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Figure 1: Visual comparisons of different Real-ISR methods. Top: Comparison between FluxSR and state-of-the-art
one-step diffusion methods. Bottom: Comparison between FluxSR and state-of-the-art multi-step diffusion methods. Our
proposed FluxSR generates more realistic images with high-frequency details.

Abstract
Diffusion models (DMs) have significantly ad-
vanced the development of real-world image
super-resolution (Real-ISR), but the computa-
tional cost of multi-step diffusion models lim-
its their application. One-step diffusion mod-
els generate high-quality images in a one sam-
pling step, greatly reducing computational over-
head and inference latency. However, most ex-
isting one-step diffusion methods are constrained
by the performance of the teacher model, where
poor teacher performance results in image arti-
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facts. To address this limitation, we propose
FluxSR, a novel one-step diffusion Real-ISR tech-
nique based on flow matching models. We use
the state-of-the-art diffusion model FLUX.1-dev
as both the teacher model and the base model.
First, we introduce Flow Trajectory Distillation
(FTD) to distill a multi-step flow matching model
into a one-step Real-ISR. Second, to improve
image realism and address high-frequency arti-
fact issues in generated images, we propose TV-
LPIPS as a perceptual loss and introduce At-
tention Diversification Loss (ADL) as a regular-
ization term to reduce token similarity in trans-
former, thereby eliminating high-frequency arti-
facts. Comprehensive experiments demonstrate
that our method outperforms existing one-step
diffusion-based Real-ISR methods. The code and
model will be released at https://github.
com/JianzeLi-114/FluxSR.
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1. Introduction
Real-world Image Super-Resolution (Real-ISR) (Wang
et al., 2020; 2021) aims to recover high-quality images
from low-quality ones captured in real-world settings. Tra-
ditional image super-resolution (Kim et al., 2016; Zhang
et al., 2015; Dong et al., 2016a;b; Chen et al., 2023) assumes
a known degradation process. However, this assumption
does not account for the complex and unknown degrada-
tions present in real-world low-quality images (Wang et al.,
2021). Consequently, real-world super-resolution tasks are
more challenging and practical. In recent years, they have
attracted increasing attention from researchers.

Diffusion models (Ho et al., 2020; Song et al., 2020) are
a type of generative model and initially designed for text-
to-image (T2I) tasks. They have shown overwhelming ad-
vantages in many computer vision tasks (Rombach et al.,
2022a). In recent years, numerous researchers have applied
diffusion models to Real-ISR (Wang et al., 2024a; Lin et al.,
2024; Yang et al., 2024; Yu et al., 2024). These applica-
tions have achieved unprecedented quality. These methods
leverage the strong priors of pre-trained diffusion models,
making the generated images exhibit more realistic details.
Very recently, a lot of efforts have been made to investi-
gate the scaling law of diffusion models (Henighan et al.,
2020; Yu et al., 2024; Tian et al., 2024) for image generation.
Interestingly, a large model, e.g., Flux (Labs, 2023) with
12B parameters, is able to significantly improve the visual
quality and photo-realism, compared to those small diffu-
sion models (Rombach et al., 2022b; Podell et al., 2023;
Esser et al., 2024) with 1B∼3B parameters. Nevertheless,
such a large model still requires multiple steps for inference
and becomes very computationally expensive, hindering its
practical applications. Thus, how to reduce the number of
steps to achieve efficient inference based on large diffusion
models becomes an important problem.

To address this issue, many one-step distillation meth-
ods (Wang et al., 2024b; Wu et al., 2024a; Xie et al., 2024;
He et al., 2024; Dong et al., 2024; Zeng et al., 2024) could
be useful. But they still suffer from several critical issues,
particularly raised by the generative distribution shift is-
sue and the training difficulty of very large model. First,
fine-tuning a well-trained T2I model on SR data may eas-
ily destroy the original noise-to-image mapping and thus
incur a distribution shift, as shown in Figure 2. Note that
recent large diffusion models often follow the flow match-
ing strategy (Esser et al., 2024; Labs, 2023) that explicitly
learns the flow along the diffusion path. In other words,
existing one-step methods may completely ignore the orig-
inally well-learned T2I flow when learning the target SR
flow. As a result, existing one-step models tend to produce
images with unexpected artifacts and degraded visual qual-
ity. Second, the memory footprint and training cost become

extremely high or even infeasible when distilling a large
student model from an additional teacher of at least the same
model size. For example, we find that even a server with 8
A800-80GB GPUs cannot satisfy the memory requirement
of this distillation if we directly apply the popular one-step
distillation method OSEDiff (Wu et al., 2024a) on top of
Flux.1-dev (Labs, 2023).

In this paper, we propose a novel one-step diffusion model
for Real-ISR, called FluxSR, with FLUX.1-dev as the base
model. Specifically, our design comprises three main com-
ponents: 1) We propose a Flow Trajectory Distillation (FTD)
to address the generative distribution issue. The key idea is
to build the relationship between the noise-to-image flow in
T2I and LR-to-HR flow in SR based on the flow matching
theory. Unlike existing methods, we explicitly keep the
original T2I flow unchanged while learning the SR flow
trajectory conditioned on it. This approach maximizes the
preservation of the teacher model’s generative capabilities,
thereby enhancing the realism of the generated images. 2)
We develop a large model friendly training strategy that
does not rely on an extra teacher model to compute the dis-
tillation loss. Instead, we cast the knowledge of the teacher
model into the noise-to-image flow in the T2I task. In this
sense, we are able to generate a bunch of flow data in the
offline mode and exclude the teacher model from training to
save memory consumption. 3) We propose TV-LPIPS as a
perceptual loss. By incorporating the idea of total variation
(TV), this loss emphasizes the restoration of high-frequency
components and reduces artifacts in the generated images.
Moreover, we introduce the Attention Diversification Loss
(ADL) (Guo et al., 2023) that improves the diversity of
different tokens in attention modules. We use it as a regu-
larization term to address the repetitive patterns observed in
the images. Extensive experiments show that our FluxSR
achieves remarkable performance and requires only one
sampling step. Figure 1 presents the visual results of our
method. In summary, our contributions are as follows:

• We develop FluxSR, a one-step diffusion Real-ISR
model based on FLUX.1-dev. To the best of our knowl-
edge, this is the first one-step diffusion for Real-ISR
based on a large model with over 12B parameters.

• We propose a Flow Trajectory Distillation (FTD)
method that explicitly builds the relationship between
the noise-to-image flow and LR-to-HR flow. With the
noise-to-image flow unchanged, we are able to preserve
the high photo-realism in the T2I model and effectively
transfer it to the LR-to-HR flow for SR.

• To make the training feasible, we propose a large model
friendly training strategy that excludes the extra teacher
model from the training phase. Instead, we cast the
knowledge from teacher into the noise-to-image flow
and generate a bunch of them in the offline mode, to
reduce both memory consumption and training cost.
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2. Related Work
2.1. Acceleration of Flow Matching Models
Liu et al. (2022) proposed the Rectified Flow method, which
straightens the flow trajectory to achieve high-quality results
within a one sampling step, laying a solid theoretical foun-
dation for subsequent research. InstaFlow (Liu et al., 2023)
applies the Reflow method to straighten the curved ODE
solving path, allowing latents to transition more quickly
from the noise distribution to the image distribution. The
straightened ODE path also reduces the learning difficulty
for the student model, improving the distillation effective-
ness. This enables one-step generation for large-scale text-
to-image tasks. PeRFlow (Yan et al., 2024) further improves
Reflow correction by segmenting the flow trajectory, achiev-
ing exceptional performance.

2.2. Diffusion-based Real-ISR
Multi-step Diffusion-based Real-ISR. In recent years, dif-
fusion models have achieved remarkable success in the field
of image super-resolution (Wang et al., 2024a; Lin et al.,
2024; Yang et al., 2024; Yue et al., 2024; Wu et al., 2024b;
Yu et al., 2024). DiffBIR (Lin et al., 2024) reconstructs
low-resolution (LR) images using a small network and then
employs ControlNet (Zhang et al., 2023) to control the gen-
eration of the diffusion model. SeeSR (Wu et al., 2024b)
introduces a module for extracting semantic information
from images. This module effectively guides the diffusion
model’s generation through semantic cues, preventing errors
caused by image degradation. SUPIR (Yu et al., 2024) uses
Restoration-Guided Sampling to ensure both generative ca-
pability and fidelity. It also leverages a large dataset and
a large pre-trained diffusion model, SDXL (Podell et al.,
2023), to enhance the model’s performance.

One-step Diffusion-based Real-ISR. Recently, one-step
diffusion ISR models have become a popular research direc-
tion, showing great potential and application value (Wang
et al., 2024b; Wu et al., 2024a; Xie et al., 2024; He et al.,
2024; Dong et al., 2024). SinSR (Wang et al., 2024b) intro-
duces a deterministic sampling method. It fixes the noise-
image pair using consistency-preserving distillation. OSED-
iff (Wu et al., 2024a) employs Variational Score Distillation
(VSD) (Wang et al., 2024c; Nguyen & Tran, 2024) and
directly uses the low-resolution (LR) image as the start-
ing point for diffusion inversion. In addition, OSEDiff
uses DAPE (Wu et al., 2024b) to extract semantic infor-
mation from the LR image as the generation condition.
ADDSR (Xie et al., 2024) combines adversarial training
by introducing Adversarial Diffusion Distillation (ADD)
and ControlNet to achieve both 4-step and one-step models.
TSD-SR (Dong et al., 2024) proposes Target Score Distil-
lation (TSD) and a Distribution-Aware Sampling Module
(DASM), effectively addressing the issue of artifacts caused
by VSD in the early stages of training.

3. Background
3.1. Flow Matching Models

Given two data distributions p0 and p1, there exists a vector
field ut that generates a probabilistic path pt transitioning
from p0 to p1. In generative models, p0 represents the data
distribution, while p1 is an easily accessible simple distribu-
tion, such as the standard normal distribution N (0, 1).

Following Esser et al. (2024), we define the forward process
as:

xt = atx0 + btϵ, where ϵ ∼ N (0, 1). (1)

The coefficients at and bt satisfy a0 = 1, b0 = 0, a1 = 0,
and b1 = 1. This defines a probabilistic path pt from p0 to
p1. The transformed variable is given by:

x′
t = ut(xt|ϵ) =

a′t
at

xt − ϵbt(
a′t
at
− b′t

bt
). (2)

Subsequently, the marginal vector field ut(xt) is obtained
using the conditional vector field ut(xt|ϵ) as follows:

ut(xt) =

∫
ut(xt|ϵ)

p(xt|ϵ)p(ϵ)
pt(xt)

dϵ. (3)

Here, the marginal probability density pt(xt) is defined by:

pt(xt) =

∫
pt(xt|ϵ)p(ϵ) dϵ. (4)

Flow matching aims to train a vector field vθ(x, t), pa-
rameterized by a deep neural network, to approximate the
marginal vector field ut(xt). Specifically, flow matching
minimizes the following objective (Lipman et al., 2022):

LFM(θ) := Et, pt(xt)∥vθ(xt, t)− ut(xt)∥2. (5)

However, the expression for ut cannot be explicitly com-
puted, making the direct optimization of the aforementioned
loss challenging. Lipman et al. (2022) proposed conditional
flow matching, demonstrating that we can optimize the fol-
lowing equivalent yet more tractable objective by using
ut(xt|ϵ):

LCFM(θ) := Et, pt(xt|ϵ), p(ϵ) ∥vθ(xt, t)− ut(xt|ϵ)∥2 . (6)

3.2. Flow Trajectories
In this paper, we consider the flow trajectory used in
FLUX.1-dev, namely rectified flow (ReFlow) (Liu et al.,
2022). This is a simple diffusion trajectory that defines the
forward process as a straight path between the data distribu-
tion and the noise distribution (Liu et al., 2022; Esser et al.,
2024), specifically:

xt = (1− t)x0 + tϵ, (7)

where x0 ∼ p0, ϵ ∼ p1 = N (0, 1).
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Shift
T2I Flow

SR Flow

Figure 2: Difference of exiting methods and our Flow Trajectory Distillation. (Left) Based on the pre-trained models from
noise ϵ to images x0, existing one-step diffusion models fine-tune the model from LR images to HR images xH . It may lead
to a distribution shift between the real data distribution (blue) and the generated distribution (orange). (Right) To bridge the
mapping from LR image distribution (green) to real data distribution, we propose Flow Trajectory Distillation. We constrain
uSRt using the other two trajectories in the triangle, ensuring that the real data distribution (blue) does not shift.

By substituting into Equation 2, we obtain the conditional
vector field of ReFlow:

ut(xt|ϵ) =
ϵ− xt
1− t

= ϵ− x0. (8)

Therefore, following (Lipman et al., 2022; Esser et al.,
2024), the training objective of ReFlow is

LReFlow(θ)=Et, pt(xt|ϵ), p(ϵ) ∥vθ(xt, t)−(ϵ−x0)∥22 . (9)

Intuitively, the goal of ReFlow is to train the neural network
vθ(xt, t) to predict the velocity from noise to data samples.

4. Method
4.1. Flow Trajectory Distillation (FTD)

Our goal is to distill a one-step diffusion super-resolution
model from a pre-trained text-to-image (T2I) flow model.
Most current one-step diffusion ISR methods directly fine-
tune the pre-trained T2I model and incorporate modules
such as VSD or GANs to improve performance (Wu et al.,
2024a; Xie et al., 2024; Dong et al., 2024). Although these
methods have achieved good results, they still face some
challenges. As shown on the left side of Figure 2, the flow
trajectory of the pre-trained T2I model is not aligned with
that of the SR model. During fine-tuning, these methods
have no mechanism to keep the diffusion endpoint distribu-
tion unchanged. In other words, the real data distribution
(blue) in the figure shifts, converting to the generated dis-
tribution (orange). For large-scale T2I models, which have
already fit the real data distribution well, fine-tuning them
using the above methods could lead to negative outcomes.

Ideally, the resulting model serves as a mapping from the
low-resolution (LR) image distribution pL (green distrubi-
tion in Figure 2) to the high-resolution (HR) image distri-
bution p0 (blue distrubition in Figure 2). We aim to fix

the distribution of the vector field uSRt at x0 while mod-
ifying the distribution of the diffusion starting point (i.e.,
transitioning from the noise distribution to the LR image
distribution as shown in Figure 2) by fine-tuning the T2I
model. Therefore, we propose Flow Trajectory Distillation,
which indirectly obtains uSRt by fitting uLt , avoiding the
shift in the real data distribution.

Approximating the LR Image Distribution. Inspired by
DMD (Yin et al., 2024b;a), we can learn the underlying
distribution of the training data by training a diffusion model.
For flow matching models, training on LR data allows us
to obtain parameters vϕ, which fit the vector field uLt that
maps the noise distribution to the LR image distribution.
The corresponding conditional flow trajectory is given by:

xt = (1− t)xL + tϵ, (10)

where xL ∼ pL, ϵ ∼ N (0, 1) and t ∈ [0, 1]. The velocity
of a sample xt at time t is given by vϕ(xt, t).

Computing the LR-to-HR Flow from Noise-to-Image
Flow. At this point, we have obtained the flow model vϕ
that maps from noise to low-resolution (LR) images and the
flow model vreal that maps from noise to real-world high-
resolution (HR) images (the pre-trained T2I model). Given
the linearity of the ReFlow trajectory, we can easily derive
the flow model vθ for mapping LR images to HR images.
We have:

x0 = ϵ− ut, xL = ϵ− uLt . (11)

Here, vreal and vϕ parameterize ut and uLt , respectively. By
combining the above equations, we obtain the trajectory
from xL to x0:

x0 = xL − (ut − uLt ). (12)
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Figure 3: Training framework of FluxSR. (Top) Multi-step inference process of the pre-trained FLUX model. (Middle)
Training strategy of FluxSR. (Bottom) Computation process of FTD. We distill a one-step super-resolution model from the
multi-step FLUX model, without the need for the teacher model to be involved online during training.

4.2. Large Model Friendly Training Strategy

Although we have derived the theoretical formulation of
FTD, its practical application faces the following challenges:
i) Inference Efficiency: During inference, we need both the
vector field ut calculated by the pre-trained T2I model and
the vector field uLt calculated by the model fine-tuned on LR
data. This requires two different flow models with separate
parameters, leading to significant computational overhead
during inference. ii) Estimation Error: Running the flow
model in a one step makes it difficult to accurately estimate
the velocity at time t. Without using a reconstruction loss to
optimize the generator, the model performance may degrade.
In this section, we propose an optimized training strategy
to ensure that only a one flow model is required during
inference. Additionally, we incorporate a reconstruction
loss to enhance model performance.

Direct Parameterization of uSR
t . As shown on the left side

of Figure 3, since we can derive uSRt from ut and uLt , we
can also obtain uLt from ut and uSRt . This avoids the issue
caused by the inability to directly parameterize uSRt . We
parameterize uSRt using vθ. To represent both uLt and uSRt
with a one model, we define the time step corresponding to
the LR image as TL instead of 0. This ensures that the model
represents only uLt in the time range [TL, 1] and only uSRt at
TL. Additionally, the LR image distribution is more similar
to the intermediate states xt of the pre-trained diffusion

model. As shown in Figure 3, similar to Eq. (11), we have:
x0 = ϵ− ut,

xL = ϵ− (1− TL)u
L
t ,

xL − x0 = uSRt TL.

(13)

By combining the above equations, we obtain:

uLt =
ut − uSRt TL

1− TL
, where t ∈ [TL, 1]. (14)

The model parameterization can be expressed as:

vϕt
(xt, t) =

ut(xt|ϵ)− vθt(xt, t)TL
1− TL

, (15)

where

xt =
1− t

1− TL
xL +

t− TL
1− TL

ϵ, t ∈ [TL, 1]. (16)

Generating noise-to-image flow for distillation. We pre-
compute noise-sample pairs generated by FLUX and use
them as training data, without relying on any real images.
This approach offers two crucial benefits for large model
training. 1) By using data pairs generated by the teacher
model, we can directly compute ut(xt|ϵ) = ϵ − x0, thus
avoiding the estimation error during single-step inference.
2) The teacher model is not required for online inference
during training, which significantly reduces GPU usage and
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Figure 4: Examples of Pronounced Periodic Artifacts Dur-
ing Training. Left: 256-pixel image with noticeable periodic
high-frequency artifacts. Right: 64-pixel zoomed-in region,
showing artifacts with four cycles in both width and height.

training time, especially for large T2I models like FLUX.
Using v-prediction, the loss function of FTD is given by:

LFTD(θ) = Et, pt(xt|ϵ), p(ϵ) ∥(1− TL)vϕt
− (ϵ− xL)∥22

=Et, pt(xt|ϵ), p(ϵ) ∥(ut − vθ(xt, t)TL)− (ϵ− xL)∥22 (17)

where ut = ϵ− x0, t ∈ [TL, 1].

The generator Gθ can be expressed as:

Gθ(xL) = xL − vθ(xL, TL)TL. (18)

4.3. Anti-artifacts Loss Functions.

During training, we observe that the generator’s predictions
exhibit periodic high-frequency artifacts in the pixel space.
As shown in Figure 4, the artifact period is 16 pixels, exactly
the product of the VAE scaling factor (8) and the transformer
patch size (2). This indicates that each token has similar
components in certain dimensions.

Improvement of Perceptual Loss. We aim to reduce varia-
tions between adjacent pixels in flat regions to suppress high-
frequency artifacts while preserving sharp edges. Inspired
by the total variation (TV) loss, we propose TV-LPIPS as
the perceptual loss for training. Specifically, TV-LPIPS is
computed as follows:

LTVLPIPS
(I, I0) = LLPIPS(I, I0)

+ γLLPIPS(TV (I), TV (I0)),
(19)

where

TV (Ii,j) = (|Ii+1,j − Ii,j |+ |Ii,j+1 − Ii,j |). (20)

TV-LPIPS measures the degree of pixel variation and com-
putes the LPIPS distance with the ground-truth. This not
only prevents excessive variations between adjacent pixels
in smooth regions but also enhances the LPIPS loss’s sen-
sitivity to high-frequency components. In summary, the
reconstruction loss for training is given by:

LRec(Gθ(xL), xH) = LMSE(Gθ(xL), xH)

+ λLTVLPIPS
(Gθ(xL), xH).

(21)

Attention Diversification Loss. To address periodic arti-
facts at the feature level, we introduce the Attention Diversi-
fication Loss (ADL) proposed by Guo et al. (2023). ADL
aims to reduce similarity between tokens and enhance atten-
tion diversity. We incorporate this loss to prevent different
tokens from generating identical feature components.

To reduce computational complexity, ADL first approxi-
mates the overall cosine similarity by computing the cosine
similarity between each token feature vector A(l)

i and the
mean of all token feature vectors, defined as:

Ā(l) =
1

N

N∑
i=1

A
(l)
i . (22)

Here, A(l)
i represents the i-th feature vector in the output of

the l-th transformer layer. For a model with L layers, ADL
computes the mean ADL loss across all layers:

LADL =
1

L

L∑
l=1

L(l)
ADL, L

(l)
ADL =

1

N

N∑
i=1

A
(l)
i · Ā(l)

∥A(l)
i ∥∥Ā(l)∥

.

(23)

In summary, the overall training procedure of FluxSR is
presented in Algorithm 1.

Algorithm 1 FluxSR Training Procedure

1: Input: Pre-computed noise-image dataset D =
{ϵ, x0, z0}. Pre-trained diffusion model vψ and VAE
encoder Eψ , decoder Dψ . Training iterations N .

2: Output: one-step generator Gθ.
3: Init: vθ ← vψ, Eθ ← Eψ, Dθ ← Dψ. Initialize:

Trainable LoRA mounted on vθ.
4: for i = 1 to N do
5: Sample (ϵ, x0, z0) ∼ D.
6: ut ← ϵ− z0
7: // FTD Loss:
8: Sample t ∈ [TL, 1].

9: xt ←
1− t

1− TL
xL +

t− TL
1− TL

ϵ

10: vϕt
(zt, t)←

ut − vθt(zt, t)TL
1− TL

11: Compute LFTD using Eq. (17).
12: // Reconstruction Loss:
13: ẑ0 ← zL − (vθ(zL, TL))TL.
14: x̂0 ← Dθ(ẑ0).
15: Compute LTVLPIPS

using Eq. (19)
16: LRec = LMSE + λLTVLPIPS

.
17: // ADL Loss:
18: Compute LADL using Eq. (23).
19: L(θ) = LFTD + LRec + µLADL
20: Update vθ using L(θ).
21: end for
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Table 1: Quantitative results (×4) on the Real-ISR testset with ground truth. The best and second-best results are colored
red and blue. In the one-step diffusion models, the best metric is bolded.

Model Method PSNR↑ SSIM↑ LPIPS↓ DISTS↓ MUSIQ↑ MANIQA↑ TOPIQ↑ Q-Align↑

StableSR-s200 26.28 0.7733 0.2622 0.1583 60.53 0.3706 0.5036 3.8789
DiffBIR-s50 24.87 0.6486 0.3834 0.2015 68.02 0.5287 0.6618 4.1244
SeeSR-s50 26.20 0.7555 0.2806 0.1784 66.37 0.5089 0.6565 3.9862
ResShift-s15 25.45 0.7246 0.3727 0.2344 56.18 0.3477 0.4420 3.8936
ADDSR-s4 23.15 0.6662 0.3769 0.2353 66.54 0.6094 0.7241 4.1635

RealSR SinSR-s1 25.83 0.7183 0.3641 0.2193 61.62 0.4255 0.5362 3.9237
OSEDiff-s1 24.57 0.7202 0.3036 0.1808 67.31 0.4775 0.6382 4.0646
ADDSR-s1 25.23 0.7295 0.2990 0.1852 63.08 0.4093 0.5685 3.9806
TSD-SR-s1 23.80 0.6987 0.2874 0.1843 68.31 0.4899 0.6568 4.0926
FluxSR-s1 24.83 0.7175 0.3200 0.1910 68.95 0.5335 0.6699 4.3781

StableSR-s200 23.68 0.6270 0.4167 0.2023 49.51 0.2696 0.3765 3.7427
DiffBIR-s50 22.33 0.5133 0.4681 0.1889 70.07 0.5471 0.6958 4.2666
SeeSR-s50 23.21 0.6114 0.3477 0.1706 67.99 0.4687 0.6592 4.4594
ResShift-s15 23.55 0.6023 0.4088 0.2228 56.07 0.3409 0.4580 3.9961
ADDSR-s4 22.08 0.5578 0.4169 0.2145 68.26 0.5496 0.7168 4.3910

DIV2K-val SinSR-s1 22.55 0.5405 0.4390 0.2033 62.25 0.4241 0.5787 4.1712
OSEDiff-s1 23.10 0.6127 0.3447 0.1750 66.62 0.4115 0.5971 4.1366
ADDSR-s1 22.74 0.6007 0.3961 0.1974 62.08 0.3867 0.5817 4.2971
TSD-SR-s1 21.65 0.5546 0.3456 0.1530 68.65 0.4393 0.6415 4.1539
FluxSR-s1 22.30 0.6177 0.3397 0.1634 68.72 0.4615 0.6426 4.6128

Table 2: Quantitative results (×4) on RealSet65 testset. The
best and second-best results are colored red and blue. In the
one-step diffusion models, the best metric is bolded.

Method MUSIQ↑ MANIQA↑ TOPIQ↑ Q-Align↑

StableSR-s200 58.89 0.3535 0.4974 3.8093
DiffBIR-s50 71.23 0.5682 0.7015 4.1599
SeeSR-s50 69.79 0.5030 0.6774 4.1172
ResShift-s15 59.36 0.3622 0.4953 3.8942
ADDSR-s4 68.97 0.5613 0.6971 4.1672
SinSR-s1 64.22 0.4462 0.5947 4.0390
OSEDiff-s1 69.04 0.4625 0.5969 4.1065
ADDSR-s1 64.22 0.3947 0.5616 4.0806
TSD-SR-s1 69.34 0.4893 0.6392 3.9936
FluxSR-s1 70.75 0.5495 0.6670 4.2134

5. Experiments
5.1. Experimental Settings
Training Datasets. Our method does not require any
real datasets. We generate 2400 noise-image pairs of size
1024x1024 using FLUX.1-dev (Labs, 2023) as training data.
To obtain the corresponding low-resolution (LR) images,
we use the degradation pipeline proposed by RealESR-
GAN (Wang et al., 2021).

Test Datasets. We evaluate our model on the synthetic
dataset DIV2K-val (Agustsson & Timofte, 2017) and two
real datasets: RealSR (Cai et al., 2019) and RealSet65 (Yue
et al., 2024). From DIV2K-val, we use the RealESRGAN
degradation pipeline to generate corresponding LR images.
On the these datasets, we evaluate using full-size images to
assess the model’s performance in real-world scenarios.

Compared Methods and Metrics. We compare the per-
formance of our model with other diffusion-based ISR

models, including multi-step diffusion ISR models: Sta-
bleSR (Wang et al., 2024a), DiffBIR (Lin et al., 2024),
SeeSR (Wu et al., 2024b), ResShift (Yue et al., 2024), and
AddSR (Xie et al., 2024); and one-step diffusion ISR mod-
els: SinSR (Wang et al., 2024b), OSEDiff (Wu et al., 2024a),
and TSD-SR (Dong et al., 2024). We evaluate our model and
the aforementioned methods using 4 full-reference metrics:
PSNR, SSIM, LIPIS (Zhang et al., 2018), and DISTS (Ding
et al., 2020), as well as 4 no-reference metrics: MUSIQ (Ke
et al., 2021), MANIQA (Yang et al., 2022), TOPIQ (Chen
et al., 2024), and Q-Align (Wu et al., 2023). PSNR and
SSIM are computed on the Y channel in the YCbCr space.

5.2. Comparison with State-of-the-Art Methods
Quantitative Comparisons. Tables 1 and 2 presents a quan-
titative comparison between FluxSR and other diffusion-
based Real-ISR methods. Among one-step methods, our ap-
proach achieves the best performance across all no-reference
(NR) metrics on all test datasets. For FR metrics like
PSNR and SSIM, recent studies have demonstrated that
image fidelity and perceptual quality involve a trade-off.
In the context of diffusion-based super-resolution methods,
PSNR and SSIM have limited reference value. Compared to
multi-step methods, FluxSR outperforms StableSR across
all datasets. Against DiffBIR, SeeSR, and AddSR, FluxSR
shows slightly lower performance in TOPIQ. Additionally,
we provide further comparisons with non-diffusion-based
methods in the supplementary material.

Qualitative Comparisons. Figure 5 presents visual compar-
ison between FluxSR and other methods. FluxSR is capable
of generating realistic details under severe degradation.
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LR StableSR DiffBIR SeeSR ResShift

SinSR OSEDiff AddSR-s1 TSD-SR FluxSR (ours)

LR DiffBIR SeeSR ResShift AddSR-s4

SinSR OSEDiff AddSR-s1 TSD-SR FluxSR (ours)

Figure 5: Visual comparisons (×4) on Real-ISR task.

Table 3: Ablation study on FTD.

Method PSNR↑ MUSIQ↑ MANIQA↑ Q-Align↑

w/o FTD 26.33 56.02 0.3775 3.5170
FTD (ours) 24.67 67.84 0.5203 4.1473

Table 4: Ablation study on different loss functions.

LLPIPS LTV-LPIPS LEA-DISTS LADL PSNR↑ MUSIQ↑ MANIQA↑Q-Align↑

✓ 23.10 64.55 0.4937 4.0515
✓ 22.09 65.04 0.5113 4.0927

✓ 23.67 64.83 0.5036 4.0003
✓ ✓ 24.72 67.13 0.5138 4.0691

✓ ✓ 24.67 67.84 0.5203 4.1473

For example, in the first row of Figure 5, which depicts
the restoration of a coat image, DiffBIR, ResShift, and
SinSR are affected by noise, resulting in artificial textures.
Although AddSR and TSD-SR generate relatively sharp
images, they fail to accurately restore the collar’s design. In
contrast, FluxSR reconstructs the collar in a way that closely
resembles the real-world appearance. The second row of
Figure 5 demonstrates the restoration of numerical digits.
FluxSR produces the most realistic result. While TSD-SR
also approximately restores the digits, it suffers from Sinc
noise, generating bright edges around the numbers.

5.3. Ablation Study

In this section, we use RealSR as the test dataset. The
training iterations are set to 30k. Other settings remain
consistent with those mentioned in Sec. 5.1.

Effectiveness of FTD loss. To verify the effectiveness
and of FTD, we compare it with training using only the
reconstruction loss, as shown in Table 3. Training the one-
step flow model with only the reconstruction loss results in

poor performance, failing to generate high-frequency details
and exhibiting significant high-frequency artifacts. Using
the proposed FTD loss does not disrupt the data distribution
learned by the teacher model. It effectively restores high-
frequency details and achieves a higher degree of realism.

Effectiveness of ADL and TV-LPIPS. To verify the ef-
fectiveness of ADL and the proposed TV-LPIPS loss, we
conducted relevant ablation experiments to investigate the
impact of each loss function component. We also included
the use of EA-DISTS, proposed by DFOSD, as a perceptual
loss. Table 4 presents the experimental results, showing
that using TV-LPIPS as a perceptual loss and ADL as a
regularization term achieves the best performance.

6. Conclusion and Limitation
This paper proposes FluxSR, an efficient one-step Real-ISR
model based on FLUX, the state-of-the-art T2I diffusion
model. FluxSR leverages Flow Trajectory Distillation (FTD)
to distill a multi-step flow matching model into a one-step
super-resolution model. It is trained using noise-image pairs
generated by a fixed multi-step model and does not require
any real data. We employ TV-LPIPS and ADL to enhance
high-frequency components in the generated images and
reduce periodic artifacts. Our experiments demonstrate that
FluxSR achieves unprecedented realism.

Limitations. Although FluxSR achieves strong perfor-
mance, it has a large number of parameters and high com-
putational cost. Moreover, we have not entirely eliminated
the periodic artifacts mentioned in Section 4.3. In the future,
we plan to apply model pruning techniques to compress
the model and develop more effective algorithms to pre-
vent periodic artifacts, aiming to achieve a lightweight yet
high-performance Real-ISR model.

8



One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
This work was supported by Shanghai Municipal Science
and Technology Major Project (2021SHZDZX0102) and the
Fundamental Research Funds for the Central Universities.

References
Agustsson, E. and Timofte, R. Ntire 2017 challenge on

single image super-resolution: Dataset and study. In
CVPRW, 2017.

Cai, J., Zeng, H., Yong, H., Cao, Z., and Zhang, L. To-
ward real-world single image super-resolution: A new
benchmark and a new model, 2019.

Chen, C., Mo, J., Hou, J., Wu, H., Liao, L., Sun, W., Yan, Q.,
and Lin, W. Topiq: A top-down approach from semantics
to distortions for image quality assessment. IEEE TIP,
2024.

Chen, Z., Zhang, Y., Gu, J., Kong, L., Yang, X., and Yu, F.
Dual aggregation transformer for image super-resolution.
In ICCV, 2023.

Ding, K., Ma, K., Wang, S., and Simoncelli, E. P. Im-
age quality assessment: Unifying structure and texture
similarity. TPAMI, 2020.

Dong, C., Loy, C. C., He, K., and Tang, X. Image super-
resolution using deep convolutional networks. TPAMI,
2016a.

Dong, C., Loy, C. C., and Tang, X. Accelerating the
super-resolution convolutional neural network. In ECCV,
2016b.

Dong, L., Fan, Q., Guo, Y., Wang, Z., Zhang, Q., Chen,
J., Luo, Y., and Zou, C. Tsd-sr: One-step diffusion
with target score distillation for real-world image super-
resolution. arXiv preprint arXiv:2411.18263, 2024.

Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller, J.,
Saini, H., Levi, Y., Lorenz, D., Sauer, A., Boesel, F., et al.
Scaling rectified flow transformers for high-resolution
image synthesis. In Forty-first International Conference
on Machine Learning, 2024.

Guo, Y., Stutz, D., and Schiele, B. Robustifying token
attention for vision transformers. In CVPR, 2023.

He, X., Tang, H., Tu, Z., Zhang, J., Cheng, K., Chen, H.,
Guo, Y., Zhu, M., Wang, N., Gao, X., et al. One step
diffusion-based super-resolution with time-aware distilla-
tion. arXiv preprint arXiv:2408.07476, 2024.

Henighan, T., Kaplan, J., Katz, M., Chen, M., Hesse, C.,
Jackson, J., Jun, H., Brown, T. B., Dhariwal, P., Gray, S.,
et al. Scaling laws for autoregressive generative modeling.
arXiv preprint arXiv:2010.14701, 2020.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In NeurIPS, 2020.

Ke, J., Wang, Q., Wang, Y., Milanfar, P., and Yang, F. Musiq:
Multi-scale image quality transformer. In ICCV, 2021.

Kim, J., Lee, J. K., and Lee, K. M. Accurate image super-
resolution using very deep convolutional networks. In
CVPR, 2016.

Labs, B. F. Flux. https://github.com/
black-forest-labs/flux, 2023.

Lin, X., He, J., Chen, Z., Lyu, Z., Fei, B., Dai, B., Ouyang,
W., Qiao, Y., and Dong, C. Diffbir: Towards blind image
restoration with generative diffusion prior. In ECCV,
2024.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. arXiv
preprint arXiv:2210.02747, 2022.

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:
Learning to generate and transfer data with rectified flow.
arXiv preprint arXiv:2209.03003, 2022.

Liu, X., Zhang, X., Ma, J., Peng, J., et al. Instaflow: One
step is enough for high-quality diffusion-based text-to-
image generation. In ICLR, 2023.

Nguyen, T. H. and Tran, A. Swiftbrush: One-step text-to-
image diffusion model with variational score distillation.
In CVPR, 2024.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn,
T., Müller, J., Penna, J., and Rombach, R. Sdxl: Im-
proving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In CVPR, 2022a.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In CVPR, 2022b.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In ICLR, 2020.

9

https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux


One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation

Tian, K., Jiang, Y., Yuan, Z., Peng, B., and Wang, L. Visual
autoregressive modeling: Scalable image generation via
next-scale prediction. In NeurIPS, 2024.

Wang, J., Yue, Z., Zhou, S., Chan, K. C. K., and Loy, C. C.
Exploiting diffusion prior for real-world image super-
resolution. IJCV, 2024a.

Wang, X., Xie, L., Dong, C., and Shan, Y. Real-esrgan:
Training real-world blind super-resolution with pure syn-
thetic data. In ICCV, 2021.

Wang, Y., Yang, W., Chen, X., Wang, Y., Guo, L., Chau,
L.-P., Liu, Z., Qiao, Y., Kot, A. C., and Wen, B. Sinsr:
Diffusion-based image super-resolution in a single step.
In CVPR, 2024b.

Wang, Z., Chen, J., and Hoi, S. C. Deep learning for image
super-resolution: A survey. TPAMI, 2020.

Wang, Z., Lu, C., Wang, Y., Bao, F., Li, C., Su, H., and Zhu,
J. Prolificdreamer: High-fidelity and diverse text-to-3d
generation with variational score distillation. In NeurIPS,
2024c.

Wu, H., Zhang, Z., Zhang, W., Chen, C., Liao, L., Li, C.,
Gao, Y., Wang, A., Zhang, E., Sun, W., et al. Q-align:
Teaching lmms for visual scoring via discrete text-defined
levels. arXiv preprint arXiv:2312.17090, 2023.

Wu, R., Sun, L., Ma, Z., and Zhang, L. One-step effective
diffusion network for real-world image super-resolution.
arXiv preprint arXiv:2406.08177, 2024a.

Wu, R., Yang, T., Sun, L., Zhang, Z., Li, S., and Zhang,
L. Seesr: Towards semantics-aware real-world image
super-resolution. In CVPR, 2024b.

Xie, R., Tai, Y., Zhao, C., Zhang, K., Zhang, Z., Zhou, J.,
Ye, X., Wang, Q., and Yang, J. Addsr: Accelerating
diffusion-based blind super-resolution with adversarial
diffusion distillation. arXiv preprint arXiv:2404.01717,
2024.

Yan, H., Liu, X., Pan, J., Liew, J. H., Liu, Q., and Feng,
J. Perflow: Piecewise rectified flow as universal plug-
and-play accelerator. arXiv preprint arXiv:2405.07510,
2024.

Yang, S., Wu, T., Shi, S., Lao, S., Gong, Y., Cao, M., Wang,
J., and Yang, Y. Maniqa: Multi-dimension attention
network for no-reference image quality assessment. In
CVPR, 2022.

Yang, T., Wu, R., Ren, P., Xie, X., and Zhang, L. Pixel-
aware stable diffusion for realistic image super-resolution
and personalized stylization. In ECCV, 2024.

Yin, T., Gharbi, M., Park, T., Zhang, R., Shechtman, E., Du-
rand, F., and Freeman, W. T. Improved distribution match-
ing distillation for fast image synthesis. arXiv preprint
arXiv:2405.14867, 2024a.

Yin, T., Gharbi, M., Zhang, R., Shechtman, E., Durand, F.,
Freeman, W. T., and Park, T. One-step diffusion with
distribution matching distillation. In CVPR, 2024b.

Yu, F., Gu, J., Li, Z., Hu, J., Kong, X., Wang, X., He, J.,
Qiao, Y., and Dong, C. Scaling up to excellence: Practic-
ing model scaling for photo-realistic image restoration in
the wild. In CVPR, 2024.

Yue, Z., Wang, J., and Loy, C. C. Resshift: Efficient diffu-
sion model for image super-resolution by residual shifting.
In NeurIPS, 2024.

Zeng, Z., Yang, F., Liu, H., and Satoh, S. Improving deep
metric learning via self-distillation and online batch dif-
fusion process. Visual Intelligence, 2024.

Zhang, L., Rao, A., and Agrawala, M. Adding conditional
control to text-to-image diffusion models. In ICCV, 2023.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric. In CVPR, 2018.

Zhang, Y., Gu, K., Zhang, Y., Zhang, J., and Dai, Q. Im-
age super-resolution based on dictionary learning and an-
chored neighborhood regression with mutual incoherence.
In Proc. IEEE Int. Conf. Image Process., pp. 591–595,
Sep. 2015.

10


