynomials pf;, ¢f;. Note that 5 = 0
only if pw (X1, X2,...,X3) = 0, and the components of X7, X5, ..., X); must constitute a root of
polynomial pfj However, the root of any polynomial has measure zero, unless the polynomial is the zero

polynomial, i.e., pfj(Xl,Xg,...,XM) =0 for any X1,Xs,...,X /.

Next we need to show pfj cannot be zero polynomials. To do this, we just need to construct a specific

X1,Xo,...,Xy where the pfj is not zero polynomial. Denote e; € R? as the i-th standard unit vector, and
v1,V2,...,ups be the number of support vectors at M compute nodes. We construct the datasets as

X;=7ile1,2,...e0,] ", for all 4. (112)

where 7; are positive constants that will be chosen later. For these datasets, the set of support vector is
dataset itself, i.e., X5, = X;. We can calculate

I 0 1,,
XX =2l XFX;=r2| 8 X =r; |y Y 113
Tidvs) [0 0¢a—v;)x(d— v):| i ST, (113)
Thus we have
I, 0 _p—1, 1| 1,
I— = e 114
<d {0 0(d—v;)x (d— v)})wo +ri 0g—, (114
After averaging, the global model in[IT1]becomes
0 -
0
aj bl
Wk = a4+ (115)
G ax —Vmin 1 Odfv;mx
b
L 1_

R
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where a; € {37, 2 ...,22=1} is a constant in the range (0,1), b; = &= >~ L is a positive constant and
i€B;

B; € [M] is a set consisting of some compute nodes. Note that A and b are fixed in the iterations and

A is a diagonal matrix.

By recursively applying w5 = Aﬂ)lg_l +b, due to @) =0, we can obtain
wf=(I+A+A*++ A 1)b. (116)

Since A is diagonal, the summation is

1
1
k—1
k—1 Zj:o ai
S 4= (117)
o k—1 j
J Zj:() a‘Z))‘naX —Umin
- k_
Recall that
B =(X;XT) 1, — (X, x7) " Xk
1 1 _ k* 1 _ k,
:ﬁlvi_ﬁ(wo 1)m:;2(1v,-—(wo 1)”), (118)

where (ﬂ;]g_l )u; 18 the vector with first v; elements of fv’g_l

We need every element of 3 to be positive, so that we require every element of (1210_1),1” is less than
1. Then it holds for any i-th compute node, thus we require every element of (g k= 1)1,max is less than 1.

Since @k (Zk g Al ) b, the largest value of (@ '), .. satisfies

k—2 j M
g M-1\’' 1 1
(wlg 1)largest§Z(M) XM_ E
7=0 =1
k—1 M
M-1 1 1
=1t

M—

because the maximum value of a; is 22— and the maximum value of b; is Z .
J M M Lui= 1 r2

Thus we require

M g
ZF< (ML (120)

P M-l )k—l'

Since (%)k_l —0 when k — oo, we only require the LHS is less than the lower bound of RHS:

Z <L (121)

111

)

Therefore we can choose r; = M +1 to make it happen.

Then we can obtain 3; ]’- >0 holds for any support vector z;; and any round k. And the ¥ simply satisfies
Xg, wF=—Inpk. O
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D.3 LEMMA AND PROOFS IN SECTION [4.4]

Here we provide a lemma of Modified Local-GD similar to Lemma|T]of vanilla Local-GD.

Lemma 11. For almost all datasets sampled from a continuous distribution satisfying Assumption
we train the global model wq from Modified Local- GD and wy from Modlﬁed PPM. The parameter

is chosen as oF =1— kT-l With initialization w) = w) =0, we have w§ —In (%)}, and the residual
wh —In(5)wg || =O(klnlny), as A\— 0. It implies that at any round k= 0(1:11&1/?;)) w§ converges
in direction to wf:
wh ok
lim Yo (122)
A0 ||w0 | ||w0 I

Proof. With initialization w( =@ =0, the Modified Local-GD is just a scaling of vanilla Local-GD:

M

|
kbl _~ kt1 123
%o k+1 M;w’ (123)

Also, the Modified PPM is a scaling of vanilla PPM: w k = =5 +1 e Z @t

111

When k> 1, we can know the residual between Modified Local-GD and Modified PPM is

M
X ) 1. k ) 1
L e e RS o
=1
1 M 1 M
<>k =72 _lIrfll (124)
=1 1=1

Then we can follow the same process in the proof of Lemma I]to obtain

1, . 1
[lr* ]| < MIITZ‘H =O(kInln(y)), (125)
wk ok
As aresult we have lim_q W Hﬂ)(i T
0 0
O
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