
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BLOCK-WISE CODEWORD EMBEDDING FOR RELIABLE
MULTI-BIT TEXT WATERMARKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent multi-bit watermarking methods for large language models (LLMs) have
focused primarily on maximizing extraction rates. However, our reproduction
studies reveal a critical limitation: these approaches suffer from unacceptably high
false positive rates (FPR) that undermine their practical deployment. Specifically,
existing multi-bit encoding schemes like RS-Watermark achieve high true positive
rates even with insertion/deletion attacks but exhibit FPR exceeding 0.90, render-
ing them unreliable for real-world applications. We propose a robust multi-bit
text watermarking framework that addresses this reliability challenge through two
key innovations: (i) block-wise error correction that embeds complete codewords
within independent text segments, localizing the impact of edits and preventing
cascade failures, and (ii) window-shifting detection that systematically recovers
codewords despite insertion/deletion-induced misalignments. Our method verifies
watermark presence by confirming recovery of the initially embedded codewords,
significantly reducing false positives while maintaining high detection accuracy.
Experiments on OPT-1.3B and LLaMA-3.2-3B demonstrate substantial improve-
ments over existing multi-bit methods. Under 10% synonym substitution attacks
on 200-token texts, our approach achieves TPR of 0.965 with FPR of 0.02 (Preci-
sion: 0.9797), compared to RS-Watermark’s TPR of 0.97 with FPR of 0.925 (Pre-
cision: 0.5132). The framework is code-agnostic, supports progressive detection
from partial text, and provides theoretical guarantees for false-positive control.
These results establish our method as a practical solution for reliable multi-bit
watermarking in production environments.

1 INTRODUTION

Large language models (LLMs) have transformed content generation across creative, professional,
and scientific domains, yet raise critical concerns about provenance and potential misuse for decep-
tive content Solaiman et al. (2019); Bender et al. (2021). Reliably distinguishing human-authored
from AI-generated text has become essential for academic integrity, journalism, legal proceedings,
and platform governance Mitchell et al. (2023); Gehrmann et al. (2019).

Text watermarking addresses this challenge by embedding imperceptible data into AI-generated
content during generation Kirchenbauer et al. (2023). Unlike post-hoc detection methods relying on
statistical artifacts Mitchell et al. (2023); Su et al. (2023), watermarking provides stronger origin
guarantees while preserving fluency and style.

Watermarking approaches divide into zero-bit (checking watermark presence) and multi-bit (en-
coding extractable metadata). The green/red partition strategy of Kirchenbauer et al. (2023) biases
generation toward a keyed “green” vocabulary subset. Recent multi-bit methods augment partition-
ing with error-correcting codes (ECCs) to embed message bits. Qu et al. (2025) encodes payloads
with Reed-Solomon codes, while Chao et al. (2024) uses LDPC codes with sliding windows for
short texts.

Despite strong extraction rates, prior multi-bit schemes exhibit unacceptably high false positive
rates (FPR), undermining practical deploymentFu & Russell (2025). Our reproductions, conducted
using the official implementation released by Qu et al. (2025), show that under 10% synonym sub-
stitution on 200-token texts, Qu et al. (2025) achieve TPR ≈ 0.97 but FPR ≈ 0.925 (precision
≈ 0.51), frequently misclassifying unmarked text as watermarked. In contrast, our method achieves

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

TPR = 0.965 with FPR = 0.02 (precision = 0.9797). Structurally, the high FPR stems from de-
coding strategies that treat any valid codeword as evidence, irrespective of whether it matches the
embedded initially message, and from global synchronization dependencies that collapse under in-
sertions/deletions.

We introduce a robust multi-bit framework that simultaneously achieves high TPR and low FPR
by (i) embedding complete codewords in independent blocks to localize errors and prevent cascade
failures under edits, and (ii) deploying a window-shifting detector that systematically realigns and
recovers codewords after insertion/deletion-induced desynchronization. Crucially, detection veri-
fies that a recovered codeword equals the designated codeword that was actually embedded in that
block, thereby suppressing spurious matches that inflate FPR. This design achieves both a high TPR
and a significantly lower FPR compared to previous multi-bit methods, making them more suit-
able for real-world forensic applications. The framework is code-agnostic: while we instantiate with
BCH codes for efficiency and clarity, the design extends to RS/LDPC codes, enabling adaptation to
application-specific error patterns.

Our design closes the reliability gap in multi-bit watermarking. On 200-token texts under 10% syn-
onym substitutions, we achieve TPR = 0.965 at FPR = 0.02, contrasting sharply with prior meth-
ods, which have an FPR greater than 0.9. The incremental detection capability enables progressive
verification from partial text, quantifying watermark strength even when some blocks are corrupted,
thus broadening real-world deployability.

1.1 CONTRIBUTIONS

This work makes the following key contributions:

1. Low-FPR multi-bit watermarking: A framework that significantly reduces FPR while
preserving high TPR, overcoming a critical limitation in recent multi-bit methods and en-
abling reliable forensic deployment.

2. Incremental detection framework: Watermark evidence accumulates from multiple inde-
pendent codeword segments, enabling graduated confidence assessment rather than binary
detection.

3. Theory for reliability: Finite-sample bounds and design rules that control false positives
and characterize detection power under realistic noise/edit models.

4. Comprehensive validation: Experiments across datasets (C4, OpenGen) and model fami-
lies (OPT-1.3B, LLaMA-3.2-3B) showing state-of-the-art TPR–FPR trade-offs and robust-
ness to substitution/insertion/deletion. For instance, under a 10% synonym substitution at-
tack, a recent method exhibits an FPR of 0.925, whereas our method reduces it to 0.02.

5. Code-agnostic design: Compatibility with multiple linear codes (BCH/RS/LDPC), en-
abling tailoring to domain-specific error patterns.

Organization. Section 2 summarizes related work, Section 3 presents the proposed algorithms,
Section 4 provides reliability bounds and design guidance, Section 5 presents empirical results, and
Section 6 concludes with future research directions.

2 RELATED WORKS

Text watermarking for LLMs has rapidly diversified alongside model capabilities and deployment
contexts. We organize prior work by detection objective: (i) zero-bit watermarking, which only tests
for the presence of a watermark, and (ii) multi-bit watermarking, which embeds and extracts a pay-
load. This lens clarifies robustness requirements (synchronization, error tolerance) and evaluation
protocols, and it better reflects recent cryptographic developments, including zero-bit constructions
based on pseudorandom error-correcting codes.

2.1 ZERO-BIT WATERMARKING

A canonical approach is the keyed green/red partition of Kirchenbauer et al. (2023), which biases
generation toward a secret per-token green set and applies a binomial-style hypothesis test at de-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of zero-bit and multi-bit watermarking methods.
Zero-bit Methods ECC Key Features Limitations

Kirchenbauer et al. (2023)
(KGW)

No Green/red partition; simple test Fragile to paraphrasing; weak on short texts

Wu et al. (2023) (DiPmark) No Distribution-preserving; better quality Reduced watermark strength
Zhao et al. (2023) No Unigram watermark; provable robustness Limited to unigram patterns
Takezawa et al. (2025) No Detectability conditions No practical robustness
Christ & Gunn (2024) Yes Pseudorandom ECC; hidden test Computational overhead; no payload

Multi-bit Methods ECC Key Features Limitations

Yoo et al. (2023) No Embeds via keywords/syntax Low extraction accuracy (49.2% at 32-bit)
Qu et al. (2025) Yes (RS) RS code encoding; high TPR FPR ≈0.9 under insertion/deletion
Chao et al. (2024) Yes (LDPC) Sliding-window; strong on short text High FPR risk; complex decoding

tection. Variants preserve the model distribution to improve quality Wu et al. (2023), or provide
robustness under bounded edits Zhao et al. (2023). Exponential reweighting and detectability crite-
ria further sharpen the theory Takezawa et al. (2025). From a cryptographic angle, Christ & Gunn
(2024) constructs pseudorandom ECCs whose neighborhoods are indistinguishable from random,
enabling hidden presence tests at constant error. Despite their efficiency, most zero-bit schemes rely
on aggregate frequency signals and lack explicit synchronization, making them vulnerable to para-
phrasing, translation, or token-level desynchronization, especially in short texts.

2.2 MULTI-BIT WATERMARKING

Multi-bit watermarking seeks to embed a payload that can be decoded. Two broad families appear.

(a) Non-ECC multi-bit ideas. Yoo et al. (2023) use invariant features (keywords/syntax) for ro-
bustness, but suffer allocation imbalance and low accuracy on longer messages (49.2% match rate
for 32-bit).

(b) ECC-based message encoding. Qu et al. (2025) pioneered the ECC-based message-encoding,
which encodes the payload with Reed–Solomon (RS), distributes symbols via pseudorandom seg-
ments, and decodes by cracking noisy segment votes to the nearest codeword. Chao et al. (2024)
extends this line with LDPC and sliding windows, reporting strong performance on short texts via
adaptive biasing and sophisticated decoding.

Limitations. ECC-based methods often behave like message extractors, not calibrated detec-
tors: nearest-codeword decoding maps even unwatermarked text to valid codewords, driving FPR
high—particularly under insertions/deletions or synonym edits. Fu & Russell (2025) formalize this
false detection problem: conflating detection with identification effectively enlarges key capacity
and degrades reliability.

2.3 ATTACKS AND EVALUATION PROTOCOLS

Attacks include (i) substitutions (synonyms, back-translation, model paraphrasing) Morris et al.
(2020); Wieting & Gimpel (2018); Krishna et al. (2023), (ii) insertions/deletions that break to-
ken–bit alignment, and (iii) semantic rewrites that alter surface form while preserving meaning
Wolff et al. (2023). While recent frameworks standardize protocols and metrics Pan et al. (2023); Ku-
ditipudi et al. (2023), insertion/deletion scenarios remain underexplored. Prior pseudo-random em-
bedding strategies Yoo et al. (2023); Qu et al. (2025) mitigate—but do not resolve—synchronization,
and segment-level voting can yield unacceptably FPR on unwatermarked text.

2.4 POSITIONING OF OUR WORK

We address the above gaps with an incremental detection framework through: (1) distributed
codeword architecture embedding complete codewords independently, enabling partial recovery
and progressive confidence quantification; and (2) window-shifting detection that realigns indi-
vidual codewords, each contributing to accumulated watermark strength. Our incremental veri-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Codeword Length

Number of Embeded Codeword

1
1

1

0 0 0
0 0 0
0 0 0

1 0 0 0

token-to-segment mapping

Codeword Set

MessageMessage

Message

0 1 1 0 0 1 1 1 R GG R R GGG

Rule : , 0 R 1 G

Codeword bit ↔ G/R list mapping Window-Shifting Detection

0 1 1 0 0 1 1 1
VS

0 1 1 0 0 1 1 1

Figure 1: Overview of prior and proposed multi-bit watermarking frameworks. (Top) In prior
schemes, a deterministic token-to-segment mapping assigns a segment to every token—even for un-
watermarked text—so segment votes accumulate and ECC can “correct” noise into a valid codeword,
leading to false positives. (Bottom) Our incremental detection framework embeds complete code-
words in a distributed codeword architecture (realized through token-to-segment and bit–to–G/R
list mapping) and employs window-shifting detection with designated verification. This preserves
multi-bit payloads while eliminating the “any-codeword” acceptance failure mode, thereby signifi-
cantly reducing false positives.

fication counts only matching designated codewords, transforming binary detection into gradu-
ated evidence accumulation while suppressing spurious hits. This quantifies watermark strength
continuously—more recovered codewords yield higher confidence. The code-agnostic framework
(BCH/RS/LDPC/convolutional) achieves substantially improved TPR–FPR through incremental ev-
idence collection with explicit insertion/deletion handling. The next section details the algorithms
and guarantees.

3 PROPOSED WATERMARKING FRAMEWORK

We propose a reliable multi-bit watermarking framework that explicitly targets the high FPR pitfall
observed in prior multi-bit schemes, while preserving high TPR and robustness to common edits.
The method has three pillars: (i) distributed resilience via independent codeword blocks that en-
able partial watermark recovery and progressive confidence assessment even when some blocks are
corrupted, (ii) a window-shifting detector that realigns and recovers individual codewords after inser-
tion/deletion, contributing to the overall watermark strength score, and (iii) graduated verification
protocol, which quantifies watermark evidence by counting correctly matched designated codewords
rather than accepting “any” decodable codeword, thereby enabling continuous watermark strength
measurement while suppressing spurious detections.

This incremental approach transforms binary detection into progressive evidence accumulation,
where each recovered block contributes to a quantifiable confidence score. This section provides
detailed algorithmic descriptions and technical analysis of each component.

3.1 RELIABLE MULTI-BIT DETECTION VIA DESIGNATED-CODEWORD VERIFICATION

Prior methods rely on previous tokens to collect information for codeword decoding, treating any
text—watermarked or not—identically: the same token contributes to the decoding process, and
ECC even corrects “errors” to produce false positives by reconstructing valid codewords from ran-
dom noise. In contrast, our approach considers not only tokens but also their relative positions to ver-
ify whether patterns match the actual codeword structure, accepting only the designated codeword as

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a true detection rather than any valid codeword, thereby significantly reducing false positives while
maintaining multi-bit capacity.

3.1.1 END-TO-END PROCEDURE

We retain the use of meaningful messages m ∈ {0, 1}k in the watermarking process, but depart
from prior approaches by introducing incremental watermark verification:

1. Codeword assignment: For each block j, compute the designated codeword c(j) ←
E
(
m ⊕ r(j)

)
, where r(j) is a key-derived mask used for distance/weight balancing (in-

vertible at detection) as in Algorithm 3.1

2. Distributed embedding. Embed c(j) in block j via keyed vocabulary partitioning and
soft/hard bias as in Algorithm 1, enabling independent recovery of each block.

3. Shift-aware decoding. At detection, extract per-block bit strings and perform unique de-
coding with bounded circular shifts to counter insertion/deletion, treating each recovered
block as incremental evidence (Algorithms 4 and 2).

4. Incremental verification. Count a block as matched only if the decoded ĉ(j) equals the
designated c(j); aggregate matches and decide positive if the match ratio exceeds θ.

This preserves the semantics of multi-bit watermarking (the payload can be reconstructed by un-
masking r(j) for matched blocks) while eliminating the principal FPR failure mode of “any-
codeword” acceptance.

Overall, our design offers several advantages: (1) enforces rigorous verification based on codeword
matching to maintain low FPR, (2) enables parallel processing of independent blocks, (3) provides
graceful degradation under attacks, and (4) supports progressive detection from partial text.

3.2 DISTRIBUTED CODEWORD EMBEDDING

3.2.1 VOCABULARY PARTITIONING STRATEGY

Following the established approach of Kirchenbauer et al. (2023), we partition the vocabulary V
into two disjoint sets for each block. For block j, we compute a block-specific seed such that
seedj = H(K, j), where H is a cryptographic hash function (e.g., SHA-3) and K is the secret
watermarking key. Using seedj , we deterministically partition the vocabulary as L(j)

0 = {v ∈ V :

H(seedj , v) mod 2 = 0} and L(j)
1 = {v ∈ V : H(seedj , v) mod 2 = 1}. This block-specific par-

titioning prevents adversaries from inferring vocabulary assignments across multiple generations,
even with partial knowledge of the partitioning strategy.

3.2.2 CODEWORD GENERATION AND SELECTION

We pre-compute a set of diverse codewords to avoid statistical patterns that could be exploited by ad-
versaries. Specifically, the codeword generation strategy serves two purposes: (1) excluding all-zero
codewords prevents degenerate cases that could impact detection accuracy, and (2) generating code-
word pairs with maximum Hamming distance enhances robustness by ensuring diverse bit patterns.
The detailed generation procedure is provided in Appendix B.1.

3.2.3 DISTRIBUTED EMBEDDING ALGORITHM

Our embedding algorithm processes text generation in blocks of length n tokens, where each block
embeds exactly one codeword. Algorithm 1 provides the complete procedure.

Soft vs. Hard Embedding Schemes: The soft scheme adds bias δ to target list logits before applying
softmax, allowing natural variation while encouraging codeword-consistent tokens. The hard scheme
restricts sampling entirely to the target list, ensuring perfect codeword embedding at a potential cost

1If an application does not carry a payload, one may set m = 0k and use only r(j) for per-block variability;
the detector remains unchanged. We emphasize our default use is multi-bit payloads.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

to text quality. The choice between schemes provides a tunable trade-off between watermark strength
and naturalness.

Algorithm 1 Distributed Watermark Embedding
Require: Prompt, key K, codeword queue Q,

code length n, bias δ, scheme ∈ {soft, hard}
Ensure: Watermarked tokens

1: Np ← prompt length
2: for t = 0, 1, 2, . . . do
3: logits ℓ(t) ← LM
4: if t < Np then
5: sample from softmax(ℓ(t)); continue
6: end if
7: (j, b)← divmod(t−Np, n)
8: if b = 0 and Q[j] uninit then
9: choose c ∈ C; Q[j]← c

10: seedj ← H(K, j); build
(
L(j)
0 ,L(j)

1

)
11: end if
12: z(t) ← Q[j][b]; ℓ′ ← ℓ(t)

13: add +δ to ℓ′k for k ∈ L(j)

z(t) ;
14: if scheme=hard then
15: ℓ′k ← −∞ for k /∈ L(j)

z(t)

16: end if
17: sample s(t) ∼ softmax(ℓ′)
18: end for

Algorithm 2 Window Shifting Detection
Require: Text, Q, smax, threshold θ, block

length n
Ensure: Detection decision

1: extract blocks B (Alg. 4)
2: matched← 0, total← min(|B|, |Q|)
3: S ← {0} ∪ {−smax, . . . ,−1, 1, . . . , smax}
4: for i = 0, . . . , total− 1 do
5: b← B[i], c← Q[i]; success←False
6: for s ∈ S do
7: b(s) ← ROTATE(b, s mod n)
8: ĉ← SAFEDECODE(b(s)) (Alg. 5)
9: if ĉ = c then

10: matched← matched + 1;
success←True

11: break
12: end if
13: end for
14: end for
15: match ratio← matched/total
16: return match ratio ≥ θ

3.3 WINDOW SHIFTING FOR INCREMENTAL EVIDENCE RECOVERY

The key innovation enabling incremental detection under insertion/deletion attacks is our window
shifting mechanism. When tokens are inserted or deleted within a block, the extracted bit sequence
becomes a cyclic shift of the original codeword. Our detection algorithm systematically searches for
and recovers individual codewords.

Bit Extraction and Segmentation. Given the candidate text, we obtain the corresponding bit se-
quence using the same vocabulary partitioning strategy as in the embedding stage. Each token st is
mapped to a bit bt according to its block-specific partition, and the resulting sequence is segmented
into blocks of length n as bt = fj(st), (j, b) = divmod(t − Np, n), B = {b[0:n), b[n:2n), . . .}.
Each block represents an independent detection unit for incremental evidence accumulation. The
full extraction algorithm, including seed initialization and lookup construction, is provided in Ap-
pendix B.2.

Safe Decoding with Error Handling. To ensure robust incremental detection even when individ-
ual blocks contain uncorrectable errors, we implement a safe decoding subroutine that gracefully
handles decoder failures. The decoder accepts only codewords within the correction radius t and
returns None otherwise, preventing spurious matches while allowing other blocks to contribute to
the watermark strength score. The concrete decoding procedure and full algorithm are provided in
Appendix B.3.

Incremental Detection via Window Shifting. Our core detection algorithm 2 augments standard
error-correcting decoding with systematic circular shifting, allowing recovery from misalignments
caused by token insertions or deletions. Circular Shifting Rationale: When r tokens are inserted
at position p within a block, all subsequent bits shift left by r positions. Circular left shifting by r
positions can recover the original bit pattern, provided the total corruption (including substitution
errors) remains within the error-correction capability of the code.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Error-Correcting Code Selection and Parameterization. Our framework is agnostic to the spe-
cific choice of error-correcting code. We primarily adopt BCH codes due to their efficiency and well-
understood properties, but the framework also accommodates alternatives such as Reed–Solomon,
LDPC, or convolutional codes. Detailed selection guidelines and parameterization examples are
provided in Appendix C.1.

3.4 PARAMETER SELECTION AND OPTIMIZATION

We provide general guidelines for parameter selection, focusing on block length n, bias parameter
δ, and maximum shift smax. These parameters govern the trade-off between robustness, detection
accuracy, and text quality. Comprehensive trade-off analyses and recommended configurations are
deferred to Appendix C.2.

3.5 COMPUTATIONAL COMPLEXITY ANALYSIS AND SECURITY PROPERTIES

The embedding procedure has the same O(|V|) per-token complexity as existing methods, while de-
tection introduces an additional factor proportional to the maximum shift smax. Formal derivations
and detailed complexity expressions are given in Appendix C.3. Our approach inherits the security
guarantees of the underlying hash function and error-correcting code, while introducing additional
resilience via block-wise embedding and codeword diversity. A full discussion of key security, code-
word diversity, and block independence is provided in Appendix C.4.

4 ANALYTICAL BOUNDS FOR FPR/FNR IN ECC-BACKED WATERMARKS

This section develops finite-sample bounds for the proposed watermarking scheme based on block-
wise codeword-presence detection with window shifting. We quantify false positive (FPR) and false
negative (FNR) probabilities under general q-ary linear codes, and isolate the role of the embedding
bias parameter δ in the soft-embedding regime. We summarize here the setup and key intuition,
while deferring detailed theorems and proofs to Appendix D.

Setup and Notation. We consider a q-ary linear block code C ⊆ Σn with unique-decoding radius
t. Each text block embeds a designated codeword via δ-biased sampling from a green/red partition
of the vocabulary. Detection is performed by unique decoding with window shifting to counter
misalignments. (Detailed definitions in Appendix D.1.)

False Positives. We analyze two types of tests: (i) a naı̈ve “any-codeword” presence test, and (ii)
the proposed designated-codeword test with window shifting. Theorems 1 and 2 (Appendix D.2,
D.3) quantify single-block and aggregate FPR under these schemes, highlighting exponential sup-
pression in the block length n and the number of blocks M .

False Negatives. The impact of soft embedding (δ-bias) and adversarial edits is modeled via an
effective symbol error probability ptot. Theorem 5 (Appendix D.6) shows that the aggregate FNR
decays exponentially in M provided ptot < t/n.

Design Implications. The combined FPR/FNR bounds yield a clear design rule: choose param-
eters (n, t, smax, θ,M, δ) so that θ balances the two Chernoff exponents, and δ is large enough to
keep the embedding error below t/n. See Appendix D.8 for proofs, examples, and entropy-based
parameter guidelines.

5 RESULTS

5.1 EXPERIMENTAL SETUP

Models and Datasets. We evaluate on two open-source LLMs, OPT-1.3B and LLaMA-3.2-3B,
using datasets from Qu et al. (2025): the C4 corpus (large-scale diverse English text) and the Open-
Gen dataset (3,000 two-sentence samples from WikiText-103). Unless noted otherwise, OPT-1.3B
and C4 are used as defaults.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Baselines. We compare with RS-Watermark(Qu et al. (2025)), which uses Reed–Solomon codes.
For fairness, we used the official implementation released by the authors and kept all parameter
settings identical. We did not include the LDPC-based scheme of Chao et al. (2024) in our compar-
isons, as no official implementation has been released; we leave its reproduction and evaluation for
future work.

Parameters and Metrics. For watermark embedding, we adopt BCH(n=31, k=6, t=7), select-
ing n=31 as it provides a balanced TPR–FPR trade-off compared to shorter codewords (n=15,
high TPR but high FPR) and longer ones (n=63, low FPR but poor TPR), as detailed in Ap-
pendix E.7. We evaluate both soft and hard watermarking but adopt soft by default for better text
quality (Appendix E.3); in the soft setting we vary the insertion strength δ ∈ {1.5, 2.0, 3.0, 6.0}.
During detection, we use a window-shift range of smax ∈ {0, 1, 3, 5}, chosen based on the analysis
in Appendix C.2.3, to recover alignment under insertion or deletion attacks. Our incremental de-
tection protocol quantifies watermark strength by counting recovered codewords: by default, a text
is deemed watermarked if at least one originally embedded codeword is recovered, but the system
reports the total number of matched codewords as a continuous confidence score. This enables pro-
gressive watermark verification where detection confidence increases with each recovered block. A
stricter threshold (≥ 2 matches) reduces FPR but also lowers TPR (Appendix E.5), demonstrating
the flexibility of our graduated detection approach. Between the two detector variants, the Naı̈ve ver-
sion consistently exhibits high FPR, whereas the structured version achieves FPR ≈ 0.0 with com-
parable TPR by leveraging incremental evidence accumulation (Appendix E.1). Hence, we adopt the
structured detector in all experiments. We evaluate texts truncated to fixed lengths T ∈ {200, 500}
and report standard metrics (TPR, FPR, Precision, F1) alongside the watermark strength score for
incremental analysis.

5.2 SYNONYM SUBSTITUTION ATTACK

We evaluate robustness under synonym substitution, where words in a watermarked text are re-
placed with semantically equivalent alternatives. Such variations, covering both paraphrasing and
obfuscation, may disrupt token–codeword alignment. Our prior analysis showed that larger water-
mark insertion strengths δ reduce the bit error rate (BER), yielding more reliable codeword recovery
and higher TPR (Appendix E.2). We categorize attacks into three types depending on their effect
on token count: token-preserving (no change), token-decreasing (shorter replacements, deletion-
like), and token-increasing (longer replacements, insertion-like). Experiments were conducted at
substitution rates of 5% and 10% on the C4 dataset, with complete metrics in Appendix E.8. Sup-
plementary experiments on the OpenGen dataset are also reported in Appendix E.4.

5.2.1 TOKEN-PRESERVING SYNONYM SUBSTITUTION

Token-preserving replacements maintain token alignment but alter the statistical distribution of sam-
pled tokens. As shown in Figure 2, both Structured-Ours and RS-Watermark achieve high TPR as
δ increases, but RS-Watermark suffers from FPR values close to 1.0 (e.g., 0.930 at δ = 3). In con-
trast, Structured-Ours keeps FPR near zero, yielding a far clearer separation between watermarked
and unwatermarked texts. We observe the same trends on the OpenGen dataset, as detailed in Ap-
pendix E.4.

5.2.2 TOKEN-ALTERING SYNONYM SUBSTITUTION (DELETION/INSERTION-LIKE)

When replacements alter token counts, codeword–token alignment is disrupted: fewer tokens shift
watermark positions forward (deletion-like), while more tokens shift them backward (insertion-like).
As shown in Figure 3, increasing the window-shift parameter smax consistently improves TPR across
both weak (δ = 1.5) and strong (δ = 6.0) watermark insertion strengths. For example, under 10%
insertion at T = 500 with OPT-1.3B at δ = 6.0, TPR improves from about 0.430 at smax = 0 to
0.960 at smax = 5, showing the pronounced benefit of window-shift detection.

Figure 4 further shows that Structured-Ours maintains low FPR even when TPR is comparable to
RS-Watermark For instance, at T = 500 with δ = 3, both methods achieve near-perfect TPR (1.0
vs. 0.995), but FPR diverges sharply (0.160 vs. 0.945). Similarly, Figure 5 confirms that across

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.5

0.6

0.7

0.8

0.9

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

(T
PR

)
T=200 T=500

2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

Fa
lse

 P
os

iti
ve

 R
at

e
(F

PR
)

2 3 4 5 6

Substitution-10%

Watermark Insertion Strength

Structured-Ours (OPT-1.3B) Structured-Ours (LLaMA-3.2-3B) RS-Watermark (OPT-1.3B) RS-Watermark (LLaMA-3.2-3B)

Figure 2: Comparison with RS-Watermark un-
der 10% token-preserving synonym substitution
at smax = 5. While maintaining comparable
or higher TPR, our method keeps FPR signifi-
cantly lower, yielding more reliable watermark
detection.

0 1 3 5

0.2

0.4

0.6

0.8

1.0
10% Deletion (T=200)

0 1 3 5

10% Deletion (T=500)

0 1 3 5

0.2

0.4

0.6

0.8

1.0
10% Insertion (T=200)

0 1 3 5

10% Insertion (T=500)

Window Shift (smax)

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

Structured-Ours (OPT-1.3B, =1.5)
Structured-Ours (LLaMA-3.2-3B, =1.5)

Structured-Ours (OPT-1.3B, =6.0)
Structured-Ours (LLaMA-3.2-3B, =6.0)

Figure 3: Effect of window-shift parameter
smax on TPR under 10% deletion/insertion at-
tacks. Increasing smax consistently improves
TPR for both weak(δ=1.5) and strong (δ=6.0)
watermarks, demonstrating its effectiveness in
mitigating alignment mismatches.

0.92

0.94

0.96

0.98

1.00

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

T=200 T=500

2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Fa
lse

 P
os

iti
ve

 R
at

e
(F

PR
)

2 3 4 5 6

Deletion-10%

Watermark Insertion Strength

Structured-Ours (OPT-1.3B) Structured-Ours (LLaMA-3.2-3B) RS-Watermark (OPT-1.3B) RS-Watermark (LLaMA-3.2-3B)

Figure 4: Comparison with RS-Watermark un-
der 10% deletion attacks at smax = 5. Across
watermark strengths, our method maintains high
TPR while substantially lowering FPR com-
pared to RS-Watermark, indicating more reli-
able detection.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

T=200 T=500

2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Fa
lse

 P
os

iti
ve

 R
at

e
(F

PR
)

2 3 4 5 6

Insertion-10%

Watermark Insertion Strength

Structured-Ours (OPT-1.3B) Structured-Ours (LLaMA-3.2-3B) RS-Watermark (OPT-1.3B) RS-Watermark (LLaMA-3.2-3B)

Figure 5: Comparison with RS-Watermark un-
der 10% insertion attacks at smax = 5. Our
method consistently achieves higher TPR and
markedly lower FPR than RS-Watermark across
different δ values, demonstrating robustness
against insertion-like perturbations.

all insertion strengths, Structured-Ours consistently yields much lower FPR than RS-Watermark,
highlighting its superior reliability.

5.3 PARAPHRASING ATTACK

As shown in Table 2, Structured-Ours maintains consistently low FPR across all substitution
strengths and datasets, even under paraphrasing-based perturbations. Increasing the watermark in-
sertion strength δ further improves TPR, demonstrating that our method remains robust to semantic
rewriting performed by the T5 Paraphrase Paws model.

In contrast, RS-Watermark exhibits high TPR but suffers from extremely high FPR (often exceeding
90%), making it difficult to reliably distinguish watermarked texts from unwatermarked ones. This
highlights a fundamental limitation of existing multi-bit schemes and underscores the necessity of
strong false-positive control for practical deployment.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Structured-Ours vs. RS-Watermark under paraphrasing (T5 Paraphrase Paws) on C4 and
OpenGen. Structured-Ours maintains low FPR across all δ and smax values.

Setting T200

C4 OpenGen

Model δ smax TPR FPR Precision F1 score TPR FPR Precision F1 score

RS-Watermark

1.5 - 0.950 0.950 0.5000 0.6552 0.920 0.960 0.4894 0.6389
2 - 0.920 0.930 0.4973 0.6456 0.960 0.960 0.5000 0.6575
3 - 0.960 0.970 0.4974 0.6553 0.960 0.920 0.5106 0.6667
6 - 0.980 0.900 0.5213 0.6806 0.980 0.930 0.5131 0.6735

Structured-Our

1.5

0 0.360 0.020 0.9474 0.5217 0.450 0.020 0.9574 0.6122
1 0.410 0.040 0.9111 0.5655 0.400 0.000 1.0000 0.5714
3 0.350 0.030 0.9211 0.5072 0.570 0.050 0.9194 0.7037
5 0.480 0.100 0.8276 0.6076 0.480 0.100 0.8276 0.6076

2

0 0.330 0.000 1.0000 0.4962 0.520 0.010 0.9811 0.6797
1 0.530 0.030 0.9464 0.6795 0.540 0.020 0.9643 0.6923
3 0.560 0.060 0.9032 0.6914 0.710 0.030 0.9595 0.8161
5 0.580 0.140 0.8056 0.6744 0.530 0.130 0.8030 0.6386

3

0 0.360 0.000 1.0000 0.5294 0.600 0.000 1.0000 0.7500
1 0.450 0.040 0.9184 0.6040 0.630 0.060 0.9130 0.7456
3 0.650 0.040 0.9420 0.7692 0.710 0.060 0.9221 0.8023
5 0.680 0.110 0.8608 0.7598 0.720 0.040 0.9474 0.8182

6

0 0.550 0.000 1.0000 0.7097 0.550 0.010 0.9821 0.7051
1 0.720 0.030 0.9600 0.8229 0.780 0.080 0.9070 0.8387
3 0.710 0.100 0.8765 0.7845 0.700 0.070 0.9091 0.7910
5 0.810 0.120 0.8710 0.8394 0.910 0.070 0.9286 0.9192

6 CONCLUSION

In this paper, we proposed an incremental detection framework to overcome the limitations of ex-
isting ECC-based watermarking methods. Unlike prior approaches, the proposed scheme effectively
suppresses false positives while maintaining stable detection performance under various attacks. Ex-
perimental results demonstrate that our method achieves near-zero FPR with consistently high TPR,
outperforming the scheme of RS-Watermark and establishing a more reliable watermarking solution.
These results highlight the potential of our framework for practical deployment in LLM watermark-
ing. Future research will explore extensions to larger LLMs, more diverse adversarial scenarios, and
general linear code structures to further enhance robustness and applicability.

REFERENCES

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, pp. 610–623, New York, NY, USA,
2021. Association for Computing Machinery. doi: 10.1145/3442188.3445922. URL https:
//doi.org/10.1145/3442188.3445922.

R.E. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley Publishing Com-
pany, 1983. ISBN 9780201101027. URL https://books.google.co.kr/books?id=
vuVQAAAAMAAJ.

Lean Chao, Kangfu Chen, Yanshan Wang, and Haizhou Liu. Watermarking language models with
error correcting codes. arXiv preprint arXiv:2406.10281, 2024.

Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes. In Leonid Reyzin and Dou-
glas Stebila (eds.), Advances in Cryptology – CRYPTO 2024, pp. 325–347, Cham, 2024. Springer
Nature Switzerland. ISBN 978-3-031-68391-6.

10

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://books.google.co.kr/books?id=vuVQAAAAMAAJ
https://books.google.co.kr/books?id=vuVQAAAAMAAJ

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zihao Fu and Chris Russell. Multi-use llm watermarking and the false detection problem. arXiv
preprint arXiv:2506.15975, 2025.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander Rush. GLTR: Statistical detection and visu-
alization of generated text. In Marta R. Costa-jussà and Enrique Alfonseca (eds.), Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstra-
tions, pp. 111–116, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-3019.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. arXiv preprint arXiv:2301.10226, 2023. also presented at
ICML 2023.

Kalpesh Krishna, Yixiao Song, Marzena Karpińska, John Wieting, and Mohit Iyyer. Paraphrasing
evades detectors of ai-generated text, but retrieval is an effective defense. In Advances in Neural
Information Processing Systems, volume 36, 2023.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarking for language models. arXiv preprint arXiv:2307.15593, 2023.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and Chelsea Finn. De-
tectgpt: Zero-shot machine-generated text detection using probability curvature. arXiv preprint
arXiv:2301.11305, 2023. Presented at ICML 2023.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. TextAttack: A frame-
work for adversarial attacks, data augmentation, and adversarial training in NLP. In Qun Liu and
David Schlangen (eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 119–126, Online, October 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.16.

Alexander Pan, June Tong Shern, Alex Tamkin, Jasmine Song, Yuntao Zhang, Sarah Saleh, Deep
Ganguli, and Aidan Clark. Risk sources and risk management for generative ai. arXiv preprint
arXiv:2310.07782, 2023.

Wenjie Qu, Wengrui Zheng, Tianyang Tao, Dong Yin, Yanze Jiang, Zhihua Tian, Wei Zou, Jinyuan
Jia, and Jiaheng Zhang. Provably robust multi-bit watermarking for {AI-generated} text. In 34th
USENIX Security Symposium (USENIX Security 25), pp. 201–220, 2025.

Tom Richardson and Ruediger Urbanke. Modern Coding Theory. Cambridge University Press,
USA, 2008. ISBN 0521852293.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, Miles McCain, Alex Newhouse, Jason
Blazakis, Kris McGuffie, and Jasmine Wang. Release strategies and the social impacts of language
models, 2019. URL https://arxiv.org/abs/1908.09203.

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank infor-
mation for zero-shot detection of machine-generated text, 2023. URL https://arxiv.org/
abs/2306.05540.

Yuki Takezawa, Ryoma Sato, Han Bao, Kenta Niwa, and Makoto Yamada. Necessary and suffi-
cient watermark for large language models, 2025. URL https://arxiv.org/abs/2310.
00833.

John Wieting and Kevin Gimpel. ParaNMT-50M: Pushing the limits of paraphrastic sentence em-
beddings with millions of machine translations. In Iryna Gurevych and Yusuke Miyao (eds.), Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 451–462, Melbourne, Australia, July 2018. Association for Computational
Linguistics. doi: 10.18653/v1/P18-1042.

Max Wolff, Stuart Wolff, Hany Venkatesh, Moksh Mangla, Kai-Wei Chiang, and Yash Garg. At-
tacking neural text detectors. arXiv preprint arXiv:2302.05733, 2023.

11

https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/2306.05540
https://arxiv.org/abs/2306.05540
https://arxiv.org/abs/2310.00833
https://arxiv.org/abs/2310.00833

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang Zhang, and Heng Huang. A resilient and ac-
cessible distribution-preserving watermark for large language models (dipmark). arXiv preprint
arXiv:2310.07710, 2023.

KiYoon Yoo, Wonhyuk Ahn, Jiho Jang, and Nojun Kwak. Robust multi-bit natural language water-
marking through invariant features. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2092–2115, Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.acl-long.117.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text. arXiv preprint arXiv:2306.17439, 2023.

A LLM USAGE STATEMENT

During the preparation of this paper, we used ChatGPT to improve clarity, enhance writing consis-
tency, and assist with grammar refinement. We also used Perplexity.ai to support literature search
and discovery (e.g., identifying related work and relevant references). All conceptual contributions,
theoretical analyses, model designs, experiments, and research conclusions were developed entirely
by the authors.

B DETAILED ALGORITHMS

B.1 DIVERSE CODEWORD GENERATION

This algorithm provides the detailed procedure for generating diverse codewords. As described in
Section 3, we exclude the all-zero codeword and use maximum-weight pairs to maximize Hamming
distance and ensure robustness.

Algorithm 3 Diverse Codeword Generation
Require: Error-correcting code C with parameters (n, k, t), secret key K
Ensure: Diverse codeword set Q

1: Define message spaceM← {0, 1}k \ {0k} ▷ exclude all-zero message
2: Q ← ∅
3: Find maximum weight codeword cmax = argmaxc∈C wt(c)
4: while |Q| < required blocks do
5: Sample random message m ∼ Uniform(M)
6: Encode: c1 = E(m)
7: Compute distant pair: c2 = c1 ⊕ cmax

8: Randomly select c ∈ {c1, c2}
9: Q ← Q∪ {c}

10: end while
11: return Q

B.2 BIT SEQUENCE EXTRACTION

For completeness, we provide the full pseudocode of the bit extraction procedure that maps gener-
ated tokens to binary sequences and segments them into fixed-length blocks. This expands on the
conceptual description given in Section 3.

B.3 SAFE ERROR-CORRECTING DECODER

This algorithm expands on the safe decoding strategy summarized in Section 3. It ensures robust
handling of uncorrectable blocks by returning None when decoding exceeds the correction radius.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 4 Bit Sequence Extraction
Require: Text tokens {s0, . . . , sT }, secret key K, code length n
Ensure: Blocks B = {b[0:n), b[n:2n), . . .}

1: Np ← prompt length; U ← T −Np + 1
2: Initialize bit array b0:U−1

3: jprev ← −1 ▷ no block cached yet
4: for t = Np, Np + 1, . . . , T do
5: (j, b)← divmod(t−Np, n)
6: if j ̸= jprev then ▷ entering a new block: init once
7: seedj ← H(K, j)
8: Build partitions L(j)

0 ,L(j)
1 using seedj

9: Precompute a lookup fj(v) ∈ {0, 1} for all vocab items v
10: jprev ← j
11: end if
12: bt−Np ← fj(st) ▷ O(1) token-to-bit lookup
13: end for
14: Segmenting: let U ′ ← ⌊U/n⌋ · n ▷ drop incomplete tail; or pad if enabling progressive

detection
15: B ← { b[0:n), b[n:2n), . . . , b[U ′−n:U ′) }
16: return B

Algorithm 5 Safe Error-Correcting Decoder
Require: Bit sequence x ∈ {0, 1}n, code C, correction radius t
Ensure: (ĉ, d) if decodable within t; otherwise None

1: (once per block upstream) ensure field/parity structures for C are initialized
2: try (ĉ, d)← DECODEWITHDISTANCE(x) ▷ returns Hamming distance d to ĉ
3: except any decoder error: return None
4: if d ≤ t then
5: return (ĉ, d)
6: else
7: return None
8: end if

C ADDITIONAL ANALYSES

C.1 ERROR-CORRECTING CODE SELECTION AND PARAMETERIZATION

We primarily employ BCH codes Blahut (1983) due to their well-understood properties and efficient
implementation. For code length n = 2m − 1, we select parameters based on the trade-off between
error-correction capability and false-positive rates:

• BCH(31,16,3): Corrects up to 3 errors, suitable for moderate attack scenarios

• BCH(63,45,3): Longer blocks with same error-correction, better for clean text

• BCH(127,92,5): High error-correction capability for adversarial scenarios

C.1.1 ALTERNATIVE ERROR-CORRECTING CODES

Our framework readily accommodates other linear block codes Richardson & Urbanke (2008):

Reed-Solomon Codes: Optimal for burst error correction, particularly effective when inser-
tion/deletion attacks create localized corruption patterns.

LDPC Codes: Superior performance for longer blocks, but increased computational complexity.
Recommended for applications requiring very low false positive rates.

Convolutional Codes: Well-suited for streaming applications where text is generated and detected
incrementally.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Code Selection Guidelines:

• Choose code length n based on expected text length and block granularity requirements

• Select error-correction capability t based on anticipated attack strength

• Balance code rate k/n against false positive requirements using our theoretical analysis
(Section 4)

C.2 PARAMETER SELECTION AND OPTIMIZATION

C.2.1 BLOCK LENGTH OPTIMIZATION

The choice of block length n involves several trade-offs:

Shorter blocks (n ≤ 31):

• Advantages: Better localization of insertion/deletion effects, faster detection

• Disadvantages: Higher false positive rates, reduced error-correction capability

Longer blocks (n ≥ 63):

• Advantages: Lower false positive rates, stronger error correction

• Disadvantages: Larger vulnerability to insertion/deletion within blocks

We recommend n = 31 for most applications, providing a good balance between robustness and
efficiency.

C.2.2 BIAS PARAMETER TUNING

The bias parameter δ controls the strength of watermark embedding:

• δ ∈ [1.5, 2.0]: Minimal text quality impact, moderate watermark strength

• δ ∈ [2.0, 2.5]: Balanced trade-off for most applications

• δ ∈ [2.5, 3.0]: Strong watermarking for high-security scenarios

C.2.3 WINDOW SHIFT RANGE

The maximum shift parameter smax should be chosen based on expected insertion/deletion rates:

smax ≥ α · n · pins/del (1)

where pins/del is the expected insertion/deletion rate and α ≥ 1.5 provides a safety margin. For typical
scenarios with pins/del ≤ 0.2, we recommend smax = 10 for n = 31.

C.3 COMPUTATIONAL COMPLEXITY ANALYSIS

C.3.1 EMBEDDING COMPLEXITY

The computational overhead during text generation consists of:

• Hash computation: O(1) per token

• Vocabulary partitioning: O(|V|) per block, amortized O(|V|/n) per token

• Logit modification: O(|V|) per token

Total embedding complexity: O(|V|) per token, the same as existing methods.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C.3.2 DETECTION COMPLEXITY

Detection complexity depends on the number of shift operations:

• Bit extraction: O(T) for text length T

• Error correction per block: O(n3) using standard algorithms

• Window shifting: O(smax · n3) per block in worst case

Total detection complexity: O(T · smax · n2), where the factor smax represents the overhead of shift
search. For practical parameters (smax = 10, n = 31), this remains computationally tractable.

C.4 SECURITY PROPERTIES

Our method inherits the cryptographic properties of the underlying hash function and error-
correcting code while providing additional security benefits through block-wise design.

Key Security: The secret keyK determines vocabulary partitioning and codeword selection. Without
knowledge of K, an adversary cannot distinguish watermarked from unwatermarked text beyond
statistical artifacts due to the one-wayness of the cryptogrpahic hash function.

Codeword Diversity: Random codeword generation prevents statistical attacks based on repeated
patterns. Each text embeds different codewords, making it infeasible to infer watermarking parame-
ters from multiple samples.

Block Independence: Unlike methods that embed single codewords across multiple blocks, our
approach ensures that the compromise of one block does not affect others, providing better security
compartmentalization.

The following section provides a formal theoretical analysis of detection bounds and false positive
rates under our framework.

D FINITE-SAMPLE BOUNDS: DETAILED PROOFS AND EXAMPLES

This appendix contains the complete derivations, theorems, proofs, and examples for the finite-
sample bounds introduced in Section 4.

D.1 SETUP AND NOTATION

Let Σ = {0, 1, . . . , q − 1} and let C ⊆ Σn be a q-ary linear block code with length n, dimension
k, and minimum Hamming distance dmin. Its unique-decoding radius is t = ⌊(dmin− 1)/2⌋. Define
the q-ary Hamming ball volume as

Vq(n, t) ≜
t∑

i=0

(
n

i

)
(q − 1)i. (2)

A text is partitioned into M disjoint blocks. For block j ∈ {1, . . . ,M}, a secret seed seedj (derived
from a global key and block index) deterministically specifies (i) a single designated codeword
c(j) ∈ C to be embedded in that block and (ii) a partition of the vocabulary into green/red (or more
generally q-ary) token lists aligned with the symbols of c(j).

Embedding. In soft embedding, logits of tokens in the green list are shifted by +δ while others
are left unchanged, and a token is sampled from the resulting softmax. In hard embedding, sampling
is restricted to the green list (formally, δ →∞).

Detection. Given a candidate text, the detector extracts a q-ary symbol sequence b(j) ∈ Σn from
each block j according to the green/red partition induced by seedj , then applies a unique decoder
for C to decide whether b(j) lies within Hamming distance ≤ t from c(j). To counter local mis-
alignments (e.g., due to in-block insertions/deletions), the detector searches over circular shifts of

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

magnitude at most smax; denote S ≜ 2smax + 1 the number of shifts (including zero). The global
decision is based on the fraction of blocks that decode successfully: if the match ratio exceeds a
threshold θ ∈ (0, 1), the text is declared watermarked.

Stochastic model. Under H0 (no watermark), the per-block symbol sequence is modeled as uni-
formly random in Σn. Under H1 (watermark present), each block independently suffers symbol er-
rors (from soft embedding and/or adversarial editing) with per-symbol error probability ptot ∈ [0, 1],
and at most smax circular misalignment is introduced within the block.

D.2 NAÏVE “ANY-CODEWORD” PRESENCE TEST

Consider the (undesirable) test that declares a watermark if there exists any codeword of C within
Hamming distance t of the observed block.
Theorem 1 (FPR of the any-codeword test). If t ≤ ⌊(dmin− 1)/2⌋ so that Hamming balls of radius
t around distinct codewords are disjoint, then under H0 the single-block false-positive probability
of the any-codeword test is

FPRANY =
|C|Vq(n, t)

qn
= qk−nVq(n, t). (3)

Proof. Under H0, the block is uniform on Σn. The event “within distance t of some codeword” is
the disjoint union of the |C| Hamming balls of radius t, each of volume Vq(n, t). The probability is
therefore |C|Vq(n, t)/q

n.

Remark 1 (Binary specialization and magnitude). For q = 2, V2(n, t) =
∑t

i=0

(
n
i

)
. Even for

modest parameters, the value can be large: e.g., with BCH-like (n, t) = (31, 3) one gets V2 = 4,992
and FPRANY = 2k−nV2, which is unacceptably high unless k ≪ n. For (n, k, t) = (31, 16, 3) BCH
codes, FPR = 0.152. This motivates the designated-codeword test below.

D.3 DESIGNATED-CODEWORD TEST

Our scheme designates exactly one valid codeword per block j via seedj ; only proximity to this
codeword is considered.
Theorem 2 (Single-block FPR under designated-codeword test). Under H0, the single-block FPR
for the designated-codeword test equals

p0 =
Vq(n, t)

qn
. (4)

With window shifting over S circular offsets, the FPR obeys the union bound

p
(shift)
0 ≤ min{1, Sp0}. (5)

If the S shifted decoding events are independent (a benign approximation when the decoder’s ac-
ceptance regions overlap negligibly), then

p
(shift)
0 = 1− (1− p0)

S = Sp0 +O(p20). (6)

Proof. For a fixed designated codeword c(j), underH0 the probability a uniform vector falls within
Hamming radius t of c(j) is Vq(n, t)/q

n, giving equation 4. Searching S shifts yields at most S
chances to fall into a (shifted) acceptance region, whence equation 5. Under independence, the
complement probability multiplies across shifts, yielding equation 6.

Remark 2 (Entropy bound). For any q, Vq(n, t) ≤ q nHq(t/n) where Hq(·) is the q-ary entropy.
Thus

p0 ≤ q−n(1−Hq(t/n)), p
(shift)
0 ≲ S q−n(1−Hq(t/n)). (7)

This highlights the exponential FPR decay in n at fixed t/n.
Example 1 (Binary instances). For q = 2 and (n, t) = (31, 3), p0 = 3, 572, 224/231 ≈ 1.6634 ×
10−3. With smax = 10 (S = 21), p(shift)0 ≈ 3.43578×10−5 via equation 6. For (n, t) = (63, 3) and
(127, 5), p0 ≈ 4.52× 10−15 and 1.56× 10−30, respectively.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.4 AGGREGATE FPR WITH A MATCH-RATIO THRESHOLD

Let Xj be the indicator that block j decodes successfully underH0. Write p ≜ p
(shift)
0 .

Theorem 3 (Aggregate FPR under thresholding). Assume {Xj}Mj=1 are independent Bernoulli(p).
Then for any θ ∈ (0, 1),

Pr
H0

[
1

M

M∑
j=1

Xj ≥ θ

]
≤ exp

(
−M D(θ∥p)

)
, (8)

where D(a∥b) = a log a
b + (1− a) log 1−a

1−b is the Bernoulli KL divergence.

Proof. This is the standard Chernoff (Cramér–Chernoff) bound for Binomial tails.

Remark 3 (Design implication). Choosing θ ≫ p makes the aggregate FPR exponentially small
in M . In particular, combining equation 7 and Theorem 3 yields doubly-exponential suppression in
(n,M) at fixed t/n and S.

D.5 SOFT EMBEDDING: SYMBOL ERROR INDUCED BY δ-BIAS

Let m ∈ (0, 1) denote the pre-bias total softmax mass of the green list at a generation step. After
applying the logit shift +δ to the green tokens, the probability that the next token is drawn from the
green list is

Pgreen(δ;m) =
meδ

meδ + (1−m)
= σ

(
logit(m) + δ

)
, (9)

where σ(u) = 1/(1 + e−u) and logit(m) = log(m/(1−m)).
Theorem 4 (Per-symbol embedding error in soft mode). When the designated symbol requires sam-
pling from the green list, the per-symbol embedding error probability is

pemb(δ;m) = 1− Pgreen(δ;m) =
1−m

meδ + (1−m)
. (10)

In the balanced case m = 1
2 , pemb(δ;

1
2) = 1−σ(δ). For a target p∗ ∈ (0, 1/2), it suffices to choose

δ ≥ log
1− p∗

p∗
− logit(m) (11)

to guarantee pemb(δ;m) ≤ p∗.

Proof. It is straightforward from the softmax with a uniform logit shift on the green subset. The
inequality is obtained by solving 1− Pgreen(δ;m) ≤ p∗ for δ.

Example 2. For m = 1
2 , δ ∈ {2.0, 2.5, 3.0} yields pemb ≈ {0.1192, 0.0759, 0.0474}, respectively.

D.6 DETECTION POWER UNDER EMBEDDING AND ATTACK NOISE

Let patt ∈ [0, 1] be the adversarial symbol error rate within a block (e.g., substitutions after align-
ment). A conservative union bound gives ptot ≤ pemb + patt.
Theorem 5 (Single-block success and aggregate FNR). Suppose a block experiences i.i.d. symbol
errors with probability ptot and circular misalignment ≤ smax so that the correct shift is included
in the search. Then the single-block success probability is

p1(n, t, ptot) = Pr[Bin(n, ptot) ≤ t] =

t∑
i=0

(
n

i

)
pitot(1− ptot)

n−i. (12)

If Yj are i.i.d. indicators of success across blocks underH1, the aggregate false-negative probability
obeys

Pr
H1

[
1

M

M∑
j=1

Yj < θ

]
≤ exp

(
−M D(θ∥p1)

)
. (13)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof. Unique decoding succeeds iff the number of symbol errors does not exceed t; the Binomial
tail gives the expression. The Chernoff bound for the lower tail yields the aggregate exponent.

Example 3 (Guideline at (n, t) = (31, 3)). With m = 1
2 and δ = 2.5, pemb ≈ 0.0759. If patt ∈

[0, 0.01], then ptot ∈ [0.0759, 0.0859], giving p1 ≈ 0.79 to 0.73. For M = 32 and threshold
θ = 0.5, the aggregate FNR is exponentially small by Theorem 5.

D.7 SHIFT RECOVERY AND LOCAL EDITS

Lemma 6 (Sufficient condition for perfect recovery). If a block suffers at most smax circular shift
and at most t symbol substitutions after the correct shift is applied, then window shifting over S =
2smax + 1 offsets followed by unique decoding correctly identifies the designated codeword.

Proof. The correct shift lies in the search set, and under that shift the Hamming distance to the
designated codeword is ≤ t. Unique decoding is therefore exact by the definition of t.

Remark 4 (Modeling in-block insertions/deletions). When insertions/deletions are confined within
a block and do not exceed the shift window, their net effect can be abstracted as a circular shift
(alignment) plus residual substitutions. Lemma 6 then applies.

D.8 PARAMETER SELECTION VIA ENTROPY BOUNDS

The entropy control in equation 7, together with Theorems 3 and 5, suggests a simple two-sided
design: pick (n, t, smax, θ,M, δ) so that

exp
(
−M D(θ∥p(shift)0)

)
︸ ︷︷ ︸

FPR target α

≤ α, p
(shift)
0 ≈ 1− (1− p0)

S , p0 ≤ q−n(1−Hq(t/n)), (14)

exp
(
−M D(θ∥p1)

)
︸ ︷︷ ︸

FNR target β

≤ β, p1 = Pr[Bin(n, ptot) ≤ t], ptot ≲ pemb(δ;m) + patt. (15)

Remark 5 (Balanced operation). A convenient choice is to set θ near the Chernoff intersection that
equalizes exponents D(θ∥p(shift)0) ≈ D(θ∥p1), and to tune δ to keep ptot < t/n so that p1 remains
bounded away from 1/2.

D.9 GENERALIZATIONS

Proposition 7 (Direct q-ary extension). All the bounds above hold verbatim for q > 2 with Vq(n, t)
from equation 2; in particular,

p0 =
Vq(n, t)

qn
, p

(shift)
0 ≤ min{1, S p0}, Pr

H0

[
match ratio ≥ θ

]
≤ e−MD(θ∥p(shift)

0).

Proof. Identical combinatorial counting applies because the unique-decoding radius t depends only
on dmin and the metric, not on the field size beyond the volume Vq(n, t).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1.5 2.0 3.0 6.0
Watermark Insertion strength

0

10

20

30

40

50

Bi
t E

rro
r R

at
e

(%
)

Structured-Ours
Unwatermark

Figure 7: Average Bit Error Rate (BER) as a function of watermark insertion strength δ.

E SUPPLEMENTARY EXPERIMENTS

E.1 DETECTION PERFORMANCE WITHOUT ATTACK

1.5 2.0 3.0 6.0
Watermark Insertion Strength

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fa
lse

 P
os

iti
ve

 R
at

e
(F

PR
)

Naive-Ours (T=200)
Naive-Ours (T=500)
Structured-Ours (T=200)
Structured-Ours (T=500)

Figure 6: False Positive Rate (FPR) across insertion strengths δ for Naı̈ve-Ours and Structured-Ours
under no-attack settings.

This experiment evaluates detection performance of watermarking techniques in clean environments
without adversarial attacks, focusing on how watermark insertion strength δ and text length T influ-
ence reliability.

Figure 6 shows that Naı̈ve-Ours suffers from consistently high FPR across all δ values, failing to dis-
tinguish watermarked from unwatermarked text. In contrast, Structured-Ours maintains FPR close to
zero regardless of δ, demonstrating the effectiveness of structured decoding. For example, at δ=3.0
with T=200, Naı̈ve-Ours attains TPR=1.000 but FPR=0.499, whereas Structured-Ours achieves a
comparable TPR=0.987 with FPR=0.013.

E.2 BIT ERROR RATE ANALYSIS BY WATERMARK INSERTION STRENGTH δ

This experiment evaluates the effect of watermark insertion strength δ on bit-level codeword recon-
struction. As shown in Figure 7, unwatermarked text consistently exhibits about 50% BER, which
corresponds to random guessing. In contrast, watermarked text yields significantly lower BERs, with
the error rate steadily decreasing as δ increases. These results demonstrate that stronger watermark

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

insertion improves the reliability of codeword reconstruction, whereas smaller values of δ result in
BERs closer to random noise, rendering detection more difficult.

E.3 TEXT QUALITY UNDER WATERMARKING

Table 3: comparison of text quality across watermarking schemes.
Scheme δ PPL (↓) BLEU (↑) BERTScore(F1) (↑)
Unwatermark - 8.28 31.81 0.8201

RS-Watermark

1.5 12.78 30.99 0.8132
2.0 13.53 22.31 0.7740
3.0 15.92 22.31 0.7740
6.0 22.16 10.14 0.6688

Structured-Ours (soft)

1.5 12.41 29.14 0.8132
2.0 13.22 27.78 0.8082
3.0 16.37 20.13 0.7738
6.0 23.67 10.16 0.6864

Structured-Ours (hard) - 28.61 6.69 0.6312

Tables 3 report text quality under a variety of watermarking techniques. Unwatermarked baselines
achieve the best overall performance with the lowest performance (PPL), the highest BLEU, and the
highest BERTScore, reflecting fluent and semantically faithful outputs.

Qu et al and our structured method (soft) both exhibit the same general trend: As the watermarking
insertion strength δ increases, PPL increases and BLEU and BERTScore decrease, resulting in poor
text quality. However, our structured method consistently retains text quality better than Qu et al for
all δ values. For example, when δ = 2.0, our method achieves BLEU score of 27.78 and BERTScore
of 0.8082 compared to 22.31 and 0.7740 of Qu et al, respectively. Even in the strongest settings
(δ = 6.0, our approach provides slightly higher BLEU and BERTScore.

On the other hand, a hard variant of our method results in severe quality degradation (PPL 28.61,
BLEU 6.69 and BERTScore 0.6312), indicating that it is more watermarking than is impractical
for quality-sensitive applications. These results highlight that the soft method provides a balanced
balance between the robustness of watermarking and text quality.

E.4 GENERALIZATION STUDY ON THE OPENGEN DATASET

As shown in Figure 8, both methods improve TPR as δ increases. However, while RS-Watermark
consistently exhibits high FPR across all δ values, our detector keeps FPR close to zero. For example,
under a 10% substitution attack, when T = 500 and δ = 6, our method achieved an FPR of only
0.015, whereas RS-Watermark reported an FPR of 0.93.

Figure 9 further illustrates that insertion and deletion lead to token–codeword misalignments. Ex-
panding the window size smax allows the detector to resynchronize with the embedded codewords,
thereby significantly improving TPR. In particular, under a 10% insertion attack, when T = 500 and
δ = 6.0, the TPR improved dramatically from 0.46 at smax = 0 to 0.945 at smax = 5.

Furthermore, as shown in Figures 10 and 11, our method consistently maintains high TPR while
keeping FPR low, whereas RS-Watermark achieves high TPR only at the cost of elevated FPR. For
example, under a 10% deletion attack, when T = 500 and δ = 3, our method achieved perfect
detection (TPR = 1.0) with an FPR of only 0.2, while RS-Watermark attained the same TPR (1.0)
but suffered from an FPR as high as 0.945.

E.5 EFFECT OF THRESHOLD INCREASE

This experiment investigates how raising the detection threshold—i.e., the number of required
matched codewords—affects detection performance under synonym substitution attacks. Specifi-

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.5

0.6

0.7

0.8

0.9

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

(T
PR

)
T=200 T=500

2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

Fa
lse

 P
os

iti
ve

 R
at

e
(F

PR
)

2 3 4 5 6

Substitution (OpenGen)

Watermark Insertion Strength

Structured-Ours (5%) Structured-Ours (10%) RS-Watermark (5%) RS-Watermark (10%)

Figure 8: Comparison with RS-Watermark un-
der token-preserving synonym substitution (5%
and 10%) at smax = 5. While achieving com-
petitive TPR, our method maintains near-zero
FPR across δ, whereas RS-Watermark exhibit
consistently high FPR.

0 1 3 5

0.2

0.4

0.6

0.8

1.0
10% Deletion (T=200)

0 1 3 5

10% Deletion (T=500)

0 1 3 5

0.2

0.4

0.6

0.8

1.0
10% Insertion (T=200)

0 1 3 5

10% Insertion (T=500)

Window Shift (smax)

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

Structured-Ours (=1.5) Structured-Ours (=6.0)

Figure 9: Effect of window-shift parameter
smax on TPR under 10% deletion/insertion at-
tacks (OpenGen). Increasing smax consistently
improves TPR for both weak (δ = 1.5) and
strong (δ = 6.0) watermarks, demonstrating
its effectiveness in recovering alignment mis-
matches.

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

T=200 T=500

2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Fa
lse

 P
os

iti
ve

 R
at

e
(F

PR
)

2 3 4 5 6

Deletion (OpenGen)

Watermark Insertion Strength

Structured-Ours (5%) Structured-Ours (10%) RS-Watermark (5%) RS-Watermark (10%)

Figure 10: Comparison with RS-Watermark un-
der token-decreasing (deletion-like) substitution
(5% and 10%) at smax = 5. Our method sus-
tains high TPR with markedly lower FPR across
δ compared to RS-Watermark

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

T=200 T=500

2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Fa
lse

 P
os

iti
ve

 R
at

e
(F

PR
)

2 3 4 5 6

Insertion (OpenGen)

Watermark Insertion Strength

Structured-Ours (5%) Structured-Ours (10%) RS-Watermark (5%) RS-Watermark (10%)

Figure 11: Comparison with RS-Watermark un-
der token-increasing (insertion-like) substitu-
tion (5% and 10%) at smax = 5. Our method
keeps FPR low while attaining competitive TPR
as δ grows, unlike RS-Watermark whose FPR
remains high.

cally, the threshold is increased from requiring at least one matched codeword to requiring at least
two.

Figure 12 reports the True Positive Rate (TPR) across different window shift parameters smax under
substitution rates of 5% and 10% at T = 200. The results show that stricter thresholds consistently
lower TPR across all settings, indicating that some watermarked texts are missed.

Figure 13 presents the corresponding False Positive Rate (FPR). In contrast to TPR, FPR decreases
significantly as the threshold increases, with Structured-Ours-t2 achieving values near zero even
under higher substitution rates and large smax. Together, these results highlight the fundamental
trade-off: higher thresholds suppress false positives but also reduce TPR.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.0

0.2

0.4

0.6

0.8

1.0

5% Deletion 5% Insertion

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

10% Deletion

0 1 2 3 4 5

10% Insertion

Window Shift smax

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

Structured-Ours =1.5
Structured-Ours =2.0

Structured-Ours =3.0
Structured-Ours =6.0

Structured-Ours-t2 =1.5
Structured-Ours-t2 =2.0

Structured-Ours-t2 =3.0
Structured-Ours-t2 =6.0

Figure 12: TPR under synonym substitution
(rows: 5%, 10%; columns: deletion-like vs.
insertion-like, T = 200). Increasing the detec-
tion threshold from one to two codewords con-
sistently lowers TPR across all smax and δ.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

5% Deletion 5% Insertion

0 1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

10% Deletion

0 1 2 3 4 5

10% Insertion

Window Shift smax

Fa
lse

 P
os

iti
ve

 R
at

e
(F

PR
)

Structured-Ours =1.5
Structured-Ours =2.0

Structured-Ours =3.0
Structured-Ours =6.0

Structured-Ours-t2 =1.5
Structured-Ours-t2 =2.0

Structured-Ours-t2 =3.0
Structured-Ours-t2 =6.0

Figure 13: FPR under synonym substitution
(rows: 5%, 10%; columns: deletion-like vs.
insertion-like, T = 200). Increasing the detec-
tion threshold from one to two codewords con-
sistently lowers FPR across all smax and δ.

E.6 COMPUTATIONAL COST OF WINDOW-SHIFT DETECTION

The window-shift procedure is applied only during detection, and therefore incurs minimal computa-
tional overhead. As shown in Table 4, inference time remains well below one second even with larger
codeword lengths n and higher shift budgets Smax. This demonstrates that our detection framework
is computationally lightweight and practical for real-world use.

Table 4: Inference time (seconds) for varying Smax and codeword lengths n.

Setting Inference Time (sec)

T n Smax = 0 Smax = 1 Smax = 3 Smax = 5

200
15 0.0252 0.0474 0.0861 0.1262
31 0.0270 0.0526 0.1146 0.1682
63 0.0270 0.0607 0.1345 0.2017

500
15 0.0394 0.0931 0.1698 0.2741
31 0.0489 0.1127 0.2577 0.3788
63 0.0552 0.1540 0.3431 0.5342

E.7 EFFECT OF CODEWORD PARAMETERS ON DETECTION PERFORMANCE

We compared three configurations at T = 200: a short codeword (n = 15, k = 5, t = 3), a medium
codeword (n = 31, k = 6, t = 7), and a long codeword (n = 63, k = 7, t = 15). The results are
summarized in Figure 14.

The short codeword achieved very high TPR but at the cost of large FPR (e.g., under 10% deletion
with δ = 3.0, TPR = 1.000 but FPR = 0.945; Table 5). By contrast, the long codeword consistently
kept FPR near zero but suffered from reduced TPR, especially under insertion attacks (e.g., under
10% insertion with δ = 1.5, TPR dropped to 0.025 while FPR remained 0.000; Table 8).

In between, the medium codeword provided a balanced trade-off, maintaining high TPR while keep-
ing FPR moderate. For this reason, we adopted the medium codeword setting (n = 31, k = 6, t = 7)
as the default in our main experiments.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

Deletion s_max=5 (T=200)

=1.5
=6.0

Short
1%

Medium
5%

Long
10%

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

Insertion - s_max=5 (T=200)

=1.5
=6.0

Short
1%

Medium
5%

Long
10%

Figure 14: Trade-off between TPR and FPR under token substitution attacks at T = 200 (smax=5,
δ ∈ {1.5, 6.0}). Left: token-decreasing (Deletion). Right: token-increasing (Insertion). Short code-
words (n=15) yield higher TPR but increased FPR, long codewords (n=63) yield lower FPR but
reduced TPR, while medium codewords (n=31) provide a balanced trade-off.

Table 5: Detection performance under token-decreasing synonym substitution for BCH codes (n =
15, k = 5, t = 3) with T = 200.

Setting 1% Deletion 5% Deletion 10% Deletion

Model δ smax TPR FPR Precision F1 TPR FPR Precision F1 TPR FPR Precision F1

Structured-Ours (n=15)

1.5

0 0.925 0.175 0.8409 0.8809 0.880 0.230 0.7928 0.8341 0.900 0.230 0.7965 0.8451
1 1.000 0.530 0.6536 0.7905 0.990 0.475 0.6758 0.8032 0.970 0.535 0.6445 0.7745
3 0.995 0.815 0.5497 0.7082 0.995 0.830 0.5452 0.7044 1.000 0.800 0.5556 0.7143
5 0.995 0.955 0.5113 0.6746 1.000 0.935 0.5168 0.6814 0.995 0.955 0.5103 0.6746

2.0

0 0.920 0.220 0.8070 0.8598 0.930 0.300 0.7561 0.8341 0.895 0.180 0.8326 0.8627
1 0.995 0.440 0.6934 0.8173 1.000 0.500 0.6667 0.8000 0.995 0.500 0.6656 0.7976
3 1.000 0.815 0.5510 0.7105 1.000 0.790 0.5587 0.7168 1.000 0.835 0.5450 0.7055
5 1.000 0.955 0.5115 0.6768 1.000 0.970 0.5076 0.9734 1.000 0.930 0.5181 0.6826

3.0

0 0.915 0.200 0.8206 0.8652 0.900 0.195 0.8219 0.8592 0.925 0.215 0.8114 0.8645
1 1.000 0.575 0.6350 0.7767 0.995 0.485 0.6723 0.8024 1.000 0.525 0.6557 0.7921
3 1.000 0.780 0.5618 0.7194 1.000 0.860 0.5376 0.6993 1.000 0.795 0.5571 0.7156
5 1.000 0.945 0.5141 0.6791 1.000 0.955 0.5115 0.6768 1.000 0.930 0.5181 0.6826

6.0

0 0.950 0.185 0.8370 0.8899 0.945 0.215 0.8147 0.8750 0.900 0.165 0.8451 0.8717
1 0.995 0.510 0.6611 0.7944 1.000 0.505 0.6645 0.7984 0.995 0.500 0.6656 0.7976
3 1.000 0.850 0.5405 0.7018 1.000 0.835 0.5450 0.7055 1.000 0.830 0.5464 0.7067
5 1.000 0.955 0.5115 0.6768 1.000 0.930 0.5181 0.6826 1.000 0.945 0.5141 0.6791

E.8 SYNONYM SUBSTITUTION: FULL TABLES AND FIGURES

Figures 15–17 present representative results under 5% synonym substitution attacks, while the main
text highlights the 10% case as the most challenging setting. In all figures, results are shown for both
OPT-1.3B and LLaMA-3.2-3B, consistently demonstrating that our method achieves comparable or
higher TPR and substantially lower FPR than RS-Watermark

Tables 9–20 complement these plots by reporting detailed detection metrics (TPR, FPR, Precision,
F1) for each substitution type (token-preserving, deletion-like, insertion-like) across substitution
ratios (5%, 10%) and text lengths (T = 200, 500), separately for OPT-1.3B and LLaMA-3.2-3B.

E.9 ROBUSTNESS UNDER MIXED SYNONYM SUBSTITUTION
(INSERTION–DELETION–REPLACEMENT)

We further evaluate robustness under a mixed synonym substitution attack, where 20% of the tokens
are replaced with synonyms that induce insertion-like, deletion-like, and replacement-like effects

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 6: Detection performance under token-increasing synonym substitution for BCH codes (n =
15, k = 5, t = 3) with T = 200.

Setting 1% Insertion 5% Insertion 10% Insertion

Model δ smax TPR FPR Precision F1 TPR FPR Precision F1 TPR FPR Precision F1

Structured-Ours (n=15)

1.5

0 0.875 0.245 0.7813 0.8255 0.530 0.205 0.7211 0.6110 0.440 0.130 0.7719 0.5605
1 0.945 0.490 0.6585 0.7762 0.760 0.470 0.6179 0.6816 0.625 0.500 0.5556 0.5882
3 0.985 0.820 0.5457 0.7023 0.940 0.815 0.5356 0.6824 0.945 0.790 0.5447 0.6910
5 1.000 0.930 0.5181 0.6826 0.995 0.955 0.5103 0.6746 0.980 0.925 0.5144 0.6747

2.0

0 0.865 0.210 0.8047 0.8337 0.690 0.195 0.7797 0.7321 0.545 0.175 0.7569 0.6337
1 0.980 0.505 0.6599 0.7887 0.870 0.520 0.6259 0.7280 0.790 0.455 0.6345 0.7038
3 1.000 0.825 0.5479 0.7080 0.955 0.820 0.5380 0.6883 0.940 0.775 0.5481 0.6924
5 1.000 0.965 0.5089 0.6745 0.995 0.945 0.5129 0.6769 0.985 0.925 0.5157 0.6770

3.0

0 0.885 0.215 0.8045 0.8429 0.745 0.225 0.7680 0.7563 0.620 0.230 0.7294 0.6703
1 0.950 0.475 0.6667 0.7835 0.890 0.480 0.6496 0.7511 0.775 0.495 0.6102 0.6828
3 1.000 0.815 0.5510 0.7105 0.970 0.815 0.5434 0.6966 0.975 0.845 0.5357 0.6915
5 1.000 0.920 0.5208 0.6849 0.990 0.945 0.5116 0.6746 1.000 0.930 0.5181 0.6826

6.0

0 0.905 0.195 0.8227 0.8619 0.725 0.230 0.7592 0.7417 0.645 0.190 0.7725 0.7030
1 0.990 0.560 0.6387 0.7765 0.895 0.505 0.6393 0.7458 0.860 0.505 0.6300 0.7273
3 1.000 0.820 0.5495 0.7092 0.990 0.825 0.5455 0.7034 0.970 0.800 0.5480 0.7004
5 1.000 0.970 0.5076 0.6734 1.000 0.950 0.5128 0.6780 1.000 0.945 0.5141 0.6791

Table 7: Detection performance under token-decreasing synonym substitution for BCH codes (n =
63, k = 7, t = 15) with T = 200.

Setting 1% Deletion 5% Deletion 10% Deletion

Model δ smax TPR FPR Precision F1 TPR FPR Precision F1 TPR FPR Precision F1

Structured-Ours (n=63)

1.5

0 0.585 0 1.0000 0.7382 0.490 0 1.0000 0.6577 0.560 0 1.0000 0.7179
1 0.715 0 1.0000 0.8338 0.650 0 1.0000 0.7879 0.640 0.005 0.9922 0.7781
3 0.725 0 1.0000 0.8406 0.660 0 1.0000 0.7952 0.650 0 1.0000 0.7879
5 0.660 0 1.0000 0.7952 0.675 0 1.0000 0.8060 0.625 0 1.0000 0.7692

2.0

0 0.820 0 1.0000 0.9011 0.775 0 1.0000 0.8732 0.770 0 1.0000 0.8701
1 0.955 0 1.0000 0.9770 0.920 0 1.0000 0.9583 0.935 0 1.0000 0.9664
3 0.955 0 1.0000 0.9770 0.960 0 1.0000 0.9796 0.920 0 1.0000 0.9583
5 0.965 0.010 0.9897 0.9772 0.960 0 1.0000 0.9796 0.940 0 1.0000 0.9691

3.0

0 0.910 0 1.0000 0.9529 0.880 0 1.0000 0.9362 0.830 0 1.0000 0.9071
1 1.000 0 1.0000 1.0000 0.990 0 1.0000 0.9950 0.975 0 1.0000 0.9873
3 1.000 0.005 0.9950 0.9975 0.995 0 1.0000 0.9975 0.995 0 1.0000 0.9975
5 1.000 0 1.0000 1.0000 1.000 0 1.0000 1.0000 1.000 0 1.0000 1.0000

6.0

0 0.925 0 1.0000 0.9610 0.890 0 1.0000 0.9418 0.855 0 1.0000 0.9218
1 0.995 0 1.0000 0.9975 0.980 0 1.0000 0.9899 0.995 0 1.0000 0.9975
3 1.000 0 1.0000 1.0000 1.000 0 1.0000 1.0000 1.000 0 1.0000 1.0000
5 1.000 0 1.0000 1.0000 1.000 0.005 0.9950 0.9975 1.000 0 1.0000 1.0000

Table 8: Detection performance under token-increasing synonym substitution for BCH codes (n =
63, k = 7, t = 15) with T = 200.

Setting 1% Insertion 5% Insertion 10% Insertion

Model δ smax TPR FPR Precision F1 TPR FPR Precision F1 TPR FPR Precision F1

Structured-Ours (n=63)

1.5

0 0.440 0 1.0000 0.6111 0.110 0 1.0000 0.1982 0.025 0 1.0000 0.0488
1 0.490 0 1.0000 0.6577 0.155 0 1.0000 0.2684 0.010 0 1.0000 0.0198
3 0.595 0 1.0000 0.7461 0.210 0 1.0000 0.3471 0.060 0 1.0000 0.1132
5 0.615 0 1.0000 0.7616 0.230 0.005 0.9787 0.3725 0.050 0 1.0000 0.0952

2.0

0 0.635 0 1.0000 0.7768 0.240 0 1.0000 0.3871 0.065 0 1.0000 0.1121
1 0.805 0 1.0000 0.8920 0.255 0 1.0000 0.4064 0.080 0 1.0000 0.1481
3 0.875 0 1.0000 0.9333 0.350 0 1.0000 0.5185 0.115 0 1.0000 0.2063
5 0.915 0 1.0000 0.9556 0.485 0 1.0000 0.6532 0.145 0 1.0000 0.2533

3.0

0 0.800 0 1.0000 0.8889 0.320 0 1.0000 0.4848 0.105 0 1.0000 0.1900
1 0.900 0 1.0000 0.9474 0.515 0 1.0000 0.6799 0.145 0 1.0000 0.2533
3 0.960 0 1.0000 0.9796 0.645 0 1.0000 0.7842 0.280 0 1.0000 0.4375
5 0.985 0 1.0000 0.9924 0.710 0 1.0000 0.8304 0.305 0.005 0.9861 0.5221

6.0

0 0.840 0 1.0000 0.9130 0.395 0 1.0000 0.5663 0.145 0 1.0000 0.2533
1 0.900 0 1.0000 0.9474 0.530 0 1.0000 0.6928 0.250 0 1.0000 0.4000
3 0.985 0 1.0000 0.9924 0.735 0 1.0000 0.8473 0.430 0 1.0000 0.6014
5 0.995 0 1.0000 0.9975 0.850 0 1.0000 0.9189 0.490 0 1.0000 0.6577

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

T=200 T=500

2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

Fa
lse

 P
os

iti
ve

 R
at

e
(F

PR
)

2 3 4 5 6

Substitution-5%

Watermark Insertion Strength

Structured-Ours (OPT-1.3B) Structured-Ours (LLaMA-3.2-3B) RS-Watermark (OPT-1.3B) RS-Watermark (LLaMA-3.2-3B)

Figure 15: Comparison with RS-Watermark under 5% token-preserving synonym substitution at
smax = 5. Both methods achieve high TPR, but RS-Watermark exhibits substantially higher FPR,
whereas our method keeps FPR near zero, indicating more reliable watermark detection.

0.92

0.94

0.96

0.98

1.00

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

T=200 T=500

2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Fa
lse

 P
os

iti
ve

 R
at

e
(F

PR
)

2 3 4 5 6

Deletion-5%

Watermark Insertion Strength

Structured-Ours (OPT-1.3B) Structured-Ours (LLaMA-3.2-3B) RS-Watermark (OPT-1.3B) RS-Watermark (LLaMA-3.2-3B)

Figure 16: Comparison with RS-Watermark under 5% deletion-like synonym substitution at smax =
5. Our method achieves higher TPR and substantially lower FPR than RS-Watermark, demonstrating
that our watermark detector operates more reliably in this challenging setting.

simultaneously. This setting combines the three previously analyzed cases (token-preserving, token-
decreasing, and token-increasing) and represents the most challenging form of synonym-based per-
turbation.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

T=200 T=500

2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Fa
lse

 P
os

iti
ve

 R
at

e
(F

PR
)

2 3 4 5 6

Insertion-5%

Watermark Insertion Strength

Structured-Ours (OPT-1.3B) Structured-Ours (LLaMA-3.2-3B) RS-Watermark (OPT-1.3B) RS-Watermark (LLaMA-3.2-3B)

Figure 17: Comparison with RS-Watermark under 5% insertion-like synonym substitution at
smax = 5. Our method achieves higher TPR and substantially lower FPR than RS-Watermark,
demonstrating that our watermark detector operates more reliably in this challenging setting.

Table 9: Detection performance under 5% token-preserving synonym substitution with OPT-1.3B.

Setting T200 T500

Model δ TPR FPR Precision F1 TPR FPR Precision F1

RS-Watermark

1.5 0.960 0.935 0.5066 0.6632 1.000 0.910 0.5236 0.6873
2 0.955 0.935 0.5053 0.6609 1.000 0.930 0.5181 0.6826
3 0.980 0.930 0.5131 0.6735 0.965 0.960 0.5013 0.6598
6 0.960 0.940 0.5053 0.6621 0.950 0.925 0.5067 0.6609

Structured-Ours

1.5 0.645 0.015 0.9773 0.7771 0.740 0.030 0.9610 0.8362
2 0.760 0.010 0.9870 0.8588 0.745 0.025 0.9675 0.8418
3 0.805 0.000 1.0000 0.8920 0.900 0.025 0.9730 0.9351
6 0.985 0.030 0.9704 0.9777 0.990 0.080 0.9252 0.9565

Tables 21 and 22 show that Structured-Ours yields lower TPR than RS-Watermark under this strong
mixed attack, which is expected given the severe distortions introduced. However, RS-Watermark’s
apparently stable TPR is misleading: its FPR remains extremely high (often near 1.0), causing the de-
tector to label most texts—including unwatermarked ones—as watermarked. In contrast, Structured-
Ours consistently maintains low FPR across all δ and smax values for both T=200 and T=500.

This reliable false-positive control enables clear separation between watermarked and unwater-
marked texts even under 20% mixed synonym substitution, highlighting the practical robustness
and reliability of our detection framework.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 10: Detection performance under 5% token-preserving synonym substitution using LLaMA-
3.2-3B.

Setting T200 T500

Model δ TPR FPR Precision F1-score TPR FPR Precision F1-score

RS-Watermark

1.5 0.950 0.940 0.5026 0.6574 0.935 0.950 0.4960 0.6480
2 0.925 0.930 0.4986 0.6479 0.950 0.965 0.4961 0.6518
3 0.950 0.915 0.5093 0.6631 0.930 0.925 0.5013 0.6514
6 0.930 0.925 0.5013 0.6514 0.930 0.910 0.5054 0.6549

Structured-Ours

1.5 0.730 0.005 0.9931 0.8414 0.750 0.010 0.9868 0.8522
2 0.880 0.005 0.9943 0.9336 0.795 0.025 0.9695 0.8736
3 0.865 0.015 0.9829 0.9202 0.845 0.010 0.9883 0.9111
6 0.885 0.005 0.9943 0.9365 0.910 0.015 0.9837 0.9454

Table 11: Detection performance under 10% token-preserving synonym substitution with OPT-1.3B.

Setting T200 T500

Model δ TPR FPR Precision F1 TPR FPR Precision F1

RS-Watermark

1.5 0.965 0.925 0.5106 0.6678 0.990 0.900 0.5238 0.6851
2 0.960 0.925 0.5093 0.6655 1.000 0.940 0.5155 0.6803
3 0.980 0.920 0.5158 0.6759 0.965 0.940 0.5066 0.6644
6 0.970 0.925 0.5132 0.6724 0.975 0.950 0.5065 0.6667

Structured-Ours

1.5 0.585 0.010 0.9832 0.7335 0.470 0.030 0.9400 0.6267
2 0.630 0.005 0.9921 0.7706 0.675 0.005 0.9926 0.8036
3 0.760 0.000 1.0000 0.8636 0.765 0.040 0.9503 0.8476
6 0.965 0.020 0.9797 0.9723 0.975 0.070 0.9330 0.9535

Table 12: Detection performance under 10% token-preserving synonym substitution using LLaMA-
3.2-3B.

Setting T200 T500

Model δ TPR FPR Precision F1-score TPR FPR Precision F1-score

RS-Watermark

1.5 0.940 0.940 0.5000 0.6527 0.935 0.950 0.4960 0.6481
2 0.920 0.930 0.4979 0.6456 0.955 0.940 0.5039 0.6597
3 0.955 0.905 0.5134 0.6678 0.955 0.925 0.5079 0.6631
6 0.930 0.920 0.5027 0.6526 0.950 0.945 0.5013 0.6563

Structured-Ours

1.5 0.560 0.030 0.9491 0.7044 0.600 0.015 0.9756 0.7430
2 0.695 0.010 0.9858 0.8152 0.695 0.020 0.9720 0.8104
3 0.760 0.020 0.9743 0.8539 0.800 0.030 0.9638 0.8743
6 0.775 0.010 0.9869 0.8555 0.880 0.020 0.9777 0.9263

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 13: Detection performance under 5% token-decreasing synonym substitution with OPT-1.3B.
Setting T200 T500

Model δ smax TPR FPR Precision F1 TPR FPR Precision F1

RS-Watermark

1.5 - 0.940 0.980 0.4896 0.6438 0.980 0.935 0.5117 0.6724
2 - 0.970 0.955 0.5039 0.6632 0.975 0.935 0.5105 0.6701
3 - 0.995 0.940 0.5142 0.6780 0.970 0.920 0.5132 0.6713
6 - 0.975 0.935 0.5105 0.6701 0.965 0.960 0.5013 0.6598

Structured-Ours

1.5

0 0.810 0.000 1.0000 0.8950 0.900 0.030 0.9677 0.9326
1 0.895 0.025 0.9728 0.9323 0.985 0.075 0.9292 0.9563
3 0.900 0.095 0.9045 0.9023 0.995 0.140 0.8767 0.9321
5 0.915 0.120 0.8841 0.8993 1.000 0.245 0.8032 0.8909

2.0

0 0.905 0.005 0.9945 0.9476 0.905 0.015 0.9837 0.9427
1 0.985 0.025 0.9801 0.9801 0.995 0.060 0.9431 0.9684
3 0.995 0.045 0.9567 0.9755 1.000 0.130 0.8850 0.9390
5 0.995 0.080 0.9256 0.9590 1.000 0.250 0.8000 0.8888

3.0

0 0.920 0.005 0.9946 0.9558 0.905 0.020 0.9784 0.9403
1 0.995 0.030 0.9707 0.9827 0.995 0.075 0.9299 0.9614
3 1.000 0.055 0.9479 0.9732 1.000 0.185 0.8439 0.9153
5 1.000 0.090 0.9174 0.9569 1.000 0.260 0.7937 0.8850

6.0

0 0.920 0.000 1.0000 0.9583 0.950 0.030 0.9694 0.9596
1 1.000 0.045 0.9569 0.9780 0.995 0.075 0.9299 0.9614
3 1.000 0.070 0.9346 0.9662 1.000 0.200 0.8333 0.9091
5 1.000 0.080 0.9259 0.9615 1.000 0.285 0.7782 0.8753

Table 14: Detection performance under 5% token-deleting synonym substitution using LLaMA-3.2-
3B.

Setting T200 T500

Model δ smax TPR FPR Precision F1-score TPR FPR Precision F1-score

RS-Watermark

1.5 - 0.945 0.955 0.4973 0.6517 0.945 0.950 0.4986 0.6528
2.0 - 0.940 0.935 0.5013 0.6539 0.945 0.955 0.4973 0.6517
3.0 - 0.925 0.935 0.4973 0.6468 0.930 0.915 0.5041 0.6537
6.0 - 0.945 0.955 0.4973 0.6517 0.955 0.965 0.4973 0.6541

Structured-Ours

1.5

0 0.935 0.040 0.9589 0.9468 0.820 0.015 0.9820 0.8937
1 0.930 0.025 0.9738 0.9514 0.915 0.010 0.9891 0.9506
3 0.935 0.080 0.9211 0.9280 0.935 0.045 0.9541 0.9444
5 0.950 0.120 0.8878 0.9178 0.945 0.105 0.9000 0.9219

2.0

0 0.920 0.010 0.9892 0.9533 0.930 0.015 0.9841 0.9563
1 0.990 0.030 0.9705 0.9801 1.000 0.030 0.9708 0.9852
3 0.990 0.065 0.9383 0.9635 0.990 0.035 0.9658 0.9777
5 0.975 0.110 0.8986 0.9352 0.980 0.105 0.9032 0.9400

3.0

0 0.900 0.010 0.9890 0.9424 0.940 0.030 0.9691 0.9543
1 0.995 0.035 0.9660 0.9802 1.000 0.025 0.9756 0.9876
3 1.000 0.065 0.9389 0.9685 1.000 0.065 0.9389 0.9685
5 1.000 0.080 0.9259 0.9615 1.000 0.115 0.8968 0.9456

6.0

0 0.925 0.015 0.9840 0.9536 0.930 0.010 0.9893 0.9587
1 1.000 0.005 0.9950 0.9975 1.000 0.015 0.9852 0.9925
3 1.000 0.060 0.9433 0.9708 1.000 0.090 0.9174 0.9569
5 0.995 0.130 0.8844 0.9364 1.000 0.110 0.9009 0.9478

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 15: Detection performance under 10% token-decreasing synonym substitution with OPT-1.3B.
Setting T200 T500

Model δ smax TPR FPR Precision F1 TPR FPR Precision F1

RS-Watermark

1.5 - 0.940 0.925 0.5040 0.6562 0.990 0.950 0.5103 0.6735
2 - 0.965 0.925 0.5106 0.6678 0.970 0.940 0.5079 0.6667
3 - 0.985 0.910 0.5198 0.6805 0.955 0.945 0.5026 0.6586
6 - 0.980 0.915 0.5172 0.6770 0.970 0.935 0.5092 0.6678

Structured-Ours

1.5

0 0.750 0.005 0.9934 0.8547 0.870 0.030 0.9647 0.8865
1 0.900 0.020 0.9783 0.9375 0.965 0.065 0.9369 0.9508
3 0.905 0.055 0.9427 0.9235 0.980 0.175 0.8485 0.9095
5 0.910 0.100 0.9010 0.9055 0.995 0.320 0.7567 0.8596

2.0

0 0.875 0.020 0.9777 0.9235 0.900 0.030 0.9611 0.9326
1 0.985 0.030 0.9704 0.9777 0.985 0.040 0.9610 0.9728
3 0.995 0.080 0.9256 0.9590 0.995 0.150 0.8690 0.9277
5 0.995 0.075 0.9299 0.9614 1.000 0.190 0.8403 0.9132

3.0

0 0.895 0.010 0.9889 0.9396 0.935 0.020 0.9791 0.9565
1 1.000 0.010 0.9901 0.9950 0.995 0.075 0.9299 0.9614
3 1.000 0.045 0.9569 0.9780 1.000 0.160 0.8621 0.9259
5 1.000 0.105 0.9050 0.9501 1.000 0.280 0.7813 0.8772

6.0

0 0.905 0.020 0.9784 0.9403 0.925 0.030 0.9686 0.9463
1 0.990 0.025 0.9754 0.9826 0.995 0.080 0.9256 0.9590
3 1.000 0.070 0.9346 0.9662 1.000 0.165 0.8584 0.9238
5 1.000 0.125 0.8889 0.9412 1.000 0.265 0.7905 0.8830

Table 16: Detection performance under 10% token-deleting synonym substitution using LLaMA-
3.2-3B.

Setting T200 T500

Model δ smax TPR FPR Precision F1-score TPR FPR Precision F1-score

RS-Watermark

1.5 - 0.940 0.955 0.4960 0.6493 0.930 0.930 0.5000 0.6503
2.0 - 0.940 0.930 0.5026 0.6551 0.925 0.950 0.4933 0.6435
3.0 - 0.955 0.960 0.4986 0.6552 0.945 0.925 0.5053 0.6585
6.0 - 0.925 0.930 0.4986 0.6479 0.945 0.930 0.5040 0.6573

Structured-Ours

1.5

0 0.945 0.015 0.9843 0.9642 0.830 0.025 0.9707 0.8948
1 0.930 0.030 0.9687 0.9489 0.900 0.065 0.9326 0.9160
3 0.955 0.050 0.9502 0.9526 0.950 0.060 0.9405 0.9452
5 0.950 0.055 0.9452 0.9476 0.905 0.075 0.9234 0.9141

2.0

0 0.900 0.015 0.9836 0.9399 0.915 0.025 0.9734 0.9433
1 0.965 0.050 0.9507 0.9578 0.990 0.040 0.9611 0.9753
3 0.970 0.090 0.9151 0.9417 0.990 0.065 0.9383 0.9635
5 0.995 0.120 0.8923 0.9408 0.990 0.090 0.9166 0.9519

3.0

0 0.925 0.005 0.9946 0.9585 0.935 0.020 0.9791 0.9565
1 0.990 0.020 0.9801 0.9851 0.985 0.045 0.9563 0.9704
3 0.985 0.070 0.9336 0.9586 1.000 0.065 0.9389 0.9685
5 1.000 0.095 0.9132 0.9546 0.995 0.080 0.9255 0.9590

6.0

0 0.940 0.010 0.9894 0.9641 0.915 0.010 0.9892 0.9506
1 0.995 0.030 0.9707 0.9827 0.995 0.030 0.9707 0.9827
3 1.000 0.065 0.9389 0.9685 1.000 0.045 0.9569 0.9779
5 1.000 0.085 0.9216 0.9592 1.000 0.115 0.8968 0.9456

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 17: Detection performance under 5% token-increasing synonym substitution with OPT-1.3B.
Setting T200 T500

Model δ smax TPR FPR Precision F1 TPR FPR Precision F1

RS-Watermark

1.5 - 0.945 0.925 0.5053 0.6585 0.965 0.945 0.5052 0.6632
2 - 0.965 0.920 0.5119 0.6669 0.950 0.960 0.4974 0.6529
3 - 0.970 0.915 0.5146 0.6724 0.960 0.960 0.5000 0.6575
6 - 0.960 0.920 0.5106 0.6667 0.940 0.920 0.5034 0.6573

Structured-Ours

1.5

0 0.245 0.010 0.9601 0.3904 0.305 0.025 0.9242 0.4586
1 0.380 0.025 0.9383 0.5409 0.440 0.060 0.8800 0.5867
3 0.525 0.050 0.9130 0.6667 0.500 0.155 0.7634 0.6042
5 0.635 0.075 0.8844 0.7427 0.730 0.195 0.7892 0.7584

2.0

0 0.345 0.020 0.9452 0.5055 0.370 0.020 0.9487 0.5324
1 0.515 0.025 0.9537 0.6688 0.635 0.090 0.8759 0.7362
3 0.695 0.090 0.8854 0.7787 0.765 0.130 0.8547 0.8074
5 0.885 0.120 0.8806 0.8828 0.830 0.265 0.7580 0.7924

3.0

0 0.520 0.020 0.9629 0.6753 0.475 0.020 0.9596 0.6355
1 0.735 0.050 0.9363 0.8235 0.695 0.115 0.8580 0.7980
3 0.840 0.070 0.9231 0.8796 0.920 0.185 0.8326 0.8741
5 0.930 0.085 0.9163 0.9231 0.945 0.250 0.7908 0.8610

6.0

0 0.600 0.020 0.9677 0.7407 0.565 0.020 0.9658 0.7128
1 0.755 0.020 0.9742 0.8507 0.770 0.080 0.9059 0.8324
3 0.950 0.080 0.9223 0.9360 0.935 0.185 0.8348 0.8821
5 0.935 0.100 0.9034 0.9189 0.975 0.255 0.7927 0.8744

Table 18: Detection performance under 5% token-inserting synonym substitution using LLaMA-
3.2-3B.

Setting T200 T500

Model δ smax TPR FPR Precision F1-score TPR FPR Precision F1-score

RS-Watermark

1.5 - 0.940 0.920 0.5053 0.6573 0.945 0.925 0.5053 0.6585
2.0 - 0.940 0.935 0.5013 0.6539 0.945 0.945 0.5000 0.6539
3.0 - 0.955 0.945 0.5026 0.6586 0.950 0.920 0.5080 0.6620
6.0 - 0.940 0.950 0.4973 0.6505 0.915 0.940 0.4932 0.6409

Structured-Ours

1.5

0 0.460 0.025 0.9484 0.6195 0.345 0.015 0.9583 0.5073
1 0.505 0.035 0.9351 0.6558 0.460 0.025 0.9484 0.6195
3 0.620 0.055 0.9185 0.7402 0.575 0.060 0.9055 0.7033
5 0.725 0.130 0.8479 0.7816 0.705 0.130 0.8443 0.7683

2.0

0 0.470 0.005 0.9894 0.6372 0.445 0.040 0.9175 0.5993
1 0.600 0.025 0.9600 0.7384 0.565 0.010 0.9826 0.7174
3 0.790 0.075 0.9132 0.8471 0.715 0.100 0.8773 0.7878
5 0.820 0.100 0.8913 0.8541 0.810 0.110 0.8804 0.8437

3.0

0 0.515 0.015 0.9716 0.6732 0.585 0.010 0.9832 0.7335
1 0.675 0.025 0.9642 0.7941 0.795 0.020 0.9754 0.8760
3 0.865 0.060 0.9351 0.8987 0.820 0.055 0.9371 0.8746
5 0.935 0.075 0.9257 0.9303 0.940 0.085 0.9171 0.9283

6.0

0 0.580 0.010 0.9831 0.7295 0.655 0.015 0.9776 0.7844
1 0.830 0.015 0.9822 0.8997 0.705 0.025 0.9657 0.8150
3 0.890 0.095 0.9035 0.8967 0.945 0.060 0.9402 0.9426
5 0.955 0.085 0.9182 0.9362 0.960 0.085 0.9186 0.9388

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 19: Detection performance under 10% token-increasing synonym substitution with OPT-1.3B.
Setting T200 T500

Model δ smax TPR FPR Precision F1 TPR FPR Precision F1

RS-Watermark

1.5 - 0.970 0.975 0.4987 0.6587 0.985 0.940 0.5117 0.6735
2 - 0.960 0.960 0.5000 0.6575 0.980 0.945 0.5091 0.6701
3 - 0.970 0.930 0.5105 0.6690 0.980 0.945 0.5052 0.6632
6 - 0.985 0.935 0.5130 0.6747 0.965 0.950 0.5039 0.6621

Structured-Ours

1.5

0 0.150 0.025 0.8571 0.2553 0.145 0.025 0.8529 0.2479
1 0.165 0.040 0.8049 0.2739 0.305 0.055 0.8472 0.4485
3 0.305 0.050 0.8592 0.4502 0.455 0.155 0.7459 0.5852
5 0.360 0.085 0.8090 0.4983 0.460 0.310 0.5974 0.5198

2.0

0 0.185 0.020 0.9024 0.3071 0.245 0.010 0.9608 0.3904
1 0.310 0.055 0.8493 0.4542 0.370 0.085 0.8132 0.5086
3 0.380 0.080 0.8261 0.5205 0.580 0.160 0.7838 0.6667
5 0.480 0.115 0.8067 0.6019 0.645 0.305 0.6789 0.6615

3.0

0 0.325 0.010 0.9701 0.4869 0.355 0.015 0.9595 0.5182
1 0.505 0.020 0.9619 0.6623 0.530 0.075 0.8760 0.6604
3 0.645 0.070 0.9021 0.7522 0.755 0.135 0.8483 0.7989
5 0.710 0.110 0.8659 0.7802 0.865 0.260 0.7689 0.8141

6.0

0 0.355 0.005 0.9861 0.5221 0.430 0.015 0.9663 0.5952
1 0.500 0.035 0.9346 0.6515 0.630 0.075 0.8936 0.7390
3 0.730 0.050 0.9359 0.8202 0.815 0.105 0.8859 0.8490
5 0.815 0.110 0.8810 0.8468 0.960 0.265 0.7837 0.8629

Table 20: Detection performance under 10% token-inserting synonym substitution using LLaMA-
3.2-3B.

Setting T200 T500

Model δ smax TPR FPR Precision F1-score TPR FPR Precision F1-score

RS-Watermark

1.5 - 0.920 0.940 0.4946 0.6433 0.920 0.940 0.4946 0.6433
2.0 - 0.920 0.935 0.4960 0.6444 0.945 0.955 0.4973 0.6517
3.0 - 0.915 0.975 0.4841 0.6332 0.930 0.905 0.5068 0.6561
6.0 - 0.915 0.930 0.4959 0.6432 0.935 0.945 0.4973 0.6493

Structured-Ours

1.5

0 0.215 0.020 0.9148 0.3481 0.210 0.000 1.0000 0.3471
1 0.195 0.020 0.9069 0.3209 0.265 0.040 0.8688 0.4061
3 0.370 0.070 0.8409 0.5138 0.350 0.065 0.8433 0.4946
5 0.425 0.060 0.8762 0.5723 0.430 0.105 0.8037 0.5602

2.0

0 0.315 0.020 0.9402 0.4719 0.245 0.040 0.8596 0.3813
1 0.335 0.030 0.9294 0.5543 0.340 0.035 0.9066 0.4945
3 0.480 0.050 0.9056 0.6274 0.495 0.105 0.8250 0.6187
5 0.565 0.100 0.8496 0.6786 0.520 0.065 0.8888 0.6561

3.0

0 0.370 0.010 0.9736 0.5362 0.430 0.005 0.9885 0.5993
1 0.420 0.035 0.9231 0.5773 0.420 0.025 0.9438 0.5813
3 0.565 0.070 0.8897 0.6911 0.575 0.060 0.9055 0.7033
5 0.690 0.130 0.8414 0.7582 0.695 0.100 0.8742 0.7743

6.0

0 0.390 0.000 1.0000 0.5611 0.370 0.015 0.9610 0.5443
1 0.515 0.040 0.9279 0.6623 0.485 0.045 0.9151 0.6339
3 0.720 0.075 0.9056 0.8022 0.660 0.050 0.9295 0.7719
5 0.765 0.095 0.8895 0.8225 0.800 0.120 0.8695 0.8333

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 21: Detection performance of Structured-Ours and RS-Watermark under a 20% mixed syn-
onym substitution attack (combining insertion-like, deletion-like, and replacement-like effects) on
the C4 dataset using OPT-1.3B.Structured-Ours maintains consistently low FPR, whereas RS-
Watermark exhibits extremely high FPR despite high TPR.

Setting T200 T500

Model δ smax TPR FPR Precision F1 score TPR FPR Precision F1 score

RS-Watermark

1.5 - 0.9650 0.9500 0.5039 0.6621 0.9400 0.9700 0.4921 0.6460
2 - 0.9200 0.9600 0.4894 0.6389 0.9400 0.9500 0.4974 0.6505
3 - 0.9300 0.9600 0.4921 0.6436 0.9850 0.9100 0.5198 0.6805
6 - 0.9600 0.9050 0.5147 0.6702 0.9850 0.9350 0.5131 0.6747

Structured-Our

1.5

0 0.0150 0.0000 1.0000 0.0296 0.0700 0.0300 0.7000 0.1273
1 0.0700 0.0200 0.7778 0.1284 0.1250 0.1000 0.5556 0.2041
3 0.1100 0.0550 0.6667 0.1888 0.2050 0.1550 0.5694 0.3015
5 0.1150 0.0500 0.6970 0.1974 0.3100 0.2150 0.5905 0.4066

2

0 0.0150 0.0100 0.6000 0.0293 0.0300 0.0150 0.6667 0.0574
1 0.0600 0.0300 0.6667 0.1101 0.1400 0.0500 0.7368 0.2353
3 0.1400 0.0550 0.7179 0.2343 0.2100 0.1800 0.5385 0.3022
5 0.1700 0.0900 0.6538 0.2698 0.3400 0.1750 0.6602 0.4488

3

0 0.0700 0.0150 0.8235 0.1290 0.0800 0.0250 0.7619 0.1448
1 0.1000 0.0200 0.8333 0.1786 0.1250 0.0850 0.5952 0.2066
3 0.1800 0.0700 0.7200 0.2880 0.3400 0.1750 0.6602 0.4498
5 0.2100 0.1000 0.6774 0.3206 0.3900 0.2800 0.5821 0.4671

6

0 0.1150 0.0150 0.8846 0.2035 0.0750 0.0300 0.7143 0.1357
1 0.1450 0.0350 0.8056 0.2458 0.2700 0.0450 0.8571 0.4106
3 0.3300 0.0800 0.8049 0.4681 0.4350 0.1700 0.7190 0.5421
5 0.3650 0.1500 0.7087 0.4818 0.5600 0.2000 0.7368 0.6364

Table 22: Detection performance under the same 20% mixed synonym substitution attack on the
OpenGen dataset. Structured-Ours again maintains low FPR across settings, while RS-Watermark
shows near-random FPR across δ values.

Setting T200 T500

Model δ smax TPR FPR Precision F1 score TPR FPR Precision F1 score

RS-Watermark

1.5 - 0.9150 0.9600 0.4880 0.6365 0.9600 0.9750 0.4961 0.6542
2 - 0.9400 0.9300 0.5027 0.6551 0.9350 0.9300 0.5013 0.6527
3 - 0.9300 0.9200 0.5027 0.6526 0.9700 0.9200 0.5132 0.6713
6 - 0.9300 0.9350 0.4987 0.6492 0.9900 0.9450 0.5116 0.6746

Structured-Our

1.5

0 0.0350 0.0050 0.8750 0.0673 0.0300 0.0150 0.6667 0.0574
1 0.0700 0.0350 0.6667 0.1267 0.1150 0.0900 0.5610 0.1909
3 0.0650 0.0600 0.5200 0.1156 0.2000 0.1650 0.5479 0.2930
5 0.1300 0.1150 0.5306 0.2088 0.3100 0.1950 0.6139 0.4120

2

0 0.0300 0.0100 0.7500 0.0577 0.0350 0.0350 0.5000 0.0654
1 0.0450 0.0150 0.7500 0.0849 0.1750 0.0750 0.7000 0.2800
3 0.1300 0.0700 0.6500 0.2167 0.2600 0.1700 0.6047 0.3636
5 0.2100 0.1150 0.6462 0.3170 0.3350 0.2250 0.5982 0.4295

3

0 0.0650 0.0050 0.9286 0.1215 0.0750 0.0250 0.7500 0.1364
1 0.1150 0.0150 0.8846 0.2035 0.1600 0.0850 0.6531 0.2570
3 0.1600 0.0800 0.6667 0.2581 0.3000 0.1300 0.6977 0.4196
5 0.2200 0.1200 0.6471 0.3284 0.4700 0.2650 0.6395 0.5418

6

0 0.0850 0.0050 0.9444 0.1560 0.1300 0.0400 0.7647 0.2222
1 0.1400 0.0450 0.7568 0.2363 0.3050 0.0650 0.8243 0.4453
3 0.3300 0.0850 0.7952 0.4664 0.4100 0.1600 0.7193 0.5223
5 0.3500 0.1150 0.7527 0.4778 0.6050 0.2600 0.6994 0.6488

32

	Introdution
	Contributions

	Related works
	Zero-Bit Watermarking
	Multi-Bit Watermarking
	Attacks and Evaluation Protocols
	Positioning of Our Work

	Proposed Watermarking Framework
	Reliable Multi-bit Detection via Designated-Codeword Verification
	End-to-end procedure

	Distributed Codeword Embedding
	Vocabulary Partitioning Strategy
	Codeword Generation and Selection
	Distributed Embedding Algorithm

	Window Shifting for Incremental Evidence Recovery
	Parameter Selection and Optimization
	Computational Complexity Analysis and Security Properties

	Analytical Bounds for FPR/FNR in ECC-Backed Watermarks
	Results
	Experimental Setup
	Synonym Substitution Attack
	Token-preserving Synonym Substitution
	Token-altering Synonym Substitution (Deletion/Insertion-like)

	Paraphrasing Attack

	conclusion
	LLM Usage Statement
	Detailed Algorithms
	Diverse Codeword Generation
	Bit Sequence Extraction
	Safe Error-Correcting Decoder

	Additional Analyses
	Error-Correcting Code Selection and Parameterization
	Alternative Error-Correcting Codes

	Parameter Selection and Optimization
	Block Length Optimization
	Bias Parameter Tuning
	Window Shift Range

	Computational Complexity Analysis
	Embedding Complexity
	Detection Complexity

	Security Properties

	Finite-sample Bounds: Detailed Proofs and Examples
	Setup and Notation
	Naïve ``any-codeword'' Presence Test
	Designated-codeword Test
	Aggregate FPR with a Match-ratio Threshold
	Soft Embedding: Symbol Error Induced by -bias
	Detection Power under Embedding and Attack Noise
	Shift Recovery and Local Edits
	Parameter selection via entropy bounds
	Generalizations

	Supplementary Experiments
	Detection Performance without Attack
	Bit Error Rate Analysis by Watermark Insertion Strength
	Text Quality under Watermarking
	Generalization Study on the OpenGen Dataset
	Effect of Threshold Increase
	Computational Cost of Window-Shift Detection
	Effect of Codeword Parameters on Detection Performance
	Synonym Substitution: Full Tables and Figures
	Robustness Under Mixed Synonym Substitution (Insertion–Deletion–Replacement)

