
Under review as a conference paper at ICLR 2024

CALIBRATION-THEN-CALCULATION: A VARIANCE RE-
DUCED METRIC FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning has been widely adopted across various fields, but there has been
little focus on evaluating the performance of deep learning pipelines. With the
increased use of large datasets and complex models, it has become common to
run the training process only once and compare the result to previous benchmarks.
However, this procedure can lead to imprecise comparisons due to the variance in
neural network evaluation metrics. The metric variance comes from the randomness
inherent in the training process of deep learning pipelines. Traditional solutions
such as running the training process multiple times are usually not feasible in deep
learning due to computational limitations. In this paper, we propose a new metric
framework, Calibrated Loss, that addresses this issue by reducing the variance
in its vanilla counterpart. As a result, the new metric has a higher accuracy to
detect effective modeling improvement. Our approach is supported by theoretical
justifications and extensive experimental validations in the context of Deep Click-
Through Rate Prediction Models and Image Classification Models.

1 INTRODUCTION

The progress in machine learning is largely influenced by experimental outcomes, particularly in
the era of deep learning. Researchers often evaluate the performance of new methods by comparing
them to previous benchmark results, in order to demonstrate their superiority. However, it is well
known that the performance of deep learning models can vary greatly, even when using the same
pipeline (Picard, 2021), where, in this work, we define the pipeline broadly, which includes but is not
limited to the selection of feature sets, model architectures, optimization algorithms, initialization
schemes, and hyper-parameters. This variability poses a significant challenge to evaluating deep
learning methods because it is non-trivial to determine whether the performance gain is a result of the
proposed method or simply due to randomness.

In fact, it has been shown that by selecting a fortunate random initialization seed, one can achieve
a model performance that is significantly better than average (Picard, 2021). This difference can
be substantial enough to be used as a strong argument for publications in selective venues (Picard,
2021).

This issue is exacerbated in industry where the production model performance is hard to get improve-
ment, while there are hundreds of machine learning engineers working on the same model at the same
time. The performance gain of a modeling proposal is usually small and within the metric variance,
making it difficult to judge the effectiveness of the modeling proposal.

To address this issue, a common approach is to run the training pipeline multiple times and report the
average, standard deviation, minimum, and maximum performance scores (Picard, 2021). However,
with the rise of large training data and big models, this approach is not always practical due to limited
computational resources (Bouthillier & Varoquaux, 2020).

In this work, we take a different approach to solving this problem by designing a new metric that
can evaluate proposed deep learning methods more reliably. This new metric has a smaller variance
and achieves more accurate comparisons between different deep learning pipelines. We validate our
approach in the context of Deep Click-Through Rate Prediction Models and Image Classification
Models.

Our main contributions are:

1

Under review as a conference paper at ICLR 2024

1) Formulating the deep learning pipeline evaluation problem and proposing to tackle it by designing
new metrics.

2) Proposing a new metric framework, Calibrated Loss, which can mitigate the above deep learning
pipeline evaluation issue.

3) Conducting extensive experiments to demonstrate the effectiveness of the proposed metric, using
synthetic dataset, ads click dataset and image classification dataset.

4) Providing theoretical guarantees under a particular setting of linear regression that the proposed
metric has a smaller variance than its vanilla counterpart.

2 PRELIMINARIES AND PROBLEM SETTING

In this work, we are examining the standard supervised learning setting, where we assume that the
training data and test data are randomly drawn from an unknown distribution in an i.i.d. manner,
denoted as D.

Our goal is to develop a good pipeline that maps from a training distribution to a possibly random
model, h ∈ H, that generalizes well during the test time. As we mentioned in Introduction, the
pipeline includes the whole procedures of training a model, including the selection of model architec-
tures, optimization algorithms, initialization schemes, and hyper-parameters. Model performance is
evaluated by a metric, e, and thus the expected performance of a model h during the test time is

Re(h) = ED[e(h(X), Y)|h]. (1)

In practice, Re(h) is estimated by finite-sample average on the test dataset D̂test. That is,

R̂e(h, D̂test) =
1

|D̂test|

∑
(x,y)∈D̂test

e(h(x), y). (2)

It’s worth noting that the expected risk, Re(h), is a random variable, as h is random and it depends
on a specific model that is produced by the underlying deep learning pipeline. The output model
is random due to data randomness from the sample collection and intrinsic randomness during the
training process in the deep learning pipeline, such as data order and randomness from stochastic
gradient descent. Therefore, a proper evaluation and comparison of different deep learning pipelines
should take into account the distribution of Re(h) (Bouthillier et al., 2021). It’s also important to
note that the term "deep learning pipeline" in this context is general, as we consider different model
configurations (e.g. different model hyperparameters) as different "deep learning pipelines", even
though they may belong to the same model class.

To compare the performance of different deep learning pipelines, we should compare the distribution
of Re(h,Dtest). When comparing two pipelines, A and B, we say that pipeline A is better than
pipeline B with respect to metric e if and only if the probability that pipeline A produces a better
model (i.e. smaller risk), measured by the metric e, is greater than 0.5. This is represented by the
inequality:

P (Re(hA) < Re(hB)) > 0.5, (3)

where hA and hB are random variables representing the output models produced by pipeline A and
B respectively.

Our objective is to compare the performance of two pipelines, A and B, with respect to the metric e
by running the training pipeline only once. Ideally, to estimate P (Re(hA) < Re(hB)), we could use
the Monte Carlo method, but this requires a huge amount of computational resources which is not
realistic. In this work, we propose a different approach: we aim to come up with an alternative metric
that has roughly the same mean but a smaller variance, i.e., for a new metric e1, we would like to
have

E[Re1(h)] ≈ E[Re(h)] and var (Re1(h)) < var (Re(h)) ,

where the randomness is from the pipeline producing h. As a result, the new metric is able to compare
the performance of pipelines A and B with limited computational resources more accurately.

2

Under review as a conference paper at ICLR 2024

Assuming that pipeline A is better than B with respect to the metric e (i.e. pipeline A is more likely
to produce a better model than pipeline B in the ground truth if measured by metric e), we say
that a metric e1 is better than e2 with respect to metric e if and only if the probability that pipeline
A produces a better model than pipeline B measured by metric e1 is greater than the probability
measured by metric e2. This is represented by the inequality:

P (Re1(hA) < Re1(hB)) > P (Re2(hA) < Re2(hB)) (4)

In other words, using metric e1 is more likely to accurately detect that pipeline A is better than
pipeline B, which aligns with the ground truth. Here, we allow for a general form of the risk
function, which may not admit the expectation form; i.e., Re1(h) may not necessarily have the form
ED[e1(h(X), Y)].

Here, we assume without loss of generality that pipeline A is better than B with respect to the metric
e. We define the accuracy of a metric ē with respect to metric e and pipeline A and B as:

Acc(ē) ≜ P (Rē(hA) < Rē(hB)). (5)

Our goal is to find a metric ē associated with the risk function Rē that has higher accuracy than
the original metric e for a wide range of pipelines A and B. In the next section, we will present
a new metric framework, Calibrated Loss. In the context of Deep Click-Through Rate Prediction
Models, a special instance of Calibrated Loss, Calibrated Log Loss achieves higher accuracy than the
vanilla Log Loss. The intuition is that the bias in the function h is always volatile and carries on a
large amount of randomness. Calibrating the bias will usually not change the comparison between
two pipelines but can reduce the randomness. In Section 4, we will present a theoretical analysis
that justifies this intuition by showing that our new metric has a smaller variance under the linear
regression setting. Through extensive experiments in Section 5, we will show that Calibrated Log
Loss achieves higher accuracy than Log Loss for a wide range of pipelines, including those with
different batch sizes, number of features, model architectures, regularization weights, model sizes,
etc.

3 CALIBRATED LOSS FRAMEWORK

Calibrated Log Loss (Binary Classification) In the field of Deep Click-Through Rate Prediction
Models, it is common for models to overfit when trained for more than one epoch (Zhou et al., 2018;
Zhang et al., 2022). As a result, models are often only trained for a single epoch in practice (Zhang
et al., 2022), leaving it uncertain if the model has been fully optimized. This leads to the volatility of
the bias term in the final layer of neural networks, creating additional randomness. To address this
issue, we propose the following risk function:

Re1(h) = min
c

ED[Y log(hc(X)) + (1− Y) log(1− hc(X))|h],

where hc(X) = (1 + e−logit(h(X))+c)−1 and logit(p) = log(p/(1− p)).

To execute the aforementioned procedure on a finite-sample test set, we split the test data D̂test into
two parts: a test-validation dataset D̂val−test and a remaining test dataset D̂remaining−test. By using
the test-validation dataset D̂val−test, we are able to correct the bias term, and then calculate the Log
Loss using D̂remaining−test with the bias-adjusted predictions. This is referred to as Calibrated Log
Loss. The calculation procedure is outlined in Algorithm 1.

Mathematically speaking, we define bias-adjusted predictions as: qi = hc(xi) for xi in the test set
where c is the bias-adjusted term we are optimizing.

To optimize c, the following optimization program is solved, which is the log loss between bias-
adjusted predictions qi and labels yi:

min
c

−
∑

(x,y)∈
D̂val−test

(y log(hc(x)) + (1− y) log(1− hc(x)))

 . (6)

3

Under review as a conference paper at ICLR 2024

It can be easily shown that, after optimization, the bias-adjusted predictions qi are well-calibrated in
D̂val−test, meaning that

∑
i∈D̂val−test

qi =
∑

i∈D̂val−test
yi.

Let c∗ be the minimizer of the optimization problem (6). The final risk and metrics are

R̂e1(h, D̂test) =
1

|D̂remaining−test|

∑
(x,y)∈

D̂remaining−test

e1(h(x), y),

and
e1(h(x), y) = y log(hc∗(x)) + (1− y) log(1− hc∗(x)).

Explanations The optimization problem (6) corrects the bias term of original predictions h(x)

using test-validation dataset D̂val−test. The bias-adjusted predictions hc∗(x) is guaranteed to be
well-calibrated in D̂val−test, hence the name Calibrated Log Loss.

Algorithm 1 Calculate Calibrated Log Loss

1: Input: Model M , labeled test data D̂test.
2: Output: Calibrated Log Loss: R̂e1(h, D̂test).
3: Partition D̂test into D̂val−test and D̂remaining−test.
4: Compute model predictions on D̂val−test and D̂remaining−test, and obtain the model predictions

pval−test
i and premaining−test

i .
5: Solve the optimization problem (6) using pval−test

i and yval−test
i and obtain the learned bias term

c∗.
6: Calculate bias-adjusted predictions qremaining−test

i using formula qi = hc∗(xi) .
7: Calculate the Calibrated Log Loss R̂e1(h, D̂test) as the Log Loss of qremaining−test

i and
yremaining−test
i .

Generalization to Multiclass Classification Instead of optimizing problem (6) to calculate calibrated
predictions, we use "Temperature Scaling" method proposed in (Guo et al., 2017a). The rest are
exactly the same.

Generalization to Quadratic Loss Calibrated Quadratic Loss is calculated in a similar manner as
Calibrated Log Loss, i.e. first perform calibration on D̂val−test and calculate bias-adjusted predictions
on D̂remaining−test. Here, we define the Quadratic Loss and Calibrated Quadratic Loss:

e(h(x), y) = (y − h(x))2, and

e1(h(x), y) = (y − h(x)− (ED[Y]− ED[h(X)|h]))2.

4 THEORY ON LINEAR REGRESSION

In this section, we provide theoretical justification that our new metric has a smaller variance than
its vanilla counterpart under Linear Regression setting, where the randomness only comes from the
data randomness. We choose to provide a theoretical guarantee under Linear Regression due to its
simplicity. We empirically verify our method’s performance under Logistic Regression and Neural
Networks in the next section. Note that in Linear Regression, Quadratic Loss is used instead of Log
Loss. As a result, in our theory, we compare the variance of Calibrated Quadratic Loss with vanilla
Quadratic Loss.
Theorem 4.1. Suppose that the features X ∈ Rd and the label Y are distributed jointly Gaussian.
We consider linear regression h(x) = β⊤x+ α. Let β̂n be the coefficient learned from the training
data with sample size n. Then, we have(

1 +
1

n

)
E[e1(h(X), Y)|β̂n] = E[e(h(X), Y)|β̂n],

where the expectation is taken over the randomness over both the training and test samples.

4

Under review as a conference paper at ICLR 2024

Let α̂n be the learned intercept. Note that the original risk and the calibrated risk are

Re(h) = E[e(h(X), Y)|β̂n, α̂n], and

Re1(h) = E[e1(h(X), Y)|β̂n, α̂n] = E[e1(h(X), Y)|β̂n].

Therefore, Theorem 4.1 implies that

(1 + 1/n)E[Re1(h)] = E[Re(h)].

Furthermore, to make e and e1 comparable, we should scale e1 to (1 + 1/n)e1. We demonstrate that
after scaling, (1 + 1/n)Re1(h) has a smaller variance than Re(h) in the next corollary. In practice,
as (1 + 1/n) is a constant as long as the training sample size is fixed, we can directly compare two
pipelines using Re1(h).

Corollary 4.2. Suppose that h1(x) and h2(x) are two different learned linear functions in different
feature sets. Then, we have

E[Re(h1)] = E[Re(h2)] ⇔ E[Re1(h1)] = E[Re1(h2)] (7)

and
var((1 + 1/n)Re1(h)) < var(Re(h))

for any h learned from linear regression.

Corollary 4.2 indicates that Calibratied Quadratic Loss has a smaller variance than vanilla Quadratic
Loss without changing the mean after appropriate scaling. Note that smaller variance and higher
accuracy (Inequality 4) are highly correlated under mild conditions, but smaller variance alone does
not guarantee higher accuracy. In the next section, we will empirically demonstrate that the new
metric has a smaller variance and achieves higher accuracy. All proofs can be found in Appendix A.

5 EXPERIMENT RESULTS

5.1 ESTIMATION OF ACCURACY

Recall that accuracy of a metric ē is defined as:

Acc(ē) ≜ P (Rē(hA) < Rē(hB)). (8)

To get an estimation of Acc(ē), we run pipelines A and B for m times, obtaining models hAi
and

hBi for i ∈ [m]. Acc(ē) can be estimated as:

Âcc(ē) =
1

m2

∑
(i,j)

1(R̂ē(hAi , D̂test) < R̂ē(hBj , D̂test)) (9)

Âcc(ē) is an unbiased estimator of Acc(ē), and in the experiments below, we report Âcc(ē) as our
accuracy metric. In all the tables in this section, without loss of generality, we write the tables as
pipeline A is better than pipeline B in the sense of P (Re(hA) < Re(hB)) > 0.5.

5.2 SYNTHETIC DATA

In Appendix B, we consider a linear regression model to give empirical evidence to support our
theory. We further consider logistic regression model to demonstrate the effectiveness of Calibrated
Log Loss in synthetic data setting. All the details and results can be found in Appendix B.

5.3 AVAZU CTR PREDICTION DATASET

Dataset The Avazu CTR Prediction dataset 1 is a common benchmark dataset for CTR predictions.
Due to computational constraints in our experiments, we use the first 10 million samples, shuffle the
dataset randomly, and split the whole dataset into 80% D̂train, 2% D̂val−test and 18% D̂remaining−test.

1https://www.kaggle.com/c/avazu-ctr-prediction

5

Under review as a conference paper at ICLR 2024

Base Model We use the xDeepFM model (Lian et al., 2018) open sourced in Shen (2017) as our
base model. We primarily conduct experiments using xDeepFM models, including hyperparameter
related experiments and feature related experiments. To demonstrate our new metric can also handle
comparisons between different model architectures, we also conduct experiments using DCN (Wang
et al., 2017), DeepFM (Guo et al., 2017b), FNN (Zhang et al., 2016), and DCNMix (Wang et al.,
2021).

Experiment Details We consider neural networks with different architectures, different training
methods, different hyper-parameters, and different levels of regularization as different pipelines.
Such comparisons represent common practices for research and development in both industry and
academia. For each pipeline, we train the model 60 times with different initialization seeds and data
orders to calculate Âcc(ē). Note that we use "Log Loss" as our ground truth metric to determine the
performance rank of different pipelines. Due to computational constraints, we cannot afford to run the
experiments for multiple rounds. Instead, we run the experiments for one round and report accuracy.
Note that in the neural network experiments, we do not re-sample the training data each time, as there
is intrinsic randomness in the neural network training process. This is the main difference from the
Linear Regression and Logistic Regression experiments.

Pipelines with Different Number of Features In this set of experiments, for pipeline A, we use all
the features available. For pipeline B, we remove some informative features. We tested the removal
of 6 dense features and 1 sparse features respectively.

Table 1: Accuracy of Log Loss and Calibrated Log Loss under Neural Networks (features)

Pipeline A Pipeline B Log Loss Acc Calibrated Log Loss Acc

Baseline remove dense 81.8% 88.8%
Baseline remove sparse 78.6% 85.9%

Table 2: Mean and Standard Deviation of Log Loss and Calibrated Log Loss under Neural Networks
(features)

Pipeline Log Loss Mean Calibrated Log Loss Mean Log Loss Std Calibrated Log Loss Std

dense 0.37408 0.37403 0.00047 0.00038
sparse 0.37404 0.37398 0.0005 0.00042

From the result in Table 1, we can clearly see that Calibrated Log Loss has a higher accuracy,
indicating its effectiveness when comparing the performance of pipelines with different features.

From the result in Table 2, we can see that Calibrated Log Loss has a smaller standard deviation (16%
- 19% smaller) while the mean of Log Loss and Calibrated Log Loss is almost on par (within 0.02%
difference).

Pipelines with Different Model Architectures In this set of experiments, for pipeline A, we use
one model architecture. For pipeline B, we use another model architecture. We tested a variety of
different model architectures, including DCN (Wang et al., 2017), DeepFM (Guo et al., 2017b), FNN
(Zhang et al., 2016), and DCNMix (Wang et al., 2021).

Table 3: Accuracy of Log Loss and Calibrated Log Loss under Neural Networks (model architectures)

Pipeline A Pipeline B Log Loss Acc Calibrated Log Loss Acc

DCN DCNMix 64.4% 71.5%
DeepFM DCN 77.2% 83.9%
DeepFM FNN 76.9% 79.9%
FNN DCNMix 61.5% 72.0%
DeepFM DCNMix 84.8% 93.4%

From the result in Table 3, we can clearly see that Calibrated Log Loss has higher accuracy, again
indicating its effectiveness when comparing the performance of pipelines with different model
architectures. In Table 4, we report the mean and standard deviation of Log Loss and Calibrated Log
Loss, consistent with previous results.

6

Under review as a conference paper at ICLR 2024

Table 4: Mean and Standard Deviation of Log Loss and Calibrated Log Loss under Neural Networks
(model architectures)

Pipeline Log Loss Mean Calibrated Log Loss Mean Log Loss Std Calibrated Log Loss Std

DCN 0.38021 0.38011 0.00044 0.00033
DeepFM 0.37971 0.3796 0.00059 0.00037
FNN 0.38029 0.38006 0.00064 0.0004
DCNMix 0.38046 0.38037 0.00048 0.00034

Pipelines with Different Model Hyperparameters In this set of experiments, we compare pipelines
with different model hyperparameters, including neural network layer size, Batch Normalization
(BN) (Ioffe & Szegedy, 2015), Dropout (Srivastava et al., 2014), and regularization weight.

In the first experiment, we compare a pipeline using a baseline model size with a pipeline using a
smaller model size. In the second experiment, we compare a pipeline using Batch Normalization with
a pipeline not using Batch Normalization. In the third experiment, we compare a pipeline not using
Dropout with a pipeline using Dropout with dropout probability 0.7. In the fourth experiment, we
compare a pipeline not using regularization with a pipeline using L2 regularization with regularization
weight 10−6.

Table 5: Accuracy of Log Loss and Calibrated Log Loss under Neural Networks (hyperparameters)

Pipeline A Pipeline B Log Loss Acc Calibrated Log Loss Acc

Baseline Size Smaller Size 69.6% 73.6%
BN no BN 80.2% 89.7%
no Dropout p = 0.7 95.0% 99.3%
no regularization 10−6 95.2% 98.8%

(a) Log Loss Plot (b) Calibrated Log Loss Plot

Figure 1: Batch Normalization Experiment
From figure 1, we can see that by using Calibrated Log Loss, it becomes easier to separate pipeline
using Batch Normalization from pipeline without Batch Normalization.

From the result in Table 5, we can see that Calibrated Log Loss has a higher accuracy regardless of
the hyperparameters we are tuning, indicating its effectiveness when comparing the performance
of pipelines with different hyperparameters, which is a very common task in Deep Learning. In
Appendix B.3 Table 12, we report the mean and standard deviation of Log Loss and Calibrated Log
Loss, again consistent with previous results.

Pipelines with Different Levels of Regularization In this set of experiments, we take a closer look
at one hyperparameter we conduct in the previous section: regularization weight. For pipeline A, we
use the baseline model. For pipeline B, we use different L2 regularization weights.

From the result in Table 6, we can see that Calibrated Log Loss has a higher accuracy across all
different regularization weights, indicating its robustness to different values of regularization weight.
As we increase the regularization weight in pipeline B, the accuracies of both metrics increase. This
is because pipeline A and B differ more with larger regularization weight, making performance
comparison easier.

7

Under review as a conference paper at ICLR 2024

Table 6: Accuracy of Log Loss and Calibrated Log Loss under Neural Networks (regularization
weight)

Pipeline A Pipeline B Log Loss Acc Calibrated Log Loss Acc

0 3 ∗ 10−7 63.2% 69.3%
0 5 ∗ 10−7 82.2% 88.2%
0 7 ∗ 10−7 86.6% 92.4%
0 10−6 95.2% 98.8%
0 2 ∗ 10−6 98.8% 100.0%

From the result in Appendix B.3 Table 13, we can see that Calibrated Log Loss has a much smaller
standard deviation (15% - 40% smaller) than Log Loss while the mean of Log Loss and Calibrated
Log Loss is almost on par (within 0.05% difference), again consistent with previous results.

5.4 CIFAR10

Dataset We use the default CIFAR10 train dataset as D̂train. We split CIFAR10 test dataset into 20%

D̂val−test and 80% D̂remaining−test.

Base Model We use the ResNet18 model (He et al., 2016) as our base model. We compare ResNet18
with other configurations of ResNet and DenseNet (Huang et al., 2017). We used the open source
implementations 2 to conduct all the experiments.

Experiment Details Same as Avazu CTR experiments, for each pipeline, we train the model 60 times
with different initialization seeds and data orders to calculate Âcc(ē). Note that we use "Classification
Accuracy" as our ground truth metric to determine the performance rank of different pipelines. We
train the model for 200 epochs. We run the experiments for one round and report accuracy. Note
that in the neural network experiments, we do not re-sample the training data each time, as there is
intrinsic randomness in the neural network training process.

Calibration Stage Predicting the image class in CIFAR10 is a Multiclass classification task, which is
different from the binary classification task in the CTR prediction context. We use the "Temperature
Scaling" (Guo et al., 2017a) as our calibration method.

Experiment Results From the result in Table 7, we can see that Calibrated Log Loss has a higher

Table 7: Accuracy of Log Loss and Calibrated Log Loss (CIFAR10)

Pipeline A Pipeline B Log Loss Acc Calibrated Log Loss Acc

resnet18 resnet101 5.6% 74.7%
resnet18 resnet152 8.1% 87.4%
resnet18 DenseNet121 51.5% 85.2%
resnet18 resnet34 13.5% 56.7%

accuracy, indicating its effectiveness when comparing the performance of pipelines using different
image classification models.

We can also see that sometimes the accuracy of Log Loss is below 50% (recall that Pipeline A is better
than Pipeline B), which indicates that Log Loss and Classification Accuracy will give different results
when comparing the performance of pipeline A and pipeline B (e.g. pipeline A performs better if
using metric Log Loss while pipeline B performs better if using metric Classification Accuracy). This
metric inconsistency can be mitigated by Calibrated Log Loss. This phenomenon indicates that some
models may have bad calibration (and hence bad Log Loss) while their performances are actually
good if measured by accuracy.

2https://github.com/kuangliu/pytorch-cifar

8

Under review as a conference paper at ICLR 2024

6 RELATED WORK

In recommendation systems, recommending proper items to users is a fundamental task. In order to
do accurate recommendations, it is essential to build Click-Through Rate (CTR) prediction models to
rank the items and achieve business goals. Prior to Deep Learning Era, traditional machine learning
models (Friedman, 2001; Koren et al., 2009; Rendle, 2010; Desrosiers & Karypis, 2010; Canini et al.,
2012) like logistic regression, boosted decision trees and factorization machines are commonly used
to build CTR models. In the Deep Learning Era, not surprisingly, CTR prediction models have been
transitioned to deep models as well (Cheng et al., 2016; Guo et al., 2017b; Covington et al., 2016;
Wang et al., 2017; Zhou et al., 2018; Naumov et al., 2019).

A typical Deep Click-Through Rate (CTR) prediction model consists of embedding layers and
multilayer perceptron (MLP) layers on top of embedding layers. Embedding layers transform raw
discrete IDs to low dimensional vectors. Following embedding layers, MLP layers then learn the
interactions of different features represented the low dimensional vectors, and finally output the
final prediction (i.e. CTR). Currently, Deep Click-Through Rate (CTR) prediction models achieve
state-of-the-art performance for CTR tasks, and are commonly used in industries to power various
recommendation tasks, including personalized ads recommendations, content recommendations, etc.

There are a number of commonly used metrics (Yi et al., 2013) to evaluate the performance of CTR
prediction models. Area Under the ROC Curve (AUC) (Fawcett, 2006; 2004) along with its variants
Zhu et al. (2017) and Log Loss are the most common metrics. For example, He et al. (2014); Wang
et al. (2017); McMahan et al. (2013) use Log Loss as their core metric, while Zhou et al. (2018);
McMahan et al. (2013) use AUC as their core metric. However, AUC has been criticized for not
taking into account the predictive probability (Yi et al., 2013). Log Loss, on the other hand, takes
predictive probability into account. As a result, in applications where predictions are expected to be
calibrated (e.g. Ads Recommendation Systems), Log Loss is preferred.

7 CONCLUSION AND DISCUSSION

Conclusion

In this paper, we have presented a new approach to comparing the performance of different deep
learning pipelines. We proposed a new metric framework, Calibrated Loss, which has a higher
accuracy and smaller variance than its vanilla counterpart for a wide range of pipelines. Our
experiments in section 5 demonstrated the superiority of Calibrated Loss, and we believe this new
metric can be used to more effectively and efficiently compare the performance of different pipelines
in similar settings. Future work includes expanding this idea to evaluate NLP pipelines, and establish
theoretical guarantees under more general settings.

Limitations

Our method sacrifices accuracy when comparing some specific pipelines. For example, if pipeline B
can reliably improve the model calibration in test distribution over pipeline A, Calibrated Log Loss
will not be able to correctly detect the benefits of pipeline B, while Log Loss is able to. However,
for most pipeline comparisons conducted in industry and academia like feature engineering, tuning
parameters, etc., Calibrated Log Loss has a huge accuracy boost over Log Loss as we demonstrated
in Section 5.

Potential Applications

Our method may have applications in AutoML domain. AutoML (Automated Machine Learning)
systems are designed to automate the process of selecting, designing, and tuning machine learning
models, and a key component of these systems is the selection of the best-performing pipeline (e.g.
hyperparameters, model architectures etc.). The new metric can be used as a more accurate way of
comparing the performance and selecting the best one. The new metric is in particular useful when
performing hyperparameter tuning.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Xavier Bouthillier and Gaël Varoquaux. Survey of machine-learning experimental methods at
NeurIPS2019 and ICLR2020. PhD thesis, Inria Saclay Ile de France, 2020.

Xavier Bouthillier, Pierre Delaunay, Mirko Bronzi, Assya Trofimov, Brennan Nichyporuk, Justin
Szeto, Nazanin Mohammadi Sepahvand, Edward Raff, Kanika Madan, Vikram Voleti, et al.
Accounting for variance in machine learning benchmarks. Proceedings of Machine Learning and
Systems, 3:747–769, 2021.

Kevin Canini, Tushar Chandra, Eugene Ie, Jim McFadden, Ken Goldman, Mike Gunter, Jeremiah
Harmsen, Kristen LeFevre, Dmitry Lepikhin, Tomas Lloret Llinares, et al. Sibyl: A system for
large scale supervised machine learning. Technical Talk, 1:113, 2012.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen
Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for recommender
systems. In Proceedings of the 1st workshop on deep learning for recommender systems, pp. 7–10,
2016.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations.
In Proceedings of the 10th ACM conference on recommender systems, pp. 191–198, 2016.

Christian Desrosiers and George Karypis. A comprehensive survey of neighborhood-based recom-
mendation methods. Recommender systems handbook, pp. 107–144, 2010.

Tom Fawcett. Roc graphs: Notes and practical considerations for researchers. Machine learning, 31
(1):1–38, 2004.

Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874, 2006.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning, pp. 1321–1330. PMLR, 2017a.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah, Ralf
Herbrich, Stuart Bowers, et al. Practical lessons from predicting clicks on ads at facebook. In
Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, pp. 1–9,
2014.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun.
xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 1754–1763, 2018.

10

Under review as a conference paper at ICLR 2024

H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner, Julian Grady, Lan
Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. Ad click prediction: a view from
the trenches. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 1222–1230, 2013.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman,
Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. Deep
learning recommendation model for personalization and recommendation systems. arXiv preprint
arXiv:1906.00091, 2019.

David Picard. Torch.manual_seed(3407) is all you need: On the influence of random seeds in
deep learning architectures for computer vision. CoRR, abs/2109.08203, 2021. URL https:
//arxiv.org/abs/2109.08203.

Steffen Rendle. Factorization machines. In 2010 IEEE International conference on data mining, pp.
995–1000. IEEE, 2010.

Weichen Shen. Deepctr: Easy-to-use,modular and extendible package of deep-learning based ctr
models. https://github.com/shenweichen/deepctr, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
In Proceedings of the ADKDD’17, pp. 1–7. 2017.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn
v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.
In Proceedings of the Web Conference 2021, pp. 1785–1797, 2021.

Jeonghee Yi, Ye Chen, Jie Li, Swaraj Sett, and Tak W Yan. Predictive model performance: Offline
and online evaluations. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1294–1302, 2013.

Weinan Zhang, Tianming Du, and Jun Wang. Deep learning over multi-field categorical data. In
European conference on information retrieval, pp. 45–57. Springer, 2016.

Zhao-Yu Zhang, Xiang-Rong Sheng, Yujing Zhang, Biye Jiang, Shuguang Han, Hongbo Deng,
and Bo Zheng. Towards understanding the overfitting phenomenon of deep click-through rate
prediction models. arXiv preprint arXiv:2209.06053, 2022.

Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin,
Han Li, and Kun Gai. Deep interest network for click-through rate prediction. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1059–1068, 2018.

Han Zhu, Junqi Jin, Chang Tan, Fei Pan, Yifan Zeng, Han Li, and Kun Gai. Optimized cost per click
in taobao display advertising. In Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 2191–2200, 2017.

A PROOFS

A.1 PROOFS OF THEOREM 4.1 AND COROLLARY 4.2

Lemma A.1. Suppose that β̂n is the unique linear regression solution computed using the training
data {Xi, Yi}ni=1 . Then, β̂n is independent to

{
X̄, Ȳ

}
, where

X̄ =
1

n

n∑
i=1

Xi, and Ȳ =
1

n

n∑
i=1

Yi.

11

https://arxiv.org/abs/2109.08203
https://arxiv.org/abs/2109.08203
https://github.com/shenweichen/deepctr

Under review as a conference paper at ICLR 2024

Proof. It is well-known that β̂n is the solution of the convex program

min
β,c

n∑
i=1

(
Yi − β⊤Xi − c

)2
,

which is equivalent to the convex program

min
β

n∑
i=1

(
Yi − β⊤Xi −

(
Ȳ − β⊤X̄

))2
(10)

= min
β

n∑
i=1

((
Yi − Ȳ

)
− β⊤ (

Xi − X̄
))2

.

Let Ỹi = Yi − Ȳ and X̃i = Yi − Ȳ . Note that Ỹi is independent to Ȳ and X̃i is independent to X̄ as

cov(Yi − Ȳ , Ȳ) = 0, cov(Xi − X̄, X̄) = 0,

and {X,Y } are jointly normal. Note that the convex program (10) yields that β̂n is a function of{
X̃i, Ỹi

}n

i=1
, which is independent to

{
X̄, Ȳ

}
.

Theorem A.2. Suppose that the features X ∈ Rd and the label Y are distributed jointly Gaussian.
We consider linear regression h(x) = β⊤x+ α. Let β̂n be the coefficient learned from the training
data with sample size n. Then, we have(

1 +
1

n

)
E[e1(h(X), Y)|β̂n] = E[e(h(X), Y)|β̂n],

where the expectation is taken over the randomness over both the training and test samples.

Proof. Note that the learned bias α̂ = Ȳ − β̂⊺
nX̄, where Ȳ and X̄ are the empirical average of the

samples in the training set. Then, The risks are defined as

E
[
e(h(X), Y)|β̂n

]
= E

[((
Y − Ȳ

)
− β̂⊺

n

(
X − X̄

))2

|β̂n

]
,

E
[
e1(h(X), Y)|β̂n

]
= E

[(
(Y − ED[Y])− β̂⊺

n (X − ED[X])
)2

|β̂n

]
.

Therefore, we have
E
[
e1(h(X), Y)|β̂n

]
= var(Y − β̂⊺

nX|β̂n).

Note that β̂n is independent to
{
X̄, Ȳ

}
, we have

{
Y − Ȳ , X − X̄

} d
=

√
n+ 1

n
{Y,X} .

Therefore, we have

E
[
e(h(X), Y)|β̂n

]
= var

((
Y − Ȳ

)
− β̂⊺

n

(
X − X̄

)
|β̂n

)
=

(
1 +

1

n

)
var(Y − β̂⊺

nX|β̂n).

Corollary A.3. Suppose that h1(x) and h2(x) are two different learned linear functions in different
feature sets. Then, we have

E[Re(h1)] = E[Re(h2)] ⇔ E[Re1(h1)] = E[Re1(h2)] (11)

and var((1 + 1/n)Re1(h)) < var(Re(h)) for any h learned from linear regression.

12

Under review as a conference paper at ICLR 2024

Proof. From the definition, we see

E[Re(h)] = E
[
E
[
e(h(X), Y)|β̂n

]]
,

E[Re1(h)] = E
[
E
[
e1(h(X), Y)|β̂n

]]
.

Therefore, we conclude the first claim.

For the second claim, note that

Re1(h) = E
[
e1(h(X), Y)|β̂n

]
,

Re(h) = E
[
e1(h(X), Y)|β̂n, X̄, Ȳ

]
.

Then, the variance of Re(h) can be decomposed as

var(Re(h)) = var
(
E
[
e(h(X), Y)|β̂n

])
+ E

[
var

(
E
[
e(h(X), Y)|β̂⊺

n, X̄, Ȳ
]
|β̂n

)]
> var

(
E
[
e(h(X), Y)|β̂n

])
= var

((
1 +

1

n

)
E
[
e1(h(X), Y)|β̂n

])
= var

((
1 +

1

n

)
Re1(h)

)
.

B EXPERIMENTS

B.1 SYNTHETIC DATA: LINEAR REGRESSION

We consider a linear regression model in this section to give empirical evidence to support our theory.
We assume the response Y follows the following generating process:

Y = β⊤X + ϵ, (12)

where ϵ ∼ N (µe,Σe) and β,X ∈ Rd.

In the experiments, we consider d = 20, β = [1, 1, . . . , 1]⊤, and X ∼ N (µD,ΣD) in both the
training set and the test set. In the training set, we generate Ntrain = 1000 i.i.d. training samples to
train a linear regression model. In the test set, we generate Ntest = 11000 i.i.d. test samples, with
Nval−test = 1000 and Nremaining−test = 10000 .

We assume µD = [−0.05,−0.05, . . . ,−0.05]⊤, ΣD = 0.252 × Id×d, µe = 1 and Σe = 2.

Note that there is no randomness in the training process of Linear Regression, as it’s a convex
optimization program. The randomness of Linear Regression comes from the training data. In order
to run pipelines A and B multiple times to estimate the metric accuracy, we re-sample training data
each time from the ground truth data distribution.

For pipeline A, we use all the 20 features available, and for pipeline B, we use the first 19 features
and leave the last feature out. It’s clear that pipeline A should perform better than pipeline B in the
ground truth.

For each round of experiments, we run pipelines A and B m = 100 times and report Âcc(ē), shown
as "Acc" in the table 8. We performed 20 rounds of experiments, and report the mean and the standard
errors of Âcc(ē) in Table 8. We also calculate the standard deviation and mean of Quadratic Loss and
Calibrated Quadratic Loss from pipeline A in each round of experiments, and report the average in
Table 9.

From the result in Table 8, we can see that Calibrated Quadratic Loss has a higher accuracy compared
with Quadratic Loss. From the result in Table 9, we can see that Calibrated Quadratic Loss indeed
has a smaller standard deviation (3.1% smaller) than Quadratic Loss while the mean of Quadratic
Loss and Calibrated Quadratic Loss is almost on par (0.07% difference).

13

Under review as a conference paper at ICLR 2024

Table 8: Accuracy of Quadratic Loss and Calibrated Quadratic Loss under Linear Regression

Pipeline A Pipeline B Quadratic Loss Acc Calibrated Quadratic Loss Acc

20 features 19 features 93.49% ± 0.35% 95.81% ± 0.28%

Table 9: Mean and Standard Deviation of Quadratic Loss and Calibrated Quadratic Loss under Linear
Regression

Quad Loss Mean Calibrated Quadratic Loss Mean Quad Loss Std Calibrated Quadratic Loss Std

4.067 4.070 0.0295 0.0286

B.2 SYNTHETIC DATA: LOGISTIC REGRESSION

We consider a logistic regression model. We assume the response Y follows the Bernoulli distribution
with probability

(
1 + exp(−β⊤X)

)−1
, for β,X ∈ Rd.

In the experiments, we consider d = 20, β = [1, 1, . . . , 1]⊤, and X ∼ N (µD,ΣD) in both the
training and test sets. In the training set, we generate Ntrain = 1000 i.i.d. training samples to train
a logistic regression model. In the test set, we generate Ntest = 12000 i.i.d. test samples, with
Nval−test = 2000 and Nremaining−test = 10000 .

We assume µD = [−0.05,−0.05, . . . ,−0.05]⊤ and ΣD = 0.252 × Id×d.

Note that similar to Linear Regression, there is no randomness in the training process of Logistic
Regression as well, as it’s a convex optimization program. The randomness of Logistic Regression
comes from the training data. We employ the same strategy to estimate the metric accuracy, i.e. we
re-sample training data each time from the ground truth data distribution.

For pipeline A, we use all the 20 features available, and for pipeline B, we use the first 19 features
and leave the last feature out. It’s clear that pipeline A should perform better than pipeline B in the
ground truth.

For each round of experiments, we run pipelines A and B m = 1000 times and report Âcc(ē), shown
as "Acc" in the table 10. We performed 20 rounds of experiments, and report the mean and the
standard errors of Âcc(ē) in Table 10. We also calculate the standard deviation and mean of Log
Loss and Calibrated Log Loss from pipeline A in each round of experiments, and report the average
in Table 11.

Table 10: Accuracy of Log Loss and Calibrated Log Loss under Logistic Regression

Pipeline A Pipeline B Log Loss Acc Calibrated Log Loss Acc

20 features 19 features 79.62% ± 0.18% 83.7% ± 0.15%

From the result in Table 10, we can clearly see that Calibrated Log Loss has a huge accuracy boost
compared with Log Loss. From the result in Table 11, we can see that Calibrated Log Loss indeed
has a smaller standard deviation (3.9% smaller) than Log Loss while the mean of Log Loss and
Calibrated Log Loss is almost on par (0.43% difference).

B.3 AVAZU CTR PREDICTION DATASET

We report the mean and standard deviation of Log Loss and Calibrated Log Loss for additional Avazu
CTR Prediction dataset experiments.

14

Under review as a conference paper at ICLR 2024

Table 11: Mean and Standard Deviation of Log Loss and Calibrated Log Loss under Logistic
Regression

Log Loss Mean Calibrated Log Loss Mean Log Loss Std Calibrated Log Loss Std

0.5366 0.5343 0.00385 0.00370

Table 12: Mean and Standard Deviation of Log Loss and Calibrated Log Loss under Neural Networks
(hyperparameters)

Pipeline Log Loss Mean Calibrated Log Loss Mean Log Loss Std Calibrated Log Loss Std

Baseline 0.37347 0.37338 0.00058 0.00038
smaller size 0.37383 0.37374 0.00048 0.00039
BN 0.37286 0.37268 0.00078 0.00044
Dropout 0.37454 0.37456 0.00039 0.00036
Regularization 0.37475 0.37459 0.00061 0.00042

Table 13: Mean and Standard Deviation of Log Loss and Calibrated Log Loss under Neural Networks
(regularization weight)

Pipeline Log Loss Mean Calibrated Log Loss Mean Log Loss Std Calibrated Log Loss Std

0 0.37347 0.37338 0.00058 0.00038
3e-7 0.37371 0.37369 0.00048 0.00043
5e-7 0.37419 0.37411 0.00059 0.0005
7e-7 0.37428 0.37421 0.00057 0.00044
1e-6 0.37475 0.37459 0.00061 0.00042
2e-6 0.37562 0.37547 0.00059 0.00042

15

	Introduction
	Preliminaries and Problem Setting
	Calibrated Loss Framework
	Theory on Linear Regression
	Experiment Results
	Estimation of Accuracy
	Synthetic Data
	Avazu CTR Prediction dataset
	CIFAR10

	Related Work
	Conclusion and Discussion
	Proofs
	Proofs of Theorem 4.1 and Corollary 4.2

	Experiments
	Synthetic Data: Linear Regression
	Synthetic Data: Logistic Regression
	Avazu CTR Prediction dataset

