
Document Classification with Hierarchical
Graph Neural Networks

Adrien Guille[0000−0002−1274−6040] and Hugo Attali

Université de Lyon, Lyon 2, ERIC UR3083
{adrien.guille,hugo.attali}@univ-lyon2.fr

Abstract. Various neural architectures have been explored for docu-
ment classification, such as convolutional and recurrent networks or as
of late, Transformers. In parallel, graph neural networks have vastly im-
proved over the recent years. In this paper, we present preliminary results
obtain with a novel, parameter-efficient, graph neural network that op-
erates on documents encoded as directed graphs. These graphs describe
document-wise word co-occurrence as well as the composition of sen-
tences and thus make the neural network learn word, sentence and doc-
ument representations in a hierarchical manner. Experiments conducted
on various datasets show that it outperforms recent CNNs, RNNs and
GNNs designed for document classification.

Keywords: Document Classification · Graph Neural Networks

1 Introduction

Document classification has many applications (e.g. automatic news catego-
rization, automatic processing of medical documents, filtering of online Q&A
threads). Several neural architectures have been explored to solve this task: con-
volutional neural networks [12][17], reccurrent neural networks [7][1] and lately,
Transformers [25]. Pre-trained language models based on the Transformer [9] can
be fine-tuned on downstream tasks such as document classification and generally
yield state-of-the-art results. However, having hundreds of millions of parame-
ters make them costly to operate or even incompatible with specific scenarios.
Even though compressed language models can reduce the number of parameters
to tens of millions, such as DistilBERT [22], their adoption remains limited for
document classification, due to their inherent economic and environmental costs
[24]. In parallel, graph neural networks have significantly improved and have
become very efficient at processing graph-structured data [14][26] [5] [4]. In this
paper, we build upon recent advances in the field of graph neural networks to
design a novel parameter-efficient, architecture for document classification.

Proposal. Assuming that the exact ordering of the words isn’t important but
that capturing (i) in which sentence(s) they occur and (ii) how they co-occur
together is essential, we encode documents as graphs. More precisely, we model
a document as a directed graph made of one document vertex, connected to

2 A. Guille and H. Attali

sentence vertices, themselves connected to word vertices (one vertex per unique
word type) that are connected together to reflect document-wise co-occurrences.
To solve the document classification task in terms of these graphs, we study a
4-layer neural network, based on the single-head graph attention mechanism (i.e.
GAT) [26], that learns word, sentence and document embeddings in a hierarchical
manner. In addition to this hierarchical behavior, the originality of the approach
we investigate in this paper lies in that it explicitly models the document as a
node in the graph, whereas existing GNNs for document classification such as
MPAD [20] or TextING [30] require an additional readout function to aggregate
all the embeddings to a graph-level representation for the document. Also, to
mitigate the issue of over-smoothing that typically arises when stacking several
GAT layers, we augment it with two kinds of residual connections: a residual
connection on attention weights and a residual connection on embeddings. Lastly,
we introduce a specific design for the last GAT layer, so that its lends itself
to a potential interpretation, mainly by applying a mask on the last residual
connection on attention weights.

Reproducibility. We open-source our code1. What is more, the datasets used
in ours experiments and the code for all baselines are freely available online,
making our results entirely reproducible.

2 Related Work

Convolutional Neural Networks. In a seminal paper, Kim proposes to per-
form 1D convolutions over sequences of word embeddings followed by global
max pooling to solve document classification in terms of a CNN [12]. XML-CNN
replaces the max-over-time pooling with a dynamic max pooling scheme in or-
der to capture localized information in the documents [17]. Since this leads to
much larger feature maps, it also includes an additional dense layer, a so-called
bottleneck layer, to compress it before classification.

Recurrent Neural Networks. Even though efficient, CNNs are limited in the
sense that convolution only captures short distance relations in the text. Recur-
rent neural networks based on the LSTM or GRU [7] cells can capture longer
distance relations by maintaining and propagating hidden-states along the en-
tire sequence of word embeddings. However, even though both GRU and LSTM
cells address the exploding/vanishing gradient issue induced by the recurring
calculations, their gating mechanism can still saturate, which limits their ability
to classify long documents for instance. Yang et al. propose the HAN approach,
that processes text in a hierarchical manner, encoding each sentence with a GRU
and then passing the sentence embeddings to another GRU to learn a document
embedding for classification [27]. Another way to improve RNNs for document
classification is careful regularization. Adhikari et al. design the Reg-LSTM [1], a
weight-dropped [19] bi-directionnal LSTM taylored for document classification,
that incorporates an embedding dropout mechanism.

1 Code available from: https://github.com/AdrienGuille/DocGAT

https://github.com/AdrienGuille/DocGAT

Hierarchical Document Classification with Graph Neural Networks 3

Transformers. To cope with the saturation caused by the recurring architec-
ture and also improve the computational efficiency on modern hardware, Vaswani
et al. introduce the Transformer, a deep, attention-based, feed-forward network
[25]. This has led to the development of pre-trained language models such as
BERT [9], with hundreds of millions of parameters , followed by compressed
versions with tens of millions parameters like DistilBERT [22]. They can be
fine-tuned on downstream tasks such as document classification and generally
perform very well. Even though they obtain state-of-the-art results on bench-
marks, relying on them in practical applications can be costly both from an
economic and environmental standpoint [24] (e.g. costs induced by computation
time on TPUs/GPUs in the cloud, pollution induced by the important energy
consumption).

Graph Neural Networks. In parallel, much progress has been made in the
field of graph neural networks. Convolution over graph-structured data can be
efficiently approximated with Chebyshev polynomials in the spectral domain
(i.e. the Laplacian of the graph) [8]. In practice, we tend to favor the GCN, a
simpler, linear approximation of convolution [14]. While the convolution weights
over the edges are fixed according to the Laplacian in the GCN approach, the
GAT approach suggests to learn them via an attention mechanism [26]. Yao et
al. are among the firsts to propose a GNN-based method for document classifi-
cation, named TextGCN [28]. It consists in representing the entire corpus (i.e.
the documents for training/validation and the documents to classify) as a sin-
gle graph, with both document and word vertices, so that words are connected
to the documents they occur in and words are connected together according
to co-occurrence. Then, document classification is performed in a transductive
fashion by applying a 2-layer GCN on this graph. This restricts the usefulness
of TextGCN to very specific scenarios and inductive approaches have since been
proposed. TextING [30] encodes each document as an undirected graph that
describes how words co-occur within a window of size 3. Word embeddings are
propagated through these graphs via a Gated Graph neural network [16] with a
gating mechanism akin to the GRU cell, and a document embedding is obtained
via a readout function that performs an additional gating and eventually a pool-
ing based on two MLPs. MPAD [20] considers similar graphs, except that they’re
directed and include a so-called master vertex connected to all the word vertices.
The propagation of the word embeddings is also more involved as it requires ap-
plying a GRU and a MLP iteratively to update all the embeddings. The readout
function is implemented by a global attention mechanism similar to the Direc-
tional Self-Attention Network (DiSAN) [23], that considers all the intermediate
word embeddings (i.e. the updated embeddings after each iteration).

In this paper, we intend to build upon recent advances in the field of graph
neural networks to design a novel, inductive, parameter-efficient architecture for
document classification.

4 A. Guille and H. Attali

3 Proposal

We begin by explaining how we encode documents as graphs. Then, we describe
the components of the graph neural network we propose to learn word, sentence
and document embeddings in a hierarchical manner. Finally we show how to
estimate the network parameters for document classification.

3.1 Document Encoding

Consider a document made of ns sentences and nw distinct word types. Assuming
that preserving the exact word order isn’t necessary but that word co-occurrence
as well as the sentence composition should be preserved, we encode this document
as a directed graph. There are N = 1 + ns + nw vertices, namely one vertex for
the document, one vertex for each sentence and one vertex for each unique word
type. The document vertex (numbered 0) has outgoing edges towards all the
sentence vertices (numbered 1 to ns), while each sentence has outgoing edges
towards all the words that occur in it. Words are connected together according
to their document-wise co-occurrence within a symmetric window of size 1. This
graph is characterized by its adjacency matrix A ∈ {0, 1}N×N . Fig. 1 illustrates
the graph constructed on a toy document. We pair this graph with vertex features
X ∈ NN×1, integer ids that map them to their respective initial embedding in
the neural network. The document vertex has a special id, 0, and all sentence
vertices have the same special id, 1.

Fig. 1. Encoding of the document: “That movie was good. So good. So very good.”

3.2 Model Architecture

The model operates on the two inputs we’ve just described, a directed adja-
cency matrix A ∈ {0, 1}N×N and a feature matrix X ∈ NN×1, and aims at

Hierarchical Document Classification with Graph Neural Networks 5

learning embeddings for the words, the sentences and the document in a hierar-
chical manner. The architecture consists in an initial embedding layer followed
by L single-head graph-attention layers (i.e. GAT layers) [26]. To mitigate the
over-smoothing phenomenon that arises when stacking several GAT layers [6],
we implement two kinds of residual connections: a residual connection on the
attention weights and a residual connection on the embeddings. In the following
we describe the general design of our GAT-like layers and conclude by describing
the specific design of the last layer to ensure the output is straightforward to
interpret.

Single-Head Graph Attention Layer. We consider the simplest form of
attention, single-head attention [3], as we found no advantage in employing multi-
head attention in any of our experiments. The lth layer receives the adjacency
matrix A, with added self-loops on all vertices, and the input vertex embeddings
H(l−1); it outputs the updated vertex embeddings H(l). When l = 1, the input
H(0) are the initial embeddings.

First, we compute the attention scores between vertices. If aij = 0, the
attention score αij is set to 0, otherwise, it is computed as:

α
(l)
ij =

exp
(
LeakyReLU(z(l) · [h(l−1)

i W(l)||h(l−1)
j W(l)])

)∑
k∈Ni

exp
(
LeakyReLU(z(l) · [h(l−1)

i W(l)||h(l−1)
k W(l)])

) , (1)

where || stands for concatenation and Ni is the set of outgoing neighbors of

the vertex i. This score is parameterized by z(l) ∈ R2dout and W(l) ∈ Rdin×dout ,
respectively a weight vector and a linear transformation. The LeakyReLU acti-
vation is calculated with a negative slope of 0.2 as in [26]. The candidate updated

embeddings H′(l) ∈ RN×dout are calculated according to the attention scores. For
vertex i, it is calculated as:

h
′(l)
i =

∑
j∈Ni

α
(l)
ij (h

(l−1)
j W(l)). (2)

Residual Connection on Attention Weights. Following recent work by
He et al. showing that residuals on the attention weights improves the stability
of the Transformer [10], and work by Lv et al. showing it could also benefit
attention-based GNNs [18], we replace Eq.2 with Eq. 3 below when l > 1 to
compute the candidate output embeddings:

h
′(l)
i =

∑
j∈Ni

(1
2

(
α
(l)
ij + α

(l−1)
ij

)
h
(l−1)
j W(l)

)
. (3)

We take the arithmetic mean between the attention weights computed in this
layer and the attention weights computed in the previous layer and mix the
embeddings accordingly.

6 A. Guille and H. Attali

Residual Connection on Embeddings. We also implement a more con-
ventional residual by summing the candidate output embeddings with the in-
put embeddings, prior to activation, to obtain the actual output embeddings
H(l) ∈ RN×dout :

h
(l)
i = σ

(
h
′(l)
i + h

(l−1)
i

)
, (4)

where σ is the activation function, SELU [15] in our experiments. Note that
this requires having din = dout. In order to have different input and output
dimensions, one could, for instance, linearly transform H(l−1). We don’t detail
this modification as we found that keeping the same dimension in the L− 1 first
layers led to the best results (even though varying the dimension only seemed
to have a minor effect).

Interpretable Last Layer. To make the predictions interpretable, we adopt a
specific design for the last GAT layer. First, it operates on the adjacency matrix
A, without self-loops. Second, the attention weight matrix calculated in the
penultimate layer is masked before applying the attention residuals, by setting
its diagonal to 0. Third, it ignores the residual connection on the embeddings.
By doing so, the document embedding computed in the last layer is purely a
weighted average of the sentence embeddings, while the sentence embeddings
are purely weighted averages of the word embeddings. Because, as detailed in
the next subsection, the classification is a function of the sole embedding of the
document vertex outputed by the last layer, the attention weights in the last
layer allow to directly identify the important sentences and words.

3.3 Parameter Estimation

We extract the embedding for the document vertex calculated in the last layer,

h
(L)
0 , and pass it to a fully-connected layer with softmax activation for multiclass

classification:
ŷ = softmax(h

(L)
0 C+ b), (5)

where C ∈ Rd×c and b ∈ Rc are the parameters of this linear classifier with c the
number of classes. For the purpose of regularization we add Alpha-Dropout [15]
with a rate of 0.5 before the classification layer, as well as Dropout in every GAT
layer with a rate of 0.5. We learn all the parameters by minimizing the categorical
cross-entropy via mini-batch stochastic gradient descent. For multilabel tasks,
we replace the softmax activation with the sigmoid activation, and replace the
categorical cross-entropy with the binary cross-entropy.

4 Experiments

In this section we describe the series of experiments we’ve conducted to thor-
oughly evaluate the performance of our method and demonstrate the usefulness
of all of its components. Note that our experiments are entirely reproducible, as
we provide links to retrieve all of the datasets as well as all of the source code
needed.

Hierarchical Document Classification with Graph Neural Networks 7

4.1 Datasets and Protocol

We run experiments on 5 well-known multilabel and multiclass datasets – rang-
ing from about 3,000 to 250,000 training documents – covering news articles,
scientific abstracts, and online Q&A (see Tab. 1):

– Reuters 902: A set of news stories from the Reuters agency. We keep the
original train/test split [2]. The aim is to predict the category or categories
of each story.

– Reuters 82: A subsample of the above dataset, with only the 8 most fre-
quent classes and only single label documents [20]. The aim is to predict the
category.

– Ohsumed3: A set of medical abstracts from PubMed. We keep the orig-
inal train/test split [11]. The aim is to predict the cardiovascular disease
addressed in the papers.

– AG News4: A set of news headlines from more than 2000 news sources. We
keep the original train/test split [29]. The aim is to predict the category.

– Yahoo Q&A4: A set of Yahoo! Questions & Answers from the Yahoo!
Webscope program (question title, question content and best answer). We
keep the original train/test split [29]. The aim is to predict the topic.

We randomly sample 10% out of the train set for validation, identical for all
methods. We run each method 10 times on each dataset and report the average
accuracy in the multiclass case or the average micro F1-score in the multilabel
case.

Table 1. Dataset properties.

Reuters 90 Reuters 8 Ohsumed AG News Yahoo Q&A

doc (train) 7,770 5,584 3,357 120,000 250,000
doc (test) 3,019 2,208 4,043 7,600 60,000

labels 90 8 23 4 10
type multilabel multiclass multiclass multiclass multiclass

4.2 Compared Methods

We compare our method with 2 CNNs, 2 RNNs and 2 GNNs designed for doc-
ument classification:

2 Retrieved from: https://git.uwaterloo.ca/jimmylin/hedwig-data/
3 Retrieved from: https://github.com/CRIPAC-DIG/TextING
4 Retrieved from: http://goo.gl/JyCnZq

https://git.uwaterloo.ca/jimmylin/hedwig-data/
https://github.com/CRIPAC-DIG/TextING
http://goo.gl/JyCnZq

8 A. Guille and H. Attali

– Our method: 4 layers, with dout = 300 for the first 3 layers and dout = 300
in the multilabel case or dout = 150 for the last layer in the multiclass case
(allowed by the absence of residual connection on the embeddings).

– CNN5 [12]: filters of width 3, 4 and 5, with 100 filters for each width as in
the original paper [12].

– XML-CNN5 [17]: filters of width 2, 4 and 8, with 100 filters for each width
and a dynamic pooling window length of 8 as in [1].

– HAN5 [27]: bidirectionnal GRUs for the sentence and document encoders,
100 hidden units in total, as in the original paper [27].

– Reg-LSTM5 [1]: LSTM following modern best practices for document clas-
sification, 512 hidden units, regularized via embedding dropout and weight
dropping, with dropout rates of 0.1 and 0.2 respectively, as in the original
paper [1].

– TextING6 [30]: 2-layer network with co-occurrences within a window of size
3 as recommended in the original paper [30].

– MPAD7 [20]: 2 message passing layers, each followed by a 2-layer MLP,
that reduces the dimension to 64 as in the original paper [20].

We initialize the embedding layer of all the networks with the English GloVe
embeddings [21] in dimension 300, trained on Common Crawl data8. For our
method, we add two randomly initialized vectors corresponding to the initial
sentence and document embeddings. All neural networks are trained end-to-end
with the Adam variant of the mini-batch stochastic gradient descent [13], with
an initial learning rate of 0.001.

4.3 Main Results

Table 2 reports the mean scores on all datasets. Our approach achieves the best
scores on four out of five datasets and the second best score on the toughest
dataset, Ohsumed. This shows that the proposed method can efficiently learn
from datasets of various sizes, made of documents of different natures. In con-
trast, CNNs are competitive on smaller datasets mostly, while RNNs need larger
datasets to reach interesting scores. Regarding GNNs, MPAD has a good overall
performance even though it is always outperformed by the proposed method
whereas results from TextING are more contrasted, with a good score on the
toughest dataset but a rather modest performance otherwise.

4.4 Detailed Analysis

Ablation Study. First, we analyze the impact of the two kinds of residual con-
nections on the performance. Fig. 2 shows that both the attention residuals and

5 Code available from: https://github.com/castorini/hedwig
6 Code available from: https://github.com/CRIPAC-DIG/TextING
7 Code available from: https://github.com/giannisnik/mpad
8 Retrieved from: https://nlp.stanford.edu/data/glove.42B.300d.zip

https://github.com/castorini/hedwig
https://github.com/CRIPAC-DIG/TextING
https://github.com/giannisnik/mpad
https://nlp.stanford.edu/data/glove.42B.300d.zip

Hierarchical Document Classification with Graph Neural Networks 9

Table 2. Mean test scores over 10 runs (standard deviation in parentheses). Best scores
in bold and second-best scores in italic.

Reuters 90 Reuters 8 Oshumed AG News Yahoo Q&A

CNN 85.1 (0.3) 96.9 (0.2) 70.3 (0.3) 92.7 (0.1) 71 (0.1)
XML-CNN 83.9 (0.3) 96.8 (0.2) 66.7 (0.4) 92.5 (0.2) 71.8 (0.1)

HAN 76.4 (0.4) 95 (0.5) 61.5 (3.2) 92.6 (0.1) 72.7 (0.1)
Reg-LSTM 80.1 (0.3) 97.2 (0.4) 69.1 (0.8) 92.7 (0.1) 73 (0.1)

TextING 75.1 (0.9) 96.5 (0.3) 69.5 (0.7) 90.4 (0.2) OOM (192GB)
MPAD 85.0 (0.4) 96.6 (0.5) 67.6 (1.8) 92.8 (0.2) 72.5 (0.2)

Our Method 87.8 (0.3) 97.4 (0.2) 69.9 (0.3) 93.2 (0.1) 73.1 (0.1)

the embedding residuals are essential. Removing either of them harms the per-
formance and removing both of them leads to notably worse scores. Second, we
study the impact of the number of GAT layers. Overall, it appears that varying
the number of layers by one doesn’t have a great impact on the performance. On
average, removing one GAT layer decreases the scores by 0.23 points and adding
one more layer decreases the scores by 0.15 points. In some cases, adding or
removing one layer leads to a better score, but the improvement doesn’t exceed
0.1 on any of the five datasets. Thus, 4 layers is the best performing network
size overall.

w
/

re
sid

ua
ls

w
/o

at
te

nt
io
n

re
sid

ua
ls

w
/o

em
be

dd
in

g
re

sid
ua

ls

w
/o

bo
th

re
sid

ua
l

67

68

69

70

Ohsumed – Multiclass

69.9

68.8
69

67

Ohsumed – Multiclass

M
ea

n
a
cc

u
ra

cy

w
/

re
sid

ua
ls

w
/o

at
te

nt
io
n

re
sid

ua
ls

w
/o

em
be

dd
in

g
re

sid
ua

ls

w
/o

bo
th

re
sid

ua
l

87

87.5

87.8

87.6

87.2

86.8

Reuters 90 – Multilabel

M
ea

n
F

1
-s

co
re

Fig. 2. Impact of the residual connections on the performance.

10 A. Guille and H. Attali

Parameter Efficiency. Not accounting for the embedding layer, because it is
the same for all methods and it doesn’t influence the comparison of the FLOPs
implied by each method, our approach involves 315k parameters for an out-
put dimension of 150 or 360k for an output dimension of 300, which means it
has a model size comparable to the simplest CNN baseline. In contrast, XML-
CNN (because of the larger feature maps engendered by dynamic pooling and
the additional bottleneck layer) and Reg-LSTM (because of the involved gating
mechanism) each have about 1,6M parameters. Combined with the fact that it is
a strictly feed-forward network – as opposed to RNNs – this makes our approach
computationally more affordable and easier to deploy in real-world scenarios.

5 Interpretability

Fig. 3 and 4 show documents taken from the test sample of the AG News dataset.
In each document, the sentence receiving most attention from the last layer is
underlined, and the two words receiving the most attention in them are double-
underlined. The first example is mostly a quote, which, taken out of context,
would be difficult to classify into the “Sports” category. Yet, the network focuses
its attention on the introductory sentence, mostly attending the phrase “Athens
Olympics”, skipping the quote to predict the correct category. The second one is
a longer document, related to business and start-ups selling shares for the first
time on exchanges. The sentence that receives the most attention is actually key
in understanding the article’s topic, and allows the reader to quickly confirm
that the prediction makes sense.

Notable quotes Tuesday at the Athens Olympics. “It hurt like hell. I could see

(Thorpe) coming up. But when I was breathing, I saw my team going crazy – and
that really kept me going.”

Fig. 3. Predicted category: Sports.

Start-ups are discovering they might have to wait until the timing is right. Is the market

for initial public offerings open or closed? Few questions loom larger for venture capital

firms, which risk money on entrepreneurial companies and look for “liquidity events”
that will help them recoup their investments. But more than at any other time in the
recent past, the answer may depend on your vantage point.

Fig. 4. Predicted category: Business.

Hierarchical Document Classification with Graph Neural Networks 11

Though it seems that the attention weights in the last layer might quan-
tify the importance of sentences and words, actual experiments are required to
objectively assess this.

6 Perspectives

We’ve studied a simple but efficient hierarchical graph neural network that per-
forms inductive classification on documents encoded as directed graphs, which
preserve word co-occurrence and sentence composition. The promising experi-
mental results motivate us to explore ways of improving that approach. First,
we’d like to reformulate the neural network so that it operates in the hyperbolic
space (instead of the euclidean space), which seems well suited to the hierarchi-
cal graphs that encode the documents. Second, we’d like to assess the ability of
our approach to distillate knowledge from fine-tuned deep language models to
improve performance while retaining the same low computational cost at predic-
tion time. Third, we’d like to investigate how the attention weights in the last
layer could contribute to the interpretability of the model.

References

1. Adhikari, A., Ram, A., Tang, R., Lin, J.: Rethinking complex neural network ar-
chitectures for document classification. In: Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics. pp.
4046–4051. NAACL (2019)

2. Apté, C., Damerau, F., Weiss, S.M.: Automated learning of decision rules for text
categorization. ACM Trans. Inf. Syst. 12(3), 233–251 (1994)

3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: Proceedings of the International Conference on Learning
Representations. ICLR (2015)

4. Brochier, R., Guille, A., Velcin, J.: Global vectors for node representations. In:
Proceedings of The World Wide Web Conference. pp. 2587–2593. WWW (2019)

5. Brochier, R., Guille, A., Velcin, J.: Inductive document network embedding with
topic-word attention. In: Advances in Information Retrieval. pp. 326–340. ECIR
(2020)

6. Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and relieving
the over-smoothing problem for graph neural networks from the topological view.
In: Proceedings of the AAAI Conference on Artificial Intelligence. pp. 3438–3445.
AAAI (2020)

7. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing. EMNLP (2014)

8. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Proceedings of the International
Conference on Neural Information Processing Systems. pp. 3844–3852. NeurIPS
(2016)

12 A. Guille and H. Attali

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics. pp. 4171–4186. NAACL (2019)

10. He, R., Ravula, A., Kanagal, B., Ainslie, J.: Realformer: Transformer likes residual
attention. In: Proceedings of the Joint Conference of the Annual Meeting of the
Association for Computational Linguistics and the International Joint Conference
on Natural Language Processing. ACL-IJCNLP (2021)

11. Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. In: Proceeding of the European Conference on Machine
Learning. pp. 137–142. ECML (1998)

12. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings
of the Conference on Empirical Methods in Natural Language Processing. pp.
1746–1751. EMNLP (2014)

13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proceedings
of the International Conference on Learning Representations. ICLR (2014)

14. Kipf, T.N., Welling, M.: Semi-Supervised Classification with Graph Convolutional
Networks. In: Proceedings of the International Conference on Learning Represen-
tations. ICLR (2017)

15. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural
networks. In: Advances in neural information processing systems. pp. 971–980.
NeurIPS (2017)

16. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural
networks. In: Proceedings of the International Conference on Learning Represen-
tations. ICLR (2016)

17. Liu, J., Chang, W.C., Wu, Y., Yang, Y.: Deep learning for extreme multi-label text
classification. In: Proceedings of the International ACM Conference on Research
and Development in Information Retrieval. pp. 115–124. SIGIR (2017)

18. Lv, Q., Ding, M., Liu, Q., Chen, Y., Feng, W., He, S., Zhou, C., Jiang, J., Dong, Y.,
Tang, J.: Are we really making much progress? revisiting, benchmarking and refin-
ing heterogeneous graph neural networks. In: Proceedings of the ACM Conference
on Knowledge Discovery amp; Data Mining. pp. 1150–1160. KDD (2021)

19. Merity, S., Keskar, N.S., Socher, R.: Regularizing and optimizing lstm language
models. in international conference on learning representations. In: Proceedings of
the International Conference on Learning Representation. ICLR (2018)

20. Nikolentzos, G., Tixier, A., Vazirgiannis, M.: Message passing attention networks
for document understanding. In: Proceedings of the AAAI Conference on Artificial
Intelligence. pp. 8544–8551. AAAI (2020)

21. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceeding of the International Conference on Empirical Methods in
Natural Language Processing. pp. 1532–1543. EMNLP (2014)

22. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of
BERT: smaller, faster, cheaper and lighter. In: Proceedings of the 5th Workshop
on Energy Efficient Machine Learning and Cognitive Computing. pp. 1–5. EMC2
@ NeurIPS (2019)

23. Shen, T., Jiang, J., Zhou, T., Pan, S., Long, G., Zhang, C.: Disan: Directional
self-attention network for rnn/cnn-free language understanding. In: Proceedings of
the AAAI Conference on Artificial Intelligence. AAAI (2018)

24. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep
learning in NLP. In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. pp. 3645–3650. EMNLP (2019)

Hierarchical Document Classification with Graph Neural Networks 13

25. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems. pp. 5998–6008. NeurIPS (2017)

26. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
Attention Networks. ICLR (2018)

27. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics. pp.
1480–1489. NAACL (2016)

28. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification.
In: Proceedings of the AAAI Conference on Artificial Intelligence. pp. 7370–7377.
AAAI (2019)

29. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Advances in neural information processing systems. pp. 649–657.
NeurIPS (2015)

30. Zhang, Y., Yu, X., Cui, Z., Wu, S., Wen, Z., Wang, L.: Every document owns its
structure: Inductive text classification via graph neural networks. In: Proceedings
of the Annual Meeting of the Association for Computational Linguistics. pp. 334–
339. ACL (2020)

	Document Classification with Hierarchical Graph Neural Networks

