
Published as a conference paper at ICLR 2023

A CONTROL-CENTRIC BENCHMARK FOR
VIDEO PREDICTION

Stephen Tian, Chelsea Finn, & Jiajun Wu
Stanford University

ABSTRACT

Video is a promising source of knowledge for embodied agents to learn models of
the world’s dynamics. Large deep networks have become increasingly effective at
modeling complex video data in a self-supervised manner, as evaluated by met-
rics based on human perceptual similarity or pixel-wise comparison. However, it
remains unclear whether current metrics are accurate indicators of performance
on downstream tasks. We find empirically that for planning robotic manipulation,
existing metrics can be unreliable at predicting execution success. To address this,
we propose a benchmark for action-conditioned video prediction in the form of
a control benchmark that evaluates a given model for simulated robotic manip-
ulation through sampling-based planning. Our benchmark, Video Prediction for
Visual Planning (VP2), includes simulated environments with 11 task categories
and 310 task instance definitions, a full planning implementation, and training
datasets containing scripted interaction trajectories for each task category. A cen-
tral design goal of our benchmark is to expose a simple interface – a single forward
prediction call – so it is straightforward to evaluate almost any action-conditioned
video prediction model. We then leverage our benchmark to study the effects of
scaling model size, quantity of training data, and model ensembling by analyzing
five highly-performant video prediction models, finding that while scale can im-
prove perceptual quality when modelling visually diverse settings, other attributes
such as uncertainty awareness can also aid planning performance. Additional en-
vironment and evaluation visualizations are at this link.

1 INTRODUCTION

Dynamics models can empower embodied agents to solve a range of tasks by enabling downstream
policy learning or planning. Such models can be learned from many types of data, but video is one
modality that is task-agnostic, widely available, and enables learning from raw agent observations in
a self-supervised manner. Learning a dynamics model from video can be formulated as a video pre-
diction problem, where the goal is to infer the distribution of future video frames given one or more
initial frames as well as the actions taken by an agent in the scene. This problem is challenging, but
scaling up deep models has shown promise in domains including simulated games and driving (Oh
et al., 2015; Harvey et al., 2022), as well as robotic manipulation and locomotion (Denton & Fergus,
2018; Villegas et al., 2019; Yan et al., 2021; Babaeizadeh et al., 2021; Voleti et al., 2022).

As increasingly large and sophisticated video prediction models continue to be introduced, how can
researchers and practitioners determine which ones to use in particular situations? This question
remains largely unanswered. Currently, models are first trained on video datasets widely adopted
by the community (Ionescu et al., 2014; Geiger et al., 2013; Dasari et al., 2019) and then evaluated
on held-out test sets using a variety of perceptual metrics. Those include metrics developed for
image and video comparisons (Wang et al., 2004), as well as recently introduced deep perceptual
metrics (Zhang et al., 2018; Unterthiner et al., 2018). However, it is an open question whether
perceptual metrics are predictive of other qualities, such as planning abilities for an embodied agent.

In this work, we take a step towards answering this question for one specific situation: how can we
compare action-conditioned video prediction models in downstream robotic control? We propose
a benchmark for video prediction that is centered around robotic manipulation performance. Our
benchmark, which we call the Video Prediction for Visual Planning Benchmark (VP2), evaluates
predictive models on manipulation planning performance by standardizing all elements of a control

1

https://vp2-iclr.github.io

Published as a conference paper at ICLR 2023

setup except the video predictor. It includes simulated environments, specific start/goal task instance
specifications, training datasets of noisy expert video interaction data, and a fully configured model-
based control algorithm.

For control, our benchmark uses visual foresight (Finn & Levine, 2017; Ebert et al., 2018), a model-
predictive control method previously applied to robotic manipulation. Visual foresight performs
planning towards a specified goal by leveraging a video prediction model to simulate candidate
action sequences and then scoring them based on the similarity between their predicted futures and
the goal. After optimizing with respect to the score (Rubinstein, 1999; de Boer et al., 2005; Williams
et al., 2016), the best action sequence is executed for a single step, and replanning is performed at
each step. This is a natural choice for our benchmark for two reasons: first, it is goal-directed,
enabling a single model to be evaluated on many tasks, and second, it interfaces with models only
by calling forward prediction, which avoids prescribing any particular model class or architecture.

The main contribution of this work is a set of benchmark environments, training datasets, and control
algorithms to isolate and evaluate the effects of prediction models on simulated robotic manipula-
tion performance. Specifically, we include two simulated multi-task robotic manipulation settings
with a total of 310 task instance definitions, datasets containing 5000 noisy expert demonstration
trajectories for each of 11 tasks, and a modular and lightweight implementation of visual foresight.

Starting state

Model A — Metrics ↑

Model B — Metrics ↓ Control Success!

Control Failure

Figure 1: Models that score well on perceptual metrics
may generate crisp but physically infeasible predictions
that lead to planning failures. Here, Model A predicts
that that the slide will move on its own.

Through our experiments, we find that mod-
els that score well on frequently used metrics
can suffer when used in the context of control,
as shown in Figure 1. Then, to explore how
we can develop better models for control, we
leverage our benchmark to analyze other ques-
tions such as the effects of model size, data
quantity, and modeling uncertainty. We empir-
ically test recent video prediction models, in-
cluding recurrent variational models as well as
a diffusion modeling approach. We will open
source the code and environments in the bench-
mark in an easy-to-use interface, in hopes that it
will help drive research in video prediction for
downstream control applications.

2 RELATED WORK

Evaluating video prediction models. Numerous evaluation procedures have been proposed
for video prediction models. One widely adopted approach is to train models on standardized
datasets (Geiger et al., 2013; Ionescu et al., 2014; Srivastava et al., 2015; Cordts et al., 2016; Finn
et al., 2016; Dasari et al., 2019) and then compare predictions to ground truth samples across sev-
eral metrics on a held-out test set. These metrics include several image metrics adapted to the video
case, such as the widely used ℓ2 per-pixel Euclidean distance and Peak signal-to-noise ratio (PSNR).
Image metrics developed to correlate more specifically with human perceptual judgments include
structural similarity (SSIM) (Wang et al., 2004), as well as recent methods based on features learned
by deep neural networks like LPIPS (Zhang et al., 2018) and FID (Heusel et al., 2017). FVD (Un-
terthiner et al., 2018) extends FID to the video domain via a pre-trained 3D convolutional network.
While these metrics have been shown to correlate well with human perception, it is not clear whether
they are indicative of performance on control tasks. Geng et al. (2022) develop correspondence-wise
prediction losses, which use optical flow estimates to make losses robust to positional errors. These
losses may improve control performance and are an orthogonal direction to our benchmark.

Another class of evaluation methods judges a model’s ability to make predictions about the outcomes
of particular physical events, such as whether objects will collide or fall over (Sanborn et al., 2013;
Battaglia et al., 2013; Bear et al., 2021). This excludes potentially extraneous information from the
rest of the frame. Our benchmark similarly measures only task-relevant components of predicted
videos, but does so through the lens of overall control success rather than hand-specified questions.
Oh et al. (2015) evaluate action-conditioned video prediction models on Atari games by training a
Q-learning agent using predicted data. We evaluate learned models for planning rather than policy
learning, and extend our evaluation to robotic manipulation domains.

2

Published as a conference paper at ICLR 2023

Perceptual Control

Model Loss FVD LPIPS* SSIM Success

FitVid MSE 30.7 3.4 87.8 65%
+LPIPS=1 18.0 2.8 89.3 67%
+LPIPS=10 24.3 4.1 84.6 35%

SVG′ MSE 51.7 5.1 82.7 80%
+LPIPS=1 40.7 4.4 83.2 80%
+LPIPS=10 45.1 4.8 81.8 37%

(a) robosuite pushing tasks

Perceptual Control

Model Loss FVD LPIPS* SSIM Success

FitVid MSE 9.0 0.62 97.4 58%
+LPIPS=1 5.9 0.63 97.5 82%
+LPIPS=10 6.8 0.70 97.3 32%

SVG′ MSE 10.6 0.97 95.3 70%
+LPIPS=1 7.2 0.89 95.5 73%
+LPIPS=10 24.2 1.1 94.0 10%

(b) RoboDesk: push red button

Perceptual Control

Model Loss FVD LPIPS* SSIM Success

FitVid MSE 20.5 1.25 94.4 50%
+LPIPS=1 9.8 1.26 93.3 75%
+LPIPS=10 7.3 1.30 92.8 83%

SVG′ MSE 18.3 1.68 91.3 47%
+LPIPS=1 11.0 1.58 90.9 68%
+LPIPS=10 18.9 1.76 90.4 20%

(c) RoboDesk: upright block off table

Perceptual Control

Model Loss FVD LPIPS* SSIM Success

FitVid MSE 15.1 1.08 95.8 38%
+LPIPS=1 10.2 1.08 94.9 36%
+LPIPS=10 9.8 1.39 93.6 13%

SVG′ MSE 22.5 1.88 90.6 58%
+LPIPS=1 4.9 2.06 89.7 10%
+LPIPS=10 22.6 2.48 88.2 10%

(d) RoboDesk: open slide
Table 1: Perceptual metrics and control performance for models trained using a MSE objective, as well as with
added perceptual losses. For each metric, the bolded number shows the best value for that task. *LPIPS scores
are scaled by 100 for convenient display. Full results can be found in Appendix G.

Benchmarks for model-based and offline RL. Many works in model-based reinforcement learning
evaluate on simulated RL benchmarks (Brockman et al., 2016; Tassa et al., 2018; Ha & Schmidhu-
ber, 2018; Rajeswaran et al., 2018; Yu et al., 2019; Ahn et al., 2019; Zhu et al., 2020; Kannan
et al., 2021), while real-world evaluation setups are often unstandardized. Offline RL and imita-
tion learning benchmarks (Zhu et al., 2020; Fu et al., 2020; Gulcehre et al., 2020; Lu et al., 2022)
provide training datasets along with environments. Our benchmark includes environments based on
the infrastructure of robosuite (Zhu et al., 2020) and RoboDesk (Kannan et al., 2021), but it
further includes task specifications in the form of goal images, cost functions for planning, as well
as implementations of planning algorithms. Additionally, offline RL benchmarks mostly analyze
model-free algorithms, while in this paper we focus on model-based methods. Because planning
using video prediction models is sensitive to details such as control frequency, planning horizon,
and cost function, our benchmark supplies all aspects other than the predictive model itself.

3 THE MISMATCH BETWEEN PERCEPTUAL METRICS AND CONTROL

In this section, we present a case study that analyzes whether existing metrics for video predic-
tion are indicative of performance on downstream control tasks. We focus on two variational video
prediction models that have competitive prediction performance and are fast enough for planning:
FitVid (Babaeizadeh et al., 2021) and the modified version of the SVG model (Denton & Fer-
gus, 2018) introduced by Villegas et al. (2019), which contains convolutional as opposed to fully-
connected LSTM cells and uses the first four blocks of VGG19 as the encoder/decoder architecture.
We denote this model as SVG′. We perform experiments on two tabletop manipulation environ-
ments, robosuite and RoboDesk, which each admit multiple potential downstream task goals.
Additional environment details are in Section 4.

When selecting models to analyze, our goal is to train models that have varying performance on ex-
isting metrics. One strategy for learning models that align better with human perceptions of realism
is to add auxiliary perceptual losses such as LPIPS (Zhang et al., 2018). Thus, for each environment,
we train three variants of both the FitVid and SVG′ video prediction models. One variant is trained
with a standard pixel-wise ℓ2 reconstruction loss (MSE), while the other two are trained using an
additional perceptual loss in the form of adding the LPIPS score with VGG features implemented by
Kastryulin et al. (2022) between the predicted and ground truth images at weightings 1 and 10. We
train each model for 150K gradient steps. We then evaluate each model in terms of FVD (Unterthiner
et al., 2018), LPIPS (Zhang et al., 2018), and SSIM (Wang et al., 2004) on held-out validation sets,
as well as planning performance on robotic manipulation via visual foresight (Finn & Levine, 2017;

3

Published as a conference paper at ICLR 2023

Task Definitions Planning Implementation

Video Prediction Interface

Pre-trained classifier
cost functions

MPPI/CEM
sampling-based

optimizers

Environments
(Robosuite &
RoboDesk)

Expert scripted
interaction datasets

Task instance
specifications

Start Goal
Only required to implement one function!
def __call__(self, context_frames, action_seq):

 # Input: 2 context frames & T actions
 # Output: Predictions for T future frames
 return model_predictions

Training Datasets

Figure 2: Overview of the VP2 benchmark, which contains simulated environments, training data, and task
instance specifications, along with a planning implementation with pre-trained cost functions. The interface for
evaluating a new model on the benchmark is a model forward pass.

Ebert et al., 2018). As shown in Table 1, we find that models that show improved performance on
these metrics do not always perform well when used for planning, and the degree to which they are
correlated with control performance appears highly task-dependent.

For example, FVD tends to be low for models that are trained with an auxiliary LPIPS loss at
weight 10 on robosuite pushing, despite weak control performance. At the same time, for the
upright block off table task, FVD is much better correlated with task success compared
to LPIPS and SSIM, which show little relation to control performance. We also see that models can
perform almost identically on certain metrics while ranging widely in control performance.

This case study is conducted in a relatively narrow setting, and because data from these simulated
environments is less complex than “in-the-wild” datasets, the trained models tend to perform well
on an absolute scale across all metrics. Existing metrics can certainly serve as effective indicators
of general prediction quality, but we can observe even in this example that they can be misaligned
with a model’s performance when used for control and could lead to erroneous model selection
for downstream manipulation. Therefore, we believe that a control-centric benchmark represents
another useful axis of comparison for video prediction models.

4 THE VP2 BENCHMARK

In this section, we introduce the VP2 benchmark. The main goal of our benchmark is to evaluate
the downstream control performances of video prediction models. To help isolate the effects of
models as opposed to the environment or control algorithm, we include the entire control scheme
for each task as part of the benchmark. We design VP2 with three intentions in mind: (1) it should
be accessible, that is, evaluating models should not require any experience in control or RL, (2) it
should be flexible, placing as few restrictions as possible on models, and (3) it should emphasize
settings where model-based methods may be advantageous, such as specifying goals on the fly after
training on a multi-task dataset.

VP2 consists of three main components: environment and task definitions, a sampling-based
planner, and training datasets. These components are shown in Figure 2.

4.1 ENVIRONMENT AND TASK DEFINITIONS

One advantage of model-based methods is that a single model can be leveraged to complete a va-
riety of commanded goals at test time. Therefore, to allow our benchmark to evaluate models’

4

Published as a conference paper at ICLR 2023

abilities to perform multi-task planning, we select environments where there are many different
tasks for the robot to complete. VP2 consists of two environments: a tabletop setting created using
robosuite (Zhu et al., 2020), and a desk manipulation setting based on RoboDesk (Kannan et al.,
2021). Each environment contains a robot model as well as multiple objects to interact with.

For each environment, we further define task categories, which represent semantic tasks in that
environment. Each task category is defined by a success criterion based on the simulator state.

Many reinforcement learning benchmarks focus on a single task and reset the environment to the
same simulator state at the beginning of every episode. This causes the agent to visit a narrow dis-
tribution of states, and does not accurately represent how robots operate in the real world. However,
simply randomizing initial environment states can lead to higher variance in evaluation. To test
models’ generalization capabilities and robustness to environment variations, we additionally define
task instances for each task category. A task instance is defined by an initial simulator state and an
RGB goal image Ig ∈ R64×64×3 observation of the desired final state. Goal images are a flexible
way of specifying goals, but can often be unachievable based on the initial state and action space.
We ensure that for each task instance, it is possible to reach an observation matching the goal image
within the time horizon by collecting them from actual trajectories executed in the environment.

VP2 currently supports evaluation on 11 tasks across two simulated environments:

Tabletop robosuite environment. The tabletop environment is built using robosuite (Zhu
et al., 2020) and contains 4 objects: two cubes of varying sizes, a cylinder, and a sphere. To pro-
vide more realistic visuals, we render the scene with the iGibson renderer (Li et al., 2021). This
environment contains 4 task categories: push {large cube, small cube, cylinder,
sphere}. We include 25 task instances per category, where the textures of all objects are ran-
domized from a set of 13 for each instance. When selecting the action space, we prefer a lower-
dimensional action space to minimize the complexity of sampling-based planning, but would like
one that can still enable a range of tasks. We choose to use an action space A ∈ R4 that fixes the
end-effector orientation and represents a change in end-effector position command, as well as an
action opening or closing the gripper, that is fed to an operational space controller (OSC).

RoboDesk environment. The RoboDesk environment (Kannan et al., 2021) consists of a
Franka Panda robot placed in front of a desk, and defines several tasks that the robot can com-
plete. Because the planner needs to be able to judge task success from several frames, we
consider a subset of these tasks that have obvious visual cues for success. Specifically, we
use 7 tasks: push {red, green, blue} button, open {slide, drawer}, push
{upright block, flat block} off table. We find that the action space in the original
RoboDesk environment works well for scripting data collection and for planning. Therefore in this
environment A ∈ R5 represents a change in gripper position, wrist angle, and gripper command.

4.2 SAMPLING-BASED PLANNING

Our benchmark provides not only environment and task definitions, but also a control setup that
allows models to be directly scored based on control performance. Each benchmark run consists of
a series of control trials, where each control trial executes sampling-based planning using the given
model on a particular task instance. At the end of T control steps, the success or failure on the task
instance is judged based on the simulator state.

To perform planning using visual foresight, at each step the sampling-based planner attempts to solve
the following optimization problem to plan an action sequence given a goal image Ig , context frames
Ic, cost function C, and a video prediction model f̂θ: mina1,a2,...aT

∑T
i=1 C(f̂(Ic, a1:T)i, Ig). The

best action is then selected, and re-planning is performed at each step to reduce the effect of com-
pounding model errors. We use 2 context frames and predict T = 10 future frames across the
benchmark. As in prior work in model-based RL, we implement a sampling-based planner that uses
MPPI (Williams et al., 2016; Nagabandi et al., 2019) to sample candidate action sequences, perform
forward prediction, and then update the sampling distribution based on these scores. We provide de-
fault values for planning hyperparameters that have been tuned to achieve strong performance with
a perfect dynamics model, which can be found along with additional details in Appendix B.

VP2 additionally specifies the cost function C for each task category. For the task categories in the
robosuite environment, we simply use pixel-wise mean squared error (MSE) as the cost. For

5

Published as a conference paper at ICLR 2023

the RoboDesk task categories, we find that an additional task-specific pretrained classifier yields
improved planning performance. We train deep convolutional networks to classify task success on
each task, and use a weighted combination of MSE and classifier logits as the cost function. We
provide these pre-trained model weights as part of the benchmark.

4.3 TRAINING DATASETS

Each environment in VP2 comes with datasets for video prediction model training. Each training
dataset consists of trajectories with 35 timesteps, each containing 256 × 256 RGB image observa-
tions and the action taken at each step. Specifics for each environment dataset are as follows, with
additional details in Appendix D:

• robosuite Tabletop environment: We include 50K trajectories of interactions collected with
a hand-scripted policy to push a random object in the environment in a random direction. Object
textures are randomized in each trajectory.

• RoboDesk environment: For each task instance, we include 5K trajectories collected with a hand-
scripted policy, for a total of 35K trajectories. To encourage the dataset to contain trajectories of
varying success rates, we apply independent Gaussian noise to each dimension of every action
from the scripted policy before executing it.

5 BENCHMARK INTERFACE

One of our goals is to make the benchmark easy as possible to use, without placing restrictions on
the deep learning framework nor requiring expertise in RL or planning. We achieve this through two
main design decisions. First, by our selection of a sampling-based planning method, we remove as
many assumptions as possible from the model definition, such as differentiability or an autoregres-
sive predictive structure. Second, by implementing and abstracting away control components, we
establish a code interface that requires minimal overhead.

To evaluate a model on VP2, models must first be trained on one dataset per environment. This is an
identical procedure to typical evaluation on video benchmarking datasets. Then, with a forward pass
implementation, our benchmark uses the model directly for planning as described in Section 4.2.
Specifically, given context frames [I1, I2, ..., It] and an action sequence [a1, a2, ..., at+T−1], the
forward pass should predict the next N frames [Ît+1, Ît+2, ..., Ît+T]. We anticipate this will incur
low overhead, as similar functions are often implemented to track model validation performance.

While this interface is designed for for ease-of-use and comparison, VP2 can also be used in an
“open” evaluation format where controllers may be modified, to benchmark entire planning systems.

6 EMPIRICAL ANALYSIS OF VIDEO PREDICTION AT SCALE FOR CONTROL

Next, we leverage our benchmark as a starting point for investigating questions relating to model
and data scale in the context of control. We first evaluate a set of baseline models on our benchmark
tasks. Then in order to better understand how we can build models with better downstream control
performance on VP2, we empirically study the following questions:

• How does control performance scale with model size? Do different models scale similarly?
What are the computational costs at training and test time?

• How does control performance scale with training data quantity?
• Can planning performance be improved by models with better uncertainty awareness that

can detect when they are queried on out-of-distribution action sequences?

6.1 PERFORMANCE OF EXISTING MODELS ON VP2

To establish performance baselines, we consider five models that achieve either state-of-the-art or
competitive performance on metrics such as SSIM, LPIPS, and FVD. See Appendix A for details.

• FitVid (Babaeizadeh et al., 2021) is a variational video prediction model that achieved
state-of-the-art results on the Human 3.6M (Ionescu et al., 2014) and RoboNet (Dasari
et al., 2019) datasets. It has shown the ability to fit large diverse datasets, where previous
models suffered from underfitting.

6

Published as a conference paper at ICLR 2023

Robosuite push Flat block Open drawer Open slide Blue button Green button Red button Upright block Aggregate

Task name

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

es
s

ra
te

Success rates for existing models on benchmark tasks

 FitVid SVG’ MCVD MaskViT Struct-VRNN Simulator

Figure 3: Performance of existing models on VP2. We aggregate results over the 4 robosuite task cate-
gories. Error bars show min/max performance over 5 control runs, except for MCVD where we use 3 runs due
to computational constraints. On the right, we show the mean scores for each model averaged across all tasks,
normalized by the performance of the simulator.

• SVG′ (Villegas et al., 2019) is also a variational RNN-based model, but makes sev-
eral unique architectural choices – it opts for convolutional LSTMs and a shallower en-
coder/decoder. We use the ℓ2 loss as in the original SVG model rather than ℓ1 prescribed
by Villegas et al. (2019) to isolate the effects of model architecture and loss function.

• Masked Conditional Video Diffusion (MCVD) (Voleti et al., 2022) is a diffusion model
that can perform many video tasks by conditioning on different subsets of video frames. To
our knowledge, diffusion-based video prediction models have not previously been applied
to learn action-conditioned models. We adapt MCVD to make it action-conditioned by
following a tile-and-concatenate procedure similar to Finn et al. (2016).

• Struct-VRNN (Minderer et al., 2019) uses a keypoint-based representation for dynamics
learning. We train Struct-VRNN without keypoint sparsity or temporal correlation losses
for simplicity, finding that they do not significantly impact performance on our datasets.

• MaskViT (Gupta et al., 2022) uses a masked prediction objective and iterative decoding
scheme to enable flexible and efficient inference using a transformer-based architecture.

We train each model except MCVD to predict 10 future frames given 2 context frames and agent
actions. For MCVD, we also use a planning horizon of 10 steps, but following the procedure from
the paper, we predict 5 future frames at a time, and autoregressively predict longer sequences.

While we can compare relative planning performance between models based on task success rate, it
is difficult to evaluate absolute performance when models are embedded into a planning framework.
To provide an upper bound on how much the dynamics model can improve control, we include a
baseline that uses the simulator directly as the dynamics but retains the planning pipeline. This
disentangles weaknesses of video prediction models from suboptimal planning or cost functions.

In Figure 3, we show the performance of the five models on our benchmark tasks. We see that for
the simpler task push blue button, the performance of existing models approaches that of the
true dynamics. However, for robosuite and the other RoboDesk tasks, there are significant gaps
in performance for learned models.

6.2 MODEL CAPACITY

Increasingly expressive models have pushed prediction quality on visually complex datasets. How-
ever, it is unclear how model capacity impacts downstream manipulation results on VP2 tasks. In
this section, we use our benchmark to study this question. Due to computational constraints, we
consider only tasks in the robosuite tabletop environment. We train variants of the FitVid and
SVG′ models with varying parameter counts. For FitVid, we create two smaller variants by halving
the number of encoder layers and decreasing layer sizes in one model, and then further decreasing
the number of encoder filters and LSTM hidden units in another (“mini”). For SVG′, we vary the

7

Published as a conference paper at ICLR 2023

106 107 108 109

Number of Parameters (log scale)

0.6

0.7

0.8

0.9

1.0

C
on

tr
ol

 s
u
cc

es
s

ra
te

 (
th

re
sh

ol
d
=

0.
05

)

Simulator as model

FitVid
Full

FitVid
Mini

FitVid
Smaller encoder MCVD

SVG’
M=0.5,K=0.5

SVG’
M=1,K=1

SVG’
M=1,K=2

SVG’
M=2,K=1

SVG’
M=2,K=2

Model Size vs. Control Performance on RoboSuite Tasks

Model type
FitVid
MCVD
SVG’

Figure 4: Control performance on robosuite tasks across a models with capacities ranging from 6 million
to 300 million parameters. Error bars represent standard error of the mean (SEM) across 3 control runs over the
set of 100 task instances, except for MCVD where we perform 2 control runs due to computational constraints.
We hypothesize that larger versions of FitVid overfit the data, and see that in general, model capacity does not
seem to yield signficantly improved performance on these tasks.

model size by changing parameters M and K as described by Villegas et al. (2019), which represent
expanding factors on the size of the LSTM and encoder/decoder architectures respectively.

Model Variant # Params Pred. time (s)

FitVid Full 302M 5.63
Small encoder 6.5M 0.48
Mini 2.3M 0.29

SVG′ M = 2,K = 2 325M 3.58
M = 2,K = 1 312M 2.40
M = 1,K = 2 96M 2.39
M = 1,K = 1 83M 1.21
M = 1

2 ,K = 1
2 21.5M 0.52

MCVD Base 56M 220

Table 2: Comparison of median wall clock
forward pass time for predicting 10 future
frames. We use a batch size of 200 samples
and one NVIDIA Titan RTX GPU.

In Figure 4, we plot the control performance on the
robosuite tabletop environment versus the number of
parameters. While SVG′ sees slight performance im-
provements with certain larger configurations, in general
we do not see a strong trend that increased model capacity
yields improved performance. We hypothesize that this
is because larger models like the full FitVid architecture
tend to overfit to action sequences seen in the dataset.

We additionally note the wall clock forward prediction
time for each model in Table 2. Notably, while the
MCVD model achieves competitive control performance,
its forward pass computation time is more than 10× that
of the full FitVid model. While diffusion models have
shown comparable prediction quality compared to RNN-based video prediction models, the chal-
lenge of using these models efficiently for planning remains.

6.3 DATA QUANTITY

0 10000 20000 30000 40000

Number of training data trajectories

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
ol

 s
u
cc

es
s

ra
te

Effect of data size on control success: RoboSuite pushing

FitVid

SVG’

Figure 5: Evaluating the effects of increasing
training dataset size on all robosuite tasks.
Additional data boosts performance slightly, but
the benefit quickly plateaus. Shaded areas show
95% confidence intervals across 3 runs.

Data-driven video prediction models require suffi-
cient coverage of the state space to be able to per-
form downstream tasks, and much effort has gone
into developing models that are able to fit large
datasets. Therefore, it is natural to ask: How does
the number of training samples impact downstream
control performance? To test this, we train the full
FitVid and base SVG′ models on subsets of the
robosuite tabletop environment dataset consist-
ing of 1K, 5K, 15K, 30K, and 50K trajectories of
35 steps each. We then evaluate the control per-
formance for each model for the aggregated 100
robosuite control tasks. Figure 5 shows the con-
trol results for models trained on consecutively in-
creasing data quantities. We find that performance
improves when increasing from smaller quantities of
data on the order of hundreds to thousands of trajec-

8

Published as a conference paper at ICLR 2023

tories, but gains quickly plateau. We hypothesize that this is because the distribution of actions in
the dataset is relatively constrained due to the scripted data collection policy.

6.4 UNCERTAINTY ESTIMATION VIA ENSEMBLES

Because video prediction models are trained on fixed datasets before being deployed for control in
visual foresight, they may yield incorrect predictions when queried on out-of-distribution actions
during planning. As a result, we hypothesize that planning performance might be improved through
improved uncertainty awareness – that is, a model should detect when it is being asked to make pre-
dictions it will likely make mistakes on. We test this hypothesis by estimating epistemic uncertainty
through a simple ensemble disagreement method and integrating it into the planning procedure.

 FitVid SVG’ FitVid SVG’ FitVid SVG’

Task

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

es
s

ra
te

Open slide Push green button Upright block
off table

Control performance of ensemble disagreement strategy

Ensemble Single model

Figure 6: Control performance when using ensem-
ble disagreement for control on three tasks. We can
see that for upright block off table, ensem-
ble disagreement improves performance, but on the
other two tasks, performance is comparable or slightly
weaker than a single model. Error bars show min/max
performance across 2 control runs.

Concretely, we apply a score penalty during
planning based on the instantiation of ensem-
ble disagreement from Yu et al. (2020). Given
an ensemble of N = 4 video prediction mod-
els, we use all models from the ensemble to
perform prediction for each action sequence.
Then, we compute the standard task score using
a randomly selected model, and then subtract
a penalty based on the largest ℓ1 model devi-
ation from the mean prediction. Because sub-
tracting the score penalty decreases the scale of
rewards, we experiment with the temperature
γ = 0.01, 0.03, 0.05 for MPPI, and report the
best control result for each task across values
of γ for single and ensembled models. Addi-
tional details about the penalty computation can
be found in Appendix E.

The results of using this approach for control
are shown in Figure 6. We find that the un-
certainty penalty is able to achieve slightly im-
proved performance on the upright block off table task, comparable performance on
push green button, and slightly weaker performance on open slide. This also causes
expensive training and inference times to scale linearly with ensemble size when using a naı̈ve im-
plementation. However, our results indicate that efforts in developing uncertainty-aware models
may be one avenue for improved downstream planning performance.

7 CONCLUSION

In this paper, we proposed a control-centric benchmark for video prediction. After finding em-
pirically that existing perceptual and pixel-wise metrics can be poorly correlated with downstream
performance for planning robotic manipulation, we proposed VP2 as an additional control-centric
evaluation method. Our benchmark consists of 13 task categories in two simulated multi-task robotic
manipulation environments, and has an easy-to-use interface that does not place any limits on model
structure or implementation. We then leveraged our benchmark to investigate questions related to
model and data scale for five existing models – and find that while scale is important to some de-
gree for VP2 tasks, improved performance on these tasks may also come from building models
with improved uncertainty awareness. We hope that this spurs future efforts in developing action-
conditioned video prediction models for downstream control applications, and also provides a help-
ful testbed for creating new planning algorithms and cost functions for visual MPC.

Limitations. VP2 consists of simulated, shorter horizon tasks. As models and planning methods
improve, it may be extended to include more challenging tasks. Additionally, compared to widely
adopted metrics, evaluation scores on our benchmark are more computationally intensive to obtain
and may be less practical to track over the course of training. Finally, robotic manipulation is one
of many downstream tasks for video prediction, and our benchmark may not be representative of
performance on other tasks. We anticipate evaluation scores on VP2 to be used in conjunction with
other metrics for a holistic understanding of model performance.

9

Published as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

We provide our open-sourced for the benchmark in Appendix F. We have also released the training
datasets and pre-trained cost function weights at that link.

ACKNOWLEDGMENTS

We thank Tony Zhao for providing the initial FitVid model code, Josiah Wong for guidance with
robosuite, Fei Xia for help customizing the iGibson renderer, as well as Yunzhi Zhang, Agrim
Gupta, Roberto Martı́n-Martı́n, Kyle Hsu, and Alexander Khazatsky for helpful discussions. This
work is in part supported by ONR MURI N00014-22-1-2740 and the Stanford Institute for Human-
Centered AI (HAI). Stephen Tian is supported by an NSF Graduate Research Fellowship under
Grant No. DGE-1656518.

REFERENCES

Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey Levine, and
Vikash Kumar. ROBEL: RObotics BEnchmarks for Learning with low-cost robots. In Conference
on Robot Learning (CoRL), 2019.

Mohammad Babaeizadeh, Mohammad Taghi Saffar, Suraj Nair, Sergey Levine, Chelsea Finn, and
Dumitru Erhan. Fitvid: Overfitting in pixel-level video prediction. arXiv preprint arXiv: Arxiv-
2106.13195, 2021.

Peter W. Battaglia, Jessica B. Hamrick, and Joshua B. Tenenbaum. Simulation as an engine of
physical scene understanding. Proceedings of the National Academy of Sciences, 110(45):18327–
18332, 2013.

Daniel Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Yu Tung, R. T. Pramod, Cameron
Holdaway, Sirui Tao, Kevin A. Smith, Fan-Yun Sun, Fei-Fei Li, Nancy Kanwisher, Josh Tenen-
baum, Dan Yamins, and Judith E. Fan. Physion: Evaluating physical prediction from vision in
humans and machines. In Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper,
Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale multi-robot learning. In
3rd Annual Conference on Robot Learning, CoRL 2019, Osaka, Japan, October 30 - November
1, 2019, Proceedings, volume 100 of Proceedings of Machine Learning Research, pp. 885–897.
PMLR, 2019.

Pieter-Tjerk de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A tutorial on the
cross-entropy method. Annals of Operations Research, 134(1):19–67, February 2005.

Emily Denton and Rob Fergus. Stochastic video generation with a learned prior. In Proceedings of
the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp.
1182–1191. PMLR, 2018.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual fore-
sight: Model-based deep reinforcement learning for vision-based robotic control. arXiv preprint
arXiv: Arxiv-1812.00568, 2018.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017 IEEE
International Conference on Robotics and Automation, ICRA 2017, Singapore, Singapore, May
29 - June 3, 2017, pp. 2786–2793. IEEE, 2017.

10

Published as a conference paper at ICLR 2023

Chelsea Finn, Ian J. Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
through video prediction. In Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pp. 64–72, 2016.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. International Journal of Robotics Research (IJRR), 2013.

Daniel Geng, Max Hamilton, and Andrew Owens. Comparing correspondences: Video prediction
with correspondence-wise losses. In CVPR, 2022.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gomez Colmenarejo, Kon-
rad Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, Gabriel Dulac-
Arnold, Jerry Li, Mohammad Norouzi, Matt Hoffman, Ofir Nachum, George Tucker, Nicolas
Heess, and Nando de Freitas. Rl unplugged: A suite of benchmarks for offline reinforcement
learning. arXiv preprint arXiv: Arxiv-2006.13888, 2020.

Agrim Gupta, Stephen Tian, Yunzhi Zhang, Jiajun Wu, Roberto Martı́n-Martı́n, and Li Fei-Fei.
Maskvit: Masked visual pre-training for video prediction. arXiv preprint arXiv:2206.11894,
2022.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv: Arxiv-1803.10122, 2018.

William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, and Frank Wood. Flexible
diffusion modeling of long videos. arXiv preprint arXiv: Arxiv-2205.11495, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information Process-
ing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 6626–6637, 2017.

Kevin Huang, Sahin Lale, Ugo Rosolia, Yuanyuan Shi, and Anima Anandkumar. Cem-gd: Cross-
entropy method with gradient descent planner for model-based reinforcement learning. arXiv
preprint arXiv:2112.07746, 2021.

Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3.6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 36(7):1325–1339, jul 2014.

Harini Kannan, Danijar Hafner, Chelsea Finn, and Dumitru Erhan. Robodesk: A multi-task rein-
forcement learning benchmark. https://github.com/google-research/robodesk,
2021.

Sergey Kastryulin, Jamil Zakirov, Denis Prokopenko, and Dmitry V. Dylov. Pytorch image qual-
ity: Metrics for image quality assessment, 2022. URL https://arxiv.org/abs/2208.
14818.

Chengshu Li, Fei Xia, Roberto Martı́n-Martı́n, Michael Lingelbach, Sanjana Srivastava, Bokui Shen,
Kent Elliott Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, Andrey Kurenkov, C. Karen Liu,
Hyowon Gweon, Jiajun Wu, Li Fei-Fei, and Silvio Savarese. igibson 2.0: Object-centric simu-
lation for robot learning of everyday household tasks. In Conference on Robot Learning, 8-11
November 2021, London, UK, volume 164 of Proceedings of Machine Learning Research, pp.
455–465. PMLR, 2021.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Math. Programming, 1989.

Cong Lu, Philip J. Ball, Tim G. J. Rudner, Jack Parker-Holder, Michael A. Osborne, and Yee Whye
Teh. Challenges and opportunities in offline reinforcement learning from visual observations.
arXiv preprint arXiv: Arxiv-2206.04779, 2022.

11

https://github.com/google-research/robodesk
https://arxiv.org/abs/2208.14818
https://arxiv.org/abs/2208.14818

Published as a conference paper at ICLR 2023

Matthias Minderer, Chen Sun, Ruben Villegas, Forrester Cole, Kevin Murphy, and Honglak Lee.
Unsupervised learning of object structure and dynamics from videos. In arXiv: 1906.07889,
2019.

Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. Deep dynamics models for
learning dexterous manipulation. In 3rd Annual Conference on Robot Learning, CoRL 2019,
Osaka, Japan, October 30 - November 1, 2019, Proceedings, volume 100 of Proceedings of
Machine Learning Research, pp. 1101–1112. PMLR, 2019.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder Singh. Action-conditional
video prediction using deep networks in atari games. In Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pp. 2863–2871, 2015.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32. 2019.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforce-
ment Learning and Demonstrations. In Proceedings of Robotics: Science and Systems (RSS),
2018.

Reuven Rubinstein. The cross-entropy method for combinatorial and continuous optimization.
Methodology and computing in applied probability, 1(2):127–190, 1999.

Adam N. Sanborn, Vikash K. Mansinghka, and Thomas L. Griffiths. Reconciling intuitive physics
and newtonian mechanics for colliding objects. Psychological review, 120(2):411–437, 2013.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video
representations using lstms. In Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37, pp. 843–852, 2015.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Ried-
miller. Deepmind control suite. arXiv preprint arXiv: Arxiv-1801.00690, 2018.

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, and
Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges. arXiv
preprint arXiv:1812.01717, 2018.

Ruben Villegas, Arkanath Pathak, Harini Kannan, Dumitru Erhan, Quoc V. Le, and Honglak Lee.
High fidelity video prediction with large stochastic recurrent neural networks. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 81–91,
2019.

Vikram Voleti, Alexia Jolicoeur-Martineau, and Christopher Pal. Masked conditional video diffu-
sion for prediction, generation, and interpolation. (NeurIPS) Advances in Neural Information
Processing Systems, 2022. URL https://arxiv.org/abs/2205.09853.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004.
doi: 10.1109/TIP.2003.819861.

Grady Williams, Paul Drews, Brian Goldfain, James M. Rehg, and Evangelos A. Theodorou. Ag-
gressive driving with model predictive path integral control. In 2016 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 1433–1440, 2016. doi: 10.1109/ICRA.2016.
7487277.

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
vq-vae and transformers, 2021.

12

https://arxiv.org/abs/2205.09853

Published as a conference paper at ICLR 2023

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.
10897.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y. Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. MOPO: model-based offline policy optimization. In Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, and Roberto Martı́n-Martı́n. robosuite: A modular simu-
lation framework and benchmark for robot learning. In arXiv preprint arXiv:2009.12293, 2020.

13

https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897

Published as a conference paper at ICLR 2023

A MODEL TRAINING DETAILS

In this section, we provide specific training details for video prediction model training here.

A.1 FITVID

We reimplement FitVid according to the official implementation by the authors. We train using the
architecture defaults from the original paper. The training hyperparameters are shown in Table 3.
For the smaller variants shown in the model capacity experiments, we detail the modifications in
architecture in Table 4 and 5.

We train FitVid at 64× 64 image resolution to predict 10 future frames given 2 future frames.

When training, we use FP16 precision using PyTorch’s autocast functionality and use either 2 or 4
NVIDIA TITAN RTX GPUs. We train all models for 153K gradient steps.

Hyperparameter Value

Batch size 32
Optimizer Adam
Learning rate 3e-4
Adam ϵ 1e-8
Gradient clip 100
β 1e-4

Table 3: Hyperparameters for FitVid training. Note that we use a learning rate of 3e − 4 because we find that
it allows for more stable training. We also tried 1e− 3 as in the original paper, but we found that this tended to
cause numerical instability and did not yield significantly different results.

Hyperparameter Value

Encoder (h) dimension 64
LSTM size 128
Num of encoder/decoder layers per stage [1, 1, 1, 1]

Table 4: Hyperparameters for FitVid model: smaller encoder.

Hyperparameter Value

Encoder (h) dimension 32
LSTM size 64
Num of encoder/decoder layers per stage [1, 1, 1, 1]
Encoder/Decoder # filters All scaled by 1/4

Table 5: Hyperparameters for FitVid model: mini.

A.2 SVG′

For SVG′, we start with the implementation of the SVG model by Denton & Fergus (2018). Then,
we make the modifications described by Villegas et al. (2019). Specifically, we use the first 4 blocks
of VGG as the encoder/decoder architecture. Then, rather than flattening encoder outputs before
feeding them into the LSTM layers, we use Convolutional LSTMs to directly process the 2D feature
maps. Unless otherwise stated, we train with the model size M = 1,K = 1, which is the base
model size described in Villegas et al. (2019). Note that for fairer comparisons, unlike Villegas et al.
(2019), we retain the ℓ2 loss for the reconstruction portion of the loss function.

For action conditioning with SVG′, we tile the action for each timestep into a 2D feature map with
the same dimensions as the encoded image, where the number of channels is the action size. We
then concatenate this along with the latent z to the encoded image before passing it into the frame
predictor RNN.

When testing higher and lower capacity variants, we adjust the values of M and K, which as defined
by Villegas et al. (2019), are hyperparameters that multiplicatively scale the number of filters in the
LSTM layers and encoder/decoder, respectively.

14

Published as a conference paper at ICLR 2023

We train SVG′ at 64×64 image resolution to predict 10 future frames given 2 context frames. We use
1-2 NVIDIA TITAN RTX GPUs to train SVG′ for 153K gradient steps. Training hyperparameters
are shown in Table 6.

Hyperparameter Value

Batch size 32
Optimizer Adam
Learning rate 3e-4
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1e-8

Table 6: Hyperparameters for SVG′ training.

A.3 MCVD

We use the code implementation for MCVD provided by the original authors at https://
github.com/voletiv/mcvd-pytorch. We use the SPATIN version of the model, following
the setup for training the Denoising Diffusion Probabilistic Models (DDPM) version of the model
on SMMNIST in the original paper.

We additionally modify the architecture to be action-conditioned by concatenating first converting a
sequence of actions into a flat vector containing actions from all timesteps. We then tile this action
vector a ∈ RT∗|A| into a 2D feature map with the same spatial dimensions as the context images, and
concatenate the feature map and context images channel-wise. Additional training hyperparameters
are shown in Table 7.

Hyperparameter Value

Batch size 64
Optimizer Adam
Learning rate 2e-4
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1e-8
Gradient clip 1.0
Weight decay 0.0
diffusion steps (train) 100
diffusion steps (test) 100

Table 7: Hyperparameters for MCVD training.

We train MCVD to generate 64 × 64 RGB images. MCVD can be used for a number of different
video tasks based on which frames are provided for conditioning, but we use it for video prediction
(only future frame prediction provided context). Although during planning we use MCVD to predict
to a horizon of length 10 like other models, we train the model to predict 5 future frames given 2
context frames, following the procedure by the original authors. In order to make predictions of
length 10, we feed in the results of the first prediction autoregressively to the model to obtain the
last 5 predictions. Note that only the actions for the first 5 frames are provided for the first forward
pass, and only the actions for the second 5 frames are provided in the second pass.

We train the MCVD model for robosuite tasks for 360K gradient steps, and the one for Ro-
boDesk tasks for 270K gradient steps. Each model is trained on 2 NVIDIA TITAN RTX GPUs.

A.4 MASKVIT

We use the hyperparameters used by the authors when training on the BAIR dataset, but with a
slightly increased positional embedding size (1024 rather than 768). We did not tune these parame-
ters further.

15

https://github.com/voletiv/mcvd-pytorch
https://github.com/voletiv/mcvd-pytorch

Published as a conference paper at ICLR 2023

A.5 STRUCT-VRNN

We reimplement the Struct-VRNN model from Minderer et al. (2019). We tune the weighting of
the KL-divergence parameter in the set of values 1e− 0, 1e− 1, 1e− 2, 1e− 3, 1e− 4, and use the
value of 1e − 4, that achieves the best control performance on the RoboSuite tasks, for the rest of
the experiments. We use 64 keypoints in the representation, matching the largest number used for
any dataset in the original paper. Full hyperparameters are shown in Table 8.

Hyperparameter Value

Batch size 4
Optimizer Adam
Learning rate 3e-4
Reconstruction loss weight 10.0
KL loss weight 0.001
Coordinate prediction loss 1.0
keypoints 64
Keypoint σ 0.1
Encoder initial number of filters 32
Appearance encoder initial number of filters 32
Decoder initial # of filters 256
Dynamics model hidden size 512
Prior/posterior # of layers 2
Prior/posterior hidden size 512

Table 8: Hyperparameters for Struct-VRNN training.

B PLANNING IMPLEMENTATION DETAILS

In this section we provide details for the planning implementation of VP2. For all tasks, we use
T = 15 as the rollout length.

B.1 MPPI OPTIMIZER

We perform sampling-based planning using the model-predictive path integral (MPPI) (Williams
et al., 2016), using the implementation from Nagabandi et al. (2019) as a guideline. Table 9 details
the hyperparameters that we use for planning for each task category.

Hyperparameter Value

Number of samples 200 for all tasks except 800
for open {drawer, slide}

Scaling factor γ 0.05
Sampling distribution correlation coefficient β 0.5
Sampling distribution stdev. (RoboDesk) [0.5,0.5,0.5,0.1,0.1]
Sample distribution stdev. (robosuite) [0.5, 0.5, 0.5, 0]
Sampling distribution initial mean 0

Table 9: Hyperparameters for MPPI optimizer.

B.2 CLASSIFIER COST FUNCTIONS

For each classifier cost function, we take 2500 trajectories from the RoboDesk dataset for the given
task, and train a binary convolutional classifier to predict whether or not a given frame receives
reward >= 30, where the reward is provided by the RoboDesk environment. We train for 3000
gradient steps, and the architecture is described in Table 10.

B.3 PLANNING COST FUNCTIONS

Next we detail the cost functions for each of the tasks. The cost for the RoboSuite tasks is the
sum of the ℓ2 pixel-wise error between the 10 predicted images and the goal image, summed over
time. For the RoboDesk tasks, it is 0.5 times the ℓ2 pixel loss plus 10 times the classifier logit

16

Published as a conference paper at ICLR 2023

Layer type Out channels/hidden units Kernel

Conv2D 32 3 × 3
Conv2D 32 3 × 3
ReLU - -

Conv2D 32 3 × 3
ReLU - -

Conv2D 32 3 × 3
ReLU - -

Conv2D 32 3 × 3
ReLU - -

Conv2D 32 3 × 3
ReLU - -

Conv2D 32 3 × 3
ReLU - -

Conv2D 32 3 × 3
Flatten - -
Linear 1024 -
ReLU - -
Linear 1 -

Table 10: Classifier cost function architecture, with layers named as in PyTorch convention. The input is a
64× 64× 3 RGB image.

from a deep convolutional classifier trained for predicting success on that given task. We tuned
this weighting value after fixing the value of γ for MPPI. We tuned over the classifier weight as
[1, 10, 100, 1000, 10000] using the simulator as the planner and found that 10 resulted in the best
performance.

The score for the planner is computed by negating the cost.

C ALTERNATIVE PLANNERS

While we implement and tune the sampling-based MPPI optimizer for accessibility and ease of use,
our code framework also enables benchmark users to modify and swap out the controller and model
independently. This allows for the coupled development of models and controllers on the task and
task instance definitions provided in the benchmark. We provide the following optimizers/controllers
with the released codebase. A star (*) indicates that the method requires gradient information.

• Model-predictive path integral (MPPI) (Williams et al., 2016): This is our default plan-
ner as described in the main text. Our implementation is based off of that of Nagabandi
et al. (2019).

• Cross-entropy method (CEM) (de Boer et al., 2005): The cross-entropy method itera-
tively refines the sampling distribution of candidate distributions via importance sampling.
In practice, this is implemented by computing the top percentile of elite samples and re-
computing the mean and variance at each iteration. Our implementation is based off of that
of Nagabandi et al. (2019).

• Cross-entropy method with Gradient Descent* (CEM-GD) (Huang et al., 2021): This
is a gradient-augmented version of CEM that refines individual CEM samples using gradi-
ent steps. It also significantly reduces the number of CEM samples after the first planning
step for computational speed. We keep most of the PyTorch implementation by the original
authors.

• Limited-memory BFGS* (L-BFGS) (Liu & Nocedal, 1989): A popular quasi-Newton
method for continuous nonlinear optimization. We use the implementation from Py-
Torch (Paszke et al., 2019).

We conducted initial control experiments with these planners using the SVG′ model on the
robosuite task categories. We find that CEM-GD promisingly achieves an 87% success rate
averaged across 3 seeds, and L-BFGS achieves a 48% success rate across 3 seeds after tuning the
learning rate for the optimizer across {1e-3, 1e-2, 5e-2, 7e-2}.

D DATASET DETAILS

Here we provide details abut the datasets that come with VP2. Note that our datasets can be re-
rendered at any resolution.

17

Published as a conference paper at ICLR 2023

• robosuite Tabletop environment: We collect 50K trajectories of interactions collected
with a scripted policy. During each trajectory, a random one of the four possible objects
is selected as the target for the push. Then, a random direction in [0, π] on the plane is
selected as the direction for the object to be pushed, and the target object position is set to
0.3 meters in this direction from the initial starting position. Then, we use a P-controller to
first navigate the arm in position to push the object in the desired direction, and then to push
it. At every step, we add independent Gaussian noise with σ = 0.05 to each dimension of
the action except the last one, which represents the gripper action. Even if the object is not
successfully pushed to the desired position using this policy, we still record the trajectory.
The robosuite Tabletop dataset is rendered using the iGibson (Li et al., 2021) renderer,
with modifications to the shadow computations to make the shadows softer and more re-
alistic. We will supply the modified rendering code along with the environments in the
released benchmark code.

• RoboDesk environment: We script policies to complete each of the 7 tasks. The structure
of each policy depends on the task, and they are included in the provided code. We apply
noise to each action by adding independent Gaussian noise to every dimension. We create
the dataset for the entire RoboDesk dataset by collecting 2500 noisy scripted trajectories
using a noise level of σ = 0.1, and then 2500 additional trajectories with σ = 0.2, for a
total of 35K trajectories.
The RoboDesk dataset is rendered using the MuJoCo viewer, provided by the original
implementation.

E ENSEMBLING EXPERIMENTS

For the ensembling experiment, we apply the model disagreement penalty in the following way.
Given an action sequence, we first use all N models in the ensemble to predict video sequences
I1, I2, ...IN . We then compute the error of the prediction that most deviates from the mean of all
predictions in ℓ1 error, i.e. δ = maxi=[0,1,..N] ∥Ii − 1

N

∑N
i=1 I

i∥1. We compute the standard task
cost function c using one of the ensemble predictions, selected uniformly at random. We calculate
the final cost as c− λδ, where λ is a hyperparameter that we set as 0.01 for all experiments.

F CODE

We provide the open source code used for running control experiments here: https://github.
com/s-tian/vp2. Pretrained cost weights, datasets, and task definitions can be downloaded
from that link.

G FULL RESULTS FOR METRIC COMPARISONS

In Table 11 we present the results on the remaining two tasks from the case study presented in
Section 3.

In Figures 7-14, we provide detailed per-task plots of LPIPS, FVD, and SSIM compared to control
performance. We find that while none of these metrics is well-correlated with performance across all
tasks, they appear to be better correlated in the “push blue button”, “push green button”, and “open
drawer” tasks. However, we can see that even for those tasks, these metrics can conflict in ordering
models. For specific tasks, we observe that the “upright block off table” task particularly appears
well-correlated with FVD.

18

https://github.com/s-tian/vp2
https://github.com/s-tian/vp2

Published as a conference paper at ICLR 2023

Perceptual Control

Model Loss FVD LPIPS* SSIM Success

FitVid MSE 9.6 0.65 98.1 95%
+LPIPS=1 6.3 0.72 98.0 98%
+LPIPS=10 9.2 0.88 97.8 88%

SVG′ MSE 16.7 1.13 95.3 97%
+LPIPS=1 8.4 1.06 95.5 97%
+LPIPS=10 41.8 1.28 94.1 25%

(a) RoboDesk: push blue button

Perceptual Control

Model Loss FVD LPIPS* SSIM Success

FitVid MSE 10.6 0.65 98.0 88%
+LPIPS=1 8.3 0.69 97.9 88%
+LPIPS=10 8.3 0.87 97.4 67%

SVG′ MSE 13.1 1.13 94.9 83%
+LPIPS=1 7.4 1.03 95.3 83%
+LPIPS=10 24.6 1.26 93.8 10%

(b) RoboDesk: push green button

Perceptual Control

Model Loss FVD LPIPS* SSIM Success

FitVid MSE 9.1 0.77 96.3 10%
+LPIPS=1 5.8 0.72 96.0 10%
+LPIPS=10 7.2 0.91 94.8 10%

SVG′ MSE 13.6 1.28 92.8 10%
+LPIPS=1 9.7 1.19 92.7 13%
+LPIPS=10 20.0 1.54 91.0 10%

(c) RoboDesk: flat block off table
Table 11: Results for the remaining 3 tasks for the experiment described in Section 3.

0.030 0.035 0.040 0.045 0.050

LPIPS (computed on task dataset)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
on

tr
o
l
su

cc
es

s
ra

te

FitVidFitVid
LPIPS=1

FitVid
LPIPS=10

SVG’SVG’
LPIPS=1

SVG’
LPIPS=10

LPIPS vs. Control Performance on RoboSuite Tasks

Model type
FitVid
SVG’

20 25 30 35 40 45 50

FVD (computed on task dataset)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
on

tr
o
l
su

cc
es

s
ra

te

FitVidFitVid
LPIPS=1

FitVid
LPIPS=10

SVG’SVG’
LPIPS=1

SVG’
LPIPS=10

FVD vs. Control Performance on RoboSuite Tasks

Model type
FitVid
SVG’

0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89

SSIM (computed on task dataset)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
on

tr
o
l
su

cc
es

s
ra

te

FitVid
FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’ SVG’
LPIPS=1

SVG’
LPIPS=10

SSIM vs. Control Performance on RoboSuite Tasks

Model type
FitVid
SVG’

Figure 7: Detailed results comparing perceptual metric values and control performance: RoboSuite tasks.

19

Published as a conference paper at ICLR 2023

0.006 0.007 0.008 0.009 0.010 0.011

LPIPS (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
ol

 s
u
cc

es
s

ra
te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1

SVG’
LPIPS=10

LPIPS vs. Control Performance on RoboDesk push red Tasks

Model type
FitVid
SVG’

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

FVD (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
ol

 s
u
cc

es
s

ra
te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1

SVG’
LPIPS=10

FVD vs. Control Performance on RoboDesk push red Tasks

Model type
FitVid
SVG’

0.940 0.945 0.950 0.955 0.960 0.965 0.970 0.975

SSIM (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
ol

 s
u
cc

es
s

ra
te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1

SVG’
LPIPS=10

SSIM vs. Control Performance on RoboDesk push red Tasks

Model type
FitVid
SVG’

Figure 8: Detailed results comparing perceptual metric values and control performance: RoboDesk push red
button task.

0.007 0.008 0.009 0.010 0.011 0.012 0.013

LPIPS (computed on task dataset)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
on

tr
o
l
su

cc
es

s
ra

te

FitVid
FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’SVG’
LPIPS=1

SVG’
LPIPS=10

LPIPS vs. Control Performance on RoboDesk push blue Tasks

Model type
FitVid
SVG’

5 10 15 20 25 30 35 40

FVD (computed on task dataset)

0.2

0.4

0.6

0.8

1.0

1.2

C
on

tr
o
l
su

cc
es

s
ra

te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1

SVG’
LPIPS=10

FVD vs. Control Performance on RoboDesk push blue Tasks

Model type
FitVid
SVG’

0.940 0.945 0.950 0.955 0.960 0.965 0.970 0.975 0.980

SSIM (computed on task dataset)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
on

tr
o
l
su

cc
es

s
ra

te

FitVid

FitVid
LPIPS=1FitVid

LPIPS=10

SVG’
SVG’
LPIPS=1

SVG’
LPIPS=10

SSIM vs. Control Performance on RoboDesk push blue Tasks

Model type
FitVid
SVG’

Figure 9: Detailed results comparing perceptual metric values and control performance: RoboDesk push blue
button task.

20

Published as a conference paper at ICLR 2023

0.007 0.008 0.009 0.010 0.011 0.012

LPIPS (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
ol

 s
u
cc

es
s

ra
te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’SVG’
LPIPS=1

SVG’
LPIPS=10

LPIPS vs. Control Performance on RoboDesk push green Tasks

Model type
FitVid
SVG’

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

FVD (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
ol

 s
u
cc

es
s

ra
te

FitVid
FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’SVG’
LPIPS=1

SVG’
LPIPS=10

FVD vs. Control Performance on RoboDesk push green Tasks

Model type
FitVid
SVG’

0.94 0.95 0.96 0.97 0.98

SSIM (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
ol

 s
u
cc

es
s

ra
te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’ SVG’
LPIPS=1

SVG’
LPIPS=10

SSIM vs. Control Performance on RoboDesk push green Tasks

Model type
FitVid
SVG’

Figure 10: Detailed results comparing perceptual metric values and control performance: RoboDesk push green
button task.

0.013 0.014 0.015 0.016 0.017

LPIPS (computed on task dataset)

0.2

0.4

0.6

0.8

1.0

C
on

tr
o
l
su

cc
es

s
ra

te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1

SVG’
LPIPS=10

LPIPS vs. Control Performance on RoboDesk upright block off table Tasks

Model type
FitVid
SVG’

8 10 12 14 16 18 20

FVD (computed on task dataset)

0.2

0.4

0.6

0.8

1.0

C
on

tr
o
l
su

cc
es

s
ra

te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1

SVG’
LPIPS=10

FVD vs. Control Performance on RoboDesk upright block off table Tasks

Model type
FitVid
SVG’

0.905 0.910 0.915 0.920 0.925 0.930 0.935 0.940 0.945

SSIM (computed on task dataset)

0.2

0.4

0.6

0.8

1.0

C
on

tr
o
l
su

cc
es

s
ra

te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1

SVG’
LPIPS=10

SSIM vs. Control Performance on RoboDesk upright block off table Tasks

Model type
FitVid
SVG’

Figure 11: Detailed results comparing perceptual metric values and control performance: RoboDesk upright
block off table task.

21

Published as a conference paper at ICLR 2023

0.008 0.010 0.012 0.014

LPIPS (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
ol

 s
u
cc

es
s

ra
te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10 SVG’

SVG’
LPIPS=1 SVG’

LPIPS=10

LPIPS vs. Control Performance on RoboDesk flat block off table Tasks

Model type
FitVid
SVG’

6 8 10 12 14 16 18 20

FVD (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
ol

 s
u
cc

es
s

ra
te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1 SVG’

LPIPS=10

FVD vs. Control Performance on RoboDesk flat block off table Tasks

Model type
FitVid
SVG’

0.91 0.92 0.93 0.94 0.95 0.96

SSIM (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
o
l
su

cc
es

s
ra

te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1SVG’

LPIPS=10

SSIM vs. Control Performance on RoboDesk flat block off table Tasks

Model type
FitVid
SVG’

Figure 12: Detailed results comparing perceptual metric values and control performance: RoboDesk flat block
off table task.

0.003 0.004 0.005 0.006 0.007

LPIPS (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
o
l
su

cc
es

s
ra

te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1

SVG’
LPIPS=10

LPIPS vs. Control Performance on RoboDesk open drawer Tasks

Model type
FitVid
SVG’

5 10 15 20 25 30

FVD (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
o
l
su

cc
es

s
ra

te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1

SVG’
LPIPS=10

FVD vs. Control Performance on RoboDesk open drawer Tasks

Model type
FitVid
SVG’

0.955 0.960 0.965 0.970 0.975 0.980

SSIM (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
o
l
su

cc
es

s
ra

te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1

SVG’
LPIPS=10

SSIM vs. Control Performance on RoboDesk open drawer Tasks

Model type
FitVid
SVG’

Figure 13: Detailed results comparing perceptual metric values and control performance: RoboDesk open
drawer task.

22

Published as a conference paper at ICLR 2023

0.012 0.014 0.016 0.018 0.020 0.022 0.024

LPIPS (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
ol

 s
u
cc

es
s

ra
te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1

SVG’
LPIPS=10

LPIPS vs. Control Performance on RoboDesk open slide Tasks

Model type
FitVid
SVG’

10 12 14 16 18 20 22

FVD (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
ol

 s
u
cc

es
s

ra
te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1

SVG’
LPIPS=10

FVD vs. Control Performance on RoboDesk open slide Tasks

Model type
FitVid
SVG’

0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96

SSIM (computed on task dataset)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
o
l
su

cc
es

s
ra

te

FitVid

FitVid
LPIPS=1

FitVid
LPIPS=10

SVG’

SVG’
LPIPS=1

SVG’
LPIPS=10

SSIM vs. Control Performance on RoboDesk open slide Tasks

Model type
FitVid
SVG’

Figure 14: Detailed results comparing perceptual metric values and control performance: RoboDesk open slide
task.

23

	Introduction
	Related Work
	The mismatch between perceptual metrics and control
	The VP2 Benchmark
	Environment and task definitions
	Sampling-based planning
	Training datasets

	Benchmark Interface
	Empirical Analysis of Video Prediction at Scale for Control
	Performance of Existing Models on VP2
	Model Capacity
	Data Quantity
	Uncertainty Estimation via Ensembles

	Conclusion
	Model Training Details
	FitVid
	SVG
	MCVD
	MaskViT
	Struct-VRNN

	Planning Implementation Details
	MPPI Optimizer
	Classifier cost functions
	Planning cost functions

	Alternative Planners
	Dataset Details
	Ensembling Experiments
	Code
	Full Results for Metric Comparisons

