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Abstract

Multi-channel learning has gained significant attention in recent applications, where
neural networks with t-product layers (t-NNs) have shown promising performance
through novel feature mapping in the transformed domain. However, despite the
practical success of t-NNs, the theoretical analysis of their generalization remains
unexplored. We address this gap by deriving upper bounds on the generalization er-
ror of t-NNs in both standard and adversarial settings. Notably, it reveals that t-NNs
compressed with exact transformed low-rank parameterization can achieve tighter
adversarial generalization bounds compared to non-compressed models. While
exact transformed low-rank weights are rare in practice, the analysis demonstrates
that through adversarial training with gradient flow, highly over-parameterized
t-NNs with the ReLU activation can be implicitly regularized towards a trans-
formed low-rank parameterization under certain conditions. Moreover, this paper
establishes sharp adversarial generalization bounds for t-NNs with approximately
transformed low-rank weights. Our analysis highlights the potential of transformed
low-rank parameterization in enhancing the robust generalization of t-NNs, offering
valuable insights for further research and development.

1 Introduction

Multi-channel learning is a task to extract representations from the data with multiple channels, such
as multispectral images, time series, and multi-view videos, in an efficient and robust manner [24, 39,
60, 61]. Among the methods tackling this task, neural networks with t-product layers (t-NNs, see
Eq. (5) for a typical example) [12, 36] came to the stage very recently with remarkable efficiency and
robustness in various applications such as graph learning, remote sensing, and more [1, 11, 14, 32,
38, 39, 53, 58]. What distinguishes t-NNs from other networks is the inclusion of t-product layers,
founded on the algebraic framework of tensor singular value decomposition (t-SVD) [19, 40, 60, 61].
Unlike traditional tensor decompositions, t-SVD explores the transformed low-rankness, i.e., the
low-rank structure of a tensor in the transformed domain under an invertible linear transform [18].
The imposed transform in t-product layers provides additional expressivity to neural networks, while
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the controllable transformed low-rank structure in t-NNs enables a flexible balance between model
accuracy and robustness [36, 38, 53].

Despite the impressive empirical performance of t-NNs, the theoretical foundations behind their
success remain unclear. The lack of systematic theoretical analysis hinders deeper comprehension
and exploration of more effective applications and robust performance of t-NNs. Furthermore, the
inclusion of the additional transform in t-NNs renders the theoretical analysis more technically
challenging compared to existing work on general neural networks [29, 37, 43, 55]. To address
this challenge, we establish for the first time a theoretical framework for t-NNs to understand both
the standard and robust generalization behaviors, providing both theoretical insights and practical
guidance for the efficient and robust utilization of t-NNs. Specifically, we address the following
fundamental questions:

• Can we theoretically characterize the generalization behavior of general t-NNs? Yes. We derive
the upper bounds on the generalization error for general t-NNs in both standard and adversarial
settings in Sec. 3.

• How does exact transformed low-rankness influence the robust generalization of t-NNs? In Sec. 4.1,
our analysis shows that t-NNs with exactly transformed low-rank weights exhibit lower adversarial
generalization bounds and require fewer samples, highlighting the benefits of transformed low-rank
weights in t-NNs for improved robustness and efficiency.

• How does adversarial learning of t-NNs affect the transformed ranks of their weight tensors? In
Sec. 4.2, we deduce that weight tensors tend to be of transformed low-rankness approximately for
highly over-parameterized t-NNs with ReLU activation under adversarial training with gradient
flow.

• How is robust generalization impacted by approximately transformed low-rank weight tensors in
t-NNs? In Sec. 4.3, we establish sharp adversarial generalization bounds for t-NNs with approxi-
mately transformed low-rank weights by carefully bridging the gap with exact transformed low-rank
parameterization. This finding again underscores the importance of incorporating transformed
low-rank weights as a means to enhance the robustness of t-NNs.

2 Notations and Preliminaries

In this section, we introduce the notations and provide a concise overview of t-SVD and t-NNs, which
play a central role in the subsequent analysis.

Notations. We use lowercase, lowercase boldface, and uppercase boldface letters to denote scalars,
e.g., a ∈ R, vectors, e.g., a ∈ Rm, and matrices, e.g., A ∈ Rm×n, respectively. Following the
standard notations in Ref. [19], a 3-way tensor of size d× 1× c is also called a t-vector and denoted
by underlined lowercase, e.g., x, whereas a 3-way tensor of size m×n×c is also called a t-matrix and
denoted by underlined uppercase, e.g., X. We use a t-vector x ∈ Rd×1×c to represent a multi-channel
example, where c denotes the number of channels and d is the number of features for each channel.

Given a matrix A ∈ Rm×n, its Frobenius norm (F-norm) and spectral norm are defined as

∥A∥F :=

√∑min{m,n}
i=1 σ2

i and ∥A∥ := maxi σi, respectively, where σi, i = 1, · · · ,min{m,n} are
its singular values. The stable rank of a non-zero matrix A is defined as the squared ratio of its F-norm
and spectral norm rstb(A) := ∥A∥2F / ∥A∥2. Given a tensor T, define its lp-norm and F-norm respec-
tively as ∥T∥lp := ∥vec(T)∥lp , and ∥T∥F := ∥vec(T)∥l2 , where vec(·) denotes the vectorization
operation of a tensor [21]. Given T ∈ Rm×n×c, let T:,:,i denote its ith frontal slice. The inner product
between two tensors A,B is defined as ⟨A,B⟩ := vec(A)⊤vec(B). The frontal-slice-wise product
of two tensors A,B, denoted by A ⊙ B, equals a tensor T such that T:,:,i = A:,:,iB:,:,i, i = 1, · · · , c
[19]. We use | · | as the absolute value for a scalar and cardinality for a set. We use ◦ to denote the
function composition operation. Additional notations will be introduced upon their first occurrence.

2.1 Tensor Singular Value Decomposition

The framework of tensor singular value decomposition (t-SVD) is based on the t-product under
an invertible linear transform M [18]. In recent studies, the transformation matrix M defining the
transform M is restricted to be orthogonal [50] for better properties, which is also followed in this
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paper. Given any orthogonal matrix M ∈ Rc×c, define the associated linear transform M(·) with its
inverse M−1(·) on any T ∈ Rm×n×c as

M(T) := T ×3 M, and M−1(T) := T ×3 M−1, (1)

where ×3 denotes the tensor matrix product on mode-3 [18].

Definition 1 (t-product [18]). The t-product of any A ∈ Rm×n×c and B ∈ Rn×k×c under transform
M in Eq. (1) is denoted and defined as A∗M B = C ∈ Rm×k×c such that M(C) = M(A)⊙M(B) in
the transformed domain. Equivalently, we have C = M−1(M(A)⊙M(B)) in the original domain.

Definition 2 (M -block-diagonal matrix). The M -block-diagonal matrix of any T ∈ Rm×n×c,
denoted by T̃M , is the block diagonal matrix whose diagonal blocks are the frontal slices of M(T):

T̃M := bdiag(M(T)) :=


M(T):,:,1

M(T):,:,2
. . .

M(T):,:,c

 ∈ Rmc×nc.

In this paper, we also follow the definition of t-transpose, t-identity tensor, t-orthogonal tensor, and
f-diagonal tensor given by Ref. [18], and thus the t-SVD is introduced as follows.

Definition 3 (t-SVD, tubal rank [18]). Tensor Singular Value Decomposition (t-SVD) of T ∈ Rm×n×c

under the invertible linear transform M in Eq. (1) is given as follows

T = U ∗M S ∗M V⊤, (2)

where U ∈ Rm×m×c and V ∈ Rn×n×c are t-orthogonal, and S ∈ Rm×n×c is f-diagonal. The
tubal rank of T is defined as the number of non-zero tubes of S in its t-SVD in Eq. (2), i.e.,
rt(T) := |{i | S(i, i, :) ̸= 0, i ≤ min{m,n}}|.

For any T ∈ Rm×n×c with the tubal rank rt(T), we have following relationship between its t-SVD
and the matrix SVD of its M -block-diagonal matrix [26, 50]:

T = U ∗M S ∗M V⊤ ⇔ T̃M = ŨM · S̃M · Ṽ
⊤
M , and c · rt(T) ≥ rank(T̃M ). (3)

As the M -block-diagonal matrix T̃M is defined after transforming tensor T from the original domain
to the transformed domain, the relationship c · rt(T) ≥ rank(T̃M ) indicates that the tubal rank can be
chosen as a measure of transformed low-rankness [26, 50].

2.2 Neural Networks with t-Product Layer (t-NNs)

In this subsection, we will introduce the formulation of the t-product layer in t-NNs, which is designed
for multi-channel feature learning.

Multi-channel feature learning via t-product. Suppose we have a multi-channel example repre-
sented by a t-vector x ∈ Rd×1×c, where c is the number of channels and d is the number of features.
We define an L-layer t-NN feature extractor f(x), to extract dL features for each channel of x:

f(x) = f(L)(x); f(l)(x) = σ(W(l) ∗M f(l−1)(x)), l = 1, · · · , L; f(0)(x) = x, (4)

where the l-th layer f(l) first conducts t-product with weight tensor (t-matrix) W(l) ∈ Rdl×dl−1×c

on the output of the (l − 1)-th layer as multi-channel features2 f(l−1)(x) ∈ Rdl−1×1×c to obtain a
(dl × 1 × c)-dimensional representation and then uses the entry-wisely ReLU activation3 σ(x) =
max{x, 0} for nonlinearity.

Remark. Unlike Refs. [36], [32] and [53] whose nonlinear activation is performed in the transformed
domain, the t-NN model in Eq. (4) considers the nonlinear activation in the original domain and
hence is consistent with traditional neural networks.

2For simplicity, let d0 = d by treating the input example x as the 0-th layer f(0).
3Although we consider ReLU activation in this paper, most of the main theoretical results (e.g., Theorems 3,

5, 6, 12, and 14) can be generalized to general Lipschitz activations with slight modifications in the proof.
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By adding a linear classification module with weight w ∈ RcdL after the feature exaction module in
Eq. (4), we consider the following t-NN predictor whose sign can be utilized for binary classification:

f(x;W) := w⊤vec(f(L)(x)) ∈ R. (5)

Let W := {W(1), · · · ,W(L),w} be the collection of all the weights4. With a slight abuse of notation,

let ∥W∥F :=
√
∥w∥22 +

∑L
l=1 ∥W(l)∥2F denote the Euclidean norm of all the weights. The function

class of general t-NNs whose weights are bounded in the Euclidean norm is defined as

F :=
{
f(x;W)

∣∣ ∥w∥2 ≤ Bw, ∥W(l)∥F ≤ Bl, l = 1, · · · , L
}
, (6)

with positive constants Bw and Bl, l = 1, · · · , L. Let BW := Bw

∏L
l=1 Bl for simplicity.

3 Standard and Robust Generalization Bounds for t-NNs

This section establishes both the standard and robust generalization bounds for any t-NN f ∈ F.

3.1 Standard Generalization for General t-NNs

Suppose we are given a training multi-channel dataset S consisting of N example-label pairs
{(xi, yi)}Ni=1 ⊂ Rd×1×c × {±1} i.i.d. drawn from an underlying data distribution Px,y .

Assumption 1. Every input example x ∈ Rd×1×c has an upper bounded F-norm, i.e., ∥x∥F ≤ Bx,
where Bx is a positive constant.

When a loss function ℓ(f(xi), yi) is considered as the measure of the classification quality, we
define the empirical and population risk for any f ∈ F as L̂(f) := N−1

∑N
i=1 ℓ(f(xi), yi) and

L(f) := EP(x,y)
[ℓ(f(x), y)] , respectively. Similar to Ref. [30], we make assumptions on the loss as

follows.
Assumption 2. The loss ℓ(h(x), y) can be expressed as ℓ(h(x), y) = exp(−f(yh(x)) for any t-NN
h ∈ F, such that:

(A.1) the range of loss ℓ(·, ·) is [0, B], where B is a positive constant;

(A.2) function f : R → R is C1-smooth;

(A.3) f′(x) ≥ 0 for any x ∈ R;

(A.4) there exists bf ≥ 0 such that xf′(x) is non-decreasing for x ∈ (bf,+∞), and the derivative
xf′(x) → +∞ as x → +∞;

(A.5) let g : [f(bf),+∞) → [bf,+∞) be the inverse function of f on the domain [bf,+∞). There
exist bg ≥ max{2f(bf), f(2bf)} and K ≥ 1, such that g′(x) ≤ Kg′(θx) and f′(y) ≤ Kf′(θy)
for any x ∈ (bg,+∞), y ∈ (g(bg),+∞) and θ ∈ [1/2, 1).

Assumption (A.1) is a natural assumption in generalization analysis [3, 59], and Assumptions (A.2)-
(A.5) are the same as Assumption (B3) in Ref. [30]. According to Assumption (A.2), the loss function
ℓ(·, ·) satisfies the Lℓ-Lipschitz continuity

|ℓ(h(x1), y1)− ℓ(h(x2), y2)| ≤ Lℓ|y1h(x1)− y2(x2)|, with Lℓ = sup|q|≤Bf̃
f′(q)e−f(q), (7)

where Bf̃ is an upper bound on the output of any t-NN h ∈ F. The Lipschitz continuity is also widely
assumed for generalization analysis of DNNs [55, 59]. Assumption 2 is satisfied by commonly used
loss functions such as the logistic loss and the exponential loss.

The generalization gap L(f)− L̂(f) of any function f ∈ F can be bounded as follows.
Lemma 3 (Generalization bound for t-NNs). Under Assumptions 1 and 2, it holds for any f ∈ F that

L(f)− L̂(f) ≤
LℓBxBW√

N
(
√
2 log(2(L+ 1)) + 1) + 3B

√
t

2N
, (8)

with probability at least 1− 2e−t for any t > 0.
4Here for the ease of notation presentation, we use the tensor notation W instead of the set notation W .
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Remark. When the input example has channel number c = 1, the generalization bound in Theorem
3 is consistent with the F-norm-based bound in Ref. [8].

3.2 Robust Generalization for General t-NNs

We study the adversarial generalization behavior of t-NNs in this section. We first make the following
assumption on the adversarial perturbations.

Assumption 4. Given an input example x, the adversarial perturbation is chosen within a radius-ξ
ball of norm Ra(·) with compatibility constant [35] defined as CRa := supx̸=0 Ra(x)/ ∥x∥F.

The assumption allows for much broader adversary classes than the commonly considered lp-attacks
[54, 55]. For example, if one treats the multi-channel data x ∈ Rd×1×c as a matrix of dimensionality
d× c and attacks it with nuclear norm attacks [17], then the constant CRa =

√
min{d, c}.

Given an example-label pair (x, y), the adversarial loss for any predictor f is defined as ℓ̃(f(x), y) =
maxRa(x′−x)≤ξ ℓ(f(x′), y). The empirical and population adversarial risks are thus defined as
L̂adv(f) := N−1

∑N
i=1 ℓ̃(f(xi), yi) and Ladv(f) := EP(x,y)

[ℓ̃(f(x), y)], respectively. The adver-
sarial generalization performance is measured by the adversarial generalization gap (AGP) defined as
Ladv(f)− L̂adv(f). Let Bf̃ := (Bx + ξCRa)BW. For any f ∈ F, its AGP is bounded as follows.

Theorem 5 (Adversarial generalization bound for t-NNs). Under Assumptions 1, 2, and 4, there
exists a constant C such that for any f ∈ F, it holds with probability at least 1− 2e−t (∀t > 0):

Ladv(f)− L̂adv(f) ≤
CLℓBf̃√

N

√√√√c
L∑

l=1

dl−1dl log(3(L+ 1)) + 3B

√
t

2N
. (9)

Remark. When the input example has channel number c = 1 and the attacker uses lp-attack, the
adversarial generalization bound in Theorem 5 degenerates to the one in Theorem 4 of Ref. [55].

4 Transformed Low-rank Parameterization for Robust Generalization

4.1 Robust Generalization with Exact Transformed Low-rank Parameterization

According to Theorem 5, the AGP bound scales with the square root of the parameter complexity,
specifically as O(

√
c(
∑

l dl−1dl)/N). This implies that achieving the desired adversarial accuracy
may require a large number N of training examples. Furthermore, high parameter complexity leads
to increased energy consumption, storage requirements, and computational cost when deploying large
t-NN models, particularly on resource-constrained embedded and mobile devices.

To this end, we propose a transformed low-rank parameterization scheme to compress the original
t-NN models F. Specifically, given a vector of pre-set ranks r = (r1, · · · , rL)⊤ ∈ RL where
rl ≤ min{dl, dl−1}, we consider the following subset of the original t-NNs:

Fr :=
{
f
∣∣ f ∈ F, and rt(W(l)) ≤ rl, l = 1, · · · , L

}
. (10)

In the function set Fr, the weight tensor W(l) of the l-th layer has the upper bounded tubal rank, which
means low-rankness in the transformed domain5. We bound the AGP for any f ∈ Fr as follows.

Theorem 6 (Adversarial generalization bound for t-NNs with transformed low-rank weights). Under
Assumptions 1, 2, and 4, there exists a constant C ′ such that

Ladv(fr)− L̂adv(fr) ≤
C ′LℓBf̃√

N

√√√√c
L∑

l=1

rl(dl−1 + dl) log(9(L+ 1)) + 3B

√
t

2N
, (11)

holds for any fr ∈ Fr with probability at least 1− 2e−t (∀t > 0).

5For empirical implementations, one can adopt similar rank learning strategy to Ref. [15] to select a suitable
rank parameter r. Due to the scope of this paper, we leave this for future work.
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Comparing Theorem 6 with Theorem 5, we observe that the adversarial generalization bound under
transformed low-rank parameterization has a better scaling, specifically O(

√
c
∑

l rl(dl−1 + dl)/N).
This also implies that a smaller number N of training examples is required to achieve the desired
accuracy, as well as reduced energy consumption, storage requirements, and computational cost.
Please refer to Sec. A.1 in the appendix for numerical evidence.

4.2 Implicit Bias of Gradient Flow for Adversarial Training of Over-parameterized t-NNs

Although Theorem 6 shows exactly transformed low-rank parameterization leads to lower bounds,
the well trained t-NNs on real data rarely have exactly transformed low-rank weights. In this section,
we prove that the highly over-parameterized t-NNs, trained by adversarial training with gradient flow
(GF), are approximately of transformed low-rank parameterization under certain conditions.

First, the proposed t-NN f(x;W) is said to be (positively) homogeneous as the condition f(x; aW) =
aL+1f(x;W) holds for any positive constant a. Motivated by Ref. [29], we focus on the scale
invariant adversarial perturbations defined as follows.
Definition 4 (Scale invariant adversarial perturbation [29]). An adversarial perturbation δi(W) is
said to be scale invariant for f(x;W) at any given example xi if it satisfies δi(aW) = δi(W) for any
positive constant a.

Lemma 7. The l2-FGM [34], FGSM [9], l2-PGD and l∞-PGD [31] perturbations for the t-NNs are
all scale invariant.

Then, we consider adversarial training of t-NNs with scale invariant adversarial perturbations by GF,
which can be seen as gradient descent with infinitesimal step size. When using GF for the ReLU
t-NNs, W changes continuously with time, and the trajectory of parameter W during training is an
arc W : [0,∞) → Rdim(W), t 7→ W(t) that satisfies the differential inclusion [7, 30]

dW(t)

dt
∈ −∂◦L̂adv(W(t)) (12)

for t ≥ 0 a.e., where ∂◦L̂adv denotes the Clarke’s subdifferential [7] with respect to W(t). If L̂adv(W)
is actually a C1-smooth function, the above differential inclusion reduces to

dW(t)

dt
= −∂L̂adv(W(t))

∂W(t)
(13)

for any t ≥ 0, which corresponds to the GF with differential in the usual sense. However, for
simplicity, we follow Refs. [45, 46] and still use Eq. (13) to denote Eq. (12) with a slight abuse of
notation, even if L̂adv does not satisfy differentiability but only local Lipschitzness 6.

We also make an assumption on the training data as follows.
Assumption 8 (Existence of a separability of adversarial examples during training). There exists a
time t0 such that L̂adv(t0) ≤ N−1ℓ(bf).

This assumption is a generalization of the separability condition in Refs. [29, 30]. Adversarial training
can typically achieve this separability in practice, i.e., the model can fit adversarial examples of the
training dataset, making the above assumption reasonable. Then, we obtain the following lemma.
Lemma 9 (Convergence to the direction of a KKT point). Consider the hypothesis class F in Eq. (6).
Under Assumptions 2 and 8, the limit point of normalized weights {W(t)/ ∥W(t)∥F : t ≥ 0} of the
GF for Eq. (13), i.e., the empirical adversarial risk with scale invariant adversarial perturbations
δi(W), is aligned with the direction of a KKT point of the minimization problem:

min
W

1

2
∥W∥2F , s.t. yif(xi + δi(W);W) ≥ 1, i = 1, · · · , N. (14)

Building upon Lemma 9, we can establish that highly over-parameterized t-NNs undergoing adver-
sarial training with GF will exhibit an implicit bias towards transformed low-rank weights.

6Note that the ReLU function is not differentiable at 0. Practical implementations of gradient methods define
the derivative σ′(0) to be a constant in [0, 1]. In this work we assume for convenience that σ′(0) = 0.
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Theorem 10 (Implicit low-rankness for t-NNs induced by GF). Suppose there is an example xi
satisfying ∥xi∥F ≤ 1 in the training set S = {(xi, yi)}Ni=1. Suppose there is a (J + 1)-layer (J ≥ 2)
ReLU t-NN, denoted by g(x;V) with parameters V = (V(1), · · · ,V(J), v), satisfying the conditions:

(C.1) the dimensionality of the weight tensor V(j) ∈ Rmj×mj−1×c of the j-th t-product layer satisfies
mj ≥ 2, j = 1, · · · , J;

(C.2) there is a constant Bv > 0, such that the Euclidean norm of the weights V =

(V(1), · · · ,V(L), v) satisfy ∥V(j)∥F ≤ Bv for any j = 1, · · · , J and ∥v∥2 ≤ Bv;

(C.3) for all i ∈ {1, · · · , N}, we have yig(xi + δi(V);V) ≥ 1.

Then, we consider the class of over-parameterized t-NNs F = {f(x;W)} defined in Eq. (5) satisfying

(C.4) the number L of t-product layers is much greater than J;

(C.5) the dimensionality of weight W(l) ∈ Rdl×dl−1×c satisfies dl ≫ maxj≤J{mj} for any l ≤ L.

Let W∗ = (W∗(1), · · · ,W∗(L),w∗) be a global optimum of Problem (14). Namely, W∗ parameterizes
a minimum-norm t-NN f(x;W∗) ∈ F that labels the perturbed training set correctly with margin 1
under scale invariant adversarial perturbations. Then, we have

L∑L
l=1

(
rstb(W̃

∗(l)
M )

)−1/2
≤ 1(

1 + 1
L

) (
1
Bv

) J+1
L+1

√
L+1

(J+1)+(cmJ )(L−J) −
1
L

,

where W̃
∗(l)
M denotes the M -block-diagonal matrix of weight tensor W∗(l) for any l = 1, · · · , L.

By the above theorem, when L is sufficiently large, the harmonic mean of the square root of the stable

rank of W̃
∗(l)
M , i.e., the M -block-diagonal matrix of weight tensor W∗(l), is approximately bounded by√

cmJ , which is significantly smaller than the square root of the dimensionality
√
min{cdl, cdl−1}

according to condition (C.5) in Theorem 10. Thus, f(x;W∗) has a nearly low-rank parameterization
in the transformed domain. In our case, the weights W(t) generated by GF tend to have an infinite
norm and to converge in direction to a transformed low-rank solution. Moreover, note that the ratio
between the spectral norm and the F-norm is invariant to scaling, and hence it suggests that after a
sufficiently long time, GF tends to reach a t-NN with transformed low-rank weight tensors. Refer to
Sec. A.2 for numerical evidence supporting Theorem 10.

4.3 Robust Generalization with Approximate Transformed Low-rank Parameterization

Theorem 10 establishes that for highly over-parameterized adversarial training with GF, well-trained t-
NNs exhibit approximately transformed low-rank parameters under specific conditions. In this section,
we analyze the AGP of t-NNs that possess an approximately transformed low-rank parameterization7.

Initially, by employing low-tubal-rank tensor approximation [20], one can always compress an
approximately low-tubal-rank parameterized t-NN f by a t-NN g ∈ Fr with an exact low-tubal-rank
parameterization, ensuring a small distance between g and f in the parameter space. Now, the question
is: Can the small parametric distance between f and g also indicate a small difference in their
adversarial generalization behaviors? To answer this question, we first define the (δ, r)-approximate
low-tubal-rank parameterized functions.
Definition 5 ((δ, r)-approximate low-tubal-rank parameterization). A t-NN f(x;W) ∈ F with weights
W = (w,W(1), · · · ,W(L)) is said to satisfy the (δ, r)-approximate low-tubal parameterization with
tolerance δ > 0 and rank r = (r1, · · · , rL)⊤ ∈ NL, if there is a t-NN g(x;Wr) ∈ Fr whose weights
Wg = (w,W(1)

r1
, · · · ,W(L)

rL
) satisfy ∥W(l)

rl
− W(l)∥F ≤ δ for any l = 1, · · · , L.

Furthermore, let’s consider the collection of t-NNs with approximately low-tubal-rank weights
Fδ,r := {f ∈ F | f satisfies the (δ, r)-approximate low-tubal-rank parameterization} . (15)

7We use the tubal rank as a measure of low-rankness in the transformed domain for notation simplicity. One
can also consider the average rank [52] or multi-rank [50] for more refined bounds with quite similar techniques.
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Subsequently, we analyze the AGP for any f ∈ Fδ,r in terms of its low-tubal-rank compression g ∈ Fr.
The idea is motivated by the work on compressed bounds for non-compressed but compressible
models [43], originally developed for generalization analysis of NNs for standard training.

Under Assumption 2, we first define Fadv
δ,r := {f̃ : (x, y) 7→ minRa(x′−x)≤ξ yf(x′) | f ∈ Fδ,r}

as the adversarial version of Fδ,r. To analyze the AGP of f ∈ Fδ,r through g ∈ Fr, we instead
consider their adversarial counterparts f̃ ∈ Fadv

δ,r and g̃ ∈ Fadv
r , where Fadv

r is defined as Fadv
r :=

{g̃ : (x, y) 7→ minRa(x−x′)≤ξ yg(x′)
∣∣ g ∈ Fr}. Define the Minkowski difference of Fadv

δ,r and Fadv
r

as Fadv
δ,r − Fadv

r := {f̃ − g̃ | f̃ ∈ Fadv
δ,r , g̃ ∈ Fadv

r }. The empirical L2-norm of a t-NN h ∈ F on the

training data S = {(xi, yi)}Ni=1 is defined as ∥h∥S :=
√

N−1
∑N

i=1 h
2(xi, yi), and the population

L2-norm is ∥h∥L2 :=
√
EP (x,y)[h2(x, y)]. Define the local Rademacher complexity of Fadv

δ,r − Fadv
r

of radius r > 0 as Ṙr(F
adv
δ,r − Fadv

r ) := R̄N ({h ∈ Fadv
δ,r − Fadv

r | ∥h∥L2
≤ r}), where R̄N (H) denotes

the average Rademacher complexity of a function class H [4].

The first part of the upcoming Theorem 12 shows that a small parametric distance between f and g
leads to a small empirical L2-distance in the adversarial output space. Specifically, for any f(x;W) ∈
Fδ,r with compression g(x;Wr), their (adversarial) empirical L2-distance ∥f̃(x;W)− g̃(x;Wr)∥S
can be bounded by a small constant r̂ > 0 in linearity of δ. We also aim for a small population
L2-distance by first assuming the local Rademacher complexity Ṙr(F

adv
δ,r − Fadv

r ) can be bounded by
a concave function of r, following common practice in Rademacher complexity analysis [4, 43].

Assumption 11. For any r > 0, there exists a function ϕ(r) : [0,∞) → [0,∞) such that Ṙr(F
adv
δ,r −

Fadv
r ) ≤ ϕ(r) and ϕ(2r) ≤ 2ϕ(r).

We further define r∗ = r∗(t) := inf
{
r > 0

∣∣16Bf̃ r
−2ϕ(r) +Bf̃ r

−1
√
2t/N + 2tB2

f̃
r−2/N ≤ 1/2

}
for any t > 0, such that the population L2-norm of any h ∈ Fadv

δ,r − Fadv
r can be bounded by

∥h∥2L2
≤ 2(∥h∥2S + r2∗) using the peeling argument [42, Theorem 7.7]. We then establish an

adversarial generalization bound for approximately low-tubal-rank t-NNs as follows.
Theorem 12 (Adversarial generalization bound for general approximately low-tubal-rank t-NNs).
(I). For any f ∈ Fδ,r with adversarial proxy f̃ ∈ Fadv

δ,r , there exists a function g ∈ Fr with adversarial

proxy g̃ ∈ Fadv
r , such that the empirical L2-distance ∥f̃ − g̃∥S ≤ δBf̃

∑L
l=1 B

−1
l =: r̂.

(II). Let ṙ :=
√
2(r̂2 + r2∗). Under Assumptions 1, 2, 4, 11, there exist constants C1, C2 > 0 satisfying

Ladv(f)− L̂adv(f) ≤
C1LℓBf̃√

N

√√√√c
L∑

l=1

rl(dl−1 + dl) log(9(L+ 1)) +B

√
t

2N︸ ︷︷ ︸
main term

+ C2

(
Φ(ṙ) + Lℓṙ

√
t

N
+

tLℓBf̃

N

)
︸ ︷︷ ︸

bias term

,

(16)

for any f ∈ Fδ,r with probability at least 1− 4e−t for any t > 0, where Φ(r) is defined as

Φ(r) := R̄N

({
ℓ ◦ f̃ − ℓ ◦ g̃

∣∣ f̃ ∈ Fadv
δ,r , g̃ ∈ Fadv

r , ∥f̃ − g̃∥L2 ≤ r
})

.

The main term of the bound quantifies the complexity of functions in Fr with exact low-tubal-rank
parameterization in adversarial settings, which can be significantly smaller than that of Fδ,r. On
the other hand, the bias term captures the sample complexity required to bridge the gap between
approximately low-tubal-rank parameterized Fδ,r and exactly low-tubal-rank parameterized Fr. As
we usually observe r2∗ = o(1/

√
N), setting r̂ = op(1) allows the bias term to decay faster than the

main term, which is O(1/
√
N). Theorem 12 suggests that a small parametric distance between

f ∈ Fδ,r and g ∈ Fr also implies a small difference in their adversarial generalization behaviors.

A special case. We also showcase a specific scenario where the weights of t-product layers exhibit a
polynomial spectral decay in the transformed domain, leading to a considerably small AGP bound.
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Assumption 13. Consider the setting where any t-NN f(x;W) ∈ Fδ,r has tensor weights W(l) (l =

1, · · · , L) whose singular values in the transformed domain satisfy σj(M(W(l)):,:,k) ≤ V0 · j−α,
where V0 > 0 is a constant, and σj(·) is the j-th largest singular value of a matrix.

Under Assumption 13, the weight tensor W(l) can be approximated by its optimal tubal-rank-
rl approximation W(l)

rl
for any 1 ≤ rl ≤ min{dl, dl−1} with error ∥W(l) − W(l)

rl
∥F ≤√

c/(2α− 1)V0(rl − 1)(1−2α)/2 [20], which can be much smaller than ∥W(l)
rl
∥F when α > 1/2 is

sufficiently large. Thus, we can find an exactly low-tubal-rank parameterized g ∈ Fr for any f ∈ Fδ,r
satisfying Assumption 13, such that the parametric distance between g and f is quite small. The
following theorem shows that the small parametric distance also leads to a small AGP.

Theorem 14. Under Assumptions 1, 2, 4, and 13, if we let r̂ = V0Bf̃

∑L
l=1(rl + 1)−αB−1

l , then
for any t-NN f ∈ Fδ,r, there exists a function g ∈ Fr whose t-product layer weights have tubal-rank
exactly no greater than rl, satisfying ∥f̃ − g̃∥S ≤ r̂. Further, there is a constant Cα only depending
on α such that the AGP, i.e., Ladv(f)− L̂adv(f), of any f ∈ Fδ,r can be upper bounded by

CαLℓ

{
Bf̃E1 + r̂

√
E1 + E

2α
2α+1

2

(
B

2α−1
2α+1

f̃
+ 1

)
+ r̂

2α
2α+1

√
E2 + (r̂+

B

Lℓ
)

√
t

N
+

1 + tBf̃

N

}
,

for any t > 0 with probability at least 1 − 4e−t, where E1 = N−1c
∑L

l=1 rl(dl +

dl−1) log(9NLBf̃/
√
c) and E2 = N−1c

∑L
l=1

(
LV0Bf̃B

−1
l

)1/α
(dl + dl−1) log(9NLBf̃/

√
c).

This suggests that by choosing a sufficiently large α > 1/2, where each weight tensor has a tubal-rank
close to 1, we can attain a superior generalization error bound. It is important to note that the rank rl
can be arbitrarily chosen, and there exists a trade-off relationship between r̂ and E1. Therefore, by
selecting the rank appropriately for a balanced trade-off, we can obtain an optimal bound as follows.

Corollary 15. Under the same assumption to Theorem 14, if we choose the parameter r of tubal
ranks in Fr by rl = min{⌈

(
LV0Bf̃B

−1
l

)1/α⌉, dl, dl−1}, then there is a constant Cα only depending
on α such that the AGP of any f ∈ Fδ,r can be upper bounded as

Ladv(f)− L̂adv(f) ≤ CαLℓ

{
B

1−1/(2α)

f̃

√√√√c
∑L

l=1

(
LV0B

−1
l

)1/α
(dl + dl−1) log(9NLBf̃/

√
c)

N

+ E
2α

2α+1

2

(
B

2α−1
2α+1

f̃
+ 1

)
+
√
E2 +

B

Lℓ

√
t

N
+

1 + tBf̃

N

}
,

with probability at least 1− 4e−t for any t > 0.

It is worth highlighting that the bound exhibits a linear dependency on the number of neurons in the
t-product layers, represented as O(

√
c
∑

l(dl + dl−1)/N). In contrast, Theorem 5 demonstrates a
dependency on the total number of parameters, denoted as O(

√
c
∑

l dldl−1/N). This observation
suggests that employing the low-tubal-rank parameterization can potentially enhance adversarial
generalization for t-NNs.

5 Related Works

T-SVD-based data and function representation. The unique feature of t-SVD-based data repre-
sentation, in contrast to classical low-rank decomposition methods, is the presence of low-rankness
in the transformed domain. This transformed low-rankness is crucial for effectively modeling real
multi-channel data with both smoothness and low-rankness [24, 49, 50]. Utilized in t-product layers
in DNNs [32, 36, 53], t-SVD has also been a workhorse for function representation and achieves
impressive empirical performance. While t-SVD-based signal processing models have been exten-
sively studied theoretically [13, 24, 27, 40, 50, 60], the t-SVD-based learning model itself has not
been thoroughly scrutinized until this paper. Hence, this study represents the first theoretical analysis
of t-SVD-based learning models, contributing to the understanding of their theoretical foundations.
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Theoretical analysis methods. Our analysis draws on norm-based generalization analysis [37] and
implicit regularization of gradient descent-based learning [46] as related theoretical analysis methods.
Norm-based generalization analysis plays a crucial role in theoretical analysis across various domains,
including standard generalization analysis of DNNs [8], compressed models [22], non-compressed
models [43], and adversarial generalization analysis [3, 55, 59]. Our work extends norm-based tools
to analyze both standard and adversarial generalization in t-NNs, going beyond the traditional use
of matrix products. For implicit regularization of gradient descent based learning, extensive past
research has been conducted on implicit bias of GF for both standard and adversarial training of
homogeneous networks building on matrix product layers, respectively [16, 30, 45]. We non-trivially
extend these methods to analyze t-NNs and reveals that GF for over-parameterized ReLU t-NNs
produces nearly transformed low-rank weights under scale invariant adversarial perturbations.

Our theoretical results notably deviate from the standard error bounds for fully connected neural
networks (FNNs) in several ways:

• The generalization bounds in Lemma 3 and Theorem 5 for t-NNs diverge from their counterparts for
FNNs in Refs. [8, 55, 59] due to the channel number c in t-NNs. Moreover, Theorem 5 encompasses
a wider range of adversary classes than the lp-attacks in the aforementioned references.

• The uniqueness of Theorem 6, compared to Refs. [55, 59], stems from its consideration of weight
low-rankness in the adversarial generalization bound, suggesting possible robustness improvements
in generalization.

• Our exploration of the implicit bias in GF for adversarial training presents a novel angle: the bias
towards approximate transformed low-rankness in t-NNs. While Ref. [29] focuses on the implicit
bias in adversarial training for FNNs, centered on KKT point convergence with exponential loss,
our work delves deeper, considering a wider array of loss functions in adversarial training for
t-NNs.

• A crucial distinction in our adversarial generalization bounds, detailed in Section 4.3, from non-
adversarial bounds for FNNs [43] is the integration of the localized Rademacher complexity. This
encompasses the Minkowski difference between adversarial counterparts of both approximately
and exactly low-tubal-rank t-NNs as seen in Theorem 12.

6 Concluding Remarks

A thorough investigation of the generalization behavior of t-NNs is conducted for the first time. We
derive upper bounds for the generalization gaps of standard and adversarially trained t-NNs and
propose compressing t-NNs with a transformed low-rank structure for more efficient adversarial
learning and tighter bounds on the adversarial generalization gap. Our analysis shows that adver-
sarial training with GF in highly over-parameterized settings results in t-NNs with approximately
transformed low-rank weights. We further establish sharp adversarial generalization bounds for
t-NNs with approximately transformed low-rank weights. Our findings demonstrate that utilizing the
transformed low-rank parameterization can significantly enhance the robust generalization of t-NNs,
carrying both theoretical and empirical significance.

Limitations. While this paper adheres to the norm-based framework for capacity control [8, 37], it is
worth noting that the obtained generalization bounds may be somewhat conservative. However, this
limitation can be mitigated by employing more sophisticated analysis techniques, as evidenced by
recent studies [2, 25, 56, 57].

Discussions. The inclination of adversarial training towards low-rank/sparse weights, and the recip-
rocal effects of parameter reduction on robustness, are currently at the forefront of ongoing research.
This domain has witnessed a spectrum of observations and results [6, 23, 41, 51]. In this study, we
propose that employing low-rank parameterization can enhance the adversarial robustness of t-NNs,
as evidenced by our analysis of uniform adversarial generalization error bounds. However, despite
these promising results, it is crucial to emphasize the necessity of a more exhaustive exploration of
low-rank parameterization. Its implications, particularly when considered in the context of approxi-
mation, estimation, and optimization, are profound and warrant further dedicated research efforts.
Such a comprehensive investigation will undoubtedly enhance our understanding and fully unlock
the potential of low-rank parameterization in neural networks.
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Appendix
Transformed Low-Rank Parameterization Can Help Robust

Generalization for Tensor Neural Networks

In the appendix, we begin by presenting numerical evaluations of our theoretical findings. Subse-
quently, we introduce the additional notations and preliminaries related to t-SVD, followed by the
proofs of the propositions mentioned in the main text.

Our analysis and proofs pertaining to t-NNs differ from those for FNNs as follows:

• Firstly, unlike the analysis for FNNs’ generalization bounds based on Rademacher complexity in
Refs. [8, 55, 59], we derive specific lemmas for standard and adversarial generalization bounds
in t-NNs. This is due to the unique structure of (low-rank) t-product layers. We reformulate the
t-product through an operator-like expression in Lemma 16, paving the way for pivotal Lemma 17,
supporting the t-product-based “peeling argument.” Additionally, we introduce Lemmas 37, 38,
and Lemma 33 to handle t-product layer output norms and covering low-tubal-rank tensors.

• Secondly, proving the implicit bias of GF for adversarial training of t-NNs, specifically the
approximately transformed low-rankness, is nontrivial in comparison to the proof in Ref. [29] for
the implicit bias of adversarial training for FNNs. As we consider more general loss functions
for t-NNs in contrast to the exponential loss for FNNs in Ref. [29], we first derive a more general
convergence result to the direction of a KKT point for t-NNs Lemma 9, and then goes deeper by
using a constructive approach to establish the approximately transformed low-rankness in Theorem
10.

• Thirdly, differing from Ref. [43] which focuses on standard FNN generalization, our ap-
proach delves into t-NNs’ adversarial generalization. We achieve this by introducing the (δ, r)-
parameterization, bounding localized Rademacher complexity for a Minkowski set in adversarial
settings, and using low-tubal-rank approximations for tensor weights.
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A Numerical Evaluations of the Theoretical Results

This section presents numerical evaluations for our theoretical results. All training process is
conducted on nVidia A100 GPU. For additional information and access to the demo code, please
visit the following URL: https://github.com/pingzaiwang/Analysis4TNN/.

A.1 Effects of Exact Transformed Low-rank Weights on the Adversarial Generalization Gap

To validate the adversarial generalization bound in Theorem 6, we have conducted experiments
on the MNIST dataset to explore the relationship between adversarial generalization gaps (AGP),
weight tensor low-rankness, and training sample size. We consider binary classification of 3 and 7,
with FSGM [9] attacks of strength 20/255. The t-NN consists of three t-product layers and one FC
layer, with weight tensor dimensions of 28× 28× 28 for W(1), W(2), and W(3), and 784 for the FC
weight w. As an input to the t-NN, each MNIST image of size 28× 28 is treated as a t-vector of size
28× 1× 28.

(a) (b)

Figure 1: The adversarial generalization gaps plotted against the training sample size (N ) for t-NNs,
both with and without transformed low-rank weight tensors, using the MNIST dataset. In (a), the
adversarial generalization gaps are presented against the sample size N , while in (b), they are plotted
against 1/

√
N .

Theorem 6 emphasizes: (i) lower weight tensor rank leads to smaller bounds on the adversarial
generalization gaps, and (ii) the bound diminishes at a rate of O(1/

√
N) as N increases. We explored

this by conducting experiments, controlling the upper bounds of the tubal-rank to 4 and 28 for low
and full tubal-rank cases, and systematically increasing the number of training samples.

Fig. 1 presents the results. The curves indicate that t-NNs with lower rank weight tensors have smaller
robust generalization errors. Interestingly, the adversarial generalization errors seem to follow a linear
relationship with 1/

√
N , approximately validating the generalization error bound in Theorem 6 by

approximating the scaling behavior of the empirical errors.

A.2 Implicit Bias of GF-based Adversarial Training to Approximately Transformed
Low-rank Weight Tensors

We carried out experiments to confirm two theoretical statements related to the analysis of GF-based
adversarial training.

Statement A.2.1 Theorem 10 reveals that, under specific conditions, well-trained t-NNs with highly
over-parameterized adversarial training using GF show nearly transformed low-rank parameters.

Statement A.2.2 Lemma 22 asserts that the empirical adversarial risk approaches zero, and the
F-norm of the weights grows infinitely as t approaches infinity.

In continuation of the experimental settings in Sec. A.1, we focus on binary classification on MNIST
under FGSM attacks. The t-NN is structured with three t-product layers and one FC layer, with
weight dimensions set to D × 28× 28 for W(1), D ×D × 28 for W(2) and W(3), and 28D for the
FC weight w. Our experiments involve setting values of D to 128 and 256, respectively, and we track
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the effective rank of each weight tensor, the empirical adversarial risk, and the F-norm of the weights
as the number of epochs progresses. Since implementing gradient flow with infinitely small step size
is impractical in real experiments, we opt for SGD with a constant learning rate and batch-size of 80,
following the setting on fully connected layers in Ref. [29].

For Statement A.2.1, we present preliminary results illustrating the progression of the stable ranks of
the M -block-diagonal matrix of tensor weights in Fig. 2 for the settings D ∈ {128, 256}. Notably,
these results show that the effective ranks decrease as more epochs are executed, thereby confirming
the influence of implicit bias on transformed low-rankness, as described in Statement A.2.1.

For Statement A.2.2, we present initial numerical findings depicting the progress of the empirical
adversarial risk and the F-norm of the weights in Figs. 3 and 4, respectively. These results exhibit a
consistent pattern with the theoretical descriptions outlined in Statement A.2.2 and the numerical
results reported in Ref. [29] for adversarial training and Ref. [30] for standard training of FNNs.
Specifically, we observe a decreasing trend in the empirical risk function and an increasing trend
in the weight tensor’s F-norm, which align with the expected behavior based on our theoretical
framework and corroborate the numerical results presented in Refs. [29, 30].

(a) (b)

Figure 2: Curves of the stable ranks of the M -block-diagonal matrix derived from the weight tensors,
plotted against epoch numbers, using the MNIST dataset. Two t-NN size settings are showcased: (a)
D = 128 and (b) D = 256.

(a) (b)

Figure 3: Curves of the adversarial training loss of t-NNs plotted against epoch numbers, using the
MNIST dataset. Two t-NN size settings are showcased: (a) D = 128 and (b) D = 256.
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(a) (b)

Figure 4: Curves of the F-norms of the M -block-diagonal matrix derived from the weight tensors,
plotted against epoch numbers, using the MNIST dataset. Two t-NN size settings are showcased: (a)
D = 128 and (b) D = 256.

A.3 Additional Regularization for a Better Low-rank Parameterized t-NN

It is natural to ask: instead of using adversarial training with GF in highly over-parameterized
settings to train a approximately transformed low-rank t-NN, is it possible to apply some extra
regularizations in training to achieve a better low-rank parameterization?

Yes, it is possible to apply additional regularizations during training to achieve a better low-rank
representation in t-NNs. Instead of relying solely on adversarial training with gradient flow in
highly over-parameterized settings, these extra regularizations can potentially promote and enforce
low-rankness in the network.

To validate the concern regarding the addition of an extra regularization term, we performed a
preliminary experiment. In this experiment, we incorporated the tubal nuclear norm [48] as an
explicit regularizer to induce low-rankness in the transformed domain. Specifically, we add the
tubal nuclear norm regularization to the t-NN with three t-product layer D = 128 in Sec. A.2 with
a regularization parameter 0.01, and keep the other settings the same as Sec. A.2. We explore how
the stable ranks of tensor weights evolve with the epoch number with/without tubal nuclear norm
regularization.

The experimental results are depicted in Fig. 5. According to Fig. 5, it becomes evident that the
introduction of the explicit low-rank regularizer significantly enforced low-rankness in the transform
domain of the weight tensors.

Figure 5: Curves of the stable ranks of the M -block-diagonal matrix of the weight tensors versus
the epoch number in the scenario where D = 128, both with and without the tubal nuclear norm
regularization, using the MNIST dataset.

19



B Notations and Preliminaries of t-SVD

B.1 Notations

For simplicity, we use c, c0, C etc. to denote constants whose values can vary from line to line. We
use We first give the most commonly used notations in Table 1.

Table 1: List of main notations

Notations for t-SVD
x ∈ Rd×1×c a t-vector T ∈ Rm×n×c a t-matrix
M ∈ Rc×c an orthogonal matrix M(·) transform via M in Eq. (1)
∗M t-product T̃M M -block diagonal matrix of T
T:,:,i i-th frontal slice of T rt(·) tensor tubal rank
∥·∥sp tensor spectral norm ∥·∥F tensor F-norm
∥ · ∥ matrix spectral norm

Notations for data representation
c number of channels d number of features per channel
xi ∈ Rd×1×c a multi-channel example yi ∈ {±} label of multi-channel data xi
S training sample of size N δi scale invariant adv. perturbation
Ra(·) norm used for attack x′i adv. perturbed version of xi
Bx upper bound on ∥x∥F ξ radius of Ra(·) for adv. attack

Notations for network structure
L number of t-product layers of a general t-NN
W(l) weight tensor of l-th t-product layer with dimensionality dl × dl−1 × c
w weight vector of fully connected layer with dimensionality cdL
f(x;W) a general t-NN with weights W = (W(1), · · · ,W(L),w)

BW bound on product of Euclidean norms of weights of f ∈ F, i.e., BW = Bw

∏L
l=1 Bl

Notations for model analysis
f̃(x, y) adversarial version of f(x) which maps (x, y) to infRa(x′−x)≤ξ yif(x′)
Bf̃ bound on the output of f̃(x, y) given as Bf̃ := (Bx + ξCRa)BW
ℓ(f(x), y) loss function with range [0, B], and Lipstchitz constant Lℓ (See Assumption 2)
L̂, L standard empirical and population risk, respectively
L̂adv, Ladv empirical and population risk, respectively
F, Fadv function class of t-NNs and its adversarial version, respectively
Fr, Fadv

r function class of low-tubal-rank parameterized t-NNs and adversarial version, resp.

Notations for implicit bias analysis (Sec. 4.2)
q̃i, q̃m, γ̃ example robust, sample robust, and smoothly normalized robust margin, resp.
f, g, bf, bg,K auxillary functions and constants to chareterize ℓ(·, ·) (See Assumption 2)

Notations for the analysis of apprximately transformed low-rank parameterized models (Sec. 4.3)
R̄N , R̂S , Ṙr average, empirical, and localized Rademacher complexity, resp.
Fδ,r, Fadv

δ,r function class of nearly low-tubal-rank parameterized t-NNs and adv. version, resp.
∥f∥S , ∥f∥L2

empirical L2-norm on sample S and population L2-norm of a function f , resp.
ε = {εi}Ni=1 i.i.d. Rademacher variables, i.e., εi equals to 1 or −1 with equal probability
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B.2 Additional Preliminaries of t-SVD

We give additional notions and propositions about t-SVD omitted in the main body of the paper.

Definition 6 ([18]). The t-transpose of T ∈ Rm×n×c under the M transform in Eq. (1), denoted by
T⊤, satisfies

M(T⊤):,:,k = (M(T):,:,k)⊤, k = 1, · · · , c.

Definition 7 ([18]). The t-identity tensor I ∈ Rm×m×c under M transform in Eq. (1) is the tensor
such that each frontal slice of M(I) is a c× c identity matrix,i.e,

M(I):,:,k = I, k = 1, · · · , c.

Given the appropriate dimensions, it is trivial to verify that T ∗M I = T and I ∗M T = T.

Definition 8 ([18]). A tensor Q ∈ Rd×d×d3 is t-orthogonal under M transform in Eq. (1) if it
satisfies

Q⊤ ∗M Q = Q ∗M Q⊤ = I.

Definition 9 ([19]). A tensor is called f-diagonal if all its frontal slices are diagonal matrices.

Definition 10 (Tensor t-spectral norm [28]). The tensor t-spectral norm of any tensor T under M
transform in Eq. (1) is defined as the matrix spectral norm of its M -block-diagonal matrix T̃M , i.e.,

∥T∥sp :=
∥∥∥T̃M

∥∥∥ .
Lemma 16. For any t-matrix W ∈ Rm×n×c and t-vector x ∈ Rn×1×c, the t-product W ∗M x defined
under M transform in Eq. (1) is equivalent to a linear operator op(W) on unfold(x) in the orginal
domain defined as follows

op(W)(x) = (M−1 ⊗ Im)

[
bdiag

(
(M ⊗ Im)unfold(W)

)
(M ⊗ In)

]
unfold(x), (17)

where ⊗ denotes the Kronecker product, and the operations of unfold(W) and unfold(x) are given
explicitly as follows

unfold(W) =


W:,:,1

W:,:,2
...

W:,:,c

 ∈ Rmc×n, unfold(x) =


x:,1,1
x:,1,2

...
x:,1,c

 ∈ Rnc.

Since Eq. (17) is a straightforward reformulation of the definition of t-product in [36, Definition 6.3],
the proof is simply omitted.

According to Lemma 16, we have the following remark on the relationship between t-NNs and fully
connected neural networks (FNNs).

Remark (Connnection with FNNs). The t-NNs and FNNs can be treated as special cases of each
other.

(I) When the channel number c = 1, the t-product becomes to standard matrix multi-lication
and the proposed t-NN predictor Eq. (5) degenerates to an (L+1)-layer FNN, which means
the FNN is a special case of the t-NN.

(II) On the other hand, by the definition of t-product, the t-NN f(·;W) in Eq. (5) has the
compounding representation as an FNN:

fW = w ◦ σ ◦ op(W(L)) ◦ σ ◦ op(W(L−1)) ◦ · · · ◦ σ ◦ op(W(1)).

Thus, t-NN can also be seen as a special case of FNN.
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C Standarad and Adversarial Generalization Bounds for t-NNs

C.1 Standarad Generalization Bound for t-NNs

Lemma 17. Consider the ReLU activation. For any t-vector-valued function set H and any convex
and monotonically increasing function g : R → [0,∞),

Eε

[
sup

h∈H,W:∥W∥F≤R

g

(∥∥∥∥∥
N∑
i=1

εiσ(W ∗M h(xi))

∥∥∥∥∥
F

)]
≤ 2Eε

[
sup
h∈H

g

(
R

∥∥∥∥∥
N∑
i=1

εih(xi)

∥∥∥∥∥
F

)]
,

where R > 0 is a constant.

Proof. This lemma is a direct corollary of Lemma 1 in Ref. [8] by using Eq. (17).

Proof of Lemma 3. According to Lemma 29, we can upper bound the generalization error of ℓ ◦ f for
any f ∈ F through the (empirical) Rademacher complexity R̂S(ℓ ◦F) where ℓ ◦F := {ℓ ◦ f | f ∈ F}.
Further regarding the Lℓ-Lipschitzness8 of the loss function ℓ, we have R̂S(ℓ ◦ F) ≤ LℓR̂S(F) by
the Talagrand’s contraction lemma (Lemma 30). Then, it remains to bound R̂S(F).

To upper bound R̂S(F), we follow the proof of [8, Theorem 1]. By Jensen’s inequality, the (scaled)
Rademacher complexity NR̂S(F) = Eε supf∈F

∑N
i=1 εif(xi) satisfies

1

λ
log exp

(
λ · Eε sup

f∈F

N∑
i=1

εif(xi)

)
≤ 1

λ
log

(
Eε sup

f∈F
expλ

N∑
i=1

εif(xi)

)
, (18)

where λ > 0 is an arbitrary parameter. Then, we can use a “peeling” argument [8, 37] as follows.

The Rademacher complexity can be upper bounded as

NR̂S(F) = Eε sup
f(L),∥w∥2≤Bw

N∑
i=1

εiw⊤f(L)(xi)

≤ 1

λ
logEε sup

∥w∥2≤Bw

f(L−1),∥W(L)∥F
≤BL

exp

(
λ

N∑
i=1

εiw⊤σ

(
W(L) ∗M f(L−1)(xi)

))

≤ 1

λ
logEε sup

f(L−1)

∥W(L)∥F
≤BL

exp

(
Bwλ

∥∥∥∥∥
N∑
i=1

εiσ

(
W(L) ∗M f(L−1)(xi)

)∥∥∥∥∥
F

)

≤ 1

λ
log

2 · Eε sup
f(L−2)

∥W(L−1)∥F
≤BL−1

exp

(
BwBLλ

∥∥∥∥∥
N∑
i=1

εi

(
W(L−1) ∗M f(L−2)(xi)

)∥∥∥∥∥
F

)
≤ · · ·

≤ 1

λ
log

2L−1 · Eε sup
∥W(1)∥F

≤B1

exp

(
Bw

L∏
l=2

Blλ

∥∥∥∥∥
N∑
i=1

εi

(
W(1) ∗M f(0)(xi)

)∥∥∥∥∥
F

)
≤ 1

λ
log

(
2L · Eε exp

(
Bw

L∏
l=1

Blλ

∥∥∥∥∥
N∑
i=1

εixi

∥∥∥∥∥
F

))
.

(19)
Letting BW = Bw

∏L
l=1 Bl, define a random variable

Z = BW ·

∥∥∥∥∥
N∑
i=1

εixi

∥∥∥∥∥
F

8This is a natural consequence of (A.2) in Assumption 2. See Eq. (7).
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as a function of random variables {εi}i. Then

1

λ
log
(
2L · E expλZ

)
=

L log 2

λ
+

1

λ
log
(
E expλ(Z − EZ)

)
+ EZ. (20)

By Jensen’s inequlity, EZ can be upper bounded by

EZ = BWE

∥∥∥∥∥
N∑
i=1

εixi

∥∥∥∥∥
F

≤ BW

√√√√E

∥∥∥∥∥
N∑
i=1

εixi

∥∥∥∥∥
2

F

= BW

√√√√√Eε

 N∑
i,j=1

εiεj(vec(xi))⊤(vec(xj))


= BW

√√√√ N∑
i=1

∥xi∥
2
F.

To handle the log
(
E expλ(Z − EZ)

)
term in Eq. (20) , note that Z is a deterministic function of the

i.i.d. random variables {εi}i, and satisfies

Z(ε1, · · · , εi, · · · , εm)− Z(ε1, · · · ,−εi, · · · , εm) ≤ 2BW ∥xi∥F .

This means that Z satisfies a bounded-difference condition , which by the proof of [5, Theorem 6.2],
implies that Z is sub-Gaussian, with the variance factor

v =
1

4
(2BW ∥xi∥F)

2 = B2
W

N∑
i=1

∥xi∥
2
F .

and satisfies

1

λ
log
(
E expλ(Z − EZ)

)
≤ 1

λ

λ2B2
W
∑N

i=1 ∥xi∥
2
F

2
=

λB2
W
∑N

i=1 ∥xi∥
2
F

2
.

Choosing λ =
√
2L log 2

BW

√∑N
i=1∥xi∥2

F

and using the above inequality, we get that Eq. (19) can be upper

bounded as follows

1

λ
log
(
2L · E expλZ

)
≤ EZ +

√
2L log 2BW

√√√√ N∑
i=1

∥xi∥
2
F

≤ (
√
2L log 2 + 1)BW

√√√√ N∑
i=1

∥xi∥
2
F.

Further applying Lemma 29 completes the proof.

C.2 Adversarial Generalization Bound for t-NNs

Proof of Theorem 5. According to Theorem 2 and Eq. (4) in Ref. [3], the adversarial generalization
gap of ℓ ◦ f for any f ∈ F with Lℓ-Lipschitz continuous loss function ℓ satisfying Assumption 2 can
be upper bounded by LℓR̂S(F

adv), where R̂S(F
adv) is the empirical Rademacher complexity of the

adversarial version Fadv of the function set F defined as follows

Fadv := {f̃ : (x, y) 7→ min
Ra(x−x′)≤ξ

yf(x′)
∣∣ f ∈ F}. (21)

To bound R̂S(F
adv), we use the Dudley’s inequality (Lemma 31) which requires to compute the

covering number of Fadv.

Let Cl be the δl-covering of {W(l) |
∥∥∥W(l)

∥∥∥
F
≤ Bl}, ∀l = 1, · · · , L. Consider the following subset

of F whose t-matrix weights are all in Cl:

Fc :=
{
fc : x 7→ fWc(x) | Wc = (w,W(1)

c , · · · ,W(L)
c ), W(l)

c ∈ Cl

}
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with adversarial version

Fadv
c :=

{
f̃c : (x, y) 7→ inf

Ra(x−x′)≤ξ
yfc(x′) | fc ∈ Fc

}
.

For all f̃ ∈ Fadv, we need to find the smallest distance to Fadv
c , i.e. we need to calculate

sup
f̃∈Fadv

inf
f̃c∈Fadv

c

∥∥∥f̃ − f̃c

∥∥∥
S
.

For all (xi, yi) ∈ S, given f̃ and f̃c with
∥∥∥W(l) − W(l)

c

∥∥∥
F
≤ δl, l = 1, · · · , L, consider

|f̃(xi, yi)− f̃c(xi, yi)| =
∣∣∣∣ inf
Ra(x−x′)≤ξ

yif(x′i)− inf
Ra(x−x′)≤ξ

yifc(x′
i)

∣∣∣∣ .
Letting xf

i = arginfRa(xi−x′i)≤ξ yif(x′i) and xci = arginfRa(xi−x′i)≤ξ yifc(x′i), we have

|f̃(xi, yi)− f̃c(xi, yi)| = |yif(xf
i )− yifc(xci )|.

Let

xξi =

{
xci if yif(xf

i ) ≥ yifc(xci )

xf
i if yif(xc

i ) < yifc(xci )
.

Then,

|f̃(xi, yi)− f̃c(xi, yi)| = |yif(xf
i )− yifc(xgi )| ≤ |yif(xξi )− yifc(xξi )| = |f(xξ

i )− fc(xξ
i )|.

Let gl(xδ) = w⊤vec

(
σ(W(L)

c ∗M σ(W(L−1)
c ∗M · · ·∗M σ(W(l+1)

c ∗M σ(W(l)∗M · · ·∗M σ(W(1)∗M

xδ) · · · )))
)

and g0(xδ) = fc(xδ). Then, we have

|f(xξ
i )− fc(xξ

i )| ≤
L∑

l=1

|gl(xξi )− gl−1(xξi )|.

We can see that∥∥∥σ(W(l) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · ))
∥∥∥

F
≤

l∏
l′=1

∥∥∥W(l′)
∥∥∥

F

∥∥∥xξi
∥∥∥

F
≤

l∏
l′=1

BlBx,Ra,ξ,

and∥∥∥σ(W(l+1)
c ∗M σ(W(l) ∗M · · · ∗M σ(W(1) ∗M xξ

i ) · · · ))− σ(W(l+1) ∗M σ(W(l) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · ))
∥∥∥

F

≤
∥∥∥W(l+1)

c ∗M σ(W(l) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · )− W(l+1) ∗M σ(W(l) ∗M · · · ∗M σ(W(1) ∗M xξ
i ) · · · )

∥∥∥
F

≤
∥∥∥(W(l+1)

c − W(l+1)) ∗M σ(W(l) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · )
∥∥∥

F

≤
∥∥∥W(l+1)

c − W(l+1)
∥∥∥

F

∥∥∥σ(W(l) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · )
∥∥∥

F

≤ δl ·
l−1∏
l′=1

Bl′Bx,Ra,ξ.

(22)
Then, we have

|gl(xξ
i )− gl−1(xξi )| ≤ δl ·Bw

∏
l′ ̸=l

Bl′Bx,Ra,ξ =
δlBf̃

Bl
,

where Bf̃ is given in Lemma 39.
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Letting
δlBf̃

Bl
= ϵ

L it gives

sup
f̃∈Fadv

inf
f̃c∈Fadv

c

∥∥∥f̃ − f̃c

∥∥∥
S
≤

L−1∑
l=1

|gl(xξi )− gl−1(xξ
i )| ≤ ϵ.

Then, Fadv
c is an ϵ-covering of Fadv. We further proceed by computing the ϵ-covering number of Fadv

as follows:

N(Fadv, ∥·∥S , ϵ) ≤ |Fadv
c | =

L∏
l=1

|Cl| ≤
L∏

l=1

(
3Bl

δl

)cdl−1dl

≤
(
3LBf̃

ϵ

)∑L
l=1 cdl−1dl

.

where the second inequality is due to Lemma 32.

Then, we use Dudley’s integral in Lemma 31 to upper bound R̂S(F
adv) as follows

R̂S(F
adv) ≤ inf

δ>0

(
8δ +

12√
N

∫ Df̃/2

δ

√
logN(Fadv, ∥·∥S , ϵ)dϵ

)

≤ inf
δ>0

8δ +
12√
N

∫ Df̃/2

δ

√√√√( L∑
l=1

cdl−1dl
)
log
(
3LBf̃/(ϵ)

)
dϵ


= inf

δ>0

8δ +
12Df̃

√∑L
l=1 cdl−1dl

√
N

∫ 1/2

δ/Df̃

√
log
(
3L/(2t)

)
dt

 ,

where the diameter Df̃ of Fadv is given in Lemma 40 and we can find from Lemma 40 that Df̃ = 2Bf̃

in our setting.

Following Ref. [55], let δ → 0, and use integration by part, we obtain
∫ 1/2

0

√
log
(
3L/(2t)

)
dt ≤

√
log 3L. Hence, we have

R̂S(F
adv) ≤

24Bw
∏L

l=1 Bl

(√∑L
l=1 cdl−1dl

)
Bx,Ra,ξ

√
N

,

and the proof can be completed by using Lemma 29.

C.3 Generalization Bound under Exact Low-tubal-rank Parameterization

Proof of Theorem 6. The idea is similar to the proof of Theorem 5. According to Theorem 2 and
Eq. (4) in Ref. [3], the adversarial generalization gap of ℓ ◦ f for any f ∈ Fr with Lℓ-Lipschitz
continuous loss function ℓ satisfying Assumption 2 can be upper bounded by LℓR̂S(F

adv
r ), where

R̂S(F
adv
r ) is the empirical Rademacher complexity of the adversarial version Fadv

r of function set Fr
defined as follows

Fadv
r := {f̃ : (x, y) 7→ min

Ra(x−x′)≤ξ
yf(x′)

∣∣ f ∈ Fr}. (23)

To bound R̂S(F
adv
r ), we first use the Dudley’s inequality (Lemma 31) and compute the covering

number of Fadv
r .

Let Cl be the δl-covering of {W(l) |
∥∥∥W(l)

∥∥∥
F
≤ Bl and rt(W(l)) ≤ rl}, ∀l = 1, · · · , L. Consider

the following subset of Fr whose t-matrix weights are all in Cl:

Fc :=
{
fc : x 7→ f(x;Wc) | Wc = (w,W(1)

c , · · · ,W(L)
c ), W(l)

c ∈ Cl

}
with adversarial version

Fadv
c :=

{
f̃c : (x, y) 7→ inf

Ra(x−x′)≤ξ
yfc(x′) | fc ∈ Fc

}
.
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For all f̃ ∈ Fadv
r , we need to find the smallest distance to Fadv

c , i.e. we need to calculate

sup
f̃∈Fadv

r

inf
f̃c∈Fadv

c

∥∥∥f̃ − f̃c

∥∥∥
S
.

For all (xi, yi) ∈ S, given f̃ and f̃c with
∥∥∥W(l) − W(l)

c

∥∥∥
F
≤ δl, l = 1, · · · , L, consider

|f̃(xi, yi)− f̃c(xi, yi)| =
∣∣∣∣ inf
Ra(x−x′)≤ξ

yif(x′i)− inf
Ra(x−x′)≤ξ

yifc(x′
i)

∣∣∣∣ .
Letting xf

i = arginfRa(xi−x′i)≤ξ yif(x′i) and xci = arginfRa(xi−x′i)≤ξ yifc(x′i), we have

|f̃(xi, yi)− f̃c(xi, yi)| = |yif(xf
i )− yifc(xci )|.

Let

xξi =

{
xci if yif(xf

i ) ≥ yifc(xci )

xf
i if yif(xc

i ) < yifc(xci )
Then,

|f̃(xi, yi)− f̃c(xi, yi)| = |yif(xf
i )− yifc(xgi )| ≤ |yif(xξi )− yifc(xξi )| = |f(xξ

i )− fc(xξ
i )|.

Let gl(xδ) = w⊤vec

(
σ(W(L)

c ∗M σ(W(L−1)
c ∗M · · ·∗M σ(W(l+1)

c ∗M σ(W(l)∗M · · ·∗M σ(W(1)∗M

xδ) · · · )))
)

and g0(xδ) = fc(xδ). Then, we have

|f(xξ
i )− fc(xξ

i )| ≤
L∑

l=1

|gl(xξi )− gl−1(xξi )|.

We can see that∥∥∥σ(W(l) ∗M · · · ∗M σ(W(1) ∗M xξ
i ) · · · ))

∥∥∥
F
≤

l∏
l′=1

∥∥∥W(l′)
∥∥∥

F

∥∥∥xξi
∥∥∥

F
≤

l∏
l′=1

BlBx,Ra,ξ

and∥∥∥σ(W(l+1)
c ∗M σ(W(l) ∗M · · · ∗M σ(W(1) ∗M xξ

i ) · · · ))− σ(W(l+1) ∗M σ(W(l) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · ))
∥∥∥

F

≤
∥∥∥W(l+1)

c ∗M σ(W(l) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · )− W(l+1) ∗M σ(W(l) ∗M · · · ∗M σ(W(1) ∗M xξ
i ) · · · )

∥∥∥
F

≤
∥∥∥(W(l+1)

c − W(l+1)) ∗M σ(W(l) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · )
∥∥∥

F

≤
∥∥∥W(l+1)

c − W(l+1)
∥∥∥

F

∥∥∥σ(W(l) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · )
∥∥∥

F

≤ δl ·
l−1∏
l′=1

Bl′Bx,Ra,ξ.

Then, we have

|gl(xξ
i )− gl−1(xξi )| ≤ δl ·Bw

∏
l′ ̸=l

Bl′Bx,Ra,ξ =
δlBf̃

Bl
.

Letting
δlBf̃

Bl
= ϵ

L gives

sup
f̃∈Fadv

r

inf
f̃c∈Fadv

c

∥∥∥f̃ − f̃c

∥∥∥
S
≤

L−1∑
l=1

|gl(xξi )− gl−1(xξ
i )| ≤ ϵ.
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Then, Fadv
c is an ϵ-covering of Fadv

r . We further proceed by computing the ϵ-covering number of Fadv
r

as follows:

N(Fadv
r , ∥·∥S , ϵ) ≤ |Fadv

c | =
L∏

l=1

|Cl|
(i

≤
L∏

l=1

(
9Bl

δl

)crl(dl−1+dl+1)

≤
(
9LBf̃

ϵ

)∑L
l=1 crl(dl−1+dl+1)

,

where the inequality (i) holds due to Lemma 33.

Then, we use Dudley’s integral to upper bound R̂S(F
adv
r ) as follows

R̂S(F
adv
r ) ≤ inf

δ>0

(
8δ +

12√
N

∫ Df̃/2

δ

√
logN(Fadv

r , ∥·∥S , ϵ)dϵ

)

≤ inf
δ>0

8δ +
12√
N

∫ Df̃/2

δ

√√√√ L∑
l=1

crl(dl−1 + dl + 1) log
(
9LBf̃/ϵ

)
dϵ


= inf

δ>0

8δ +
12Df̃

√∑L
l=1 crl(dl−1 + dl + 1)

√
N

∫ 1/2

δ/Df̃

√
log
(
9L/(2t)

)
dt

 ,

where the diameter Df̃ of Fadv is given in Lemma 40 and we have Df̃ = 2Bf̃ . Following Ref. [55],

let δ → 0, and use interation by part, we obtain
∫ 1/2

0

√
log
(
9L/(2t)

)
dt ≤

√
log 9L. Further applying

Lemma 29 completes the proof.

D Implicit bias towards low-rankness in the transformed domain

Recent research has shown that GF maximizes the margin of homogeneous networks during standard
training, which leads to an implicit bias towards margin maximization [16, 30]. Moreover, it has
been demonstrated that this implicit bias also extends to adversarial margin maximization during
adversarial training of multi-homogeneous fully connected neural networks with exponential loss
[29]. Our analysis builds on these findings by showing that this implicit bias also holds for adversarial
training of t-NNs when the adversarial perturbation is scale invariant [29].

First, it is straightforward to see that any t-NN f ∈ F is homogeneous as follows

f(x; aW) = aL+1f(x;W), (24)

for any positive constant a.
Lemma 18 (Euler’s theorem on t-NNs). For any t-NN f ∈ F, we have〈

∂f(x;W)

∂W
,W
〉

= (L+ 1)f(x;W). (25)

Proof. By taking derivatives with respect to a on both sides of Eq. (24), we obtain〈
∂f(x; aW)

∂(aW)
,
d(aW)

da

〉
= (L+ 1)aLf(x;W),

which immediately results in Eq. (25).

In this section, we follow the setting of Ref. [29] where the adversarial perturbation δi is scale
invariant. As Lemma 7 shows, l2-FGM [34], FGSM [9], l2-PGD and l∞-PGD [31] perturbations for
the t-NNs are all scale invariant.

Proof of Lemma 7. Note that by taking derivatives with respect to x on both sides of Eq. (24), we
have

∂f(x; aW)

∂x
= aL+1 ∂f(x;W)

∂x
, (26)

Therefore, any ∂f(x;W)
∂x is positive homogeneous. Then, for any non-zero z = ∂f(x;W)

∂x , we prove
Lemma 7 in the following cases:
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• l2-FGM perturbtion [34]. The l2-FGM perturbtion is defined as δFGM(W) =

ξyℓ̃′z
∥∥∥yℓ̃′z∥∥∥−1

F
= −ξyz∥z∥−1

F , because ℓ̃′ ≤ 0. Using Eq. (26), we have

δFGM(aW) = −ξy · aL+1z
∥aL+1z∥F

= δFGM(W).

• FGSM perturbations [9]. The FGSM perturbtion is taken as δFSGM(W) = ξsgn(ξyℓ̃′z).
Using Eq. (26), we have

δFSGM(aW) = ξsgn(ξyℓ̃′aL+1z) = δFSGM(W).

• l2-PGD perturbation [31]. The l2-PGD perturbtion is taken as

δj+1
PGD(W) = PB2(0,ξ)

[
δjPGD(W)− ρ

ξyz
∥z∥F

]
, (27)

where j is the attack step, PB2(ξ) is the projector onto l2-norm ball of radius ξ, and ρ is the
learning rate. We prove by induction. For j = 0, we have

δ1PGD(aW) = PB2(0,ξ)

[
−ρ

ξyaL+1z
∥aL+1z∥F

]
= δ1PGD(W).

If we have δjPGD(aW) = δjPGD(W), then for j + 1, we have

δj+1
PGD(aW) = PB2(0,ξ)

[
δjPGD(aW)− ρ

ξyaL+1z
∥aL+1z∥F

]
= PB2(0,ξ)

[
δjPGD(W)− ρ

ξyz
∥z∥F

]
= δj+1

PGD(W).

(28)

• l∞-PGD perturbation [31]. Since the scale invariance of this pertubation can be proved very
similarly to that of l2-PGD perturbations, we just omit it.

For an original example xi, the margin for its adversarial example xi + δi(W) is defined as q̃i(W) :=
yif(xi + δi(W);W); for sample S = {(xi, yi)}Ni=1, the margin for the N corresponding examples
is denoted by q̃m(W) where m ∈ argminm=1,··· ,N yif(xi + δi(W) : W).

Let ρ = ∥W∥F for simplicity. We use the normalized parameter Ŵ := W/ρ to denote the direction of
the weights W. We introduce the normalized margin of (xi, yi) as q̂i(W) := q̃i(Ŵ) = q̃i(W)ρ−(L+1),
and similarly define the normalized robust margin of the sample S as q̂m(W) := q̃m(Ŵ) =
q̃m(W)ρ−(L+1).

Note that the adversarial empirical risk can be written as L̂adv = 1
N

∑N
i=1 e

−f(q̃i(W)). Motivated by
[30] which uses the LogSumExp function to smoothly approximate the normalized standard margin,
we define the smoothed normalized margin γ̃ as follows.

Definition 11 (Smoothed normalized robust margin). For a loss function9 ℓ satisfying Assumption 2,
the smoothed normalized robust margin is defined as

γ̃(W) :=
ℓ−1(N L̂adv)

ρL+1
=

g( 1
NL̂adv )

ρL+1
=

g
(
− log

(∑N
i=1 e

−f(q̃i(W))
))

ρL+1
. (29)

9In this paper, the loss function satisfying Assumption 2 belongs to the class of margin-based loss function
[42, Definition 2.24]. That is, although the loss function ℓ(f(x), y) is a binary function of f(x) and y, there is a
unary function l(·), such that ℓ(f(x), y) = l(yf(x)). With a slight abuse of notation, we simply use ℓ−1(·) to
denote l−1(·), i.e., if z = ℓ(f(x), y) then we have ℓ−1(z) = yf(x).
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To better understand the relation between the normalized sample robust margin q̂m and the smoothed
normalized robust margin γ̃, we provide the following lemma.
Lemma 19 (Adapted from Lemma A.5 of Ref. [30]). Under Assumption 2, we have the following
properties about the robust marin q̃m:

(a) f(q̃m)− logN ≤ log 1
NL̂adv ≤ f(q̃m).

(b) If log 1
NL̂adv > f(bf), then there exists ξ ∈ (f(q̃m)− logN, f(q̃m)) ∩ (bf,∞) such that

q̂m − ρ−(L+1)g′(ξ) logN ≤ γ̃ ≤ q̂m,

which shows the smoothed normalized margin γ̃ is a rough approximation of the normalized
robust margin q̂m.

(c) For a sequence {Ws | s ∈ N}, if L̂adv(Ws) → 0, then |γ̃(Ws)− q̂m(Ws)| → 0.

D.1 Convergence to KKT points of Euclidean norm minimization in direction

The KKT condition for the optimization problem Eq. (14) are

W −
N∑
i=1

λi
∂q̂i
∂W

= 0,

λi(q̃i − 1) = 0, i = 1, · · · , N,

(30)

where the dual variables λi ≥ 0. We define the approximate KKT point in a similar manner to
Ref. [29] as follows.
Definition 12 (Approximate KKT points). The (κ, ι)-approximate KKT points of the optimization
problem are those feasible points which satisfy the following two conditions:

Condition (I):

∥∥∥∥∥W −
N∑
i=1

λi
∂q̃i
∂W

∥∥∥∥∥
F

≤ κ,

Condition (II): λi(q̃i − 1) ≤ ι, i = 1, · · · , N,

(31)

where κ, ι > 0 and λi ≥ 0.

Proof of Lemma 9. Let W̌ := W/q̃
1

L+1
m denote the scaled version of W(t) such that the sample

robust margin q̃m = 1. Thus we have f(x;W) = q̃mf(x; W̌) by homogeneity of t-NNs. According
to Lemma 18, we further have

(L+ 1)f(x;W) =

〈
W,

∂f(x;W)

∂W

〉
, (L+ 1)f(x; W̌) =

〈
W̌,

∂f(x; W̌)

∂W̌

〉
,

leading to 〈
W̌,

∂f(x; W̌)

∂W̌

〉
=

1

q̂
L/(L+1)
m

∂f(x;W)

∂W
.

We will prove that W̌ is a (κ, ι)-KKT point of Problem (14) with (κ, ι) → 0.

Let Ẇ(t) := dW(t)
dt for simplicity. By the chain rule and GF update rule, we have

Ẇ =
1

N

N∑
i=1

e−f(q̃i)f′(q̃i)
∂q̃i
∂W

.

Using the homogeneity of t-NNs, we obtain

1

2

d∥W∥2F
dt

=
〈

Ẇ,W
〉
=

〈
1

N

N∑
i=1

e−f(q̃i)f′(q̃i)
∂q̃i
∂W

,W

〉
= (L+ 1) · 1

N

N∑
i=1

e−f(q̃i)f′(q̃i)q̃i.

By letting ν(t) =
∑N

i=1 e
−f(q̃i)f′(q̃i)q̃i, we obtain

〈
Ẇ,W

〉
= (L+ 1)ν/N .
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We construct the dual variables λi in Problem (31) in terms of Ẇ as follows

λi(t) :=
1

N
q̃1−2/(L+1)
m · ρe−f(q̃i)f′(q̃i)

∥∥∥Ẇ
∥∥∥−1

F
. (32)

To prove W̌ is a (κ, ι)-KKT point of Problem (14), we need to check the conditions in Problem (31).

Step 1: Check Condition (I) of the (κ, ι)-approximate KKT conditions. We check the Condition
(I) in Problem (31) for all t > t0 as follows∥∥∥∥∥W̌ −

N∑
i=1

λi
∂q̃i(W̌)

∂W̌

∥∥∥∥∥
2

F

(i)
=

∥∥∥∥∥∥ W
q̃
1/(L+1)
m

− Ẇ∥∥∥Ẇ
∥∥∥

F

· ρ

q̃
1/(L+1)
m

∥∥∥∥∥∥
2

F

=
ρ2

q̃
2/(L+1)
m

∥∥∥∥∥∥ W
∥W∥F

− Ẇ∥∥∥Ẇ
∥∥∥

F

∥∥∥∥∥∥
2

F

(ii)
=

1

γ̃2/(L+1)

2− 2

〈
W

∥W∥F
,

Ẇ∥∥∥Ẇ
∥∥∥

F

〉
(iii)

≤ 2

γ̃(t0)2/(L+1)

1−

〈
W

∥W∥F
,

Ẇ∥∥∥Ẇ
∥∥∥

F

〉
:= κ2(t),

(33)

where equality (i) is obtained by using the definition that W̌ = W/q̃
1

L+1
m , the fact q̃i(W) =

yif(xi + δi(W);W) = yi · q̃mf(xi + δi(W̌); W̌) = q̃i(W̌) due to the scale invariance of the
adversarial perturbation δi(W) and the homogeneity of t-NN, and the chain rule in computing ∂q̃i

∂W as
follows

N∑
i=1

λi
∂q̃i(W̌)

∂W̌
=

N∑
i=1

λi

q̂
L

L+1
m

∂q̃i
∂W

=
∥∥∥Ẇ
∥∥∥−1

F

ρ

q̃
L

L+1
m

· 1

N

N∑
i=1

e−f(q̃i)f′(q̃i)
∂q̃i
∂W

=
Ẇ∥∥∥Ẇ
∥∥∥

F

ρ

q̃
L

L+1
m

.

In Eq. (33), equality (ii) holds by property (b) in Lemma 19; (iii) holds by the non-decreasing
property of γ̃(t) for all t ∈ [t0,∞) in Lemma 22.

Note that Eq. (33) indicates that κ(t) is in terms of the cosine of the angle between W(t) and Ẇ(t).
We can further obtain that κ(t) → 0 as t → ∞ by showing the angle between W(t) and Ẇ(t)
approximates 0 which was orignially observed by Ref. [30] for standard training10 on a fixed training
sample S.

Lemma 20 (Adapted from Lemma C.12 in Ref. [30]). Under Assumption 2 and Assumption 8
for t-NNs, the angle between W(t) and Ẇ(t) approximates 0 as t → ∞ along the trajectory of
adversarial training with scale invariant adversarial pertubations, i.e.,

lim
t→∞

〈
W(t)

∥W(t)∥F
,

Ẇ(t)∥∥∥Ẇ(t)
∥∥∥

F

〉
→ 1.

Note that according to Assumption 8 we have γ̃(t0) ≥ bfρ(t0)
−(L+1) which means γ̃(t0) cannot be

arbitrarily close to 0. Thus, by invoking Lemma 20 , we obtain that

lim
t→∞

κ2(t) = lim
t→∞

2

γ̃(t0)2/(L+1)

1−

〈
W

∥W∥F
,

Ẇ∥∥∥Ẇ
∥∥∥

F

〉 = 0. (34)

10The Lemma C.12 in [30] which was intended for standard training, can be safely extended to the adversarial
settings in this paper. This is because by our construction for adversarial training with scale invariant adversarial
perturbations, the adversarial traing margin are locally Lipschitz and the prediction function f(x + δ(W);W) is
positively homogeneous with respect to W.
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Step 2: Check Condition (II) of the (κ, ι)-approximate KKT conditions. We check the Condition
(II) in Problem (31) for all t > t0 as follows

N∑
i=1

λi(q̃i(W̌)− 1)
(i)
=

N∑
i=1

1

N
q̃1−2/(L+1)
m ρe−f(q̃i)f′(q̃i)

∥∥∥Ẇ
∥∥∥−1

F
· (q̃i(W)q̃−1

m − 1)

= ρ
∥∥∥Ẇ
∥∥∥−1

F
q̃−2/(L+1)
m · 1

N

N∑
i=1

e−f(q̃i)f′(q̃i)(q̃i − q̃m),

(35)

where (i) is due to the definition that W̌ = W/q̃
1

L+1
m and the fact that q̃i(W) = yif(xi+δi(W);W) =

yi · q̃mf(xi + δi(W̌); W̌) = q̃i(W̌) due to the scale invariance of the adversarial pertabation δi(W)
and the homogenouty of t-NN.

To upper bound Eq. (35), first note that
∥∥∥Ẇ
∥∥∥

F
≥
〈

Ẇ, Ŵ
〉
=
〈

1
N

∑N
i=1 e

−f(q̃i)f′(q̃i)
∂q̃i
∂W , Ŵ

〉
=

ρ−1(L+ 1)ν/N , in which ν can be further lower bounded as

ν
(i)

≥
g(log 1

NL̂adv )

g′(log 1
NL̂adv )

N L̂adv
(ii)

≥ 1

2K
log

1

N L̂adv
·N L̂adv

(iii)

≥ 1

2K
e−f(q̂m) log

1

N L̂adv
, (36)

where (i) is due to Lemma 23, (ii) holds because of Lemma 24, and (iii) uses N L̂adv =
∑

i e
−f(q̃i) ≥

e−f(q̃m). Combing Eq. (35) and Eq. (36) yields∑
i

λi(q̃i(W̌)− 1) ≤ 2Kq̃
−2/(L+1)
m ρ2

(L+ 1) log 1
NL̂adv

N∑
i=1

ef(q̃m)−f(q̃i)f′(q̃i)(q̃i − q̃m)

(i)

≥ 2Kγ̃−2/(L+1)

(L+ 1) log 1
NL̂adv

N∑
i=1

ef(q̃m)−f(q̃i)f′(q̃i)(q̃i − q̃m),

(37)

where (i) uses q̃−2/(L+1)
m ρ2 ≤ γ̃−2/(L+1) by Lemma 19.

In Eq. (37), if q̃i > q̃m, then there exists an ξi ∈ (q̃m, q̃i) such that f(q̃m)− f(q̃i) = f′(ξi)(q̃i − q̃m)
by the mean value theorem. Further, we know that f′(q̃i) ≤ K⌈log2(q̃i/ξi)⌉f′(ξi) by Assumption 2.
Note that ⌈log2(q̃i/ξi)⌉ ≤ log2(2B0ρ

L+1/q̃m) ≤ log2(2B0/γ̃), where

B0(t) : = sup
{
q̃iρ

−(L+1) | W ̸= 0
}
= sup {q̃i | ∥W∥F = 1} .

Then, for all t > t0, we have∑
i

λi(q̃i(W̌)− 1) ≤ 2Kγ̃−2/(L+1)ρ2

(L+ 1) log 1
NL̂adv

K log2(2B0/γ̃)
∑

i:q̃i ̸=q̃m

ef
′(ξi)(q̃i−q̃m)f′(ξi)(q̃i − q̃m)

(i)

≤ 2Kγ̃−2/(L+1)

(L+ 1) log 1
NL̂adv

K log2(2B0/γ̃) ·Ne

(ii)

≤ 2KNeγ̃−2/(L+1)

(L+ 1) log 1
NL̂adv

(
B0

γ̃

)log2(2K)

(iii)

≤ 2KNe

(L+ 1)γ̃(t0)−2/(L+1)

(
B0

γ̃(t0)

)log2(2K)

· log 1

N L̂adv

:= ι(t),

(38)

where (i) holds because the function x 7→ e−zz on (0,∞) has maximum e at z = 1; (ii) is due to
alogc b = blogc a; (iii) holds by the non-decreasing property of γ̃(t) for all t ∈ [t0,∞) in Lemma 22.
Note that by Lemma 22, we have limt→∞ L̂adv(t) = 0, which further yields

lim
t→∞

ι(t) = 0. (39)

Step 3: Check the condition for convergence to KKT point. According to Eq. (34) and Eq. (39),
the limit point of W̌(t) satisfy the (κ, ι)-approximate KKT conditions of Problem 14 along the
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trajectory of adversarial training of t-NN with scale invariant adversarial perturbations where
limt→∞(κ(t), ι(t)) = 0. Then, we need to check the condition between (κ, ι)-approximate points
and KKT points.

According to Ref. [30], the KKT condition becomes a necessary condition for global optimality of
Problem (14) when the Mangasarian-Fromovitz Constraint Qualification (MFCQ) [33] is satisfied. It
is straightforward to see that Problem (14) satisfies the MFCQ condition, i.e.,〈

∂q̃i
∂W

,W
〉

= (L+ 1)q̃i ≥ 0.

at every feasible point W. Then restating the theorem in Ref. [7] regarding the relation between
(κ, ι)-approximate KKT point and KKT point in our setting yields the following result.

Theorem 21 (Theorem 3.6 in Ref. [7] and Theorem C.4 in Ref. [30]). Let
{W̌(j) | j ∈ N} be a sequence of feasible point of Problem (14), and W̌(j) is a (κ(j), ι(j))-
approximate KKT point for all j with two sequences11 {κ(j) > 0 | j ∈ N} and {ι(j) > 0 | j ∈ N}
and limj→∞(κ(j), ι(j)) = 0. If limj→∞ W̌(j) = W̌∗

, and MFCQ holds at W̌∗
, then W̌∗

is a KKT
point of Problem (14).

Recall that W̌ = W/q̃
1

L+1
m . Then, it can be concluded that the limit point of {W(t)/ ∥W(t)∥F : t > 0}

of GF for empirical adversarial risk L̂adv(W) := 1
N

∑N
i=1 e

−f(yif(xi+δi(W);W)) with scale invariant
perturbations δi is aligned with the direction of a KKT point of Problem (14).

D.2 Technical Lemmas for Proving Lemma 9

Lemma 22. Under Assumption 2, we have the following statements for GF-based adversarial
training in Eq. (13) with scale invariant perturbations:

(I). For a.e. t ∈ (t0,∞), the smoothed normalized robust margin γ̃(W(t)) defined in Eq. (29) is
non-decreasing, i.e.,

dγ̃(W(t))

dt
≥ 0.

(II). The adversarial objective L̂adv(W) := 1
N

∑N
i=1 e

−f(yif(xi+δi(W);W)) with scale invariant
pertubations δi converges to zero as t → ∞, i.e.,

lim
t→∞

L̂adv(W(t)) = 0, (40)

and the Euclidean norm of the t-NN weights diverges, i.e.,

lim
t→∞

∥W(t)∥F = ∞. (41)

Proof of Lemma 22. We follow the idea of Ref. [30] to prove Lemma 22 as follows.

Step 1: Prove Part (I). We prove (I) by showing the following results for all t ≥ t0,

dlog ρ

dt
> 0 and

dlog γ̃

dt
≥ (L+ 1)

(
dlog ρ

dt

)−1
∥∥∥∥∥dŴ
dt

∥∥∥∥∥
F

.

Recalling the quantity ν(t) =
∑N

i=1 e
−f(q̃i)f(q̃i)q̃i, by chain rule we obtain

dlog ρ

dt
=

1

2ρ2
dρ2

dt
=

1

ρ2

〈
1

N

N∑
i=1

e−f(q̃i)f′(q̃i)
∂q̃i
∂W

,W

〉
=

ν(L+ 1)

ρ2N

(i)

≥ 0,

where (i) holds due to Lemma 23.

11Using the same method to [30, Lemma C.12], we can construct the two sequences, i.e., {κ(j) > 0 | j ∈ N}
and {ι(j) > 0 | j ∈ N}, based on Eq. (33) and Eq. (35).
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By the chaining rule, we also have

dlog γ̃

dt
=

d

dt

(
log

(
log

1

N L̂adv

)
− (L+ 1) log ρ

)
=

g′(log 1
NL̂adv )

g(log 1
NL̂adv )

· 1

N L̂adv
·

(
−dN L̂adv

dt

)
− (L+ 1)2 · ν(t)

ρ2

=
1

ν(t)
·

(
−dN L̂adv

dt

)
− (L+ 1)2 · ν(t)

ρ2

=
1

ν(t)
·

(
−dN L̂adv

dt
− (L+ 1)2 · ν(t)

2

ρ2

)
.

Note that according to Eq. (13), we have

dL̂adv

dt
=

〈
∂L̂adv

∂W
,
dW
dt

〉
= −

∥∥∥∥dW
dt

∥∥∥∥2
F
,

for t ≥ 0 almost everywhere. One the other hand, we have

Lν(t) =

〈
W,

dW
dt

〉
.

Thus, we obtain

dlog γ̃

dt
≥ 1

Nν

(∥∥∥∥dW
dt

∥∥∥∥2
F
−
〈

Ŵ,
dW
dt

〉2
)

≥ 1

Nν(t)

∥∥∥∥(I − vec(Ŵ)vec(Ŵ)⊤)vec(
dW
dt

)

∥∥∥∥2 .
By the chain rule,

dŴ
dt

=
1

ρ
(I − vec(Ŵ)vec(Ŵ)⊤)vec(

dW
dt

),

for t > 0 allmost everywhere. So, we have

d

dt
log γ̃ ≥ ρ2

Nν(t)

∥∥∥∥∥dŴ
dt

∥∥∥∥∥
2

F

= (L+ 1)

(
d

dt
log ρ

)−1
∥∥∥∥∥dŴ
dt

∥∥∥∥∥
2

F

≥ 0.

Step 2: Prove Part (II). Motivated by [30, Lemma B.8], we prove (II) as follows. First, note that

−dL̂adv

dt
=

∥∥∥∥dW
dt

∥∥∥∥2
F
≥
〈

Ŵ, Ẇ
〉2

= ρ−2N−2(L+ 1)2ν2.

By lower bounding ν with Lemma 23 and replacing ρ with (g(log 1
NL̂adv )/γ̃)

1/(L+1) by the definition
smoothed normalized robust margin of γ̃ in Eq. (29), we obtain

−dL̂adv

dt
≥ (L+ 1)2

(
g(log 1

NL̂adv )

g′(log 1
NL̂adv )

N L̂adv

)2

·

(
γ̃

g(log 1
NL̂adv )

)2/(L+1)

≥ (L+ 1)2γ̃(t0)
2/(L+1) ·

g(log 1
NL̂adv )

2−2/(L+1)

g′(log 1
NL̂adv )

2
· (N L̂adv)2,

where the last inequality holds due to the non-decreasing property of γ̃ in Part (I). Then, we obtain

g′(log 1
NL̂adv )

2

g(log 1
NL̂adv )

2−2/(L+1)
· d

dt

1

N L̂adv
≥ (L+ 1)2γ̃(t0)

2/(L+1).

By integrating on both sides from t0 to t, we obtain

G

(
1

N L̂adv

)
≥ (L+ 1)2γ̃(t0)

2/(L+1)(t− t0), (42)
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where

G(z) :=

∫ z

1/(NL̂adv(t0))

g′(log u)2

g(log u)2−2/(L+1)
du.

We use proof by contradiction to show the empirical training risk L̂adv converges to zero. Note that
1

(NL̂adv)
is non-decreasing. If 1

(NL̂adv)
does not grow to ∞, then neither does G( 1

(NL̂adv)
). But the

RHS of Eq. (42) grows to ∞, which is a contradiction. Therefore, limt→∞ N L̂adv = 0. Hence
limt→∞ L̂adv(t) = 0 and limt→∞ ρ(t) = ∞.

Lemma 23 (Adapted from Lemma B.5 of Ref. [30]). The quantity ν =
∑

i e
−f(q̃i)f(q̃i)q̃i has a

lower bound for all t ∈ (t0,∞),

ν(t) ≥
g(log 1

NL̂adv )

g′(log 1
NL̂adv )

N L̂adv. (43)

Lemma 24 (Lemma D.1 of Ref. [30]). For f(·) and g(·) in Assumption 2, we have

g(x)

g′(x)
∈
[

1

2K
x, 2Kx

]
,∀x ∈ [bg,∞) and

f(q)

f′(q)
∈
[

1

2K
q, 2Kq

]
,∀q ∈ [g(bg),∞).

D.3 Proof of Theorem 10

Note that the t-NN g(x;V) with weights V = (V(1), · · · ,V(J), v) in Theorem 6 has the following
structure

g(x;V) = v⊤vec(g(x))

g(x) = g(J)(x) ∈ RmJ×1×c

g(j)(x) = σ(V(j) ∗M g(j−1)(x)) ∈ Rmj×1×c, ∀j = 1, · · · , J
g(0)(x) = x.

Let α = ( 1
Bv

)
L−J
L+1 and β = ( 1

Bv
)−

J+1
L+1 , where L is a sufficiently large integer greater than J . We

then construct a t-NN h(x;H) of L t-product layers which perfectly realizes g(x;V). Specifically, we
construct h with weights H = (H(1), · · · ,H(L),h) satisfying the following equation

H = (αV(1), · · · , αV(J)︸ ︷︷ ︸
first J t-product layers

, βI, · · · , βI︸ ︷︷ ︸
last (L−J) t-product layers

, v),

or more clearly

h(x;V) = v⊤vec(h(x))

h(x) = h(L)(x) ∈ RmJ×1×c

h(l)(x) = σ(βI ∗M h(l−1)(x)) ∈ RmJ×1×c, ∀l = J + 1, · · · , L
h(j)(x) = σ(αV(j) ∗M h(j−1)(x)) ∈ Rmj×1×c, ∀j = 1, · · · , J
h(0)(x) = x,

where I is the t-identity tensor.

It is easy to prove that for any input x, the input and output of g(x;V) = h(x;H), it can also be
proved that

min
Ra(x−x′)≤ξ

yg(x′;V) = min
Ra(x−x′)≤ξ

yh(x′;H).

Therefore, h(x;H) can also robustly classify (xi, yi)
N
i=1 because g(x;V) can robustly classify

(xi, yi)Ni=1.

Then, we consider the class of over-parameterized t-NNs F = {f(x;W)} defined in Eq. (14) with
dimensionality of weight W(l) ∈ Rdl×dl−1×c safisfying dl ≫ maxj≤J{mj} for all l = 1, · · · , L.
Specifically, we construct f with weights

W = (W(1), · · · ,W(L),w),
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and structure
f(x;W) = w⊤vec(f(x))

f(x) = f(L)(x) ∈ RdL×1×c

f(l)(x) = σ(W(l) ∗M f(l−1)(x)) ∈ Rdl×1×c, ∀l = 1, · · · , L
f(0)(x) = x.

Note that according to our construction there is a function f(x;Wh) ∈ F with weights Wh =

(W(1)
h , · · · ,W(L)

h ,wh) satisfying

(W(l)
h )i1,i2,i3 =


(H(l))i1,i2,i3 if i1 ≤ ml, i2 ≤ ml−1, l ≤ J

(H(l))i1,i2,i3 if i1 ≤ mJ , i2 ≤ mJ , l = J + 1, · · · , L
0 otherwise

and

wi =

{
hi if i ≤ cmJ

0 otherwise
.

We can also see that h′(x + δ) = h(x + δ) for any x ∈ Rd×1×c and any δ satisfying Ra(δ) ≤ ξ.
Thus, we can say that the weight Wh of f(x;Wh) is a feasible solution to Problem (14), i.e.,

min
Ra(δi)≤ξ

yif(xi + δi;Wh) ≥ 1,∀i = 1, · · · , N.

Now consider the optimal solution W∗ = (W∗(1), · · · ,W∗(L),w∗) to Problem (14). Then according
to the optimility of W∗ and the feasibility of Wh to Problem 14, we have

∥W∗∥2F ≤ ∥Wh∥
2
F ≤ α2 ·B2

v · (J + 1) + β2 · (cmJ) · (L− J)

= B
2(J+1)
L+1

v (K + 1 + (cmJ)(L− J))
(44)

and
min

Ra(δi)≤ξ
yif(xi + δi;W∗) ≥ 1,∀i = 1, · · · , N. (45)

As there is an example (x∗, y∗) satisfying ∥x∗∥F ≤ 1 in the training set S = {(xi, yi)}Ni=1 ⊆
Rd×1×c × {±1}. Then according to Eq. (45), we have

y∗f(x∗;W∗) = y∗f(x∗ + 0;W∗) ≥ min
Ra(δ)≤ξ

y∗f(x∗ + δ;W∗) ≥ 1,

which means

1 ≤ f(x∗) ≤ ∥x∗∥F ∥w∗∥2
L∏

l=1

∥∥∥W∗(l)
∥∥∥

sp
≤ ∥w∗∥2

L∏
l=1

∥∥∥W∗(l)
∥∥∥

sp

≤

(
1

L+ 1

(
∥w∗∥2 +

L∑
l=1

∥∥∥W∗(l)
∥∥∥

sp

))1/(L+1)

indicating that
1

L+ 1

(
∥w∗∥2 +

L∑
l=1

∥∥∥W∗(l)
∥∥∥

sp

)
> 1.

On the other hand, according to Eq. (44) and Lemma 25, we have∥∥∥W∗(1)
∥∥∥

F
= · · · =

∥∥∥W∗(L)
∥∥∥

F
= ∥w∗∥2 ≤

(
1

(L+ 1)
B

2(J+1)
L+1

v (K + 1 + (cmJ)(L− J))

)1/2

.

Therefore, we obtain

1

L+ 1

∥w∗∥2
∥w∗∥2

+

L∑
l=1

∥∥∥W∗(l)
∥∥∥

sp∥∥∥W∗(l)
∥∥∥

F

 ≥
(

1

Bv

) J+1
L+1

√
L+ 1

(J + 1) + (cmJ)(L− J)
.
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Note that ∥∥∥W(l)
∥∥∥

F
=

∥∥∥∥W̃
∗(l)
M

∥∥∥∥
F

and
∥∥∥W(l)

∥∥∥
sp
=

∥∥∥∥W̃
∗(l)
M

∥∥∥∥ ,
where W̃

∗(l)
M denotes the M -block-diagonal matrix of weight tensor W∗(l). Then, we have

1

L

L∑
l=1

∥∥∥∥W̃
∗(l)
M

∥∥∥∥∥∥∥∥W̃
∗(l)
M

∥∥∥∥
F

≥
(
1 +

1

L

)(
1

Bv

) J+1
L+1

√
L+ 1

(J + 1) + (cmJ)(L− J)
− 1

L
.

Taking the reciprocal of both sides gives

L∑L
l=1

(
rstb(W̃

∗(l)
M )

)−1/2
≤ 1(

1 + 1
L

) (
1
Bv

) J+1
L+1

√
L+1

(J+1)+(cmJ )(L−J) −
1
L

.

Lemma 25. For every 1 ≤ i, j ≤ L, we have
∥∥∥W∗(i)

∥∥∥
F
=
∥∥∥W∗(j)

∥∥∥
F
= ∥w∗∥2.

Proof. Let 1 ≤ i < j ≤ L. For µ > 0, we define a t-NN fµ(x;V) with
weights V = (V(1), · · · ,VL, v) which are constructed from f(x;W∗) whose weights W∗ =

(W∗(1), · · · ,W∗(L),w∗) is an optimal solution to Problem (14). Specifically, the construction of
V = (V(1), · · · ,VL, v) is given as follows:

∀l = 1, · · · , L, V(l) =


W∗(l) if l ̸= i and 1 ̸= j

µW∗(i) if l = i

µ−1W∗(j) if 1 = j

.

Note that for every input example x and perturbation δ, fµ(x+ δ;V) = f(x+ δ;W∗), then V is also
feasible to Problem (14). Note that we have

d

dµ

(∥∥∥µW∗(i)
∥∥∥2

F
+
∥∥∥µ−1W∗(j)

∥∥∥2
F

)
= 2µ

∥∥∥W∗(i)
∥∥∥2

F
− 2µ−3

∥∥∥W∗(j)
∥∥∥2

F
.

When µ = 1 the above expression equals 2
∥∥∥W∗(i)

∥∥∥2
F
− 2

∥∥∥W∗(j)
∥∥∥2

F
. Hence, if

∥∥∥W∗(i)
∥∥∥

F
̸=∥∥∥W∗(j)

∥∥∥
F
, then the derivative at µ is non-zero, which leads to a contradiction to the optimality

of W∗ to Problem (14). Note that if we consider changing norms of W∗(i) and w instead of
W∗(i) and W∗(j), the same conclusion also holds. Thus, the optimality of W∗ strictly leads to∥∥∥W∗(i)

∥∥∥
F
=
∥∥∥W∗(j)

∥∥∥
F
= ∥w∗∥2.

E Generalization bound of approximately low-tubal-rank t-NNs

Proof of Theorem 12. Given a (δ, r)-approximately low-tubal-rank parameterized t-NN f(x;W) ∈
Fδ,r ⊂ Fδ,r, let g(x;Wr) ∈ Fr be its compressed version whose t-product layer weight tensors have
tubal-ranks upper bounded by r.

Step 1: Upper bound the adversarial empirical L2-distance between f and g. Consider function
g(x) = g(x;Wr) parameterized by Wr = (W(1)

r1
, · · · ,W(L)

rL
,w) as the function whose t-product

layer weights are low-tubal-rank approximations of f(x;W). Let f̃(x, y) = infRa(x−x′)≤ξ yf(x′) and
g̃(x, y) = infRa(x−x′)≤ξ yg(x′) denote the adversarial versions of f and g, respectively.

We first bound the adversarial empirical L2-distance between f and g as follows.

|f̃(xi, yi)− g̃(xi, yi)| = | inf
Ra(xi−x′i)≤ξ

yif(x′i)− inf
Ra(xi−x′i)≤ξ

yig(x′i)|.
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Letting xfi = arginfRa(xi−x′i)≤ξ yif(x′i) and xgi = arginfRa(xi−x′i)≤ξ yig(x′i), we have |f̃(xi, yi) −
g̃(xi, yi)| = |yif(xf

i )− yig(xgi )|. By letting

xξi =

{
xg
i if yif(xfi ) ≥ yig(xg

i )

xfi otherwise
,

we obtain

|f̃(xi, yi)− g̃(xi, yi)| = |yif(xf
i )− yig(xgi )| ≤ |yif(xξi )− yig(xξ

i )| = |f(xξi )− g(xξi )|.

Let hl(xξ) = w⊤vec

(
σ(W(L)

rl
∗M σ(W(L−1)

r−1 ∗M · · ·∗M σ(W(l+1)
r ∗M σ(W(l)∗M · · ·∗M σ(W(1)∗M

xξ) · · · )))
)

and h0(xξ) = g(xξ). Then, we have

|f(xξi )− g(xξi )| ≤
L∑

l=1

|hl(xξ
i )− hl−1(xξi )|.

We can see that for any l = 1, · · · , L:∥∥∥σ(W(l−1) ∗M · · · ∗M σ(W(1) ∗M xξ
i ) · · · ))

∥∥∥
F
≤

l−1∏
l′=1

∥∥∥W(l′)
∥∥∥

F

∥∥∥xξi
∥∥∥

F
≤

l−1∏
l′=1

∥∥∥W(l′)
∥∥∥

F
Bx,Ra,ξ,

and∥∥∥σ(W(l)
rl

∗M σ(W(l−1) ∗M · · · ∗M σ(W(1−1) ∗M xξi ) · · · ))− σ(W(l) ∗M σ(W(l−1) ∗M · · · ∗M σ(W(1) ∗M xξ
i ) · · · ))

∥∥∥
F

≤
∥∥∥W(l)

rl
∗M σ(W(l−1) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · )− W(l) ∗M σ(W(l−1) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · )

∥∥∥
F

=
∥∥∥(W(l)

rl
− W(l)) ∗M σ(W(l−1) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · )

∥∥∥
F

≤
∥∥∥W(l)

rl
− W(l)

∥∥∥
F

∥∥∥σ(W(l−1) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · )
∥∥∥

F

≤ δl

l∏
l′=1

∥∥∥W(l′)
∥∥∥

F
Bx,Ra,ξ.

Thus, we have

|hl(xξ
i )− hl−1(xξ

i )| ≤ Bw
∏
j ̸=l

BjδBx,Ra,ξ =
δBf̃

Bl
.

This gives

|f(xξ
i )− g(xξi )| ≤

L∑
l=1

|hl(xξi )− hl−1(xξi )| ≤
L∑

l=1

δBf̃

Bl
.

Then, we can set

r̂ = δBf̃

L∑
l=1

B−1
l . (46)

Step 2: Divide and conquer the adversarial gap. To upper bound the adversarial gap Ladv(f)−
L̂adv(f) of f by using the properties of its compressed version g, we first decompose the adversarial
gap into three terms as follows

Ladv(f)− L̂adv(f)

=
[
(Ladv(f)− Ladv(g))− (L̂adv(f)− L̂adv(g))

]︸ ︷︷ ︸
I

+
(
Ladv(g)− L̂adv(g)

)︸ ︷︷ ︸
II

. (47)
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Step 2.1: Upper bound II. We first consider the event E1 in which term II is upper bounded with
high probability. As g ∈ Fr, the term II has already been upper bounded according to Theorem 6 as

II ≤
C ′LℓBf̃√

N

√√√√c
L∑

l=1

rl(dl−1 + dl) log(9(L+ 1)) + 3B

√
t

2N
, (48)

with high probability 1− 2e−t.

Step 2.2: Upper bound I. Note that term I can be written as

Ladv(f)− Ladv(g)− (L̂adv(f)− L̂adv(g))

=
1

N

N∑
i=1

(
ℓ(f̃(x), y)− ℓ(g̃(x), y)− E[ℓ(f̃(x), y)− ℓ(g̃(x), y)]

)
.

(49)

Step (2.2.1): Characterize the concentration behavior of ℓ◦ f̃−ℓ◦ g̃. Given a constant r > 0, consider
the event E2(r) in which

∥∥∥f̃ − g̃
∥∥∥
L2

≤ r already holds with high probability. Then, conditioned on

Event E2(r), by using the Lℓ-Lipschitz continuity of the loss function ℓ(·, ·) derived from Assumption
2, it can be proved that ℓ(f̃(x), y) − ℓ(g̃(x), y) also has a small population L2-norm with high
probability.

Regarding Eq. (49) , it is natural to characterize the concentration behavior of centered random
variable ℓ(f̃(x), y)− ℓ(g̃(x), y)− E[ℓ(f̃(x), y)− ℓ(g̃(x), y)].

• First, its variance under event E2 can be upper bounded by

sup
∥f̃−g̃∥

L2
≤r

Var
(
ℓ(f̃(x), y)− ℓ(g̃(x), y)− E[ℓ(f̃(x), y)− ℓ(g̃(x), y)]

)
= sup

∥f̃−g̃∥
L2

≤r

Var
(
ℓ(f̃(x), y)− ℓ(g̃(x), y)

)
= sup

∥f̃−g̃∥
L2

≤r

E(x,y)

[
(ℓ(f̃(x, y))− ℓ(g̃(x, y)))2 − E(x,y)[ℓ(f̃(x, y))− ℓ(g̃(x, y))]

]
≤ sup

∥f̃−g̃∥
L2

≤r

E(x,y)

[
ℓ(f̃(x, y))− ℓ(g̃(x, y))

]2
≤ sup

∥f̃−g̃∥
L2

≤r

L2
ℓE(x,y)

[
f̃(x, y)− g̃(x, y)

]2
= sup

∥f̃−g̃∥
L2

≤r

L2
ℓ

∥∥∥f̃ − g̃
∥∥∥2
L2

≤ L2
ℓr

2

• Second, we upper bound its L∞-norm. First, Lemma 39 indicates that for any h ∈ F

with adversarial version h̃ ∈ Fadv, we have
∥∥∥h̃∥∥∥

L∞
≤ Bf̃ := BWBx,Ra,ξ. Then, by

Fr ⊂ Fδ,r ⊂ F, we have
∥∥∥f̃∥∥∥

L∞
≤ Bf̃ and ∥g̃∥L∞

≤ Bf̃ . Therefore, we can upper bound
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the L∞-norm of ℓ(f̃(x), y)− ℓ(g̃(x), y)− E[ℓ(f̃(x), y)− ℓ(g̃(x), y)] as follows

sup
∥f̃−g̃∥

L2
≤r

∥∥∥ℓ(f̃(x), y)− ℓ(g̃(x), y)− E[ℓ(f̃(x), y)− ℓ(g̃(x), y)]
∥∥∥
L∞

≤ sup
∥f̃−g̃∥

L2
≤r

∥∥∥ℓ(f̃(x), y)− ℓ(g̃(x), y)
∥∥∥
L∞

+
∥∥∥E[ℓ(f̃(x), y)− ℓ(g̃(x), y)]

∥∥∥
L∞

≤ sup
∥f̃−g̃∥

L2
≤r

∥∥∥ℓ(f̃(x), y)− ℓ(g̃(x), y)
∥∥∥
L∞

+ E
[∥∥∥ℓ(f̃(x), y)− ℓ(g̃(x), y)

∥∥∥
L∞

]
≤ sup

∥f̃−g̃∥
L2

≤r

Lℓ sup
(x,y)

|yf̃(x))− yg̃(x)|+ E[Lℓ sup
(x,y)

|yf̃(x)− yg̃(x)|]

≤ sup
∥f̃−g̃∥

L2
≤r

4LℓBf̃ .

Then, the Talagrand’s concentration inequality (Lemma 35) yields that with probability at least
1− e−t:

sup
∥f̃−g̃∥

L2
≤r

(Ladv(f)− Ladv(g))− (L̂adv(f)− L̂adv(g))

≤ 2E

 sup
∥f̃−g̃∥

L2
≤r

(Ladv(f)− Ladv(g))− (L̂adv(f)− L̂adv(g))


︸ ︷︷ ︸

(I)

+

√
2tLℓr√
N

+
8tLℓBf̃

N
.

Then, by the the standard symmetrization argument [47], we obtain an upper bound on term (I) as
follows:

E

 sup
∥f̃−g̃∥

L2
≤r

(Ladv(f)− Ladv(g))− (L̂adv(f)− L̂adv(g))


≤ 2E(xi,yi)Ni=1

E(εi)Ni=1
sup

∥f̃−g̃∥
L2

≤r

[
1

N
εi

(
ℓ(f̃(xi, yi))− ℓ(g̃(xi, yi))

)]
= 2Φ(r),

(50)

where Φ(r) is defined as

Φ(r) := R̄N

(
{ℓ ◦ f̃ − ℓ ◦ g̃

∣∣ f̃ ∈ Fadv
δ,r , g̃ ∈ Fadv

r ,
∥∥∥f̃ − g̃

∥∥∥
L2

≤ r}
)
.

Thus, there is a constant C > 0 such that for any f̃ − g̃ ∈ (Fadv
δ,r − Fadv

r ) satisfying
∥∥∥f̃ − g̃

∥∥∥
L2

≤ r, it

holds with probability at least 1− e−t that

(Ladv(f)− Ladv(g))− (L̂adv(f)− L̂adv(g)) ≤ C

(
Φ(r) + Lℓr

√
t

N
+

tLℓBf̃

N

)
. (51)

We denote the above event by E3(r). Note that Event E3(r) is conditioned on Event E2(r).

Step (2.2.2): Upper bound the probability of Event E2(r) :=
{∥∥∥f̃ − g̃

∥∥∥
L2

≤ r

}
. We further bound

the probability of Event E2(r) in which
∥∥∥f̃ − g̃

∥∥∥
L2

≤ r holds. Generally speaking, f̃ and g̃ are date

dependent and we can only bound the empirical L2-distance between them. However, the local
Rademacher complexity is characterized by the population L2-norm. Thus, we need to bound the
population L2-distance between f̃ and g̃. Motivated by [43], we use the ratio type empirical process
to bound the bound the population L2-distance.
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According to Assumption 11, their exists a function ϕ : [0,∞) → [0,∞) such that

Ṙr(F
adv
δ,r − Fadv

r ) ≤ ϕ(r) and ϕ(2r) ≤ 2ϕ(r), (∀r > 0).

Define the quantity Γ(r) := E
[
suph

(
1
N

∑N
i=1 εih

2(xi, yi)
∣∣ h ∈ (Fadv

δ,r − Fadv
r ) : ∥h∥L2

≤ r
)]

.

Then, we have

Γ(r) = E

[
sup
h

(
1

N

N∑
i=1

εih
2(xi, yi)

∣∣ h ∈ (Fadv
δ,r − Fadv

r ) : ∥h∥L2
≤ r

)]
(i)

≤ 2Bf̃E

[
sup
h

(
1

N

N∑
i=1

εih(xi, yi)
∣∣ h ∈ (Fadv

δ,r − Fadv
r ) : ∥h∥L2

≤ r

)]

≤ 2Bf̃ Ṙr(F
adv
δ,r − Fadv

r )
(ii)

≤ 2Bf̃ϕ(r),

where (i) is by the Talagrand’s contraction lemma (Lemma 30).

We can verify that the square h2(·) of any function h ∈ Fadv
δ,r − Fadv

r satisfies

(i) its L∞-norm is upper bouned by B2
f̃

, i.e.,
∥∥h2
∥∥
L∞

= sup(x,y) |h2(x, y)| ≤ B2
f̃

.

(ii) its second-order moment satisfies Ex,y
[
(h2(x, y)2)

]
≤ Ex,y

[
B2

f̃
(h2(x, y))

]
=

B2
f̃
Ex,y

[
h2(x, y)

]
.

Thus, h2 satisfy the conditions in Eq. (7.6) and Eq. (7.7) of [42] with parameters B = B2
f̃
, V = B2

f̃

and ϑ = 1. Noting that we have upper bounded Γ(r) by 2Bf̃ϕ(r), then by the peeling trick [42,
Eq. (7.17)], we can show for any r > inf{

√
E[h2] : h ∈ (Fadv

δ,r − Fadv
r ) : ∥h∥L2

≤ r} and t > 0 that

P

[
sup

h∈Fadv
δ,r−Fadv

r

∥h∥2L2
− ∥h∥2S

∥h∥2L2
+ r2

≥ 8
2Bf̃ϕ(r)

r2
+Bf̃

√
2t

r2N
+B2

f̃

2t

r2N

]
≤ e−t.

We further define a function r∗ = r∗(t) as

r∗(t) := inf

{
r > 0

∣∣∣∣ 16Bf̃ϕ(r)

r2
+Bf̃

√
2t

r2N
+B2

f̃

2t

r2N
≤ 1

2

}
, (52)

which is useful to bound the ratio of the empirical L2-norm and the population L2-norm of an
elements h ∈ Fadv

δ,r − Fadv
r with probability at least 1− et:

∥h∥2L2
− ∥h∥2S

∥h∥2L2
+ r2∗

≤ 1

2
⇒ ∥h∥2L2

≤ 2(∥h∥2S + r2∗).

Recalling that
∥∥∥f̃ − g̃

∥∥∥
S
≤ r̂, we obtain that the probability of Event E2(ṙ) with ṙ =

√
2(r̂2 + r2∗(t))

is at least 1− e−t.

Step 2.3: Combining Events E1, E2(ṙ), E3(ṙ). By combining Eqs. (46), (47), (51) and (48) along with
their underlying events E1, E2(ṙ), E3(ṙ), we obtain

Ladv(f)− L̂adv(f) ≤
C1LℓBf̃√

N

√√√√c
L∑

l=1

rl(dl−1 + dl) log(9(L+ 1)) +B

√
t

2N

+ C2

(
Φ(ṙ) + Lℓṙ

√
t

N
+

tLℓBf̃

N

)
,

with probability at least 1− 4e−t.
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E.1 Several Useful Results

According to Theorem 12, it remains to upper bound Φ(ṙ). In this subsection, we derive upper bounds
on Φ(r) in terms of covering numbers of the considered function sets Fadv

r and Fadv
δ,r .

Consider the supremum of the empirical L2-norm of any function (f̃ − g̃) ∈ (Fadv
δ,r − Fadv

r ) on sample
S = {(xi, yi)}Ni=1 when the population L2-norm is bounded by a given radius r > 0 as follows

βS = βS(r) = sup

{∥∥∥f̃ − g̃
∥∥∥
S

∣∣∣ ∥∥∥f̃ − g̃
∥∥∥
L2

≤ r, f̃ ∈ Fadv
δ,r , g̃ ∈ Fadv

r

}
. (53)

Recall that we have assumed Ṙr(F
adv
δ,r − Fadv

r ) ≤ ϕ(r). We now give an explict example of ϕ(r) in
terms of the sum of covering entropy of Fadv

δ,r and Fadv
r

Ṙr(F
adv
δ,r − Fadv

r )

(i)

≤ ESR̂r

({
(f̃ − g̃) ∈ (Fadv

δ,r − Fadv
r ),

∥∥∥f̃ − g̃
∥∥∥
L2

≤ r

})

(ii)

≤ inf
a

a+ ES

∫ βS

a

√√√√√ logN

({
(f̃ − g̃) ∈ (Fadv

δ,r − Fadv
r ),

∥∥∥f̃ − g̃
∥∥∥
L2

≤ r

})
, ∥·∥S , ϵ)

N
dϵ


(iii)

≤ 1

N
+ ES

∫ βS

1/N

√√√√√ logN

({
(f̃ − g̃) ∈ (Fadv

δ,r − Fadv
r ),

∥∥∥f̃ − g̃
∥∥∥
L2

≤ r

})
, ∥·∥S , ϵ)

N
dϵ

(iv)

≤ 1

N
+ ES

∫ βS

1/N

√
logN(Fadv

δ,r , ∥·∥S , ϵ/2) + logN(Fadv
r , ∥·∥S , ϵ/2)

N
dϵ

=: ϕ(r),
(54)

where (i) is the definition of localized Rademacher complexity; (ii) is due to Dudley’s inequality
(Lemma 31); (iii) is obtained by letting a = 1/N ; (iv) holds by Lemma 34.
Lemma 26. We can upper bound Φ(r) by using ϕ(r) as follows

Φ(r) ≤ CLℓϕ(r). (55)

Proof. Recall that Φ(r) is the average Rademacher complexity of the function set{
ℓ ◦ f̃ − ℓ ◦ g̃

∣∣∣ ∥∥∥f̃ − g̃
∥∥∥
L2

≤ r, f̃ ∈ Fadv
δ,r , g̃ ∈ Fadv

r

}
.

As ℓ(·) is Lℓ-Lipschitz, we have for any functions f̃ ∈ Fadv
δ,r , g̃ ∈ Fadv

r satisfying
∥∥∥f̃ − g̃

∥∥∥
L2

≤ r

sup
f̃ ,g̃

∥∥∥ℓ ◦ f̃ − ℓ ◦ g̃
∥∥∥
S
= sup

f̃ ,g̃

√√√√ N∑
i=1

1

N

(
ℓ(f̃(xi, yi)− ℓ(g̃(xi, yi)

)2
(i)

≤ sup
f̃ ,g̃

√√√√ N∑
i=1

1

N

(
Lℓ(f̃(xi, yi)− g̃(xi, yi))

)2

= sup
f̃ ,g̃

Lℓ

√√√√ N∑
i=1

1

N

(
f̃(xi, yi)− g̃(xi, yi)

)2
= Lℓ sup

f̃ ,g̃

∥∥∥f̃ − g̃
∥∥∥
S

= LℓβS ,
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where (i) holds because the loss function ℓ is Lℓ-Lischitz continous.

To bound Φ(r), we first bound the its empirical version using the Dudley’s inequlity (Lemma 31) up
to a constant as follows

inf
a>0

a+

∫ LℓβS

a

√√√√√ logN

(
{ℓ ◦ f̃ − ℓ ◦ g̃

∣∣ f̃ ∈ Fadv
δ,r , g̃ ∈ Fadv

r ,
∥∥∥f̃ − g̃

∥∥∥
L2

≤ r}
)
, ∥·∥S , ϵ)

N
dϵ


(i)

≤ Lℓ

N
+

∫ LℓβS

Lℓ/N

√√√√√ logN

(
{ℓ ◦ f̃ − ℓ ◦ g̃

∣∣ f̃ ∈ Fadv
δ,r , g̃ ∈ Fadv

r ,
∥∥∥f̃ − g̃

∥∥∥
L2

≤ r}
)
, ∥·∥S , ϵ)

N
dϵ

(ii)

≤ Lℓ

N
+

∫ LℓβS

Lℓ/N

√√√√√ logN

(
{f̃ − g̃

∣∣ f̃ ∈ Fadv
δ,r , g̃ ∈ Fadv

r ,
∥∥∥f̃ − g̃

∥∥∥
L2

≤ r}
)
, ∥·∥S , ϵ/Lℓ)

N
dϵ

(iii)

≤ Lℓ

N
+

∫ βS

1/N

√√√√√ logN

(
{f̃ − g̃

∣∣ f̃ ∈ Fadv
δ,r , g̃ ∈ Fadv

r ,
∥∥∥f̃ − g̃

∥∥∥
L2

≤ r}
)
, ∥·∥S , t)

N
Lℓdt

= Lℓϕ(r),
(56)

where in (i) we let a = Lℓ/N ; (ii) holds by the Lipschitzness of ℓ and the definition of covering
number; we use change of variable t = ϵ/Lℓ in (iii).

By taking expectations on the RHS of Eq. (56) with respect to the sample S, we obtain Eq. (55).

To determine an appropriate radius of the population L2-norm ṙ = 2
√
r̂2 + r2∗, we need to compute

the value of r∗ of satisfying Eq. (52). Using Eq. (54), we show how to compute ϕ(r) when the
covering numbers of Fadv

δ,r and Fadv
r satisfy a special bound.

Lemma 27 (Adapted from Lemma 3 in Ref. [43]). Suppose that the covering numbers of Fadv
δ,r and

Fadv
r satisfy

sup
S

logN(Fadv
δ,r , ∥·∥S , ϵ/2) + sup

S
logN(Fadv

r , ∥·∥S , ϵ/2) ≤ a1 + a2 log(ϵ
−1) + a3ϵ

−2q
(57)

for some q ≤ 1. Then, it holds that

(I) The bound ϕ(r) of the local Rademacher complexity Ṙr(F
adv
δ,r − Fadv

r ) of radius r can be
upper bounded as

ϕ(r) ≤ Cmax

{
1

N
+Bf̃

a1 + a2 logN

N
+ r

√
a1 + a2 logN

N
,

Cq

[
1

N
+
(a3B1−q

f̃

N

) 1
1+q + r1−q

√
a3
N

]}
,

(58)

for a universal constant C > 0 and a constant Cq > 0 which only depends on q ≤ 1.

(II) In particular, the quantity r∗(t) satisying Eq. (52) can be upper bounded as

r2∗(t) ≤ C

[
Bf̃

a1 + a2 logN

N
+
(a3
N

) 1
1+q

(
B

1−q
1+q

f̃
+ 1

)
+

1 + tBf̃

N

]
.
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Proof of Lemma 27. According to Eq. (54) which gives ϕ(r) and the definition of βS in Eq. (53), we
need to upper bound

ES

∫ βS

1/N

√
logN(Fadv

δ,r , ∥·∥S , ϵ/2) + logN(Fadv
r , ∥·∥S , ϵ/2)

N
dϵ

≤ ES

∫ βS

1/N

√
a1 + a2 log(ϵ−1) + a3ϵ−2q

N
dϵ

≤ ES

∫ βS

1/N

√
a1 + a2 log(ϵ−1)

N
dϵ+ ES

∫ βS

1/N

√
a3ϵ−2q

N
dϵ

≤
√
a1 + a2 logN

√
ESβS +

√
a3

1− q
ESβ

1−q
S

≤
√
a1 + a2 logN

√
2Bf̃ϕ(r) + r2︸ ︷︷ ︸

I

+

√
a3

1− q

(
2Bf̃ϕ(r) + r2

) 1−q
2

︸ ︷︷ ︸
II

.

Hence, if I ≥ II, then

ϕ(r) ≤ C

(
1

N
+

√
a1 + a2 logN

N
+
√
2Bf̃ϕ(r) + r2

)

≤ C

N
+ C2Bf̃

a1 + a2 logN

N
+ Cr

√
a1 + a2 logN

N
+

ϕ(r)

2
,

which leads to

ϕ(r) ≤ 2C

N
+ 2C2Bf̃

a1 + a2 logN

N
+ 2Cr

√
a1 + a2 logN

N
.

If I < II, then by using Young’s inequality we obtain

ϕ(r) ≤ C

(
1

N
+

√
a3

1− q

(
2Bf̃ϕ(r) + r2

) 1−q
2

)

≤ C

N
+ C

q

(
c1−q
1 C2a3

N(1− q)2

) 1
1+q

+ (1− q)
2Bf̃ϕ(r)

c1
+

√
a3

N(1− q)
r2(1−q)

 ,

for any c1 > 0. Thus, by taking c1 = 4C(1− q)Bf̃ , we obtain

ϕ(r) ≤ 2C

N
+ 2qC

(
(4C(1− q)Bf̃ )

1−qC2a3

N(1− q)2

) 1
1+q

+ 2C

√
a3

N(1− q)
r2(1−q)

≤ 2C

N
+

2qC2 · 4
1−q
1+q

1− q

B1−q

f̃
a3

N

 1
1+q

+
2C

(1− q)
r(1−q)

√
a3
N

≤ Cq

N
+ Cq

B1−q

f̃
a3

N

 1
1+q

+ Cqr
(1−q)

√
a3
N

,

where Cq > 0 is a universal constant only depending on q.

Then, we obtain the bound on ϕ(r) in Eq. (58). The bound on r2∗ can be obtained by simple calculations
based on Eqs. (52) and (58).

Lemma 28. When the population L2-norm of any function h = f̃ − g̃ ∈ (Fadv
δ,r − Fadv

r ) is upper
bounded by r, its squared empirical L2-norm can be upper bouned as follows:

ES

[
sup
h

(
1

N

N∑
i=1

h(xi, yi)
2

∣∣∣∣ h ∈ (Fadv
δ,r − Fadv

r ) and ∥h∥L2
≤ r

)]
≤ 2Bf̃ Ṙr(F

adv
δ,r − Fadv

r ) + r2.

(59)
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Proof. The squared empirical L2-norm can be upper bouned based on the population L2-norm as
follows

ES

[
sup

(
1

N

N∑
i=1

h(xi, yi)
2
∣∣ h ∈ (Fadv

δ,r − Fadv
r ) and ∥h∥L2

≤ r

)]

≤ E

[
sup

(
1

N

N∑
i=1

h(xi, yi)
2 − E(xi,yi)[h(x, y)

2]
∣∣ h ∈ (Fadv

δ,r − Fadv
r ) and ∥h∥L2

≤ r

)]
+ r2

(i)

≤ 2ES,ε

[
sup

(
1

N

N∑
i=1

εih(xi, yi)
2
∣∣ h ∈ (Fadv

δ,r − Fadv
r ) and ∥h∥L2

≤ r

)]
+ r2

(ii)

≤ 2Bf̃ES,ε

[
sup

(
1

N

N∑
i=1

εih(xi, yi)
∣∣ h ∈ (Fadv

δ,r − Fadv
r ) : ∥h∥L2

≤ r

)]
+ r2

= 2Bf̃ Ṙr(F
adv
δ,r − Fadv

r ) + r2

≤ 2Bf̃ϕ(r) + r2,
(60)

where (i) is due to the symmertrization argument [47] and ε = {εi}Ni=1 are i.i.d. Rademacher
variables, and (ii) holds because of the contraction inequality (Lemma 30).

E.2 Adversarial Generalization Gap under Assumption 13

Proof of Theorem 14. In this situation, we can see that for any 1 ≤ rl ≤ min{dl, dl−1}, we can
approximate W(l) with its optimal tubal-rank-rl approximation tensor W(l)

rl
according to [20, Theorem

3.7] and achieve the following approximation error bound on F-norm∥∥∥W(l) − W(l)
rl

∥∥∥
F
=
∥∥∥W(l) ×3 M − W(l)

rl
×3 M

∥∥∥
F

≤

√√√√ c∑
k=1

min{dl,dl−1}∑
j=rl+1

σ2
j (W

(l) ×3 M):,:,k

≤

√√√√ c∑
k=1

min{dl,dl−1}∑
j=rl+1

(V0 · j−α)2

≤

√√√√ c∑
k=1

1

2α− 1
V 2
0 (rl − 1)1−2α

(i)

≤
√

c

2α− 1
V0r

(1−2α)/2
l := δF

l ,

where (i) holds because of Lemma 41.

We also have a specral norm bound for W(l)−W(l)
rl

according to [20, Theorem 3.7] under Assumption
13 as follows ∥∥∥W(l) − W(l)

rl

∥∥∥
sp
≤ V0(rl + 1)−α := δsp

l ,

and we also have √
cδsp

l ≤ δF
l . (61)

Consider function g(x) = g(x;Wr) parameterized by Wr = (W(1)
r1

, · · · ,W(L)
rL

,w) as the func-
tion whose t-product layer weights are low-tubal-rank approximations of f(x;W). Let f̃(x, y) =
infRa(x−x′)≤ξ yf(x′) and g̃(x, y) = infRa(x−x′)≤ξ yg(x′) denote the adversarial versions of f and g,
respectively.

This helps us bounding r̂ as follows

|f̃(xi, yi)− g̃(xi, yi)| = | inf
Ra(xi−x′i)≤ξ

yif(x′i)− inf
Ra(xi−x′i)≤ξ

yig(x′i)|.
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Letting xfi = arginfRa(xi−x′i)≤ξ yif(x′i) and xgi = arginfRa(xi−x′i)≤ξ yig(x′i), we have |f̃(xi, yi) −
g̃(xi, yi)| = |yif(xf

i )− yig(xgi )|. By letting

xξi =

{
xg
i if yif(xfi ) ≥ yig(xg

i )

xfi otherwise
,

we obtain

|f̃(xi, yi)− g̃(xi, yi)| = |yif(xf
i )− yig(xgi )| ≤ |yif(xξi )− yig(xξ

i )| = |f(xξi )− g(xξi )|.

Let hl(xξ) = w⊤vec

(
σ(W(L)

rl
∗M σ(W(L−1)

r−1 ∗M · · ·∗M σ(W(l+1)
r ∗M σ(W(l)∗M · · ·∗M σ(W(1)∗M

xξ) · · · )))
)

and h0(xξ) = g(xξ). Then, we have

|f(xξi )− g(xξi )| ≤
L∑

l=1

|hl(xξ
i )− hl−1(xξi )|.

We can see that for any l = 1, · · · , L:∥∥∥σ(W(l−1) ∗M · · · ∗M σ(W(1) ∗M xξ
i ) · · · ))

∥∥∥
F
≤

l−1∏
l′=1

∥∥∥W(l′)
∥∥∥

F

∥∥∥xξi
∥∥∥

F
≤

l−1∏
l′=1

∥∥∥W(l′)
∥∥∥

F
Bx,Ra,ξ,

and∥∥∥σ(W(l)
rl

∗M σ(W(l−1) ∗M · · · ∗M σ(W(1−1) ∗M xξi ) · · · ))− σ(W(l) ∗M σ(W(l−1) ∗M · · · ∗M σ(W(1) ∗M xξ
i ) · · · ))

∥∥∥
F

≤
∥∥∥W(l)

rl
∗M σ(W(l−1) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · )− W(l) ∗M σ(W(l−1) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · )

∥∥∥
F

=
∥∥∥(W(l)

rl
− W(l)) ∗M σ(W(l−1) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · )

∥∥∥
F

(i)

≤
∥∥∥W(l)

rl
− W(l)

∥∥∥
sp

∥∥∥σ(W(l−1) ∗M · · · ∗M σ(W(1) ∗M xξi ) · · · )
∥∥∥

F

≤ δsp
l

l∏
l′=1

∥∥∥W(l′)
∥∥∥

F
Bx,Ra,ξ,

where in (i) we relax the inequality by using the tensor spectral norm of insted of the F-norm of
W(l)

rl
− W(l) which leads to a smaller upper bound. Thus, we have

|hl(xξi )− hl−1(xξ
i )| ≤ Bw

∏
j ̸=l

Bjδ
sp
l Bx,Ra,ξ =

δsp
l Bf̃

Bl
.

This gives

|f(xξi )− g(xξi )| ≤
L∑

l=1

|hl(xξi )− hl−1(xξi )| ≤
L∑

l=1

δsp
l Bf̃

Bl
.

Then, we can set

r̂ =

L∑
l=1

δsp
l Bf̃

Bl
= V0Bf̃

L∑
l=1

(rl + 1)−α

Bl
. (62)

Then we can construct an ϵ-cover of Fadv
δ,r composed of g̃(x;Wr) by carefully setting the value of rank

parameter r = (r1, · · · , rL)⊤ according to the covering accuracy ϵ. Directily setting
δsp
l Df̃

2Bl
= ϵ/L,

we obtain
rl = min

{⌈
Al · ϵ−

1
α

⌉
− 1, dl, dl−1

}
≤ min

{
Al · ϵ−

1
α , dl, dl−1

}
,

where

Al =
( Bl

LV0Bf̃

)− 1
α

.
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Then, we obtain the covering entropy of Fadv
δ,r by

logN(Fadv
δ,r , ∥·∥S , ϵ) ≤ log

L∏
l=1

(
9Bl

δF
l

)rl(dl+dl−1+1)c

(i)

≤ log

L∏
l=1

(
9Bl√
cδsp

l

)rl(dl+dl−1+1)c

≤
L∑

l=1

rl(dl + dl−1 + 1)c log(9LBf̃/(
√
cϵ))

≤
∑
l

(Alϵ
− 1

α )(dl + dl−1 + 1)c
(
log(ϵ−1) + log(9LBf̃/(

√
c))
)
,

(63)

where (ii) holds by Eq. (61).

Since Fadv
r ⊂ Fadv

δ,r , we have

logN(Fadv
r , ∥·∥S , ϵ) ≤ logN(Fadv

δ,r , ∥·∥S , ϵ) ≤
L∑

l=1

rl(dl + dl−1 + 1)c log(9LBf̃/(
√
cϵ))

To use Lemma 27, we bound logN(Fadv
δ,r , ∥·∥S , ϵ/2) +N(Fadv

r , ∥·∥S , ϵ/2) when ϵ ≥ 2/N as follows:

logN(Fadv
δ,r , ∥·∥S , ϵ/(2)) + N(Fadv

r , ∥·∥S , ϵ/2) ≤ a1 + a2 log(ϵ
−1) + a3ϵ

− 1
α ,

where
a1 = log(9LBf̃/

√
c)a2,

a2 = c
L∑

l=1

rl(dl + dl−1 + 1),

a3 =
(
logN + log(9LBf̃/

√
c)
)
c

L∑
l=1

Al(dl + dl−1 + 1).

For simplicity, further let

E1 =
a1 + a2 logN

N
=

c
∑L

l=1 rl(dl + dl−1 + 1)

N
log(9NLBf̃/

√
c),

E2 =
a3
N

=
c
∑L

l=1 Al(dl + dl−1 + 1)

N
log(9NLBf̃/

√
c).

(64)

Then, according to Lemma 27, we have

r2∗(t) ≤ C

{
Bf̃E1 +

1 + tBf̃

N
, E

2α
2α+1

2

(
B

2α−1
2α+1

f̃
+ 1

)}
, (65)

which further leads to

Φ(ṙ) + Lℓṙ

√
t

N
+

tLℓBf̃

N

≤ 2Lℓϕ(ṙ) + 2Lℓ(r̂+ r∗)

√
t

N
+

tLℓBf̃

N

≤ CqLℓ max

{
1

N
+Bf̃E1 + (r̂+ r∗)

√
E1, E

2α
2α+1

2 B
2α−1
2α+1

f̃
+ (r̂+ r∗)

2α
2α+1

√
E2

}
+ 2Lℓ(r̂+ r∗)

√
t

N
+

tLℓBf̃

N
.

(66)

Note that
(r̂+ r∗)

√
E1 = r̂

√
E1 + r∗

√
E1 ≤ r̂

√
E1 +

1

2
r2∗ +

1

2
E1,
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(r̂+ r∗)
2α

2α+1

√
E2 ≤ r̂

2α
2α+1

√
E2 + r

2α
2α+1
∗

√
E2,

(r̂+ r∗)

√
t

N
≤ r̂

√
t

N
+

1

2
(r2∗ +

t

N
).

Then by simple calculation, we have

Φ(ṙ) + Lℓṙ

√
t

N
+

tLℓBf̃

N
(i)

≤ CαLℓ

{
Bf̃E1 + r̂

√
E1 + E

2α
2α+1

2

(
B

2α−1
2α+1

f̃
+ 1

)
+ r̂

2α
2α+1

√
E2 + r̂

√
t

N
+

1 + tBf̃

N

}
.

Proof of Corollary 15. The bound in Corollary 15 can be directly obtained if we choose the parameter
r of tubal ranks in Fr by rl = min{⌈

(
LV0Bf̃B

−1
l

)1/α⌉, dl, dl−1}.

F Useful Notions and Lemmas

In this section, we provide several notions and lemmas which are used in the previous analysis.

F.1 Tools for Analyzing General DNNs

We briefly list the tools used in this paper for analyzing the generalization error of general DNNs,
including Rademacher complexity, covering number, and concentration inequalities, etc..

Definition 13 (Rademacher complexity). Given an i.i.d. sample S := {(xi, yi)}Ni=1 of size N and a
function class H, the empirical Rademacher complexity of H is defined as

R̂S(H) := Eε1,··· ,εN

[
sup
h∈H

1

N
εih(xi, yi)

]
,

where ε1, · · · , εN are i.i.d. Rademacher variables, i.e., εi equals to 1 or −1 with equal probability.
The average Rademacher complexity is further defined as

R̄N = ESR̂S(H).

Lemma 29 ([4]). Given an i.i.d. sample S := {(xi, yi)}Ni=1 of size N , a loss function ℓ(h(·), y)
taking values in [0, B], the generalization error of any function f in hypothesis set F satisfies

L(f) ≤ L̂(f) + 2R̂S(ℓ ◦ F) + 3B

√
t

2N
, (67)

with probability at least 1− e−t for all t ≥ 0.

Lemma 30 (Talagrand’s contraction lemma [44]). Given function set F and Lℓ-Lipschtz function ℓ,
for a function sets defined as lF := {ℓ ◦ f

∣∣ f ∈ F}, we have

R̂S(F) ≤ LℓR̂S(F).

Definition 14 (ϵ-covering net). Let ϵ > 0 and (X , d(·, ·)) be a metric space, where d(·, ·) is a
(pseudo)-metric. We say Z ⊂ X is an ϵ-covering net of X , if for any x ∈ X , there exists z ∈ Z such
that d(x, z) ≤ ϵ. Define the smallest |Z| as the ϵ-covering number of X and denote as N(X , d(·, ·), ϵ).

Given a traning dataset S = {xi, yi}Ni=1 and a function set F . Consider the output space of the
space of F restricted on S, i.e., F|S = {

(
f(x1, y1), · · · , f(xN , yN )

)⊤ ∣∣ f ∈ F}. Then, define a

pseudo-norm of F|S as:∥f∥S := N−1

√∑N
i=1 f(xi, yi)

2. Then, the Rademacher complexity of F
could be upper bounded by the ϵ-covering number of F under the empirical l2-pseudo-metric by the
Dudley’s inequality as follows:
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Lemma 31 (Dudley’s integral inequality [47]). The Rademacher complexity R̂S(F) satisfies

R̂S(F) ≤ inf
δ>0

[
8δ +

12√
N

∫ maxf∈F∥f∥S

δ

√
logN(F , ∥·∥S , ϵ)dϵ

]
. (68)

Lemma 32 (Covering number of norm balls [47]). Let B be a lp-norm ball with radius W . Let
d(x1, x2) = ∥x1 − x2∥p . Define the ϵ-covering number of B as N(B, d(·, ·), ϵ), we have

N(B, d(·, ·), ϵ) ≤
(
1 +

2W

ϵ

)d

. (69)

Lemma 33 (Covering number of low-tubal-rank tensors). For the set of tensors Tr := {T ∈
Rm×n×c

∣∣ rt(T) ≤ r, ∥T∥F ≤ 1} with r ≤ min{m,n}, its ϵ-covering number can be upper bounded
by

N(Tr, ∥·∥F , ϵ) ≤
(
9

ϵ

)(m+n+1)rc

. (70)

Proof. Consider the reduced t-SVD [20] of a tensor X = U∗M S∗M V⊤ ∈ Tr, where ∗M denotes the
t-product induced by the linear transform M(·) defined in Eq. (1) , U ∈ Rm×r×c and V ∈ Rn×r×c

are (semi)-t-orthogonal tensors, and S ∈ Rr×r×c is an f-diagonal tensor. As T ∈ Tr, we have
∥S∥F = ∥X∥F ≤ 1. The idea is to cover Tr by covering the set of factor tensors U,V and S.

Let D ⊂ Rr×r×c be the set of f-diagonal tensors with F-norm equal to one. We take Dc to be an
ϵ/3-covering net for D. Then by Lemma 32, we have |Dc| ≤ (9/ϵ)rc. Next, let Om,r = {U ∈
Rm×r×c | U ∗M U⊤ = I}. To cover Om,r, we consider the ∥·∥∞,2,2-norm defined as

∥X∥∞,2,2 := max
i

∥∥X:,i,:

∥∥
F
.

Let Qm,r := {X ∈ Rm×r×c | ∥X∥∞,2,2 ≤ 1}. Then, we have Om,r ⊂ Qm,r by the definition of t-
orthogonal tensors. Letting Qc

m,r be an ϵ/3-covering net of Qm,r, then we obtain |Qc
m,r| ≤ (9/ϵ)mrc

by Theorem 32. Similarly, an ϵ/3-covering net of Qn,r satisfies |Qc
n,r| ≤ (9/ϵ)nrc.

Now construct a set Tc
r = {Uc ∗M Sc ∗M (Vc)⊤ | Uc ∈ Qc

m,r, Sc ∈ Dc,Vc ∈ Qc
n,r}. Then, we have

|Tc
r| = |Qc

m,r| · |S
c| · |Qc

n,r| ≤ (9/ϵ)(m+n+1)rc.

Net, we will show that Tc
r is an ϵ-covering net of Tr, i.e., for any X ∈ Tr, there is an Xc ∈ Tc

r
satisfying ∥X − Xc∥F ≤ ϵ.

Given X ∈ Tr, consider its reduced t-SVD as X = U ∗M S ∗M V⊤ ∈ Tr. Then, there exists
Xc = Uc ∗M Sc ∗M (Vc)⊤ with Uc ∈ Qc

m,r, Sc ∈ Dc,Vc ∈ Qc
n,r satisying ∥U − Uc∥∞,2,2 ≤ ϵ/3,

∥S − Sc∥F ≤ ϵ/3, and ∥V − Vc∥∞,2,2 ≤ ϵ/3. This gives

∥X − Xc∥F

=
∥∥∥U ∗M S ∗M V⊤ − Uc ∗M Sc ∗M (Vc)⊤

∥∥∥
F

=

∥∥∥∥U ∗M S ∗M V⊤ − Uc ∗M S ∗M V⊤ + Uc ∗M S ∗M V⊤ − Uc ∗M Sc ∗M V⊤

+ Uc ∗M Sc ∗M V⊤ − Uc ∗M Sc ∗M (Vc)⊤
∥∥∥∥

F

≤
∥∥∥U ∗M S ∗M V⊤ − Uc ∗M S ∗M V⊤

∥∥∥
F
+
∥∥∥Uc ∗M S ∗M V⊤ − Uc ∗M Sc ∗M V⊤

∥∥∥
F

+
∥∥∥Uc ∗M Sc ∗M V⊤ − Uc ∗M Sc ∗M (Vc)⊤

∥∥∥
F

≤
∥∥∥U ∗M S ∗M V⊤ − Uc ∗M S ∗M V⊤

∥∥∥
F
+
∥∥∥Uc ∗M S ∗M V⊤ − Uc ∗M Sc ∗M V⊤

∥∥∥
F

+
∥∥∥Uc ∗M Sc ∗M V⊤ − Uc ∗M Sc ∗M (Vc)⊤

∥∥∥
F

≤
∥∥∥(U − Uc) ∗M S ∗M V⊤

∥∥∥
F
+
∥∥∥Uc ∗M (S − Sc) ∗M V⊤

∥∥∥
F
+
∥∥Uc ∗M Sc ∗M (V − Vc)⊤

∥∥
F .
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For the first term, note that since V is a t-orthogonal tensor,∥∥∥(U − Uc) ∗M S ∗M V⊤
∥∥∥

F
= ∥(U − Uc) ∗M S∥F .

and

∥(U − Uc) ∗M S∥2F =

r∑
i=1

∥∥(U − Uc):,i,: ∗M Si,i,:

∥∥2
F

=

r∑
i=1

∥(U − Uc):,i,:∥2F
∥∥Si,i,:

∥∥2
F

≤ (

r∑
i=1

∥∥Si,i,:

∥∥2
F
)max

i
∥(U − Uc):,i,:∥2F

≤ ∥S∥2F ∥U − Uc∥∞,2,2

≤ (ϵ/3)2.

Hence,
∥∥∥(U − Uc) ∗M S ∗M V⊤

∥∥∥
F
≤ ϵ/3. Similarly, we have

∥∥Uc ∗M Sc ∗M (V − Vc)⊤
∥∥

F ≤ ϵ/3.

The middle term can be bounded
∥∥∥Uc ∗M (S − Sc) ∗M V⊤

∥∥∥
F
≤ ∥S − Sc∥F ≤ ϵ/3 due to the

property of t-orthognal tensors Uc and Vc [20]. Therefore, for any X ∈ Tr, there is an Xc ∈ Tc
r

satisfying ∥X − Xc∥F ≤ ϵ.

Lemma 34 (Covering number bounds for composition and addtion [10]). Let F1 and F2 be classes
of functions on normed space (X , ∥·∥X ) → (Y, ∥·∥Y) and let F be a class of c-Lipschitz functions
(Y, ∥·∥Y) → (Z, ∥·∥Z). Then for any X ∈ XN and ϵF1

, ϵF2
, ϵF > 0, it holds that

N({f1 + f2 | f1 ∈ F1, f2 ∈ F2}, ϵF1
+ ϵF2

, ∥·∥X) ≤ N(F1, ϵF1
, ∥·∥X)N(F2, ϵF2

, ∥·∥X).

and
N({f ◦ f1 | f ∈ F , f1 ∈ F1}, ϵF + cϵF1

, ∥·∥X) ≤ N(F1, ϵF1
, ∥·∥X) sup

f1∈F1

N(F , ϵF , ∥·∥f1(X)).

Specifically, if F = {f} is a singleton, we have

N({f ◦ f1 | f ∈ F , f1 ∈ F1}, cϵF1
, ∥·∥X) ≤ N(F1, ϵF1

, ∥·∥X).

Lemma 35 (Simplifided Talagrand’s concentration inequality [42]). Let F be a function class
on X that is separable with respect to L∞-norm, and {xi}Ni=1 be i.i.d. random variables in X .
Furthermore, suppose there exist constants V ≥ and U ≥ 0 such that V = supf∈F E[(f − E[f ])2]
and U = supf∈F ∥f∥L∞

. Letting Z := supf∈F |N−1
∑N

i=1 f(xi) − E[f ]|, then it holds for all
t > 0 that

P

[
Z ≥ 2E[Z] +

√
2V t

N
+

2Ut

N

]
≤ e−t.

F.2 Some Results for Analyzing t-NNs

In this subsection, we present several fundamental statements described as lemmas for analyzing
t-NNs. First, we give Lemmas 36-38, which are used in the analysis of the t-product layers.
Lemma 36. Let σ(·) : R → R be a Lσ-Lipschitz function, i.e., |σ(x)−σ(y)| ≤ Lσ|x−y|,∀x, y ∈ R.
If it is applied element-wisely to any two real vectors x and y, then it holds that

∥σ(x)− σ(y)∥lp ≤ Lσ ∥x − y∥lp .

Lemma 37. The following inequalities hold:

∥T∥sp ≤ ∥T∥F , and ∥W ∗M x∥F ≤ ∥W∥sp ∥x∥F ≤ ∥W∥F ∥x∥F .

Proof. According to the definition of the M transform in Eq. (1) and the orthogonality of M, we have

∥T∥sp =
∥∥∥T̃M

∥∥∥ ≤
∥∥∥T̃M

∥∥∥
F
= ∥M(T)∥F = ∥T∥F ,
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and

∥W ∗M x∥F =
∥∥∥W̃M · x̃M

∥∥∥
F

(i)

≤
∥∥∥W̃M

∥∥∥ ∥x̃M∥F = ∥W∥sp ∥x∥F ≤ ∥W∥F ∥x∥F ,

where inequality (i) holds because ∥AB∥F ≤ ∥A∥ ∥B∥F for any matrices A,B with appropriate
dimensions.

Lemma 38 (The t-product layer is Lipschitz continuous). Suppose the activation function is Lσ-
Lipschitz, then a layer of t-product layer h(x) = σ(W ∗M x) is at most Lσ ∥W∥F-Lipschitz.

Proof. According to the Lipschitzness of the activation function, we have

∥h(x1)− h(x2)∥F = ∥σ(W ∗M x1)− σ(W ∗M x2)∥F

≤ Lσ ∥W ∗M x1 − W ∗M x2∥F

= Lσ ∥W ∗M (x1 − x2)∥F

= Lσ ∥W∥F ∥x1 − x2∥F .

We then present Lemma 39 and Lemma 40 which are used in upper bounding the input and output of
t-NNs in adversarial settings.

Lemma 39. Given a fixed example x ∈ Rd×1×c, if an adversary x′ satisfies Ra(x − x′) ≤ ξ, then it
holds that

∥x′∥F ≤ Bx + ξCRa .

Lemma 40. The L∞-norm of any f(x;W) ∈ Fadv defined on the set of input examples X is upper
bounded by

sup
f̃∈Fadv

∥∥∥f̃∥∥∥
L∞

≤ Bf̃ := BWBx,Ra,ξ. (71)

The diameter of Fadv is can be upper bounded as follows

Df̃ := 2 sup
f̃∈Fadv

∥∥∥f̃∥∥∥
S
≤ 2BWBx,Ra,ξ. (72)

Proof. For any f ∈ F, given an example (x, y) ∈ X × {±1} , let x∗ ∈ arginfRa(x−x′)≤ξ yf(x′) be
one adversarial example. Then, we have

|f̃(x, y)| = | inf
Ra(x−x′)≤ξ

yif(x′)|

= |f(x∗)|
= |w⊤vec

(
h(L)(x∗)

)
|

≤ ∥w∥
∥∥∥σ(W(L) ∗M h(L−1)(x∗i ))

∥∥∥
F

= ∥w∥
∥∥∥σ(W(L) ∗M h(L−1)(x∗))− σ(0)

∥∥∥
F

≤ ∥w∥
∥∥∥W(L) ∗M h(L−1)(x∗)

∥∥∥
F

≤ ∥w∥
∥∥∥W(L)

∥∥∥
F

∥∥∥h(L−1)(x∗)
∥∥∥

F

≤ · · ·

≤ w
L∏

l=1

Bl

∥∥∥h(0)(x∗)
∥∥∥

F

≤ Bw

L∏
l=1

BlBx,Ra,ξ

=: Bf̃ ,
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which also implies

Df̃ = 2 max
f̃∈Fadv

∥∥∥f̃∥∥∥
S
≤ 2Bw

L∏
l=1

BlBx,Ra,ξ.

Lemma 41 helps upper bounding the F-norm of residuals after low-tubal-rank approximation of the
weight tensors of t-NNs under Assumption 13.
Lemma 41. Given constants a > 0, α > 1, suppose a sequence {zj}∞j=1 satisfying polynomial decay
zj ≤ aj−α, then for any positive integer n, we have∑

j>n

zj ≤
an1−α

α− 1
.

Proof. We compute the sum of the sequence using integration as follows:∑
j>n

zj ≤
∫ ∞

n

at−αdt =
a

α− 1
t1−α

∣∣∞
n

≤ an1−α

α− 1
.
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