

000 001 002 003 004 005 BLOCK-WISE CODEWORD EMBEDDING FOR RELIABLE 006 MULTI-BIT TEXT WATERMARKING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Recent multi-bit watermarking methods for large language models (LLMs) have
032 focused primarily on maximizing extraction rates. However, our reproduction
033 studies reveal a critical limitation: these approaches suffer from unacceptably high
034 false positive rates (FPR) that undermine their practical deployment. Specifically,
035 existing multi-bit encoding schemes like RS-Watermark achieve high true positive
036 rates even with insertion/deletion attacks but exhibit FPR exceeding 0.90, render-
037 ing them unreliable for real-world applications. We propose a robust multi-bit
038 text watermarking framework that addresses this reliability challenge through two
039 key innovations: (i) block-wise error correction that embeds complete codewords
040 within independent text segments, localizing the impact of edits and preventing
041 cascade failures, and (ii) window-shifting detection that systematically recovers
042 codewords despite insertion/deletion-induced misalignments. Our method verifies
043 watermark presence by confirming recovery of the initially embedded codewords,
044 significantly reducing false positives while maintaining high detection accuracy.
045 Experiments on OPT-1.3B and LLaMA-3.2-3B demonstrate substantial improve-
046 ments over existing multi-bit methods. Under 10% synonym substitution attacks
047 on 200-token texts, our approach achieves TPR of 0.965 with FPR of 0.02 (Preci-
048 sion: 0.9797), compared to RS-Watermark’s TPR of 0.97 with FPR of 0.925 (Preci-
049 sion: 0.5132). The framework is code-agnostic, supports progressive detection
050 from partial text, and provides theoretical guarantees for false-positive control.
051 These results establish our method as a practical solution for reliable multi-bit
052 watermarking in production environments.
053

1 INTRODUCTION

034 Large language models (LLMs) have transformed content generation across creative, professional,
035 and scientific domains, yet raise critical concerns about provenance and potential misuse for decep-
036 tive content Solaiman et al. (2019); Bender et al. (2021). Reliably distinguishing human-authored
037 from AI-generated text has become essential for academic integrity, journalism, legal proceedings,
038 and platform governance Mitchell et al. (2023); Gehrmann et al. (2019).
039

040 Text watermarking addresses this challenge by embedding imperceptible data into AI-generated
041 content during generation Kirchenbauer et al. (2023). Unlike post-hoc detection methods relying on
042 statistical artifacts Mitchell et al. (2023); Su et al. (2023), watermarking provides stronger origin
043 guarantees while preserving fluency and style.
044

045 Watermarking approaches divide into zero-bit (checking watermark presence) and multi-bit (en-
046 coding extractable metadata). The green/red partition strategy of Kirchenbauer et al. (2023) biases
047 generation toward a keyed “green” vocabulary subset. Recent multi-bit methods augment partition-
048 ing with error-correcting codes (ECCs) to embed message bits. Qu et al. (2025) encodes payloads
049 with Reed-Solomon codes, while Chao et al. (2024) uses LDPC codes with sliding windows for
short texts.
050

051 Despite strong extraction rates, prior multi-bit schemes exhibit *unacceptably high false positive*
052 *rates (FPR)*, undermining practical deployment Fu & Russell (2025). Our reproductions, conducted
053 using the official implementation released by Qu et al. (2025), show that under 10% synonym sub-
stitution on 200-token texts, Qu et al. (2025) achieve $TPR \approx 0.97$ but $FPR \approx 0.925$ (precision
 ≈ 0.51), frequently misclassifying unmarked text as watermarked. In contrast, our method achieves
054

TPR = 0.965 with FPR = 0.02 (precision = 0.9797). Structurally, the high FPR stems from decoding strategies that treat *any* valid codeword as evidence, irrespective of whether it matches the embedded initially message, and from global synchronization dependencies that collapse under insertions/deletions.

We introduce a robust multi-bit framework that *simultaneously* achieves high TPR and low FPR by (i) embedding *complete codewords in independent blocks* to localize errors and prevent cascade failures under edits, and (ii) deploying a *window-shifting detector* that systematically realigns and recovers codewords after insertion/deletion-induced desynchronization. Crucially, detection verifies that a recovered codeword equals the *designated* codeword that was actually embedded in that block, thereby suppressing spurious matches that inflate FPR. This design achieves both a high TPR and a significantly lower FPR compared to previous multi-bit methods, making them more suitable for real-world forensic applications. The framework is *code-agnostic*: while we instantiate with BCH codes for efficiency and clarity, the design extends to RS/LDPC codes, enabling adaptation to application-specific error patterns.

Our design closes the reliability gap in multi-bit watermarking. On 200-token texts under 10% synonym substitutions, we achieve TPR = 0.965 at FPR = 0.02, contrasting sharply with prior methods, which have an FPR greater than 0.9. The incremental detection capability enables progressive verification from partial text, quantifying watermark strength even when some blocks are corrupted, thus broadening real-world deployability.

1.1 CONTRIBUTIONS

This work makes the following key contributions:

1. **Low-FPR multi-bit watermarking:** A framework that *significantly* reduces FPR while preserving high TPR, overcoming a critical limitation in recent multi-bit methods and enabling reliable forensic deployment.
2. **Incremental detection framework:** Watermark evidence accumulates from multiple independent codeword segments, enabling graduated confidence assessment rather than binary detection.
3. **Theory for reliability:** Finite-sample bounds and design rules that control false positives and characterize detection power under realistic noise/edit models.
4. **Comprehensive validation:** Experiments across datasets (C4, OpenGen) and model families (OPT-1.3B, LLaMA-3.2-3B) showing state-of-the-art TPR–FPR trade-offs and robustness to substitution/insertion/deletion. For instance, under a 10% synonym substitution attack, a recent method exhibits an FPR of 0.925, whereas our method reduces it to 0.02.
5. **Code-agnostic design:** Compatibility with multiple linear codes (BCH/RS/LDPC), enabling tailoring to domain-specific error patterns.

Organization. Section 2 summarizes related work, Section 3 presents the proposed algorithms, Section 4 provides reliability bounds and design guidance, Section 5 presents empirical results, and Section 6 concludes with future research directions.

2 RELATED WORKS

Text watermarking for LLMs has rapidly diversified alongside model capabilities and deployment contexts. We organize prior work by *detection objective*: (i) *zero-bit* watermarking, which only tests for the presence of a watermark, and (ii) *multi-bit* watermarking, which embeds and extracts a payload. This lens clarifies robustness requirements (synchronization, error tolerance) and evaluation protocols, and it better reflects recent cryptographic developments, including zero-bit constructions based on pseudorandom error-correcting codes.

2.1 ZERO-BIT WATERMARKING

A canonical approach is the keyed green/red partition of Kirchenbauer et al. (2023), which biases generation toward a secret per-token green set and applies a binomial-style hypothesis test at de-

108

109

Table 1: Comparison of zero-bit and multi-bit watermarking methods.

Zero-bit Methods	ECC	Key Features	Limitations
Kirchenbauer et al. (2023) (KGW)	No	Green/red partition; simple test	Fragile to paraphrasing; weak on short texts
Wu et al. (2023) (DiPmark)	No	Distribution-preserving; better quality	Reduced watermark strength
Zhao et al. (2023)	No	Unigram watermark; provable robustness	Limited to unigram patterns
Takezawa et al. (2025)	No	Detectability conditions	No practical robustness
Christ & Gunn (2024)	Yes	Pseudorandom ECC; hidden test	Computational overhead; no payload

Multi-bit Methods	ECC	Key Features	Limitations
Yoo et al. (2023)	No	Embeds via keywords/syntax	Low extraction accuracy (49.2% at 32-bit)
Qu et al. (2025)	Yes (RS)	RS code encoding; high TPR	FPR ≈ 0.9 under insertion/deletion
Chao et al. (2024)	Yes (LDPC)	Sliding-window; strong on short text	High FPR risk; complex decoding

115

116

117

118

119

120

121

tection. Variants preserve the model distribution to improve quality Wu et al. (2023), or provide robustness under bounded edits Zhao et al. (2023). Exponential reweighting and detectability criteria further sharpen the theory Takezawa et al. (2025). From a cryptographic angle, Christ & Gunn (2024) constructs pseudorandom ECCs whose neighborhoods are indistinguishable from random, enabling hidden presence tests at constant error. Despite their efficiency, most zero-bit schemes rely on aggregate frequency signals and lack explicit synchronization, making them vulnerable to paraphrasing, translation, or token-level desynchronization, especially in short texts.

122

123

2.2 MULTI-BIT WATERMARKING

124

Multi-bit watermarking seeks to embed a payload that can be *decoded*. Two broad families appear.

125

126

(a) Non-ECC multi-bit ideas. Yoo et al. (2023) use invariant features (keywords/syntax) for robustness, but suffer allocation imbalance and low accuracy on longer messages (49.2% match rate for 32-bit).

127

128

(b) ECC-based message encoding. Qu et al. (2025) pioneered the *ECC-based message-encoding*, which encodes the payload with Reed–Solomon (RS), distributes symbols via pseudorandom segments, and decodes by cracking noisy segment votes to the nearest codeword. Chao et al. (2024) extends this line with LDPC and sliding windows, reporting strong performance on short texts via adaptive biasing and sophisticated decoding.

129

130

Limitations. ECC-based methods often behave like *message extractors*, not calibrated detectors: nearest-codeword decoding maps even unwatermarked text to valid codewords, driving FPR high—particularly under insertions/deletions or synonym edits. Fu & Russell (2025) formalize this *false detection problem*: conflating detection with identification effectively enlarges key capacity and degrades reliability.

131

132

2.3 ATTACKS AND EVALUATION PROTOCOLS

133

134

Attacks include (i) **substitutions** (synonyms, back-translation, model paraphrasing) Morris et al. (2020); Wieting & Gimpel (2018); Krishna et al. (2023), (ii) **insertions/deletions** that break token-bit alignment, and (iii) **semantic rewrites** that alter surface form while preserving meaning Wolff et al. (2023). While recent frameworks standardize protocols and metrics Pan et al. (2023); Kuditipudi et al. (2023), insertion/deletion scenarios remain underexplored. Prior pseudo-random embedding strategies Yoo et al. (2023); Qu et al. (2025) mitigate—but do not resolve—synchronization, and segment-level voting can yield unacceptably FPR on unwatermarked text.

135

136

2.4 POSITIONING OF OUR WORK

137

138

139

140

141

142

143

We address the above gaps with an **incremental detection framework** through: (1) **distributed codeword architecture** embedding *complete* codewords independently, enabling partial recovery and progressive confidence quantification; and (2) **window-shifting detection** that realigns individual codewords, each contributing to accumulated watermark strength. Our *incremental veri-*

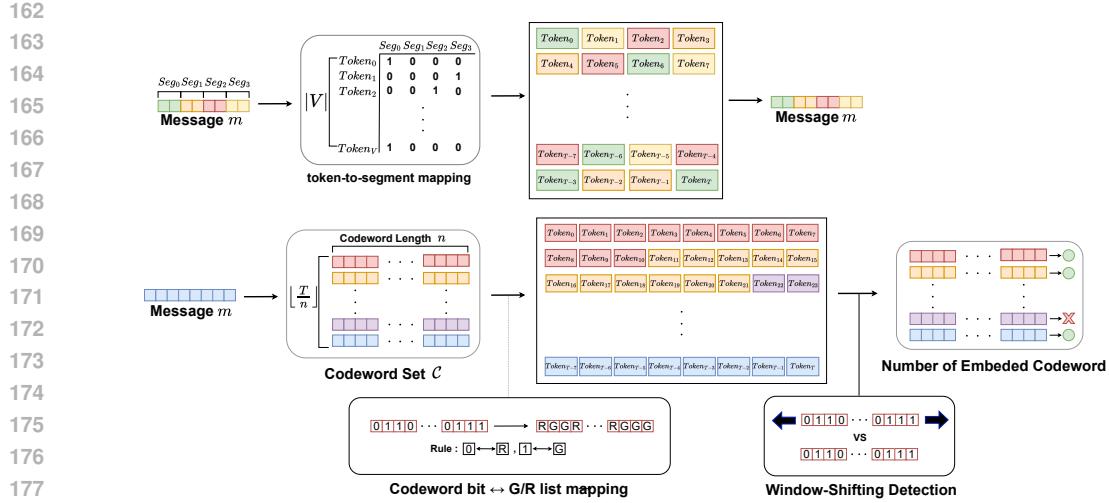


Figure 1: Overview of prior and proposed multi-bit watermarking frameworks. **(Top)** In prior schemes, a deterministic token-to-segment mapping assigns a segment to every token—even for unwatermarked text—so segment votes accumulate and ECC can “correct” noise into a valid codeword, leading to false positives. **(Bottom)** Our incremental detection framework embeds complete codewords in a distributed codeword architecture (realized through token-to-segment and bit-to-G/R list mapping) and employs window-shifting detection with designated verification. This preserves multi-bit payloads while eliminating the “any-codeword” acceptance failure mode, thereby significantly reducing false positives.

ification counts only matching *designated codewords*, transforming binary detection into graduated evidence accumulation while suppressing spurious hits. This quantifies watermark strength continuously—more recovered codewords yield higher confidence. The *code-agnostic* framework (BCH/RS/LDPC/convolutional) achieves substantially improved TPR–FPR through incremental evidence collection with explicit insertion/deletion handling. The next section details the algorithms and guarantees.

3 PROPOSED WATERMARKING FRAMEWORK

We propose a *reliable multi-bit* watermarking framework that explicitly targets the high FPR pitfall observed in prior multi-bit schemes, while preserving high TPR and robustness to common edits. The method has three pillars: (i) *distributed resilience* via independent codeword blocks that enable partial watermark recovery and progressive confidence assessment even when some blocks are corrupted, (ii) a *window-shifting* detector that realigns and recovers individual codewords after insertion/deletion, contributing to the overall watermark strength score, and (iii) *graduated verification protocol*, which quantifies watermark evidence by counting correctly matched *designated codewords* rather than accepting “any” decodable codeword, thereby enabling continuous watermark strength measurement while suppressing spurious detections.

This incremental approach transforms binary detection into progressive evidence accumulation, where each recovered block contributes to a quantifiable confidence score. This section provides detailed algorithmic descriptions and technical analysis of each component.

3.1 RELIABLE MULTI-BIT DETECTION VIA DESIGNATED-CODEWORD VERIFICATION

Prior methods rely on previous tokens to collect information for codeword decoding, treating any text—watermarked or not—identically: the same token contributes to the decoding process, and ECC even corrects “errors” to produce false positives by reconstructing valid codewords from random noise. In contrast, our approach considers not only tokens but also their relative positions to verify whether patterns match the actual codeword structure, accepting only the designated codeword as

216 a true detection rather than any valid codeword, thereby significantly reducing false positives while
 217 maintaining multi-bit capacity.
 218

219 3.1.1 END-TO-END PROCEDURE
 220

221 We retain the use of meaningful messages $m \in \{0, 1\}^k$ in the watermarking process, but depart
 222 from prior approaches by introducing *incremental watermark verification*:

- 224 1. **Codeword assignment:** For each block j , compute the designated codeword $c^{(j)} \leftarrow \mathbb{E}(m \oplus r^{(j)})$, where $r^{(j)}$ is a key-derived mask used for distance/weight balancing (in-
 225 vertible at detection) as in Algorithm 3.¹
- 227 2. **Distributed embedding.** Embed $c^{(j)}$ in block j via keyed vocabulary partitioning and
 228 soft/hard bias as in Algorithm 1, enabling independent recovery of each block.
- 229 3. **Shift-aware decoding.** At detection, extract per-block bit strings and perform unique de-
 230 coding with bounded circular shifts to counter insertion/deletion, treating each recovered
 231 block as incremental evidence (Algorithms 4 and 2).
- 232 4. **Incremental verification.** Count a block as matched only if the decoded $\hat{c}^{(j)}$ equals the
 233 designated $c^{(j)}$; aggregate matches and decide positive if the match ratio exceeds θ .
 234

235 This preserves the semantics of multi-bit watermarking (the payload can be reconstructed by un-
 236 masking $r^{(j)}$ for matched blocks) while *eliminating* the principal FPR failure mode of “any-
 237 codeword” acceptance.

238 Overall, our design offers several advantages: (1) enforces rigorous verification based on codeword
 239 matching to maintain low FPR, (2) enables parallel processing of independent blocks, (3) provides
 240 graceful degradation under attacks, and (4) supports progressive detection from partial text.
 241

242 3.2 DISTRIBUTED CODEWORD EMBEDDING
 243

244 3.2.1 VOCABULARY PARTITIONING STRATEGY
 245

246 Following the established approach of Kirchenbauer et al. (2023), we partition the vocabulary \mathcal{V}
 247 into two disjoint sets for each block. For block j , we compute a block-specific seed such that
 248 $\text{seed}_j = H(\mathcal{K}, j)$, where H is a cryptographic hash function (e.g., SHA-3) and \mathcal{K} is the secret
 249 watermarking key. Using seed_j , we deterministically partition the vocabulary as $\mathcal{L}_0^{(j)} = \{v \in \mathcal{V} : H(\text{seed}_j, v) \bmod 2 = 0\}$ and $\mathcal{L}_1^{(j)} = \{v \in \mathcal{V} : H(\text{seed}_j, v) \bmod 2 = 1\}$. This block-specific par-
 250 titioning prevents adversaries from inferring vocabulary assignments across multiple generations,
 251 even with partial knowledge of the partitioning strategy.

253 3.2.2 CODEWORD GENERATION AND SELECTION
 254

255 We pre-compute a set of diverse codewords to avoid statistical patterns that could be exploited by ad-
 256 versaries. Specifically, the codeword generation strategy serves two purposes: (1) excluding all-zero
 257 codewords prevents degenerate cases that could impact detection accuracy, and (2) generating code-
 258 word pairs with maximum Hamming distance enhances robustness by ensuring diverse bit patterns.
 259 The detailed generation procedure is provided in Appendix B.1.

261 3.2.3 DISTRIBUTED EMBEDDING ALGORITHM
 262

263 Our embedding algorithm processes text generation in blocks of length n tokens, where each block
 264 embeds exactly one codeword. Algorithm 1 provides the complete procedure.

265 **Soft vs. Hard Embedding Schemes:** The soft scheme adds bias δ to target list logits before applying
 266 softmax, allowing natural variation while encouraging codeword-consistent tokens. The hard scheme
 267 restricts sampling entirely to the target list, ensuring perfect codeword embedding at a potential cost
 268

269 ¹If an application does not carry a payload, one may set $m = 0^k$ and use only $r^{(j)}$ for per-block variability;
 the detector remains unchanged. We emphasize our *default* use is multi-bit payloads.

270 to text quality. The choice between schemes provides a tunable trade-off between watermark strength
 271 and naturalness.
 272

273

274

Algorithm 1 Distributed Watermark Embedding

275

Require: Prompt, key \mathcal{K} , codeword queue \mathcal{Q} ,
 276 code length n , bias δ , scheme $\in \{\text{soft, hard}\}$

277

Ensure: Watermarked tokens

278

```

1:  $N_p \leftarrow$  prompt length
2: for  $t = 0, 1, 2, \dots$  do
3:   logits  $\ell^{(t)} \leftarrow$  LM
4:   if  $t < N_p$  then
5:     sample from softmax( $\ell^{(t)}$ ); continue
6:   end if
7:    $(j, b) \leftarrow \text{divmod}(t - N_p, n)$ 
8:   if  $b = 0$  and  $\mathcal{Q}[j]$  uninit then
9:     choose  $c \in \mathcal{C}$ ;  $\mathcal{Q}[j] \leftarrow c$ 
10:    seed $_j \leftarrow H(\mathcal{K}, j)$ ; build  $(\mathcal{L}_0^{(j)}, \mathcal{L}_1^{(j)})$ 
11:   end if
12:    $z^{(t)} \leftarrow \mathcal{Q}[j][b]$ ;  $\ell' \leftarrow \ell^{(t)}$ 
13:   add  $+\delta$  to  $\ell'_k$  for  $k \in \mathcal{L}_{z^{(t)}}^{(j)}$ ;
14:   if scheme=hard then
15:      $\ell'_k \leftarrow -\infty$  for  $k \notin \mathcal{L}_{z^{(t)}}^{(j)}$ 
16:   end if
17:   sample  $s^{(t)} \sim \text{softmax}(\ell')$ 
18: end for

```

295

296

297

298

3.3 WINDOW SHIFTING FOR INCREMENTAL EVIDENCE RECOVERY

299

300 The key innovation enabling *incremental detection* under insertion/deletion attacks is our window
 301 shifting mechanism. When tokens are inserted or deleted within a block, the extracted bit sequence
 302 becomes a cyclic shift of the original codeword. Our detection algorithm systematically searches for
 303 and recovers individual codewords.

304

305

Bit Extraction and Segmentation. Given the candidate text, we obtain the corresponding bit se-
 306 quence using the same vocabulary partitioning strategy as in the embedding stage. Each token s_t is
 307 mapped to a bit b_t according to its block-specific partition, and the resulting sequence is segmented
 308 into blocks of length n as $b_t = f_j(s_t)$, $(j, b) = \text{divmod}(t - N_p, n)$, $\mathcal{B} = \{b_{[0:n]}, b_{[n:2n]}, \dots\}$.
 309 Each block represents an independent detection unit for incremental evidence accumulation. The
 310 full extraction algorithm, including seed initialization and lookup construction, is provided in Ap-
 311 pendix B.2.

312

313

Safe Decoding with Error Handling. To ensure robust *incremental detection* even when individ-
 314 ual blocks contain uncorrectable errors, we implement a safe decoding subroutine that gracefully
 315 handles decoder failures. The decoder accepts only codewords within the correction radius t and
 316 returns `None` otherwise, preventing spurious matches while allowing other blocks to contribute to
 317 the watermark strength score. The concrete decoding procedure and full algorithm are provided in
 318 Appendix B.3.

319

320

321

322

323

Incremental Detection via Window Shifting. Our core detection algorithm 2 augments standard
 324 error-correcting decoding with systematic circular shifting, allowing recovery from misalignments
 325 caused by token insertions or deletions. **Circular Shifting Rationale:** When r tokens are inserted
 326 at position p within a block, all subsequent bits shift left by r positions. Circular left shifting by r
 327 positions can recover the original bit pattern, provided the total corruption (including substitution
 328 errors) remains within the error-correction capability of the code.

329

330

331

332

333

Algorithm 2 Window Shifting Detection

334

Require: Text, \mathcal{Q} , s_{\max} , threshold θ , block
 335 length n

336

Ensure: Detection decision

337

```

1: extract blocks  $\mathcal{B}$  (Alg. 4)
2: matched  $\leftarrow 0$ , total  $\leftarrow \min(|\mathcal{B}|, |\mathcal{Q}|)$ 
3:  $\mathcal{S} \leftarrow \{0\} \cup \{-s_{\max}, \dots, -1, 1, \dots, s_{\max}\}$ 
4: for  $i = 0, \dots, \text{total} - 1$  do
5:    $b \leftarrow \mathcal{B}[i]$ ,  $c \leftarrow \mathcal{Q}[i]$ ; success  $\leftarrow$  False
6:   for  $s \in \mathcal{S}$  do
7:      $b^{(s)} \leftarrow \text{ROTATE}(b, s \bmod n)$ 
8:      $\hat{c} \leftarrow \text{SAFEDECODE}(b^{(s)})$  (Alg. 5)
9:     if  $\hat{c} = c$  then
10:      matched  $\leftarrow$  matched + 1;
11:      success  $\leftarrow$  True
12:      break
13:    end if
14:  end for
15:  match_ratio  $\leftarrow$  matched/total
16: return  $\text{match\_ratio} \geq \theta$ 

```

324 **Error-Correcting Code Selection and Parameterization.** Our framework is agnostic to the spe-
 325 cific choice of error-correcting code. We primarily adopt BCH codes due to their efficiency and well-
 326 understood properties, but the framework also accommodates alternatives such as Reed–Solomon,
 327 LDPC, or convolutional codes. Detailed selection guidelines and parameterization examples are
 328 provided in Appendix C.1.

329 **3.4 PARAMETER SELECTION AND OPTIMIZATION**

330 We provide general guidelines for parameter selection, focusing on block length n , bias parameter
 331 δ , and maximum shift s_{\max} . These parameters govern the trade-off between robustness, detection
 332 accuracy, and text quality. Comprehensive trade-off analyses and recommended configurations are
 333 deferred to Appendix C.2.

334 **3.5 COMPUTATIONAL COMPLEXITY ANALYSIS AND SECURITY PROPERTIES**

335 The embedding procedure has the same $O(|\mathcal{V}|)$ per-token complexity as existing methods, while de-
 336 tection introduces an additional factor proportional to the maximum shift s_{\max} . Formal derivations
 337 and detailed complexity expressions are given in Appendix C.3. Our approach inherits the security
 338 guarantees of the underlying hash function and error-correcting code, while introducing additional
 339 resilience via block-wise embedding and codeword diversity. A full discussion of key security, code-
 340 word diversity, and block independence is provided in Appendix C.4.

341 **4 ANALYTICAL BOUNDS FOR FPR/FNR IN ECC-BACKED WATERMARKS**

342 This section develops finite-sample bounds for the proposed watermarking scheme based on block-
 343 wise *codeword-presence* detection with window shifting. We quantify false positive (FPR) and false
 344 negative (FNR) probabilities under general q -ary linear codes, and isolate the role of the embedding
 345 bias parameter δ in the soft-embedding regime. We summarize here the setup and key intuition,
 346 while deferring detailed theorems and proofs to Appendix D.

347 **Setup and Notation.** We consider a q -ary linear block code $C \subseteq \Sigma^n$ with unique-decoding radius
 348 t . Each text block embeds a designated codeword via δ -biased sampling from a green/red partition
 349 of the vocabulary. Detection is performed by unique decoding with window shifting to counter
 350 misalignments. (Detailed definitions in Appendix D.1.)

351 **False Positives.** We analyze two types of tests: (i) a naïve “any-codeword” presence test, and (ii)
 352 the proposed designated-codeword test with window shifting. Theorems 1 and 2 (Appendix D.2,
 353 D.3) quantify single-block and aggregate FPR under these schemes, highlighting exponential sup-
 354 pression in the block length n and the number of blocks M .

355 **False Negatives.** The impact of soft embedding (δ -bias) and adversarial edits is modeled via an
 356 effective symbol error probability p_{tot} . Theorem 5 (Appendix D.6) shows that the aggregate FNR
 357 decays exponentially in M provided $p_{\text{tot}} < t/n$.

358 **Design Implications.** The combined FPR/FNR bounds yield a clear design rule: choose param-
 359 eters $(n, t, s_{\max}, \theta, M, \delta)$ so that θ balances the two Chernoff exponents, and δ is large enough to
 360 keep the embedding error below t/n . See Appendix D.8 for proofs, examples, and entropy-based
 361 parameter guidelines.

362 **5 RESULTS**

363 **5.1 EXPERIMENTAL SETUP**

364 **Models and Datasets.** We evaluate on two open-source LLMs, OPT-1.3B and LLaMA-3.2-3B,
 365 using datasets from Qu et al. (2025): the C4 corpus (large-scale diverse English text) and the Open-
 366 Gen dataset (3,000 two-sentence samples from WikiText-103). Unless noted otherwise, OPT-1.3B
 367 and C4 are used as defaults.

378 **Baselines.** We compare with RS-Watermark(Qu et al. (2025)), which uses Reed–Solomon codes.
 379 For fairness, we used the official implementation released by the authors and kept all parameter
 380 settings identical. We did not include the LDPC-based scheme of Chao et al. (2024) in our compar-
 381 isons, as no official implementation has been released; we leave its reproduction and evaluation for
 382 future work.
 383

384 **Parameters and Metrics.** For watermark embedding, we adopt $\text{BCH}(n=31, k=6, t=7)$, select-
 385 ing $n=31$ as it provides a balanced TPR–FPR trade-off compared to shorter codewords ($n=15$,
 386 high TPR but high FPR) and longer ones ($n=63$, low FPR but poor TPR), as detailed in Ap-
 387 pendix E.7. We evaluate both *soft* and *hard* watermarking but adopt *soft* by default for better text
 388 quality (Appendix E.3); in the *soft* setting we vary the insertion strength $\delta \in \{1.5, 2.0, 3.0, 6.0\}$.
 389 During detection, we use a window-shift range of $s_{\max} \in \{0, 1, 3, 5\}$, chosen based on the analysis
 390 in Appendix C.2.3, to recover alignment under insertion or deletion attacks. Our *incremental de-
 391 tection* protocol quantifies watermark strength by counting recovered codewords: by default, a text
 392 is deemed watermarked if at least one originally embedded codeword is recovered, but the system
 393 reports the total number of matched codewords as a continuous confidence score. This enables pro-
 394 gressive watermark verification where detection confidence increases with each recovered block. A
 395 stricter threshold (≥ 2 matches) reduces FPR but also lowers TPR (Appendix E.5), demonstrating
 396 the flexibility of our graduated detection approach. Between the two detector variants, the Naïve ver-
 397 sion consistently exhibits high FPR, whereas the structured version achieves $\text{FPR} \approx 0.0$ with com-
 398 parable TPR by leveraging incremental evidence accumulation (Appendix E.1). Hence, we adopt the
 399 structured detector in all experiments. We evaluate texts truncated to fixed lengths $T \in \{200, 500\}$
 400 and report standard metrics (TPR, FPR, Precision, F1) alongside the watermark strength score for
 401 incremental analysis.
 402

402 5.2 SYNONYM SUBSTITUTION ATTACK

403 We evaluate robustness under synonym substitution, where words in a watermarked text are re-
 404 placed with semantically equivalent alternatives. Such variations, covering both paraphrasing and
 405 obfuscation, may disrupt token–codeword alignment. Our prior analysis showed that larger water-
 406 mark insertion strengths δ reduce the bit error rate (BER), yielding more reliable codeword recovery
 407 and higher TPR (Appendix E.2). We categorize attacks into three types depending on their effect
 408 on token count: **token-preserving** (no change), **token-decreasing** (shorter replacements, deletion-
 409 like), and **token-increasing** (longer replacements, insertion-like). Experiments were conducted at
 410 substitution rates of 5% and 10% on the C4 dataset, with complete metrics in Appendix E.8. Sup-
 411 plementary experiments on the OpenGen dataset are also reported in Appendix E.4.
 412

413 5.2.1 TOKEN-PRESERVING SYNONYM SUBSTITUTION

414 Token-preserving replacements maintain token alignment but alter the statistical distribution of sam-
 415 pled tokens. As shown in Figure 2, both Structured-Ours and RS-Watermark achieve high TPR as
 416 δ increases, but RS-Watermark suffers from FPR values close to 1.0 (e.g., 0.930 at $\delta = 3$). In con-
 417 trast, Structured-Ours keeps FPR near zero, yielding a far clearer separation between watermarked
 418 and unwatermarked texts. We observe the same trends on the OpenGen dataset, as detailed in Ap-
 419 pendix E.4.
 420

422 5.2.2 TOKEN-ALTERING SYNONYM SUBSTITUTION (DELETION/INSERTION-LIKE)

424 When replacements alter token counts, codeword–token alignment is disrupted: fewer tokens shift
 425 watermark positions forward (deletion-like), while more tokens shift them backward (insertion-like).
 426 As shown in Figure 3, increasing the window-shift parameter s_{\max} consistently improves TPR across
 427 both weak ($\delta = 1.5$) and strong ($\delta = 6.0$) watermark insertion strengths. For example, under 10%
 428 insertion at $T = 500$ with OPT-1.3B at $\delta = 6.0$, TPR improves from about 0.430 at $s_{\max} = 0$ to
 429 0.960 at $s_{\max} = 5$, showing the pronounced benefit of window-shift detection.
 430

431 Figure 4 further shows that Structured-Ours maintains low FPR even when TPR is comparable to
 432 RS-Watermark. For instance, at $T = 500$ with $\delta = 3$, both methods achieve near-perfect TPR (1.0
 433 vs. 0.995), but FPR diverges sharply (0.160 vs. 0.945). Similarly, Figure 5 confirms that across

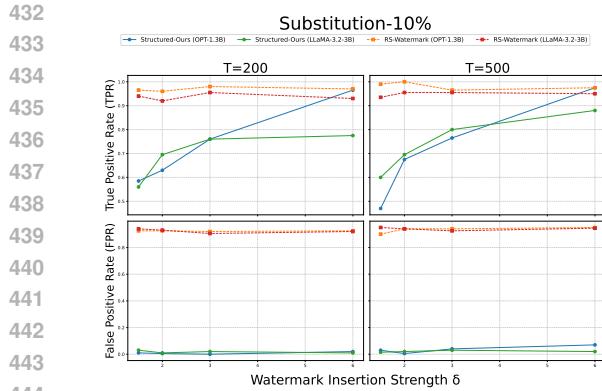


Figure 2: Comparison with RS-Watermark under 10% token-preserving synonym substitution at $s_{\max} = 5$. While maintaining comparable or higher TPR, our method keeps FPR significantly lower, yielding more reliable watermark detection.

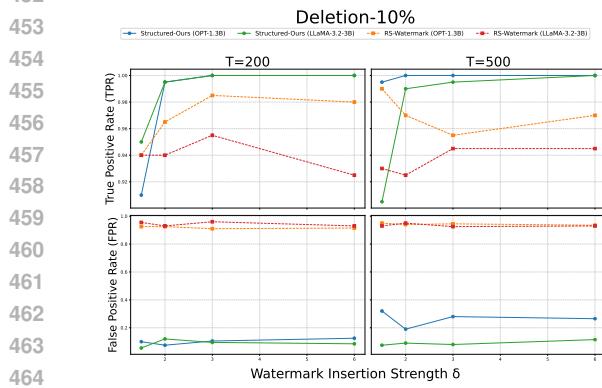


Figure 4: Comparison with RS-Watermark under 10% deletion attacks at $s_{\max} = 5$. Across watermark strengths, our method maintains high TPR while substantially lowering FPR compared to RS-Watermark, indicating more reliable detection.

all insertion strengths, Structured-Ours consistently yields much lower FPR than RS-Watermark, highlighting its superior reliability.

5.3 PARAPHRASING ATTACK

As shown in Table 2, Structured-Ours maintains consistently low FPR across all substitution strengths and datasets, even under paraphrasing-based perturbations. Increasing the watermark insertion strength δ further improves TPR, demonstrating that our method remains robust to semantic rewriting performed by the T5_Paraphrase_Paws model.

In contrast, RS-Watermark exhibits high TPR but suffers from extremely high FPR (often exceeding 90%), making it difficult to reliably distinguish watermarked texts from unwatermarked ones. This highlights a fundamental limitation of existing multi-bit schemes and underscores the necessity of strong false-positive control for practical deployment.

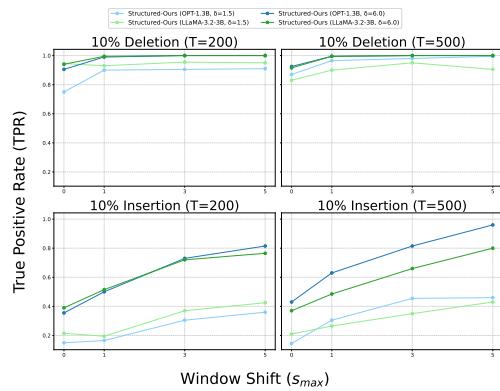


Figure 3: Effect of window-shift parameter s_{\max} on TPR under 10% deletion/insertion attacks. Increasing s_{\max} consistently improves TPR for both weak ($\delta=1.5$) and strong ($\delta=6.0$) watermarks, demonstrating its effectiveness in mitigating alignment mismatches.

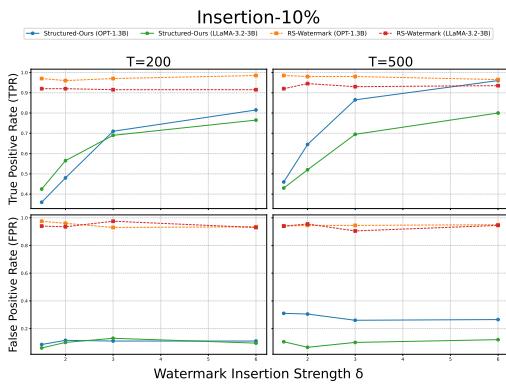


Figure 5: Comparison with RS-Watermark under 10% insertion attacks at $s_{\max} = 5$. Our method consistently achieves higher TPR and markedly lower FPR than RS-Watermark across different δ values, demonstrating robustness against insertion-like perturbations.

486
 487 Table 2: Structured-Ours vs. RS-Watermark under paraphrasing (T5_Paraphrase_Paws) on C4 and
 488 OpenGen. Structured-Ours maintains low FPR across all δ and s_{\max} values.

Setting			T200							
Model	δ	s_{\max}	C4				OpenGen			
			TPR	FPR	Precision	F1_score	TPR	FPR	Precision	F1_score
RS-Watermark	1.5	-	0.950	0.950	0.5000	0.6552	0.920	0.960	0.4894	0.6389
	2	-	0.920	0.930	0.4973	0.6456	0.960	0.960	0.5000	0.6575
	3	-	0.960	0.970	0.4974	0.6553	0.960	0.920	0.5106	0.6667
	6	-	0.980	0.900	0.5213	0.6806	0.980	0.930	0.5131	0.6735
Structured-Our	1.5	0	0.360	0.020	0.9474	0.5217	0.450	0.020	0.9574	0.6122
		1	0.410	0.040	0.9111	0.5655	0.400	0.000	1.0000	0.5714
		3	0.350	0.030	0.9211	0.5072	0.570	0.050	0.9194	0.7037
		5	0.480	0.100	0.8276	0.6076	0.480	0.100	0.8276	0.6076
	2	0	0.330	0.000	1.0000	0.4962	0.520	0.010	0.9811	0.6797
		1	0.530	0.030	0.9464	0.6795	0.540	0.020	0.9643	0.6923
		3	0.560	0.060	0.9032	0.6914	0.710	0.030	0.9595	0.8161
		5	0.580	0.140	0.8056	0.6744	0.530	0.130	0.8030	0.6386
Structured-Our	3	0	0.360	0.000	1.0000	0.5294	0.600	0.000	1.0000	0.7500
		1	0.450	0.040	0.9184	0.6040	0.630	0.060	0.9130	0.7456
		3	0.650	0.040	0.9420	0.7692	0.710	0.060	0.9221	0.8023
		5	0.680	0.110	0.8608	0.7598	0.720	0.040	0.9474	0.8182
	6	0	0.550	0.000	1.0000	0.7097	0.550	0.010	0.9821	0.7051
		1	0.720	0.030	0.9600	0.8229	0.780	0.080	0.9070	0.8387
		3	0.710	0.100	0.8765	0.7845	0.700	0.070	0.9091	0.7910
		5	0.810	0.120	0.8710	0.8394	0.910	0.070	0.9286	0.9192

513 514 6 CONCLUSION

515
 516 In this paper, we proposed an incremental detection framework to overcome the limitations of ex-
 517 isting ECC-based watermarking methods. Unlike prior approaches, the proposed scheme effectively
 518 suppresses false positives while maintaining stable detection performance under various attacks. Ex-
 519 perimental results demonstrate that our method achieves near-zero FPR with consistently high TPR,
 520 outperforming the scheme of RS-Watermark and establishing a more reliable watermarking solution.
 521 These results highlight the potential of our framework for practical deployment in LLM watermark-
 522 ing. Future research will explore extensions to larger LLMs, more diverse adversarial scenarios, and
 523 general linear code structures to further enhance robustness and applicability.

525 REFERENCES

526
 527 Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
 528 dangers of stochastic parrots: Can language models be too big? In *Proceedings of the 2021 ACM*
 529 *Conference on Fairness, Accountability, and Transparency*, pp. 610–623, New York, NY, USA,
 530 2021. Association for Computing Machinery. doi: 10.1145/3442188.3445922. URL <https://doi.org/10.1145/3442188.3445922>.

531
 532 R.E. Blahut. *Theory and Practice of Error Control Codes*. Addison-Wesley Publishing Com-
 533 pany, 1983. ISBN 9780201101027. URL <https://books.google.co.kr/books?id=vuVQAAAAMAAJ>.

534
 535 Lean Chao, Kangfu Chen, Yanshan Wang, and Haizhou Liu. Watermarking language models with
 536 error correcting codes. *arXiv preprint arXiv:2406.10281*, 2024.

537
 538 Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes. In Leonid Reyzin and Dou-
 539 glas Stebila (eds.), *Advances in Cryptology – CRYPTO 2024*, pp. 325–347, Cham, 2024. Springer
 Nature Switzerland. ISBN 978-3-031-68391-6.

540 Zihao Fu and Chris Russell. Multi-use ILM watermarking and the false detection problem. *arXiv*
 541 *preprint arXiv:2506.15975*, 2025.

542

543 Sebastian Gehrmann, Hendrik Strobelt, and Alexander Rush. GLTR: Statistical detection and visu-
 544 alization of generated text. In Marta R. Costa-jussà and Enrique Alfonseca (eds.), *Proceedings of*
 545 *the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstra-*
 546 *tions*, pp. 111–116, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
 547 10.18653/v1/P19-3019.

548 John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
 549 watermark for large language models. *arXiv preprint arXiv:2301.10226*, 2023. also presented at
 550 ICML 2023.

551

552 Kalpesh Krishna, Yixiao Song, Marzena Karpińska, John Wieting, and Mohit Iyyer. Paraphrasing
 553 evades detectors of ai-generated text, but retrieval is an effective defense. In *Advances in Neural*
 554 *Information Processing Systems*, volume 36, 2023.

555 Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
 556 watermarking for language models. *arXiv preprint arXiv:2307.15593*, 2023.

557

558 Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and Chelsea Finn. De-
 559 tectgpt: Zero-shot machine-generated text detection using probability curvature. *arXiv preprint*
 560 *arXiv:2301.11305*, 2023. Presented at ICML 2023.

561 John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. TextAttack: A frame-
 562 work for adversarial attacks, data augmentation, and adversarial training in NLP. In Qun Liu and
 563 David Schlangen (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural*
 564 *Language Processing: System Demonstrations*, pp. 119–126, Online, October 2020. Association
 565 for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.16.

566

567 Alexander Pan, June Tong Shern, Alex Tamkin, Jasmine Song, Yuntao Zhang, Sarah Saleh, Deep
 568 Ganguli, and Aidan Clark. Risk sources and risk management for generative ai. *arXiv preprint*
 569 *arXiv:2310.07782*, 2023.

570 Wenjie Qu, Wengrui Zheng, Tianyang Tao, Dong Yin, Yanze Jiang, Zhihua Tian, Wei Zou, Jinyuan
 571 Jia, and Jiaheng Zhang. Provably robust multi-bit watermarking for {AI-generated} text. In *34th*
 572 *USENIX Security Symposium (USENIX Security 25)*, pp. 201–220, 2025.

573 Tom Richardson and Ruediger Urbanke. *Modern Coding Theory*. Cambridge University Press,
 574 USA, 2008. ISBN 0521852293.

575

576 Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
 577 Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, Miles McCain, Alex Newhouse, Jason
 578 Blazakis, Kris McGuffie, and Jasmine Wang. Release strategies and the social impacts of language
 579 models, 2019. URL <https://arxiv.org/abs/1908.09203>.

580 Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectilm: Leveraging log rank infor-
 581 mation for zero-shot detection of machine-generated text, 2023. URL <https://arxiv.org/abs/2306.05540>.

582

583 Yuki Takezawa, Ryoma Sato, Han Bao, Kenta Niwa, and Makoto Yamada. Necessary and suffi-
 584 cient watermark for large language models, 2025. URL <https://arxiv.org/abs/2310.00833>.

585

586 John Wieting and Kevin Gimpel. ParaNMT-50M: Pushing the limits of paraphrastic sentence em-
 587 beddings with millions of machine translations. In Iryna Gurevych and Yusuke Miyao (eds.), *Pro-*
 588 *ceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume*
 589 *1: Long Papers)*, pp. 451–462, Melbourne, Australia, July 2018. Association for Computational
 590 Linguistics. doi: 10.18653/v1/P18-1042.

591

592 Max Wolff, Stuart Wolff, Hany Venkatesh, Moksh Mangla, Kai-Wei Chiang, and Yash Garg. At-
 593 tacking neural text detectors. *arXiv preprint arXiv:2302.05733*, 2023.

594 Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang Zhang, and Heng Huang. A resilient and ac-
 595 cessible distribution-preserving watermark for large language models (dipmark). *arXiv preprint*
 596 *arXiv:2310.07710*, 2023.

598 KiYoon Yoo, Wonhyuk Ahn, Jiho Jang, and Nojun Kwak. Robust multi-bit natural language water-
 599 marking through invariant features. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
 600 (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics*
 601 (*Volume 1: Long Papers*), pp. 2092–2115, Toronto, Canada, July 2023. Association for Compu-
 602 tational Linguistics. doi: 10.18653/v1/2023.acl-long.117.

603 Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
 604 for ai-generated text. *arXiv preprint arXiv:2306.17439*, 2023.

607 A LLM USAGE STATEMENT

609 During the preparation of this paper, we used ChatGPT to improve clarity, enhance writing consis-
 610 tency, and assist with grammar refinement. We also used Perplexity.ai to support literature search
 611 and discovery (e.g., identifying related work and relevant references). All conceptual contributions,
 612 theoretical analyses, model designs, experiments, and research conclusions were developed entirely
 613 by the authors.

615 B DETAILED ALGORITHMS

618 B.1 DIVERSE CODEWORD GENERATION

619 This algorithm provides the detailed procedure for generating diverse codewords. As described in
 620 Section 3, we exclude the all-zero codeword and use maximum-weight pairs to maximize Hamming
 621 distance and ensure robustness.

623 Algorithm 3 Diverse Codeword Generation

624 **Require:** Error-correcting code \mathcal{C} with parameters (n, k, t) , secret key \mathcal{K}
 625 **Ensure:** Diverse codeword set \mathcal{Q}

626 1: Define message space $\mathcal{M} \leftarrow \{0, 1\}^k \setminus \{0^k\}$ ▷ exclude all-zero message
 627 2: $\mathcal{Q} \leftarrow \emptyset$
 628 3: Find maximum weight codeword $c_{\max} = \arg \max_{c \in \mathcal{C}} \text{wt}(c)$
 629 4: **while** $|\mathcal{Q}| < \text{required_blocks}$ **do**
 630 5: Sample random message $m \sim \text{Uniform}(\mathcal{M})$
 631 6: Encode: $c_1 = \mathcal{E}(m)$
 632 7: Compute distant pair: $c_2 = c_1 \oplus c_{\max}$
 633 8: Randomly select $c \in \{c_1, c_2\}$
 634 9: $\mathcal{Q} \leftarrow \mathcal{Q} \cup \{c\}$
 635 10: **end while**
 636 11: **return** \mathcal{Q}

639 B.2 BIT SEQUENCE EXTRACTION

640 For completeness, we provide the full pseudocode of the bit extraction procedure that maps gener-
 641 ated tokens to binary sequences and segments them into fixed-length blocks. This expands on the
 642 conceptual description given in Section 3.

645 B.3 SAFE ERROR-CORRECTING DECODER

646 This algorithm expands on the safe decoding strategy summarized in Section 3. It ensures robust
 647 handling of uncorrectable blocks by returning `None` when decoding exceeds the correction radius.

648 **Algorithm 4** Bit Sequence Extraction

649

650 **Require:** Text tokens $\{s_0, \dots, s_T\}$, secret key \mathcal{K} , code length n

651 **Ensure:** Blocks $\mathcal{B} = \{b_{[0:n]}, b_{[n:2n]}, \dots\}$

652 1: $N_p \leftarrow$ prompt length; $U \leftarrow T - N_p + 1$

653 2: Initialize bit array $b_{0:U-1}$

654 3: $j_{\text{prev}} \leftarrow -1$ ▷ no block cached yet

655 4: **for** $t = N_p, N_p + 1, \dots, T$ **do**

656 5: $(j, b) \leftarrow \text{divmod}(t - N_p, n)$

657 6: **if** $j \neq j_{\text{prev}}$ **then** ▷ entering a new block: init once

658 7: $\text{seed}_j \leftarrow H(\mathcal{K}, j)$

659 8: Build partitions $\mathcal{L}_0^{(j)}, \mathcal{L}_1^{(j)}$ using seed_j

660 9: Precompute a lookup $f_j(v) \in \{0, 1\}$ for all vocab items v

661 10: $j_{\text{prev}} \leftarrow j$

662 11: **end if**

663 12: $b_{t-N_p} \leftarrow f_j(s_t)$ ▷ O(1) token-to-bit lookup

664 13: **end for**

665 14: **Segmenting:** let $U' \leftarrow \lfloor U/n \rfloor \cdot n$ ▷ drop incomplete tail; or pad if enabling progressive detection

666 15: $\mathcal{B} \leftarrow \{b_{[0:n]}, b_{[n:2n]}, \dots, b_{[U'-n:U']}\}$

667 16: **return** \mathcal{B}

668 **Algorithm 5** Safe Error-Correcting Decoder

669 **Require:** Bit sequence $x \in \{0, 1\}^n$, code \mathcal{C} , correction radius t

670 **Ensure:** (\hat{c}, d) if decodable within t ; otherwise `None`

671 1: **(once per block upstream)** ensure field/parity structures for \mathcal{C} are initialized

672 2: **try** $(\hat{c}, d) \leftarrow \text{DECODEWITHDISTANCE}(x)$ ▷ returns Hamming distance d to \hat{c}

673 3: **except** any decoder error: **return** `None`

674 4: **if** $d \leq t$ **then**

675 5: **return** (\hat{c}, d)

676 6: **else**

677 7: **return** `None`

678 8: **end if**

C ADDITIONAL ANALYSES

C.1 ERROR-CORRECTING CODE SELECTION AND PARAMETERIZATION

We primarily employ BCH codes Blahut (1983) due to their well-understood properties and efficient implementation. For code length $n = 2^m - 1$, we select parameters based on the trade-off between error-correction capability and false-positive rates:

- **BCH(31,16,3):** Corrects up to 3 errors, suitable for moderate attack scenarios
- **BCH(63,45,3):** Longer blocks with same error-correction, better for clean text
- **BCH(127,92,5):** High error-correction capability for adversarial scenarios

C.1.1 ALTERNATIVE ERROR-CORRECTING CODES

Our framework readily accommodates other linear block codes Richardson & Urbanke (2008);

Reed-Solomon Codes: Optimal for burst error correction, particularly effective when insertion/deletion attacks create localized corruption patterns.

LDPC Codes: Superior performance for longer blocks, but increased computational complexity. Recommended for applications requiring very low false positive rates.

Convolutional Codes: Well-suited for streaming applications where text is generated and detected incrementally.

702 **Code Selection Guidelines:**
703
704 • Choose code length n based on expected text length and block granularity requirements
705 • Select error-correction capability t based on anticipated attack strength
706 • Balance code rate k/n against false positive requirements using our theoretical analysis
707 • (Section 4)
708
710 **C.2 PARAMETER SELECTION AND OPTIMIZATION**
711712 **C.2.1 BLOCK LENGTH OPTIMIZATION**
713
714 The choice of block length n involves several trade-offs:
715
716 **Shorter blocks** ($n \leq 31$):
717
718 • Advantages: Better localization of insertion/deletion effects, faster detection
719 • Disadvantages: Higher false positive rates, reduced error-correction capability
720
721 **Longer blocks** ($n \geq 63$):
722
723 • Advantages: Lower false positive rates, stronger error correction
724 • Disadvantages: Larger vulnerability to insertion/deletion within blocks
725

726 We recommend $n = 31$ for most applications, providing a good balance between robustness and
727 efficiency.
728
729 **C.2.2 BIAS PARAMETER TUNING**
730
731 The bias parameter δ controls the strength of watermark embedding:
732

733 • $\delta \in [1.5, 2.0]$: Minimal text quality impact, moderate watermark strength
734 • $\delta \in [2.0, 2.5]$: Balanced trade-off for most applications
735 • $\delta \in [2.5, 3.0]$: Strong watermarking for high-security scenarios
736
737 **C.2.3 WINDOW SHIFT RANGE**
738
739 The maximum shift parameter s_{\max} should be chosen based on expected insertion/deletion rates:
740

741
$$s_{\max} \geq \alpha \cdot n \cdot p_{\text{ins/del}} \quad (1)$$
742

743 where $p_{\text{ins/del}}$ is the expected insertion/deletion rate and $\alpha \geq 1.5$ provides a safety margin. For typical
744 scenarios with $p_{\text{ins/del}} \leq 0.2$, we recommend $s_{\max} = 10$ for $n = 31$.
745
746 **C.3 COMPUTATIONAL COMPLEXITY ANALYSIS**
747748 **C.3.1 EMBEDDING COMPLEXITY**
749
750 The computational overhead during text generation consists of:
751

752 • Hash computation: $O(1)$ per token
753 • Vocabulary partitioning: $O(|\mathcal{V}|)$ per block, amortized $O(|\mathcal{V}|/n)$ per token
754 • Logit modification: $O(|\mathcal{V}|)$ per token
755

756 Total embedding complexity: $O(|\mathcal{V}|)$ per token, the same as existing methods.
757

756 C.3.2 DETECTION COMPLEXITY
757758 Detection complexity depends on the number of shift operations:
759760 • Bit extraction: $O(T)$ for text length T
761 • Error correction per block: $O(n^3)$ using standard algorithms
762 • Window shifting: $O(s_{\max} \cdot n^3)$ per block in worst case
763764 Total detection complexity: $O(T \cdot s_{\max} \cdot n^2)$, where the factor s_{\max} represents the overhead of shift
765 search. For practical parameters ($s_{\max} = 10, n = 31$), this remains computationally tractable.
766767 C.4 SECURITY PROPERTIES
768769 Our method inherits the cryptographic properties of the underlying hash function and error-
770 correcting code while providing additional security benefits through block-wise design.
771772 **Key Security:** The secret key \mathcal{K} determines vocabulary partitioning and codeword selection. Without
773 knowledge of \mathcal{K} , an adversary cannot distinguish watermarked from unwatermarked text beyond
774 statistical artifacts due to the one-wayness of the cryptographic hash function.
775776 **Codeword Diversity:** Random codeword generation prevents statistical attacks based on repeated
777 patterns. Each text embeds different codewords, making it infeasible to infer watermarking parame-
778 ters from multiple samples.
779780 **Block Independence:** Unlike methods that embed single codewords across multiple blocks, our
781 approach ensures that the compromise of one block does not affect others, providing better security
782 compartmentalization.
783784 The following section provides a formal theoretical analysis of detection bounds and false positive
785 rates under our framework.
786787 D FINITE-SAMPLE BOUNDS: DETAILED PROOFS AND EXAMPLES
788789 This appendix contains the complete derivations, theorems, proofs, and examples for the finite-
790 sample bounds introduced in Section 4.
791792 D.1 SETUP AND NOTATION
793794 Let $\Sigma = \{0, 1, \dots, q-1\}$ and let $C \subseteq \Sigma^n$ be a q -ary linear block code with length n , dimension
795 k , and minimum Hamming distance d_{\min} . Its unique-decoding radius is $t = \lfloor (d_{\min} - 1)/2 \rfloor$. Define
796 the q -ary Hamming ball volume as
797

798
$$V_q(n, t) \triangleq \sum_{i=0}^t \binom{n}{i} (q-1)^i. \quad (2)$$

799

800 A text is partitioned into M disjoint blocks. For block $j \in \{1, \dots, M\}$, a secret seed seed_j (derived
801 from a global key and block index) deterministically specifies (i) a single *designated* codeword
802 $c^{(j)} \in C$ to be embedded in that block and (ii) a partition of the vocabulary into green/red (or more
803 generally q -ary) token lists aligned with the symbols of $c^{(j)}$.
804805 **Embedding.** In *soft* embedding, logits of tokens in the green list are shifted by $+\delta$ while others
806 are left unchanged, and a token is sampled from the resulting softmax. In *hard* embedding, sampling
807 is restricted to the green list (formally, $\delta \rightarrow \infty$).
808809 **Detection.** Given a candidate text, the detector extracts a q -ary symbol sequence $b^{(j)} \in \Sigma^n$ from
810 each block j according to the green/red partition induced by seed_j , then applies a unique decoder
811 for C to decide whether $b^{(j)}$ lies within Hamming distance $\leq t$ from $c^{(j)}$. To counter local mis-
812 alignments (e.g., due to in-block insertions/deletions), the detector searches over circular shifts of
813

810 magnitude at most s_{\max} ; denote $S \triangleq 2s_{\max} + 1$ the number of shifts (including zero). The global
 811 decision is based on the fraction of blocks that decode successfully: if the match ratio exceeds a
 812 threshold $\theta \in (0, 1)$, the text is declared watermarked.
 813

814 **Stochastic model.** Under \mathcal{H}_0 (no watermark), the per-block symbol sequence is modeled as uni-
 815 formly random in Σ^n . Under \mathcal{H}_1 (watermark present), each block independently suffers symbol er-
 816 rors (from soft embedding and/or adversarial editing) with per-symbol error probability $p_{\text{tot}} \in [0, 1]$,
 817 and at most s_{\max} circular misalignment is introduced within the block.
 818

819 D.2 NAÏVE “ANY-CODEWORD” PRESENCE TEST

820 Consider the (undesirable) test that declares a watermark if *there exists* any codeword of C within
 821 Hamming distance t of the observed block.
 822

823 **Theorem 1** (FPR of the any-codeword test). *If $t \leq \lfloor (d_{\min} - 1)/2 \rfloor$ so that Hamming balls of radius
 824 t around distinct codewords are disjoint, then under \mathcal{H}_0 the single-block false-positive probability
 825 of the any-codeword test is*

$$826 \quad \text{FPR}_{\text{ANY}} = \frac{|C|V_q(n, t)}{q^n} = q^{k-n}V_q(n, t). \quad (3)$$

827 *Proof.* Under \mathcal{H}_0 , the block is uniform on Σ^n . The event “within distance t of *some* codeword” is
 828 the disjoint union of the $|C|$ Hamming balls of radius t , each of volume $V_q(n, t)$. The probability is
 829 therefore $|C|V_q(n, t)/q^n$. \square

830 **Remark 1** (Binary specialization and magnitude). *For $q = 2$, $V_2(n, t) = \sum_{i=0}^t \binom{n}{i}$. Even for
 831 modest parameters, the value can be large: e.g., with BCH-like $(n, t) = (31, 3)$ one gets $V_2 = 4,992$
 832 and $\text{FPR}_{\text{ANY}} = 2^{k-n}V_2$, which is unacceptably high unless $k \ll n$. For $(n, k, t) = (31, 16, 3)$ BCH
 833 codes, $\text{FPR} = 0.152$. This motivates the designated-codeword test below.*

834 D.3 DESIGNATED-CODEWORD TEST

835 Our scheme designates exactly one valid codeword per block j via seed_j ; only proximity to this
 836 codeword is considered.
 837

838 **Theorem 2** (Single-block FPR under designated-codeword test). *Under \mathcal{H}_0 , the single-block FPR
 839 for the designated-codeword test equals*

$$840 \quad p_0 = \frac{V_q(n, t)}{q^n}. \quad (4)$$

841 *With window shifting over S circular offsets, the FPR obeys the union bound*

$$842 \quad p_0^{(\text{shift})} \leq \min\{1, Sp_0\}. \quad (5)$$

843 *If the S shifted decoding events are independent (a benign approximation when the decoder’s ac-
 844 ceptance regions overlap negligibly), then*

$$845 \quad p_0^{(\text{shift})} = 1 - (1 - p_0)^S = Sp_0 + O(p_0^2). \quad (6)$$

846 *Proof.* For a fixed designated codeword $c^{(j)}$, under \mathcal{H}_0 the probability a uniform vector falls within
 847 Hamming radius t of $c^{(j)}$ is $V_q(n, t)/q^n$, giving equation 4. Searching S shifts yields at most S
 848 chances to fall into a (shifted) acceptance region, whence equation 5. Under independence, the
 849 complement probability multiplies across shifts, yielding equation 6. \square

850 **Remark 2** (Entropy bound). *For any q , $V_q(n, t) \leq q^{nH_q(t/n)}$ where $H_q(\cdot)$ is the q -ary entropy.
 851 Thus*

$$852 \quad p_0 \leq q^{-n(1-H_q(t/n))}, \quad p_0^{(\text{shift})} \lesssim S q^{-n(1-H_q(t/n))}. \quad (7)$$

853 *This highlights the exponential FPR decay in n at fixed t/n .*

854 **Example 1** (Binary instances). *For $q = 2$ and $(n, t) = (31, 3)$, $p_0 = 3,572,224/2^{31} \approx 1.6634 \times$
 855 10^{-3} . With $s_{\max} = 10$ ($S = 21$), $p_0^{(\text{shift})} \approx 3.43578 \times 10^{-5}$ via equation 6. For $(n, t) = (63, 3)$ and
 856 $(127, 5)$, $p_0 \approx 4.52 \times 10^{-15}$ and 1.56×10^{-30} , respectively.*

864 D.4 AGGREGATE FPR WITH A MATCH-RATIO THRESHOLD
865866 Let X_j be the indicator that block j decodes successfully under \mathcal{H}_0 . Write $p \triangleq p_0^{(\text{shift})}$.
867868 **Theorem 3** (Aggregate FPR under thresholding). *Assume $\{X_j\}_{j=1}^M$ are independent Bernoulli(p).
869 Then for any $\theta \in (0, 1)$,*

870
$$\Pr_{\mathcal{H}_0} \left[\frac{1}{M} \sum_{j=1}^M X_j \geq \theta \right] \leq \exp \left(-M D(\theta \| p) \right), \quad (8)$$

871
872

873 where $D(a \| b) = a \log \frac{a}{b} + (1 - a) \log \frac{1-a}{1-b}$ is the Bernoulli KL divergence.
874875 *Proof.* This is the standard Chernoff (Cramér–Chernoff) bound for Binomial tails. \square
876877 **Remark 3** (Design implication). *Choosing $\theta \gg p$ makes the aggregate FPR exponentially small
878 in M . In particular, combining equation 7 and Theorem 3 yields doubly-exponential suppression in
879 (n, M) at fixed t/n and S .*880 D.5 SOFT EMBEDDING: SYMBOL ERROR INDUCED BY δ -BIAS
881882 Let $m \in (0, 1)$ denote the pre-bias total softmax mass of the green list at a generation step. After
883 applying the logit shift $+\delta$ to the green tokens, the probability that the next token is drawn from the
884 green list is

885
$$P_{\text{green}}(\delta; m) = \frac{m e^\delta}{m e^\delta + (1 - m)} = \sigma(\text{logit}(m) + \delta), \quad (9)$$

886
887

888 where $\sigma(u) = 1/(1 + e^{-u})$ and $\text{logit}(m) = \log(m/(1 - m))$.
889890 **Theorem 4** (Per-symbol embedding error in soft mode). *When the designated symbol requires sam-
891 pling from the green list, the per-symbol embedding error probability is*

892
$$p_{\text{emb}}(\delta; m) = 1 - P_{\text{green}}(\delta; m) = \frac{1 - m}{m e^\delta + (1 - m)}. \quad (10)$$

893

894 In the balanced case $m = \frac{1}{2}$, $p_{\text{emb}}(\delta; \frac{1}{2}) = 1 - \sigma(\delta)$. For a target $p^* \in (0, 1/2)$, it suffices to choose

895
$$\delta \geq \log \frac{1 - p^*}{p^*} - \text{logit}(m) \quad (11)$$

896

897 to guarantee $p_{\text{emb}}(\delta; m) \leq p^*$.
898899 *Proof.* It is straightforward from the softmax with a uniform logit shift on the green subset. The
900 inequality is obtained by solving $1 - P_{\text{green}}(\delta; m) \leq p^*$ for δ . \square
901902 **Example 2.** For $m = \frac{1}{2}$, $\delta \in \{2.0, 2.5, 3.0\}$ yields $p_{\text{emb}} \approx \{0.1192, 0.0759, 0.0474\}$, respectively.
903904 D.6 DETECTION POWER UNDER EMBEDDING AND ATTACK NOISE
905906 Let $p_{\text{att}} \in [0, 1]$ be the adversarial symbol error rate within a block (e.g., substitutions after align-
907 ment). A conservative union bound gives $p_{\text{tot}} \leq p_{\text{emb}} + p_{\text{att}}$.
908909 **Theorem 5** (Single-block success and aggregate FNR). *Suppose a block experiences i.i.d. symbol
910 errors with probability p_{tot} and circular misalignment $\leq s_{\text{max}}$ so that the correct shift is included
911 in the search. Then the single-block success probability is*

912
$$p_1(n, t, p_{\text{tot}}) = \Pr[\text{Bin}(n, p_{\text{tot}}) \leq t] = \sum_{i=0}^t \binom{n}{i} p_{\text{tot}}^i (1 - p_{\text{tot}})^{n-i}. \quad (12)$$

913

914 If Y_j are i.i.d. indicators of success across blocks under \mathcal{H}_1 , the aggregate false-negative probability
915 obeys

916
$$\Pr_{\mathcal{H}_1} \left[\frac{1}{M} \sum_{j=1}^M Y_j < \theta \right] \leq \exp \left(-M D(\theta \| p_1) \right). \quad (13)$$

917

918 *Proof.* Unique decoding succeeds iff the number of symbol errors does not exceed t ; the Binomial
 919 tail gives the expression. The Chernoff bound for the lower tail yields the aggregate exponent. \square
 920

921
 922 **Example 3** (Guideline at $(n, t) = (31, 3)$). With $m = \frac{1}{2}$ and $\delta = 2.5$, $p_{\text{emb}} \approx 0.0759$. If $p_{\text{att}} \in$
 923 $[0, 0.01]$, then $p_{\text{tot}} \in [0.0759, 0.0859]$, giving $p_1 \approx 0.79$ to 0.73 . For $M = 32$ and threshold
 924 $\theta = 0.5$, the aggregate FNR is exponentially small by Theorem 5.
 925

926
 927 D.7 SHIFT RECOVERY AND LOCAL EDITS
 928

929 **Lemma 6** (Sufficient condition for perfect recovery). *If a block suffers at most s_{max} circular shift
 930 and at most t symbol substitutions after the correct shift is applied, then window shifting over $S =$
 931 $2s_{\text{max}} + 1$ offsets followed by unique decoding correctly identifies the designated codeword.*
 932

933
 934
 935 *Proof.* The correct shift lies in the search set, and under that shift the Hamming distance to the
 936 designated codeword is $\leq t$. Unique decoding is therefore exact by the definition of t . \square
 937

938
 939 **Remark 4** (Modeling in-block insertions/deletions). *When insertions/deletions are confined within
 940 a block and do not exceed the shift window, their net effect can be abstracted as a circular shift
 941 (alignment) plus residual substitutions. Lemma 6 then applies.*
 942

943
 944 D.8 PARAMETER SELECTION VIA ENTROPY BOUNDS
 945

946 The entropy control in equation 7, together with Theorems 3 and 5, suggests a simple two-sided
 947 design: pick $(n, t, s_{\text{max}}, \theta, M, \delta)$ so that

948
 949
$$\underbrace{\exp\left(-M D(\theta \| p_0^{(\text{shift})})\right)}_{\text{FPR target } \alpha} \leq \alpha, \quad p_0^{(\text{shift})} \approx 1 - (1 - p_0)^S, p_0 \leq q^{-n(1 - H_q(t/n))}, \quad (14)$$

 950

951
 952
$$\underbrace{\exp\left(-M D(\theta \| p_1)\right)}_{\text{FNR target } \beta} \leq \beta, \quad p_1 = \Pr[\text{Bin}(n, p_{\text{tot}}) \leq t], p_{\text{tot}} \lesssim p_{\text{emb}}(\delta; m) + p_{\text{att}}. \quad (15)$$

 953

954
 955
 956 **Remark 5** (Balanced operation). *A convenient choice is to set θ near the Chernoff intersection that
 957 equalizes exponents $D(\theta \| p_0^{(\text{shift})}) \approx D(\theta \| p_1)$, and to tune δ to keep $p_{\text{tot}} < t/n$ so that p_1 remains
 958 bounded away from $1/2$.*
 959

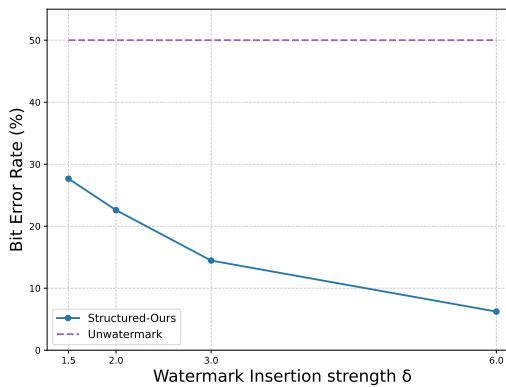
960
 961 D.9 GENERALIZATIONS
 962

963 **Proposition 7** (Direct q -ary extension). *All the bounds above hold verbatim for $q > 2$ with $V_q(n, t)$
 964 from equation 2; in particular,*

965
 966
$$p_0 = \frac{V_q(n, t)}{q^n}, \quad p_0^{(\text{shift})} \leq \min\{1, S p_0\}, \quad \Pr_{\mathcal{H}_0} [\text{match ratio} \geq \theta] \leq e^{-MD(\theta \| p_0^{(\text{shift})})}.$$

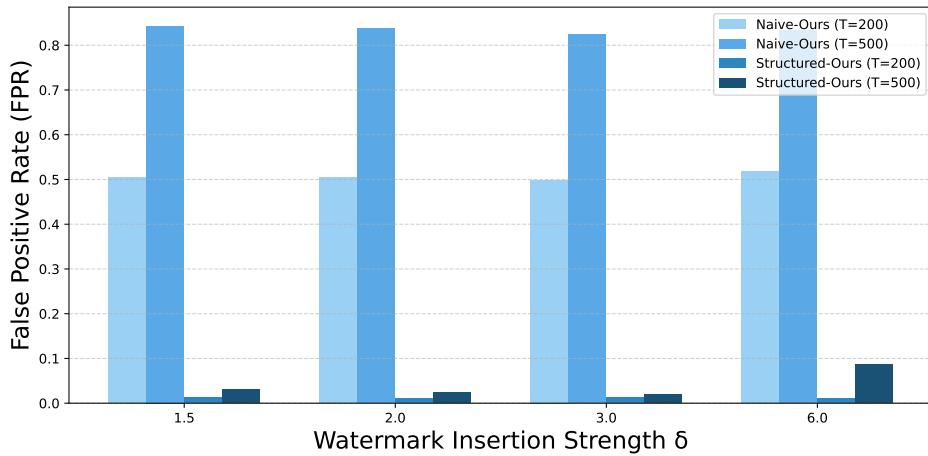
 967

968
 969
 970
 971 *Proof.* Identical combinatorial counting applies because the unique-decoding radius t depends only
 on d_{min} and the metric, not on the field size beyond the volume $V_q(n, t)$. \square

Figure 7: Average Bit Error Rate (BER) as a function of watermark insertion strength δ .

E SUPPLEMENTARY EXPERIMENTS

E.1 DETECTION PERFORMANCE WITHOUT ATTACK

Figure 6: False Positive Rate (FPR) across insertion strengths δ for Naïve-Ours and Structured-Ours under no-attack settings.

This experiment evaluates detection performance of watermarking techniques in clean environments without adversarial attacks, focusing on how watermark insertion strength δ and text length T influence reliability.

Figure 6 shows that *Naïve-Ours* suffers from consistently high FPR across all δ values, failing to distinguish watermarked from unwatermarked text. In contrast, *Structured-Ours* maintains FPR close to zero regardless of δ , demonstrating the effectiveness of structured decoding. For example, at $\delta=3.0$ with $T=200$, *Naïve-Ours* attains TPR=1.000 but FPR=0.499, whereas *Structured-Ours* achieves a comparable TPR=0.987 with FPR=0.013.

E.2 BIT ERROR RATE ANALYSIS BY WATERMARK INSERTION STRENGTH δ

This experiment evaluates the effect of watermark insertion strength δ on bit-level codeword reconstruction. As shown in Figure 7, unwatermarked text consistently exhibits about 50% BER, which corresponds to random guessing. In contrast, watermarked text yields significantly lower BERs, with the error rate steadily decreasing as δ increases. These results demonstrate that stronger watermark

1026 insertion improves the reliability of codeword reconstruction, whereas smaller values of δ result in
 1027 BERs closer to random noise, rendering detection more difficult.
 1028

1029 **E.3 TEXT QUALITY UNDER WATERMARKING**
 1030

1031 **Table 3: comparison of text quality across watermarking schemes.**

Scheme	δ	PPL (\downarrow)	BLEU (\uparrow)	BERTScore(F1) (\uparrow)
Unwatermark	-	8.28	31.81	0.8201
RS-Watermark	1.5	12.78	30.99	0.8132
	2.0	13.53	22.31	0.7740
	3.0	15.92	22.31	0.7740
	6.0	22.16	10.14	0.6688
Structured-Ours (soft)	1.5	12.41	29.14	0.8132
	2.0	13.22	27.78	0.8082
	3.0	16.37	20.13	0.7738
	6.0	23.67	10.16	0.6864
Structured-Ours (hard)	-	28.61	6.69	0.6312

1046
 1047 Tables 3 report text quality under a variety of watermarking techniques. Unwatermarked baselines
 1048 achieve the best overall performance with the lowest performance (PPL), the highest BLEU, and the
 1049 highest BERTScore, reflecting fluent and semantically faithful outputs.
 1050

1051 Qu et al and our structured method (soft) both exhibit the same general trend: As the watermarking
 1052 insertion strength δ increases, PPL increases and BLEU and BERTScore decrease, resulting in poor
 1053 text quality. However, our structured method consistently retains text quality better than Qu et al for
 1054 all δ values. For example, when $\delta = 2.0$, our method achieves BLEU score of 27.78 and BERTScore
 1055 of 0.8082 compared to 22.31 and 0.7740 of Qu et al, respectively. Even in the strongest settings
 1056 ($\delta = 6.0$, our approach provides slightly higher BLEU and BERTScore.
 1057

1058 On the other hand, a hard variant of our method results in severe quality degradation (PPL 28.61,
 1059 BLEU 6.69 and BERTScore 0.6312), indicating that it is more watermarking than is impractical
 1060 for quality-sensitive applications. These results highlight that the soft method provides a balanced
 1061 balance between the robustness of watermarking and text quality.
 1062

1063 **E.4 GENERALIZATION STUDY ON THE OPENGEN DATASET**
 1064

1065 As shown in Figure 8, both methods improve TPR as δ increases. However, while RS-Watermark
 1066 consistently exhibits high FPR across all δ values, our detector keeps FPR close to zero. For example,
 1067 under a 10% substitution attack, when $T = 500$ and $\delta = 6$, our method achieved an FPR of only
 1068 0.015, whereas RS-Watermark reported an FPR of 0.93.
 1069

1070 Figure 9 further illustrates that insertion and deletion lead to token–codeword misalignments. Ex-
 1071 panding the window size s_{\max} allows the detector to resynchronize with the embedded codewords,
 1072 thereby significantly improving TPR. In particular, under a 10% insertion attack, when $T = 500$ and
 1073 $\delta = 6.0$, the TPR improved dramatically from 0.46 at $s_{\max} = 0$ to 0.945 at $s_{\max} = 5$.
 1074

1075 Furthermore, as shown in Figures 10 and 11, our method consistently maintains high TPR while
 1076 keeping FPR low, whereas RS-Watermark achieves high TPR only at the cost of elevated FPR. For
 1077 example, under a 10% deletion attack, when $T = 500$ and $\delta = 3$, our method achieved perfect
 1078 detection (TPR = 1.0) with an FPR of only 0.2, while RS-Watermark attained the same TPR (1.0)
 1079 but suffered from an FPR as high as 0.945.
 1080

1081 **E.5 EFFECT OF THRESHOLD INCREASE**
 1082

1083 This experiment investigates how raising the detection threshold—i.e., the number of required
 1084 matched codewords—affects detection performance under synonym substitution attacks. Specifi-
 1085

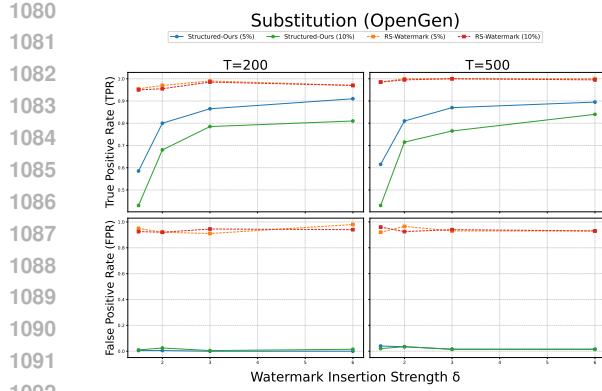


Figure 8: Comparison with RS-Watermark under token-preserving synonym substitution (5% and 10%) at $s_{\max} = 5$. While achieving competitive TPR, our method maintains near-zero FPR across δ , whereas RS-Watermark exhibit consistently high FPR.

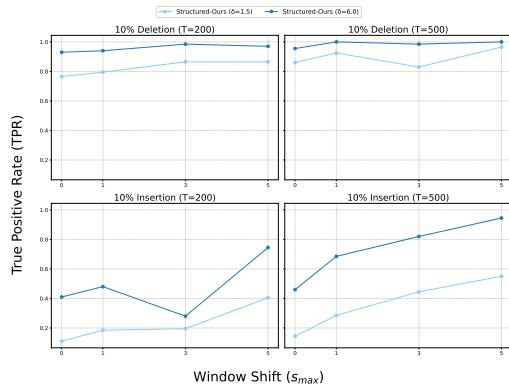


Figure 9: Effect of window-shift parameter s_{\max} on TPR under 10% deletion/insertion attacks (OpenGen). Increasing s_{\max} consistently improves TPR for both weak ($\delta = 1.5$) and strong ($\delta = 6.0$) watermarks, demonstrating its effectiveness in recovering alignment mismatches.

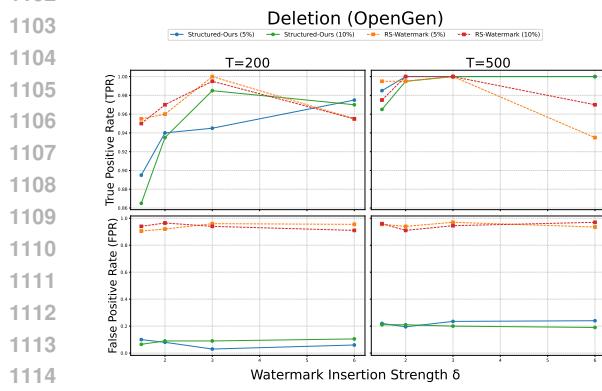


Figure 10: Comparison with RS-Watermark under token-decreasing (deletion-like) substitution (5% and 10%) at $s_{\max} = 5$. Our method sustains high TPR with markedly lower FPR across δ compared to RS-Watermark

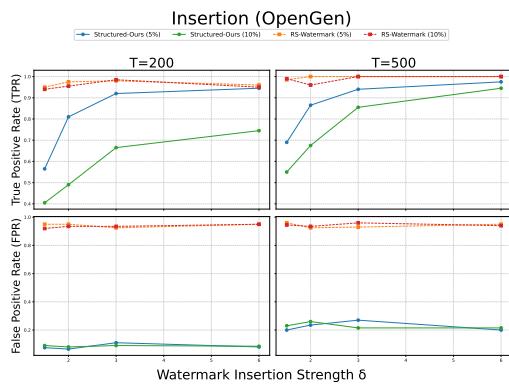


Figure 11: Comparison with RS-Watermark under token-increasing (insertion-like) substitution (5% and 10%) at $s_{\max} = 5$. Our method keeps FPR low while attaining competitive TPR as δ grows, unlike RS-Watermark whose FPR remains high.

cally, the threshold is increased from requiring at least one matched codeword to requiring at least two.

Figure 12 reports the True Positive Rate (TPR) across different window shift parameters s_{\max} under substitution rates of 5% and 10% at $T = 200$. The results show that stricter thresholds consistently lower TPR across all settings, indicating that some watermarked texts are missed.

Figure 13 presents the corresponding False Positive Rate (FPR). In contrast to TPR, FPR decreases significantly as the threshold increases, with **Structured-Ours-t2** achieving values near zero even under higher substitution rates and large s_{\max} . Together, these results highlight the fundamental trade-off: higher thresholds suppress false positives but also reduce TPR.

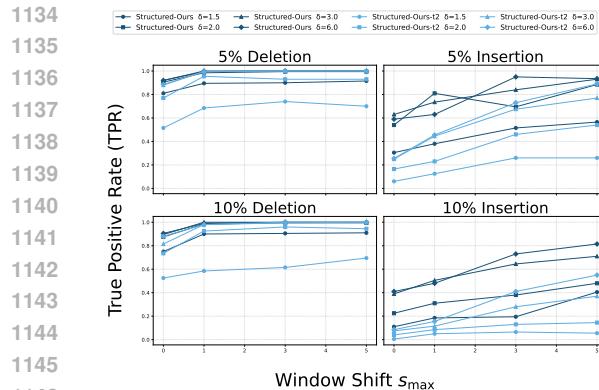


Figure 12: TPR under synonym substitution (rows: 5%, 10%; columns: deletion-like vs. insertion-like, $T = 200$). Increasing the detection threshold from one to two codewords consistently lowers TPR across all s_{\max} and δ .

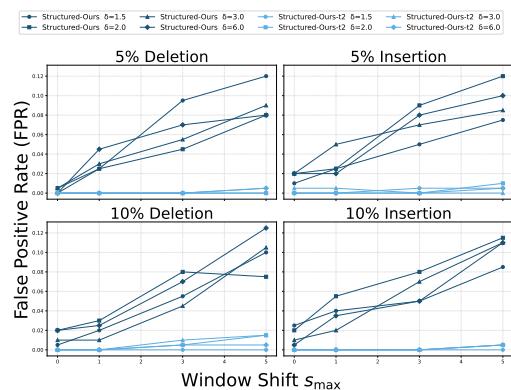


Figure 13: FPR under synonym substitution (rows: 5%, 10%; columns: deletion-like vs. insertion-like, $T = 200$). Increasing the detection threshold from one to two codewords consistently lowers FPR across all s_{\max} and δ .

E.6 COMPUTATIONAL COST OF WINDOW-SHIFT DETECTION

The window-shift procedure is applied only during detection, and therefore incurs minimal computational overhead. As shown in Table 4, inference time remains well below one second even with larger codeword lengths n and higher shift budgets S_{\max} . This demonstrates that our detection framework is computationally lightweight and practical for real-world use.

Table 4: Inference time (seconds) for varying S_{\max} and codeword lengths n .

Setting		Inference Time (sec)			
T	n	$S_{\max} = 0$	$S_{\max} = 1$	$S_{\max} = 3$	$S_{\max} = 5$
200	15	0.0252	0.0474	0.0861	0.1262
	31	0.0270	0.0526	0.1146	0.1682
	63	0.0270	0.0607	0.1345	0.2017
500	15	0.0394	0.0931	0.1698	0.2741
	31	0.0489	0.1127	0.2577	0.3788
	63	0.0552	0.1540	0.3431	0.5342

E.7 EFFECT OF CODEWORD PARAMETERS ON DETECTION PERFORMANCE

We compared three configurations at $T = 200$: a short codeword ($n = 15, k = 5, t = 3$), a medium codeword ($n = 31, k = 6, t = 7$), and a long codeword ($n = 63, k = 7, t = 15$). The results are summarized in Figure 14.

The short codeword achieved very high TPR but at the cost of large FPR (e.g., under 10% deletion with $\delta = 3.0$, TPR = 1.000 but FPR = 0.945; Table 5). By contrast, the long codeword consistently kept FPR near zero but suffered from reduced TPR, especially under insertion attacks (e.g., under 10% insertion with $\delta = 1.5$, TPR dropped to 0.025 while FPR remained 0.000; Table 8).

In between, the medium codeword provided a balanced trade-off, maintaining high TPR while keeping FPR moderate. For this reason, we adopted the medium codeword setting ($n = 31, k = 6, t = 7$) as the default in our main experiments.

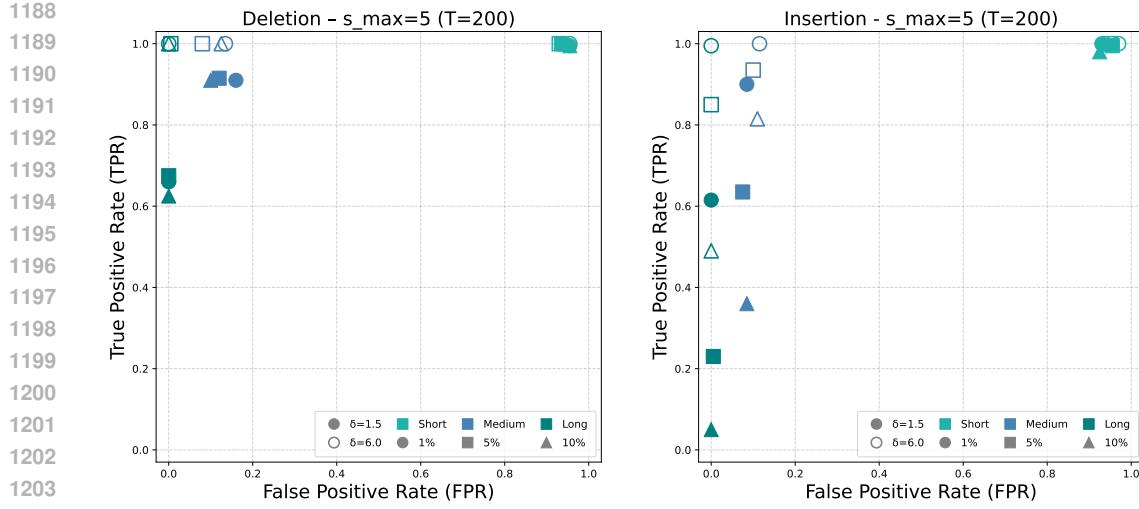


Figure 14: Trade-off between TPR and FPR under token substitution attacks at $T = 200$ ($s_{\max}=5$, $\delta \in \{1.5, 6.0\}$). Left: token-decreasing (Deletion). Right: token-increasing (Insertion). Short codewords ($n=15$) yield higher TPR but increased FPR, long codewords ($n=63$) yield lower FPR but reduced TPR, while medium codewords ($n=31$) provide a balanced trade-off.

Table 5: Detection performance under token-decreasing synonym substitution for BCH codes ($n = 15, k = 5, t = 3$) with $T = 200$.

Model	Setting		1% Deletion				5% Deletion				10% Deletion			
	δ	s_{\max}	TPR	FPR	Precision	F1	TPR	FPR	Precision	F1	TPR	FPR	Precision	F1
Structured-Ours (n=15)	1.5	0	0.925	0.175	0.8409	0.8809	0.880	0.230	0.7928	0.8341	0.900	0.230	0.7965	0.8451
		1	1.000	0.530	0.6536	0.7905	0.990	0.475	0.6758	0.8032	0.970	0.535	0.6445	0.7745
		3	0.995	0.815	0.5497	0.7082	0.995	0.830	0.5452	0.7044	1.000	0.800	0.5556	0.7143
		5	0.995	0.955	0.5113	0.6746	1.000	0.935	0.5168	0.6814	0.995	0.955	0.5103	0.6746
	2.0	0	0.920	0.220	0.8070	0.8598	0.930	0.300	0.7561	0.8341	0.895	0.180	0.8326	0.8627
		1	0.995	0.440	0.6934	0.8173	1.000	0.500	0.6667	0.8000	0.995	0.500	0.6656	0.7976
		3	1.000	0.815	0.5510	0.7105	1.000	0.790	0.5587	0.7168	1.000	0.835	0.5450	0.7055
		5	1.000	0.955	0.5115	0.6768	1.000	0.970	0.5076	0.9734	1.000	0.930	0.5181	0.6826
	3.0	0	0.915	0.200	0.8206	0.8652	0.900	0.195	0.8219	0.8592	0.925	0.215	0.8114	0.8645
		1	1.000	0.575	0.6350	0.7767	0.995	0.485	0.6723	0.8024	1.000	0.525	0.6557	0.7921
		3	1.000	0.780	0.5618	0.7194	1.000	0.860	0.5376	0.6993	1.000	0.795	0.5571	0.7156
		5	1.000	0.945	0.5141	0.6791	1.000	0.955	0.5115	0.6768	1.000	0.930	0.5181	0.6826
	6.0	0	0.950	0.185	0.8370	0.8899	0.945	0.215	0.8147	0.8750	0.900	0.165	0.8451	0.8717
		1	0.995	0.510	0.6611	0.7944	1.000	0.505	0.6645	0.7984	0.995	0.500	0.6656	0.7976
		3	1.000	0.850	0.5405	0.7018	1.000	0.835	0.5450	0.7055	1.000	0.830	0.5464	0.7067
		5	1.000	0.955	0.5115	0.6768	1.000	0.930	0.5181	0.6826	1.000	0.945	0.5141	0.6791

E.8 SYNONYM SUBSTITUTION: FULL TABLES AND FIGURES

Figures 15–17 present representative results under 5% synonym substitution attacks, while the main text highlights the 10% case as the most challenging setting. In all figures, results are shown for both OPT-1.3B and LLaMA-3.2-3B, consistently demonstrating that our method achieves comparable or higher TPR and substantially lower FPR than RS-Watermark

Tables 9–20 complement these plots by reporting detailed detection metrics (TPR, FPR, Precision, F1) for each substitution type (token-preserving, deletion-like, insertion-like) across substitution ratios (5%, 10%) and text lengths ($T = 200, 500$), separately for OPT-1.3B and LLaMA-3.2-3B.

E.9 ROBUSTNESS UNDER MIXED SYNONYM SUBSTITUTION (INSERTION–DELETION–REPLACEMENT)

We further evaluate robustness under a mixed synonym substitution attack, where 20% of the tokens are replaced with synonyms that induce insertion-like, deletion-like, and replacement-like effects

1242
1243 Table 6: Detection performance under token-increasing synonym substitution for BCH codes ($n =$
1244 $15, k = 5, t = 3$) with $T = 200$.

Setting			1% Insertion				5% Insertion				10% Insertion			
Model	δ	s_{\max}	TPR	FPR	Precision	F1	TPR	FPR	Precision	F1	TPR	FPR	Precision	F1
Structured-Ours (n=15)	1.5	0	0.875	0.245	0.7813	0.8255	0.530	0.205	0.7211	0.6110	0.440	0.130	0.7719	0.5605
		1	0.945	0.490	0.6585	0.7762	0.760	0.470	0.6179	0.6816	0.625	0.500	0.5556	0.5882
		3	0.985	0.820	0.5457	0.7023	0.940	0.815	0.5356	0.6824	0.945	0.790	0.5447	0.6910
		5	1.000	0.930	0.5181	0.6826	0.995	0.955	0.5103	0.6746	0.980	0.925	0.5144	0.6747
	2.0	0	0.865	0.210	0.8047	0.8337	0.690	0.195	0.7797	0.7321	0.545	0.175	0.7569	0.6337
		1	0.980	0.505	0.6599	0.7887	0.870	0.520	0.6259	0.7280	0.790	0.455	0.6345	0.7038
		3	1.000	0.825	0.5479	0.7080	0.955	0.820	0.5380	0.6883	0.940	0.775	0.5481	0.6924
		5	1.000	0.965	0.5089	0.6745	0.995	0.945	0.5129	0.6769	0.985	0.925	0.5157	0.6770
	3.0	0	0.885	0.215	0.8045	0.8429	0.745	0.225	0.7680	0.7563	0.620	0.230	0.7294	0.6703
		1	0.950	0.475	0.6667	0.7835	0.890	0.480	0.6496	0.7511	0.775	0.495	0.6102	0.6828
		3	1.000	0.815	0.5510	0.7105	0.970	0.815	0.5434	0.6966	0.975	0.845	0.5357	0.6915
		5	1.000	0.920	0.5208	0.6849	0.990	0.945	0.5116	0.6746	1.000	0.930	0.5181	0.6826
	6.0	0	0.905	0.195	0.8227	0.8619	0.725	0.230	0.7592	0.7417	0.645	0.190	0.7725	0.7030
		1	0.990	0.560	0.6387	0.7765	0.895	0.505	0.6393	0.7458	0.860	0.505	0.6300	0.7273
		3	1.000	0.820	0.5495	0.7092	0.990	0.825	0.5455	0.7034	0.970	0.800	0.5480	0.7004
		5	1.000	0.970	0.5076	0.6734	1.000	0.950	0.5128	0.6780	1.000	0.945	0.5141	0.6791

1259
1260 Table 7: Detection performance under token-decreasing synonym substitution for BCH codes ($n =$
1261 $63, k = 7, t = 15$) with $T = 200$.

Setting			1% Deletion				5% Deletion				10% Deletion			
Model	δ	s_{\max}	TPR	FPR	Precision	F1	TPR	FPR	Precision	F1	TPR	FPR	Precision	F1
Structured-Ours (n=63)	1.5	0	0.585	0	1.0000	0.7382	0.490	0	1.0000	0.6577	0.560	0	1.0000	0.7179
		1	0.715	0	1.0000	0.8338	0.650	0	1.0000	0.7879	0.640	0.005	0.9922	0.7781
		3	0.725	0	1.0000	0.8406	0.660	0	1.0000	0.7952	0.650	0	1.0000	0.7879
		5	0.660	0	1.0000	0.7952	0.675	0	1.0000	0.8060	0.625	0	1.0000	0.7692
	2.0	0	0.820	0	1.0000	0.9011	0.775	0	1.0000	0.8732	0.770	0	1.0000	0.8701
		1	0.955	0	1.0000	0.9770	0.920	0	1.0000	0.9583	0.935	0	1.0000	0.9664
		3	0.955	0	1.0000	0.9770	0.960	0	1.0000	0.9796	0.920	0	1.0000	0.9583
		5	0.965	0.010	0.9897	0.9772	0.960	0	1.0000	0.9796	0.940	0	1.0000	0.9691
	3.0	0	0.910	0	1.0000	0.9529	0.880	0	1.0000	0.9362	0.830	0	1.0000	0.9071
		1	1.000	0	1.0000	1.0000	0.990	0	1.0000	0.9950	0.975	0	1.0000	0.9873
		3	1.000	0.005	0.9950	0.9975	0.995	0	1.0000	0.9975	0.995	0	1.0000	0.9975
		5	1.000	0	1.0000	1.0000	1.000	0	1.0000	1.0000	1.000	0	1.0000	1.0000
	6.0	0	0.925	0	1.0000	0.9610	0.890	0	1.0000	0.9418	0.855	0	1.0000	0.9218
		1	0.995	0	1.0000	0.9975	0.980	0	1.0000	0.9899	0.995	0	1.0000	0.9975
		3	1.000	0	1.0000	1.0000	1.000	0	1.0000	1.0000	1.000	0	1.0000	1.0000
		5	1.000	0	1.0000	1.0000	1.000	0.005	0.9950	0.9975	1.000	0	1.0000	1.0000

1276
1277 Table 8: Detection performance under token-increasing synonym substitution for BCH codes ($n =$
1278 $63, k = 7, t = 15$) with $T = 200$.

Setting			1% Insertion				5% Insertion				10% Insertion			
Model	δ	s_{\max}	TPR	FPR	Precision	F1	TPR	FPR	Precision	F1	TPR	FPR	Precision	F1
Structured-Ours (n=63)	1.5	0	0.440	0	1.0000	0.6111	0.110	0	1.0000	0.1982	0.025	0	1.0000	0.0488
		1	0.490	0	1.0000	0.6577	0.155	0	1.0000	0.2684	0.010	0	1.0000	0.0198
		3	0.595	0	1.0000	0.7461	0.210	0	1.0000	0.3471	0.060	0	1.0000	0.1132
		5	0.615	0	1.0000	0.7616	0.230	0.005	0.9787	0.3725	0.050	0	1.0000	0.0952
	2.0	0	0.635	0	1.0000	0.7768	0.240	0	1.0000	0.3871	0.065	0	1.0000	0.1121
		1	0.805	0	1.0000	0.8920	0.255	0	1.0000	0.4064	0.080	0	1.0000	0.1481
		3	0.875	0	1.0000	0.9333	0.350	0	1.0000	0.5185	0.115	0	1.0000	0.2063
		5	0.915	0	1.0000	0.9556	0.485	0	1.0000	0.6532	0.145	0	1.0000	0.2533
	3.0	0	0.800	0	1.0000	0.8889	0.320	0	1.0000	0.4848	0.105	0	1.0000	0.1900
		1	0.900	0	1.0000	0.9474	0.515	0	1.0000	0.6799	0.145	0	1.0000	0.2533
		3	0.960	0	1.0000	0.9796	0.645	0	1.0000	0.7842	0.280	0	1.0000	0.4375
		5	0.985	0	1.0000	0.9924	0.710	0	1.0000	0.8304	0.305	0.005	0.9861	0.5221
	6.0	0	0.840	0	1.0000	0.9130	0.395	0	1.0000	0.5663	0.145	0	1.0000	0.2533
		1	0.900	0	1.0000	0.9474	0.530	0	1.0000	0.6928	0.250	0	1.0000	0.4000
		3	0.985	0	1.0000	0.9924	0.735	0	1.0000	0.8473	0.430	0	1.0000	0.6014
		5	0.995	0	1.0000	0.9975	0.850	0	1.0000	0.9189	0.490	0	1.0000	0.6577

1294
1295

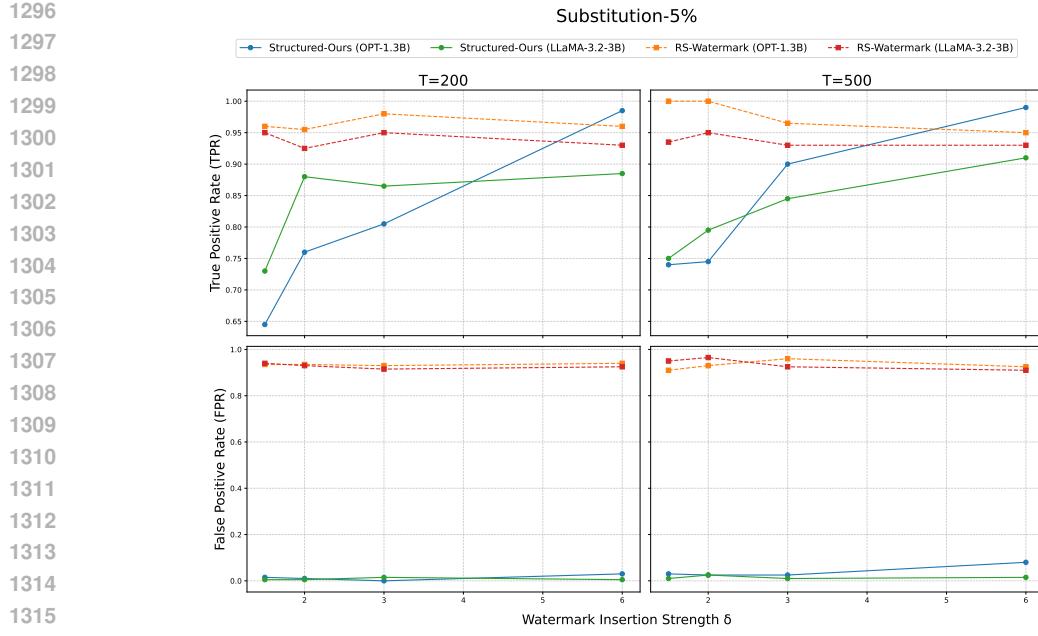


Figure 15: Comparison with RS-Watermark under 5% token-preserving synonym substitution at $s_{\max} = 5$. Both methods achieve high TPR, but RS-Watermark exhibits substantially higher FPR, whereas our method keeps FPR near zero, indicating more reliable watermark detection.

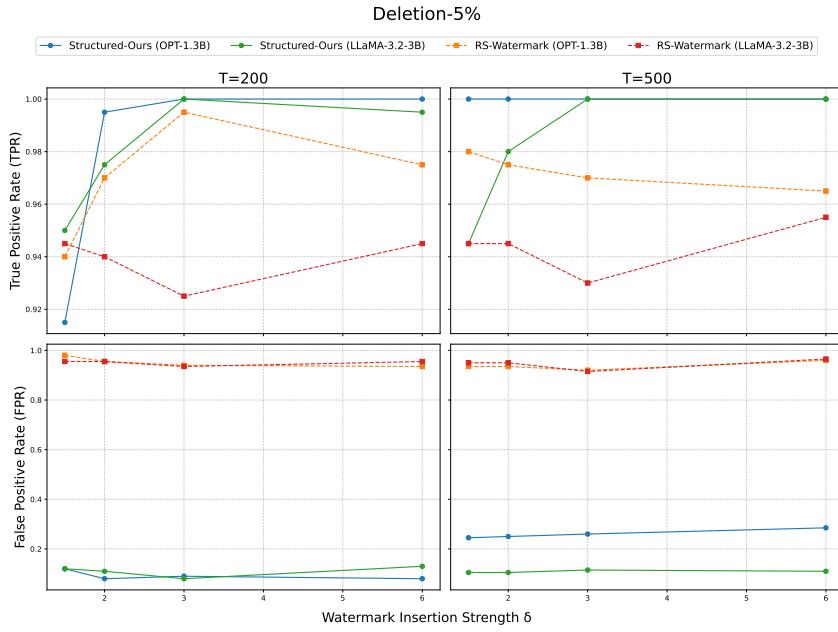


Figure 16: Comparison with RS-Watermark under 5% deletion-like synonym substitution at $s_{\max} = 5$. Our method achieves higher TPR and substantially lower FPR than RS-Watermark, demonstrating that our watermark detector operates more reliably in this challenging setting.

simultaneously. This setting combines the three previously analyzed cases (token-preserving, token-decreasing, and token-increasing) and represents the most challenging form of synonym-based perturbation.

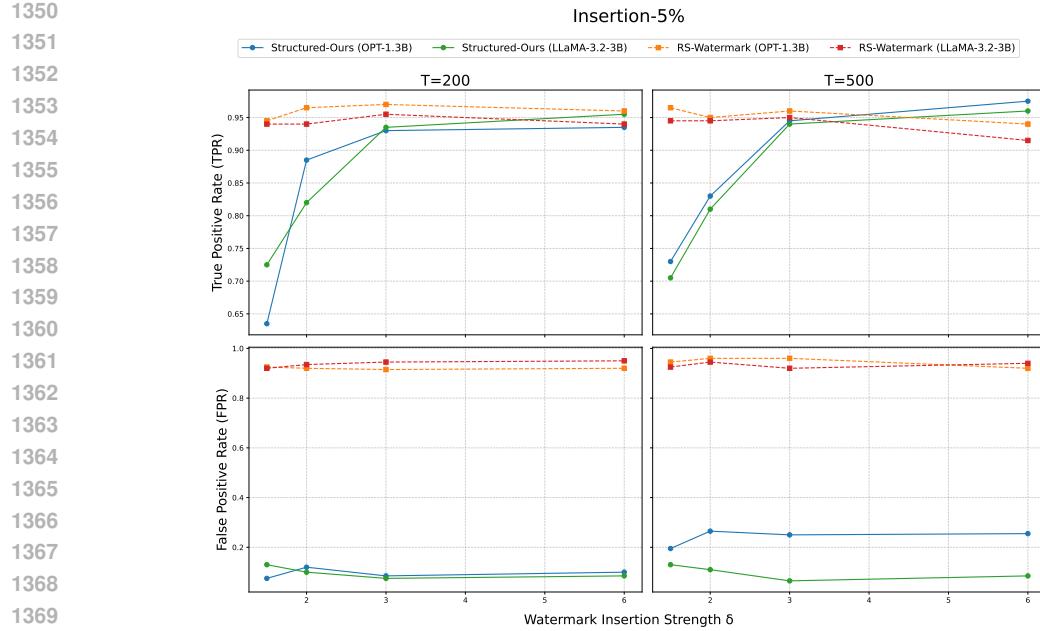


Figure 17: Comparison with RS-Watermark under 5% insertion-like synonym substitution at $s_{\max} = 5$. Our method achieves higher TPR and substantially lower FPR than RS-Watermark, demonstrating that our watermark detector operates more reliably in this challenging setting.

Table 9: Detection performance under 5% token-preserving synonym substitution with OPT-1.3B.

Setting		T200					T500				
Model	δ	TPR	FPR	Precision	F1	TPR	FPR	Precision	F1		
RS-Watermark	1.5	0.960	0.935	0.5066	0.6632	1.000	0.910	0.5236	0.6873		
	2	0.955	0.935	0.5053	0.6609	1.000	0.930	0.5181	0.6826		
	3	0.980	0.930	0.5131	0.6735	0.965	0.960	0.5013	0.6598		
	6	0.960	0.940	0.5053	0.6621	0.950	0.925	0.5067	0.6609		
Structured-Ours	1.5	0.645	0.015	0.9773	0.7771	0.740	0.030	0.9610	0.8362		
	2	0.760	0.010	0.9870	0.8588	0.745	0.025	0.9675	0.8418		
	3	0.805	0.000	1.0000	0.8920	0.900	0.025	0.9730	0.9351		
	6	0.985	0.030	0.9704	0.9777	0.990	0.080	0.9252	0.9565		

Tables 21 and 22 show that Structured-Ours yields lower TPR than RS-Watermark under this strong mixed attack, which is expected given the severe distortions introduced. However, RS-Watermark’s apparently stable TPR is misleading: its FPR remains extremely high (often near 1.0), causing the detector to label most texts—including unwatermarked ones—as watermarked. In contrast, Structured-Ours consistently maintains low FPR across all δ and s_{\max} values for both $T=200$ and $T=500$.

This reliable false-positive control enables clear separation between watermarked and unwatermarked texts even under 20% mixed synonym substitution, highlighting the practical robustness and reliability of our detection framework.

Table 10: Detection performance under 5% token-preserving synonym substitution using LLaMA-3.2-3B.

Setting		T200				T500			
Model	δ	TPR	FPR	Precision	F1-score	TPR	FPR	Precision	F1-score
RS-Watermark	1.5	0.950	0.940	0.5026	0.6574	0.935	0.950	0.4960	0.6480
	2	0.925	0.930	0.4986	0.6479	0.950	0.965	0.4961	0.6518
	3	0.950	0.915	0.5093	0.6631	0.930	0.925	0.5013	0.6514
	6	0.930	0.925	0.5013	0.6514	0.930	0.910	0.5054	0.6549
Structured-Ours	1.5	0.730	0.005	0.9931	0.8414	0.750	0.010	0.9868	0.8522
	2	0.880	0.005	0.9943	0.9336	0.795	0.025	0.9695	0.8736
	3	0.865	0.015	0.9829	0.9202	0.845	0.010	0.9883	0.9111
	6	0.885	0.005	0.9943	0.9365	0.910	0.015	0.9837	0.9454

Table 11: Detection performance under 10% token-preserving synonym substitution with OPT-1.3B.

Setting		T200				T500			
Model	δ	TPR	FPR	Precision	F1	TPR	FPR	Precision	F1
RS-Watermark	1.5	0.965	0.925	0.5106	0.6678	0.990	0.900	0.5238	0.6851
	2	0.960	0.925	0.5093	0.6655	1.000	0.940	0.5155	0.6803
	3	0.980	0.920	0.5158	0.6759	0.965	0.940	0.5066	0.6644
	6	0.970	0.925	0.5132	0.6724	0.975	0.950	0.5065	0.6667
Structured-Ours	1.5	0.585	0.010	0.9832	0.7335	0.470	0.030	0.9400	0.6267
	2	0.630	0.005	0.9921	0.7706	0.675	0.005	0.9926	0.8036
	3	0.760	0.000	1.0000	0.8636	0.765	0.040	0.9503	0.8476
	6	0.965	0.020	0.9797	0.9723	0.975	0.070	0.9330	0.9535

Table 12: Detection performance under 10% token-preserving synonym substitution using LLaMA-3.2-3B.

Setting		T200				T500			
Model	δ	TPR	FPR	Precision	F1-score	TPR	FPR	Precision	F1-score
RS-Watermark	1.5	0.940	0.940	0.5000	0.6527	0.935	0.950	0.4960	0.6481
	2	0.920	0.930	0.4979	0.6456	0.955	0.940	0.5039	0.6597
	3	0.955	0.905	0.5134	0.6678	0.955	0.925	0.5079	0.6631
	6	0.930	0.920	0.5027	0.6526	0.950	0.945	0.5013	0.6563
Structured-Ours	1.5	0.560	0.030	0.9491	0.7044	0.600	0.015	0.9756	0.7430
	2	0.695	0.010	0.9858	0.8152	0.695	0.020	0.9720	0.8104
	3	0.760	0.020	0.9743	0.8539	0.800	0.030	0.9638	0.8743
	6	0.775	0.010	0.9869	0.8555	0.880	0.020	0.9777	0.9263

1458

1459

1460

Table 13: Detection performance under 5% token-decreasing synonym substitution with OPT-1.3B.

Setting			T200				T500			
Model	δ	s_{\max}	TPR	FPR	Precision	F1	TPR	FPR	Precision	F1
RS-Watermark	1.5	-	0.940	0.980	0.4896	0.6438	0.980	0.935	0.5117	0.6724
	2	-	0.970	0.955	0.5039	0.6632	0.975	0.935	0.5105	0.6701
	3	-	0.995	0.940	0.5142	0.6780	0.970	0.920	0.5132	0.6713
	6	-	0.975	0.935	0.5105	0.6701	0.965	0.960	0.5013	0.6598
Structured-Ours	1.5	0	0.810	0.000	1.0000	0.8950	0.900	0.030	0.9677	0.9326
		1	0.895	0.025	0.9728	0.9323	0.985	0.075	0.9292	0.9563
		3	0.900	0.095	0.9045	0.9023	0.995	0.140	0.8767	0.9321
		5	0.915	0.120	0.8841	0.8993	1.000	0.245	0.8032	0.8909
	2.0	0	0.905	0.005	0.9945	0.9476	0.905	0.015	0.9837	0.9427
		1	0.985	0.025	0.9801	0.9801	0.995	0.060	0.9431	0.9684
		3	0.995	0.045	0.9567	0.9755	1.000	0.130	0.8850	0.9390
		5	0.995	0.080	0.9256	0.9590	1.000	0.250	0.8000	0.8888
	3.0	0	0.920	0.005	0.9946	0.9558	0.905	0.020	0.9784	0.9403
		1	0.995	0.030	0.9707	0.9827	0.995	0.075	0.9299	0.9614
		3	1.000	0.055	0.9479	0.9732	1.000	0.185	0.8439	0.9153
		5	1.000	0.090	0.9174	0.9569	1.000	0.260	0.7937	0.8850
	6.0	0	0.920	0.000	1.0000	0.9583	0.950	0.030	0.9694	0.9596
		1	1.000	0.045	0.9569	0.9780	0.995	0.075	0.9299	0.9614
		3	1.000	0.070	0.9346	0.9662	1.000	0.200	0.8333	0.9091
		5	1.000	0.080	0.9259	0.9615	1.000	0.285	0.7782	0.8753

1485

1486

Table 14: Detection performance under 5% token-deleting synonym substitution using LLaMA-3.2-3B.

Setting			T200				T500			
Model	δ	s_{\max}	TPR	FPR	Precision	F1-score	TPR	FPR	Precision	F1-score
RS-Watermark	1.5	-	0.945	0.955	0.4973	0.6517	0.945	0.950	0.4986	0.6528
	2.0	-	0.940	0.935	0.5013	0.6539	0.945	0.955	0.4973	0.6517
	3.0	-	0.925	0.935	0.4973	0.6468	0.930	0.915	0.5041	0.6537
	6.0	-	0.945	0.955	0.4973	0.6517	0.955	0.965	0.4973	0.6541
Structured-Ours	1.5	0	0.935	0.040	0.9589	0.9468	0.820	0.015	0.9820	0.8937
		1	0.930	0.025	0.9738	0.9514	0.915	0.010	0.9891	0.9506
		3	0.935	0.080	0.9211	0.9280	0.935	0.045	0.9541	0.9444
		5	0.950	0.120	0.8878	0.9178	0.945	0.105	0.9000	0.9219
	2.0	0	0.920	0.010	0.9892	0.9533	0.930	0.015	0.9841	0.9563
		1	0.990	0.030	0.9705	0.9801	1.000	0.030	0.9708	0.9852
		3	0.990	0.065	0.9383	0.9635	0.990	0.035	0.9658	0.9777
		5	0.975	0.110	0.8986	0.9352	0.980	0.105	0.9032	0.9400
	3.0	0	0.900	0.010	0.9890	0.9424	0.940	0.030	0.9691	0.9543
		1	0.995	0.035	0.9660	0.9802	1.000	0.025	0.9756	0.9876
		3	1.000	0.065	0.9389	0.9685	1.000	0.065	0.9389	0.9685
		5	1.000	0.080	0.9259	0.9615	1.000	0.115	0.8968	0.9456
	6.0	0	0.925	0.015	0.9840	0.9536	0.930	0.010	0.9893	0.9587
		1	1.000	0.005	0.9950	0.9975	1.000	0.015	0.9852	0.9925
		3	1.000	0.060	0.9433	0.9708	1.000	0.090	0.9174	0.9569
		5	0.995	0.130	0.8844	0.9364	1.000	0.110	0.9009	0.9478

1512

1513

1514

Table 15: Detection performance under 10% token-decreasing synonym substitution with OPT-1.3B.

Setting			T200				T500			
Model	δ	s_{\max}	TPR	FPR	Precision	F1	TPR	FPR	Precision	F1
RS-Watermark	1.5	-	0.940	0.925	0.5040	0.6562	0.990	0.950	0.5103	0.6735
	2	-	0.965	0.925	0.5106	0.6678	0.970	0.940	0.5079	0.6667
	3	-	0.985	0.910	0.5198	0.6805	0.955	0.945	0.5026	0.6586
	6	-	0.980	0.915	0.5172	0.6770	0.970	0.935	0.5092	0.6678
Structured-Ours	1.5	0	0.750	0.005	0.9934	0.8547	0.870	0.030	0.9647	0.8865
		1	0.900	0.020	0.9783	0.9375	0.965	0.065	0.9369	0.9508
		3	0.905	0.055	0.9427	0.9235	0.980	0.175	0.8485	0.9095
		5	0.910	0.100	0.9010	0.9055	0.995	0.320	0.7567	0.8596
	2.0	0	0.875	0.020	0.9777	0.9235	0.900	0.030	0.9611	0.9326
		1	0.985	0.030	0.9704	0.9777	0.985	0.040	0.9610	0.9728
		3	0.995	0.080	0.9256	0.9590	0.995	0.150	0.8690	0.9277
		5	0.995	0.075	0.9299	0.9614	1.000	0.190	0.8403	0.9132
	3.0	0	0.895	0.010	0.9889	0.9396	0.935	0.020	0.9791	0.9565
		1	1.000	0.010	0.9901	0.9950	0.995	0.075	0.9299	0.9614
		3	1.000	0.045	0.9569	0.9780	1.000	0.160	0.8621	0.9259
		5	1.000	0.105	0.9050	0.9501	1.000	0.280	0.7813	0.8772
	6.0	0	0.905	0.020	0.9784	0.9403	0.925	0.030	0.9686	0.9463
		1	0.990	0.025	0.9754	0.9826	0.995	0.080	0.9256	0.9590
		3	1.000	0.070	0.9346	0.9662	1.000	0.165	0.8584	0.9238
		5	1.000	0.125	0.8889	0.9412	1.000	0.265	0.7905	0.8830

1539

1540

Table 16: Detection performance under 10% token-deleting synonym substitution using LLaMA-3.2-3B.

Setting			T200				T500			
Model	δ	s_{\max}	TPR	FPR	Precision	F1-score	TPR	FPR	Precision	F1-score
RS-Watermark	1.5	-	0.940	0.955	0.4960	0.6493	0.930	0.930	0.5000	0.6503
	2.0	-	0.940	0.930	0.5026	0.6551	0.925	0.950	0.4933	0.6435
	3.0	-	0.955	0.960	0.4986	0.6552	0.945	0.925	0.5053	0.6585
	6.0	-	0.925	0.930	0.4986	0.6479	0.945	0.930	0.5040	0.6573
Structured-Ours	1.5	0	0.945	0.015	0.9843	0.9642	0.830	0.025	0.9707	0.8948
		1	0.930	0.030	0.9687	0.9489	0.900	0.065	0.9326	0.9160
		3	0.955	0.050	0.9502	0.9526	0.950	0.060	0.9405	0.9452
		5	0.950	0.055	0.9452	0.9476	0.905	0.075	0.9234	0.9141
	2.0	0	0.900	0.015	0.9836	0.9399	0.915	0.025	0.9734	0.9433
		1	0.965	0.050	0.9507	0.9578	0.990	0.040	0.9611	0.9753
		3	0.970	0.090	0.9151	0.9417	0.990	0.065	0.9383	0.9635
		5	0.995	0.120	0.8923	0.9408	0.990	0.090	0.9166	0.9519
	3.0	0	0.925	0.005	0.9946	0.9585	0.935	0.020	0.9791	0.9565
		1	0.990	0.020	0.9801	0.9851	0.985	0.045	0.9563	0.9704
		3	0.985	0.070	0.9336	0.9586	1.000	0.065	0.9389	0.9685
		5	1.000	0.095	0.9132	0.9546	0.995	0.080	0.9255	0.9590
	6.0	0	0.940	0.010	0.9894	0.9641	0.915	0.010	0.9892	0.9506
		1	0.995	0.030	0.9707	0.9827	0.995	0.030	0.9707	0.9827
		3	1.000	0.065	0.9389	0.9685	1.000	0.045	0.9569	0.9779
		5	1.000	0.085	0.9216	0.9592	1.000	0.115	0.8968	0.9456

1566

1567

1568

Table 17: Detection performance under 5% token-increasing synonym substitution with OPT-1.3B.

Setting			T200				T500			
Model	δ	s_{\max}	TPR	FPR	Precision	F1	TPR	FPR	Precision	F1
RS-Watermark	1.5	-	0.945	0.925	0.5053	0.6585	0.965	0.945	0.5052	0.6632
	2	-	0.965	0.920	0.5119	0.6669	0.950	0.960	0.4974	0.6529
	3	-	0.970	0.915	0.5146	0.6724	0.960	0.960	0.5000	0.6575
	6	-	0.960	0.920	0.5106	0.6667	0.940	0.920	0.5034	0.6573
Structured-Ours	1.5	0	0.245	0.010	0.9601	0.3904	0.305	0.025	0.9242	0.4586
		1	0.380	0.025	0.9383	0.5409	0.440	0.060	0.8800	0.5867
		3	0.525	0.050	0.9130	0.6667	0.500	0.155	0.7634	0.6042
		5	0.635	0.075	0.8844	0.7427	0.730	0.195	0.7892	0.7584
	2.0	0	0.345	0.020	0.9452	0.5055	0.370	0.020	0.9487	0.5324
		1	0.515	0.025	0.9537	0.6688	0.635	0.090	0.8759	0.7362
		3	0.695	0.090	0.8854	0.7787	0.765	0.130	0.8547	0.8074
		5	0.885	0.120	0.8806	0.8828	0.830	0.265	0.7580	0.7924
	3.0	0	0.520	0.020	0.9629	0.6753	0.475	0.020	0.9596	0.6355
		1	0.735	0.050	0.9363	0.8235	0.695	0.115	0.8580	0.7980
		3	0.840	0.070	0.9231	0.8796	0.920	0.185	0.8326	0.8741
		5	0.930	0.085	0.9163	0.9231	0.945	0.250	0.7908	0.8610
	6.0	0	0.600	0.020	0.9677	0.7407	0.565	0.020	0.9658	0.7128
		1	0.755	0.020	0.9742	0.8507	0.770	0.080	0.9059	0.8324
		3	0.950	0.080	0.9223	0.9360	0.935	0.185	0.8348	0.8821
		5	0.935	0.100	0.9034	0.9189	0.975	0.255	0.7927	0.8744

1593

1594

Table 18: Detection performance under 5% token-inserting synonym substitution using LLaMA-3.2-3B.

Setting			T200				T500			
Model	δ	s_{\max}	TPR	FPR	Precision	F1-score	TPR	FPR	Precision	F1-score
RS-Watermark	1.5	-	0.940	0.920	0.5053	0.6573	0.945	0.925	0.5053	0.6585
	2.0	-	0.940	0.935	0.5013	0.6539	0.945	0.945	0.5000	0.6539
	3.0	-	0.955	0.945	0.5026	0.6586	0.950	0.920	0.5080	0.6620
	6.0	-	0.940	0.950	0.4973	0.6505	0.915	0.940	0.4932	0.6409
Structured-Ours	1.5	0	0.460	0.025	0.9484	0.6195	0.345	0.015	0.9583	0.5073
		1	0.505	0.035	0.9351	0.6558	0.460	0.025	0.9484	0.6195
		3	0.620	0.055	0.9185	0.7402	0.575	0.060	0.9055	0.7033
		5	0.725	0.130	0.8479	0.7816	0.705	0.130	0.8443	0.7683
	2.0	0	0.470	0.005	0.9894	0.6372	0.445	0.040	0.9175	0.5993
		1	0.600	0.025	0.9600	0.7384	0.565	0.010	0.9826	0.7174
		3	0.790	0.075	0.9132	0.8471	0.715	0.100	0.8773	0.7878
		5	0.820	0.100	0.8913	0.8541	0.810	0.110	0.8804	0.8437
	3.0	0	0.515	0.015	0.9716	0.6732	0.585	0.010	0.9832	0.7335
		1	0.675	0.025	0.9642	0.7941	0.795	0.020	0.9754	0.8760
		3	0.865	0.060	0.9351	0.8987	0.820	0.055	0.9371	0.8746
		5	0.935	0.075	0.9257	0.9303	0.940	0.085	0.9171	0.9283
	6.0	0	0.580	0.010	0.9831	0.7295	0.655	0.015	0.9776	0.7844
		1	0.830	0.015	0.9822	0.8997	0.705	0.025	0.9657	0.8150
		3	0.890	0.095	0.9035	0.8967	0.945	0.060	0.9402	0.9426
		5	0.955	0.085	0.9182	0.9362	0.960	0.085	0.9186	0.9388

1620

1621

1622

Table 19: Detection performance under 10% token-increasing synonym substitution with OPT-1.3B.

Setting			T200				T500			
Model	δ	s_{\max}	TPR	FPR	Precision	F1	TPR	FPR	Precision	F1
RS-Watermark	1.5	-	0.970	0.975	0.4987	0.6587	0.985	0.940	0.5117	0.6735
	2	-	0.960	0.960	0.5000	0.6575	0.980	0.945	0.5091	0.6701
	3	-	0.970	0.930	0.5105	0.6690	0.980	0.945	0.5052	0.6632
	6	-	0.985	0.935	0.5130	0.6747	0.965	0.950	0.5039	0.6621
Structured-Ours	1.5	0	0.150	0.025	0.8571	0.2553	0.145	0.025	0.8529	0.2479
		1	0.165	0.040	0.8049	0.2739	0.305	0.055	0.8472	0.4485
		3	0.305	0.050	0.8592	0.4502	0.455	0.155	0.7459	0.5852
		5	0.360	0.085	0.8090	0.4983	0.460	0.310	0.5974	0.5198
	2.0	0	0.185	0.020	0.9024	0.3071	0.245	0.010	0.9608	0.3904
		1	0.310	0.055	0.8493	0.4542	0.370	0.085	0.8132	0.5086
		3	0.380	0.080	0.8261	0.5205	0.580	0.160	0.7838	0.6667
		5	0.480	0.115	0.8067	0.6019	0.645	0.305	0.6789	0.6615
	3.0	0	0.325	0.010	0.9701	0.4869	0.355	0.015	0.9595	0.5182
		1	0.505	0.020	0.9619	0.6623	0.530	0.075	0.8760	0.6604
		3	0.645	0.070	0.9021	0.7522	0.755	0.135	0.8483	0.7989
		5	0.710	0.110	0.8659	0.7802	0.865	0.260	0.7689	0.8141
	6.0	0	0.355	0.005	0.9861	0.5221	0.430	0.015	0.9663	0.5952
		1	0.500	0.035	0.9346	0.6515	0.630	0.075	0.8936	0.7390
		3	0.730	0.050	0.9359	0.8202	0.815	0.105	0.8859	0.8490
		5	0.815	0.110	0.8810	0.8468	0.960	0.265	0.7837	0.8629

1647

1648

Table 20: Detection performance under 10% token-inserting synonym substitution using LLaMA-3.2-3B.

Setting			T200				T500			
Model	δ	s_{\max}	TPR	FPR	Precision	F1-score	TPR	FPR	Precision	F1-score
RS-Watermark	1.5	-	0.920	0.940	0.4946	0.6433	0.920	0.940	0.4946	0.6433
	2.0	-	0.920	0.935	0.4960	0.6444	0.945	0.955	0.4973	0.6517
	3.0	-	0.915	0.975	0.4841	0.6332	0.930	0.905	0.5068	0.6561
	6.0	-	0.915	0.930	0.4959	0.6432	0.935	0.945	0.4973	0.6493
Structured-Ours	1.5	0	0.215	0.020	0.9148	0.3481	0.210	0.000	1.0000	0.3471
		1	0.195	0.020	0.9069	0.3209	0.265	0.040	0.8688	0.4061
		3	0.370	0.070	0.8409	0.5138	0.350	0.065	0.8433	0.4946
		5	0.425	0.060	0.8762	0.5723	0.430	0.105	0.8037	0.5602
	2.0	0	0.315	0.020	0.9402	0.4719	0.245	0.040	0.8596	0.3813
		1	0.335	0.030	0.9294	0.5543	0.340	0.035	0.9066	0.4945
		3	0.480	0.050	0.9056	0.6274	0.495	0.105	0.8250	0.6187
		5	0.565	0.100	0.8496	0.6786	0.520	0.065	0.8888	0.6561
	3.0	0	0.370	0.010	0.9736	0.5362	0.430	0.005	0.9885	0.5993
		1	0.420	0.035	0.9231	0.5773	0.420	0.025	0.9438	0.5813
		3	0.565	0.070	0.8897	0.6911	0.575	0.060	0.9055	0.7033
		5	0.690	0.130	0.8414	0.7582	0.695	0.100	0.8742	0.7743
	6.0	0	0.390	0.000	1.0000	0.5611	0.370	0.015	0.9610	0.5443
		1	0.515	0.040	0.9279	0.6623	0.485	0.045	0.9151	0.6339
		3	0.720	0.075	0.9056	0.8022	0.660	0.050	0.9295	0.7719
		5	0.765	0.095	0.8895	0.8225	0.800	0.120	0.8695	0.8333

1674

1675

1676

1677

1678

Table 21: Detection performance of Structured-Ours and RS-Watermark under a 20% mixed synonym substitution attack (combining insertion-like, deletion-like, and replacement-like effects) on the C4 dataset using OPT-1.3B. Structured-Ours maintains consistently low FPR, whereas RS-Watermark exhibits extremely high FPR despite high TPR.

Setting			T200				T500			
Model	δ	s_{\max}	TPR	FPR	Precision	F1 score	TPR	FPR	Precision	F1 score
RS-Watermark	1.5	-	0.9650	0.9500	0.5039	0.6621	0.9400	0.9700	0.4921	0.6460
	2	-	0.9200	0.9600	0.4894	0.6389	0.9400	0.9500	0.4974	0.6505
	3	-	0.9300	0.9600	0.4921	0.6436	0.9850	0.9100	0.5198	0.6805
	6	-	0.9600	0.9050	0.5147	0.6702	0.9850	0.9350	0.5131	0.6747
Structured-Our	1.5	0	0.0150	0.0000	1.0000	0.0296	0.0700	0.0300	0.7000	0.1273
		1	0.0700	0.0200	0.7778	0.1284	0.1250	0.1000	0.5556	0.2041
		3	0.1100	0.0550	0.6667	0.1888	0.2050	0.1550	0.5694	0.3015
		5	0.1150	0.0500	0.6970	0.1974	0.3100	0.2150	0.5905	0.4066
	2	0	0.0150	0.0100	0.6000	0.0293	0.0300	0.0150	0.6667	0.0574
		1	0.0600	0.0300	0.6667	0.1101	0.1400	0.0500	0.7368	0.2353
		3	0.1400	0.0550	0.7179	0.2343	0.2100	0.1800	0.5385	0.3022
		5	0.1700	0.0900	0.6538	0.2698	0.3400	0.1750	0.6602	0.4488
	3	0	0.0700	0.0150	0.8235	0.1290	0.0800	0.0250	0.7619	0.1448
		1	0.1000	0.0200	0.8333	0.1786	0.1250	0.0850	0.5952	0.2066
		3	0.1800	0.0700	0.7200	0.2880	0.3400	0.1750	0.6602	0.4498
		5	0.2100	0.1000	0.6774	0.3206	0.3900	0.2800	0.5821	0.4671
	6	0	0.1150	0.0150	0.8846	0.2035	0.0750	0.0300	0.7143	0.1357
		1	0.1450	0.0350	0.8056	0.2458	0.2700	0.0450	0.8571	0.4106
		3	0.3300	0.0800	0.8049	0.4681	0.4350	0.1700	0.7190	0.5421
		5	0.3650	0.1500	0.7087	0.4818	0.5600	0.2000	0.7368	0.6364

1701

1702

1703

Table 22: Detection performance under the same 20% mixed synonym substitution attack on the OpenGen dataset. Structured-Ours again maintains low FPR across settings, while RS-Watermark shows near-random FPR across δ values.

Setting			T200				T500			
Model	δ	s_{\max}	TPR	FPR	Precision	F1 score	TPR	FPR	Precision	F1 score
RS-Watermark	1.5	-	0.9150	0.9600	0.4880	0.6365	0.9600	0.9750	0.4961	0.6542
	2	-	0.9400	0.9300	0.5027	0.6551	0.9350	0.9300	0.5013	0.6527
	3	-	0.9300	0.9200	0.5027	0.6526	0.9700	0.9200	0.5132	0.6713
	6	-	0.9300	0.9350	0.4987	0.6492	0.9900	0.9450	0.5116	0.6746
Structured-Our	1.5	0	0.0350	0.0050	0.8750	0.0673	0.0300	0.0150	0.6667	0.0574
		1	0.0700	0.0350	0.6667	0.1267	0.1150	0.0900	0.5610	0.1909
		3	0.0650	0.0600	0.5200	0.1156	0.2000	0.1650	0.5479	0.2930
		5	0.1300	0.1150	0.5306	0.2088	0.3100	0.1950	0.6139	0.4120
	2	0	0.0300	0.0100	0.7500	0.0577	0.0350	0.0350	0.5000	0.0654
		1	0.0450	0.0150	0.7500	0.0849	0.1750	0.0750	0.7000	0.2800
		3	0.1300	0.0700	0.6500	0.2167	0.2600	0.1700	0.6047	0.3636
		5	0.2100	0.1150	0.6462	0.3170	0.3350	0.2250	0.5982	0.4295
	3	0	0.0650	0.0050	0.9286	0.1215	0.0750	0.0250	0.7500	0.1364
		1	0.1150	0.0150	0.8846	0.2035	0.1600	0.0850	0.6531	0.2570
		3	0.1600	0.0800	0.6667	0.2581	0.3000	0.1300	0.6977	0.4196
		5	0.2200	0.1200	0.6471	0.3284	0.4700	0.2650	0.6395	0.5418
	6	0	0.0850	0.0050	0.9444	0.1560	0.1300	0.0400	0.7647	0.2222
		1	0.1400	0.0450	0.7568	0.2363	0.3050	0.0650	0.8243	0.4453
		3	0.3300	0.0850	0.7952	0.4664	0.4100	0.1600	0.7193	0.5223
		5	0.3500	0.1150	0.7527	0.4778	0.6050	0.2600	0.6994	0.6488