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ABSTRACT

Recent multi-bit watermarking methods for large language models (LLMs) have
focused primarily on maximizing extraction rates. However, our reproduction
studies reveal a critical limitation: these approaches suffer from unacceptably high
false positive rates (FPR) that undermine their practical deployment. Specifically,
existing multi-bit encoding schemes like RS-Watermark achieve high true positive
rates even with insertion/deletion attacks but exhibit FPR exceeding 0.90, render-
ing them unreliable for real-world applications. We propose a robust multi-bit
text watermarking framework that addresses this reliability challenge through two
key innovations: (i) block-wise error correction that embeds complete codewords
within independent text segments, localizing the impact of edits and preventing
cascade failures, and (ii) window-shifting detection that systematically recovers
codewords despite insertion/deletion-induced misalignments. Our method verifies
watermark presence by confirming recovery of the initially embedded codewords,
significantly reducing false positives while maintaining high detection accuracy.
Experiments on OPT-1.3B and LLaMA-3.2-3B demonstrate substantial improve-
ments over existing multi-bit methods. Under 10% synonym substitution attacks
on 200-token texts, our approach achieves TPR of 0.965 with FPR of 0.02 (Preci-
sion: 0.9797), compared to RS-Watermark’s TPR of 0.97 with FPR of 0.925 (Pre-
cision: 0.5132). The framework is code-agnostic, supports progressive detection
from partial text, and provides theoretical guarantees for false-positive control.
These results establish our method as a practical solution for reliable multi-bit
watermarking in production environments.

1 INTRODUTION

Large language models (LLMs) have transformed content generation across creative, professional,
and scientific domains, yet raise critical concerns about provenance and potential misuse for decep-
tive content Solaiman et al.| (2019); [Bender et al.| (2021)). Reliably distinguishing human-authored
from Al-generated text has become essential for academic integrity, journalism, legal proceedings,
and platform governance Mitchell et al.| (2023); |Gehrmann et al.|(2019).

Text watermarking addresses this challenge by embedding imperceptible data into Al-generated
content during generation Kirchenbauer et al.|(2023). Unlike post-hoc detection methods relying on
statistical artifacts Mitchell et al.| (2023); Su et al.| (2023), watermarking provides stronger origin
guarantees while preserving fluency and style.

Watermarking approaches divide into zero-bit (checking watermark presence) and multi-bit (en-
coding extractable metadata). The green/red partition strategy of Kirchenbauer et al.| (2023) biases
generation toward a keyed “green” vocabulary subset. Recent multi-bit methods augment partition-
ing with error-correcting codes (ECCs) to embed message bits. |Qu et al.| (2025) encodes payloads
with Reed-Solomon codes, while |Chao et al.| (2024) uses LDPC codes with sliding windows for
short texts.

Despite strong extraction rates, prior multi-bit schemes exhibit unacceptably high false positive
rates (FPR), undermining practical deploymentFu & Russell (2025)). Our reproductions, conducted
using the official implementation released by [Qu et al.| (2025)), show that under 10% synonym sub-
stitution on 200-token texts, |Qu et al.| (2025) achieve TPR ~ 0.97 but FPR ~ 0.925 (precision
=~ 0.51), frequently misclassifying unmarked text as watermarked. In contrast, our method achieves
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TPR = 0.965 with FPR = 0.02 (precision = 0.9797). Structurally, the high FPR stems from de-
coding strategies that treat any valid codeword as evidence, irrespective of whether it matches the
embedded initially message, and from global synchronization dependencies that collapse under in-
sertions/deletions.

We introduce a robust multi-bit framework that simultaneously achieves high TPR and low FPR
by (i) embedding complete codewords in independent blocks to localize errors and prevent cascade
failures under edits, and (ii) deploying a window-shifting detector that systematically realigns and
recovers codewords after insertion/deletion-induced desynchronization. Crucially, detection veri-
fies that a recovered codeword equals the designated codeword that was actually embedded in that
block, thereby suppressing spurious matches that inflate FPR. This design achieves both a high TPR
and a significantly lower FPR compared to previous multi-bit methods, making them more suit-
able for real-world forensic applications. The framework is code-agnostic: while we instantiate with
BCH codes for efficiency and clarity, the design extends to RS/LDPC codes, enabling adaptation to
application-specific error patterns.

Our design closes the reliability gap in multi-bit watermarking. On 200-token texts under 10% syn-
onym substitutions, we achieve TPR = 0.965 at FPR = 0.02, contrasting sharply with prior meth-
ods, which have an FPR greater than 0.9. The incremental detection capability enables progressive
verification from partial text, quantifying watermark strength even when some blocks are corrupted,
thus broadening real-world deployability.

1.1 CONTRIBUTIONS
This work makes the following key contributions:

1. Low-FPR multi-bit watermarking: A framework that significantly reduces FPR while
preserving high TPR, overcoming a critical limitation in recent multi-bit methods and en-
abling reliable forensic deployment.

2. Incremental detection framework: Watermark evidence accumulates from multiple inde-
pendent codeword segments, enabling graduated confidence assessment rather than binary
detection.

3. Theory for reliability: Finite-sample bounds and design rules that control false positives
and characterize detection power under realistic noise/edit models.

4. Comprehensive validation: Experiments across datasets (C4, OpenGen) and model fami-
lies (OPT-1.3B, LLaMA-3.2-3B) showing state-of-the-art TPR-FPR trade-offs and robust-
ness to substitution/insertion/deletion. For instance, under a 10% synonym substitution at-
tack, a recent method exhibits an FPR of 0.925, whereas our method reduces it to 0.02.

5. Code-agnostic design: Compatibility with multiple linear codes (BCH/RS/LDPC), en-
abling tailoring to domain-specific error patterns.

Organization. Section [2] summarizes related work, Section [3] presents the proposed algorithms,
Section 4] provides reliability bounds and design guidance, Section [5|presents empirical results, and
Section [6] concludes with future research directions.

2 RELATED WORKS

Text watermarking for LLMs has rapidly diversified alongside model capabilities and deployment
contexts. We organize prior work by detection objective: (i) zero-bit watermarking, which only tests
for the presence of a watermark, and (ii) multi-bit watermarking, which embeds and extracts a pay-
load. This lens clarifies robustness requirements (synchronization, error tolerance) and evaluation
protocols, and it better reflects recent cryptographic developments, including zero-bit constructions
based on pseudorandom error-correcting codes.

2.1 ZERO-BIT WATERMARKING

A canonical approach is the keyed green/red partition of |Kirchenbauer et al.| (2023), which biases
generation toward a secret per-token green set and applies a binomial-style hypothesis test at de-
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Table 1: Comparison of zero-bit and multi-bit watermarking methods.

Zero-bit Methods ECC Key Features Limitations

Kirchenbauer et al.| (2023 No Green/red partition; simple test Fragile to paraphrasing; weak on short texts
(KGW)

Wu et al. (2023} (DiPmark) No Distribution-preserving; better quality Reduced watermark strength

Zhao et al.|(2023) No Unigram watermark; provable robustness Limited to unigram patterns

Takezawa et al. [(2025) No Detectability conditions No practical robustness

Christ & Gunn (2024 Yes Pseudorandom ECC; hidden test Computational overhead; no payload
Multi-bit Methods ECC Key Features Limitations

Yoo et al. |(2023) No Embeds via keywords/syntax Low extraction accuracy (49.2% at 32-bit)
Qu et al. [(2025) Yes (RS) RS code encoding; high TPR FPR 0.9 under insertion/deletion

Chao et al. (2024] Yes (LDPC) Sliding-window; strong on short text High FPR risk; complex decoding

tection. Variants preserve the model distribution to improve quality Wu et al.[ (2023)), or provide
robustness under bounded edits Zhao et al.|(2023)). Exponential reweighting and detectability crite-
ria further sharpen the theory Takezawa et al.| (2025). From a cryptographic angle, |(Christ & Gunn
(2024) constructs pseudorandom ECCs whose neighborhoods are indistinguishable from random,
enabling hidden presence tests at constant error. Despite their efficiency, most zero-bit schemes rely
on aggregate frequency signals and lack explicit synchronization, making them vulnerable to para-
phrasing, translation, or token-level desynchronization, especially in short texts.

2.2 MULTI-BIT WATERMARKING

Multi-bit watermarking seeks to embed a payload that can be decoded. Two broad families appear.

(a) Non-ECC multi-bit ideas. |Yoo et al|(2023) use invariant features (keywords/syntax) for ro-
bustness, but suffer allocation imbalance and low accuracy on longer messages (49.2% match rate
for 32-bit).

(b) ECC-based message encoding. |Qu et al.|(2025) pioneered the ECC-based message-encoding,
which encodes the payload with Reed—Solomon (RS), distributes symbols via pseudorandom seg-
ments, and decodes by cracking noisy segment votes to the nearest codeword. (Chao et al.| (2024)
extends this line with LDPC and sliding windows, reporting strong performance on short texts via
adaptive biasing and sophisticated decoding.

Limitations. ECC-based methods often behave like message extractors, not calibrated detec-
tors: nearest-codeword decoding maps even unwatermarked text to valid codewords, driving FPR
high—particularly under insertions/deletions or synonym edits. Fu & Russelll (2025) formalize this
false detection problem: conflating detection with identification effectively enlarges key capacity
and degrades reliability.

2.3 ATTACKS AND EVALUATION PROTOCOLS

Attacks include (i) substitutions (synonyms, back-translation, model paraphrasing) Morris et al.
(2020); Wieting & Gimpel| (2018)); [Krishna et al.| (2023), (ii) insertions/deletions that break to-
ken-bit alignment, and (iii) semantic rewrites that alter surface form while preserving meaning
Wolff et al.|(2023). While recent frameworks standardize protocols and metrics|Pan et al.|(2023)); |[Ku-
ditipudi et al.|(2023), insertion/deletion scenarios remain underexplored. Prior pseudo-random em-
bedding strategies|Yoo et al.[(2023));|Qu et al.|(2025) mitigate—but do not resolve—synchronization,
and segment-level voting can yield unacceptably FPR on unwatermarked text.

2.4 POSITIONING OF OUR WORK

We address the above gaps with an incremental detection framework through: (1) distributed
codeword architecture embedding complete codewords independently, enabling partial recovery
and progressive confidence quantification; and (2) window-shifting detection that realigns indi-
vidual codewords, each contributing to accumulated watermark strength. Our incremental veri-
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Figure 1: Overview of prior and proposed multi-bit watermarking frameworks. (Top) In prior
schemes, a deterministic token-to-segment mapping assigns a segment to every token—even for un-
watermarked text—so segment votes accumulate and ECC can “correct” noise into a valid codeword,
leading to false positives. (Bottom) Our incremental detection framework embeds complete code-
words in a distributed codeword architecture (realized through token-to-segment and bit—to—G/R
list mapping) and employs window-shifting detection with designated verification. This preserves
multi-bit payloads while eliminating the “any-codeword” acceptance failure mode, thereby signifi-
cantly reducing false positives.

fication counts only matching designated codewords, transforming binary detection into gradu-
ated evidence accumulation while suppressing spurious hits. This quantifies watermark strength
continuously—more recovered codewords yield higher confidence. The code-agnostic framework
(BCH/RS/LDPC/convolutional) achieves substantially improved TPR—FPR through incremental ev-
idence collection with explicit insertion/deletion handling. The next section details the algorithms
and guarantees.

3 PROPOSED WATERMARKING FRAMEWORK

We propose a reliable multi-bit watermarking framework that explicitly targets the high FPR pitfall
observed in prior multi-bit schemes, while preserving high TPR and robustness to common edits.
The method has three pillars: (i) distributed resilience via independent codeword blocks that en-
able partial watermark recovery and progressive confidence assessment even when some blocks are
corrupted, (ii) a window-shifting detector that realigns and recovers individual codewords after inser-
tion/deletion, contributing to the overall watermark strength score, and (iii) graduated verification
protocol, which quantifies watermark evidence by counting correctly matched designated codewords
rather than accepting “any” decodable codeword, thereby enabling continuous watermark strength
measurement while suppressing spurious detections.

This incremental approach transforms binary detection into progressive evidence accumulation,
where each recovered block contributes to a quantifiable confidence score. This section provides
detailed algorithmic descriptions and technical analysis of each component.

3.1 RELIABLE MULTI-BIT DETECTION VIA DESIGNATED-CODEWORD VERIFICATION

Prior methods rely on previous tokens to collect information for codeword decoding, treating any
text—watermarked or not—identically: the same token contributes to the decoding process, and
ECC even corrects “errors” to produce false positives by reconstructing valid codewords from ran-
dom noise. In contrast, our approach considers not only tokens but also their relative positions to ver-
ify whether patterns match the actual codeword structure, accepting only the designated codeword as
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a true detection rather than any valid codeword, thereby significantly reducing false positives while
maintaining multi-bit capacity.

3.1.1 END-TO-END PROCEDURE

We retain the use of meaningful messages m € {0,1}* in the watermarking process, but depart
from prior approaches by introducing incremental watermark verification:

1. Codeword_ assignment:_ For each block j, compute the designated codeword c(/) <«
E(m &) r(])), where () is a key-derived mask used for distance/weight balancing (in-
vertible at detection) as in Algorithm

2. Distributed embedding. Embed ¢() in block j via keyed vocabulary partitioning and
soft/hard bias as in Algorithm [I] enabling independent recovery of each block.

3. Shift-aware decoding. At detection, extract per-block bit strings and perform unique de-
coding with bounded circular shifts to counter insertion/deletion, treating each recovered
block as incremental evidence (Algorithms [] and [2)).

4. Incremental verification. Count a block as matched only if the decoded ¢(7) equals the
designated c¢(/); aggregate matches and decide positive if the match ratio exceeds 6.

This preserves the semantics of multi-bit watermarking (the payload can be reconstructed by un-
masking () for matched blocks) while eliminating the principal FPR failure mode of “any-
codeword” acceptance.

Overall, our design offers several advantages: (1) enforces rigorous verification based on codeword
matching to maintain low FPR, (2) enables parallel processing of independent blocks, (3) provides
graceful degradation under attacks, and (4) supports progressive detection from partial text.

3.2 DISTRIBUTED CODEWORD EMBEDDING
3.2.1 VOCABULARY PARTITIONING STRATEGY

Following the established approach of [Kirchenbauer et al.| (2023), we partition the vocabulary V
into two disjoint sets for each block. For block j, we compute a block-specific seed such that
seed; = H(K,j), where H is a cryptographic hash function (e.g., SHA-3) and K is the secret

watermarking key. Using seed;, we deterministically partition the vocabulary as L((Jj ) = {veV:
H(seed;,v) mod 2 = 0} and ﬁgj) = {v € V: H(seed;,v) mod 2 = 1}. This block-specific par-
titioning prevents adversaries from inferring vocabulary assignments across multiple generations,
even with partial knowledge of the partitioning strategy.

3.2.2 CODEWORD GENERATION AND SELECTION

We pre-compute a set of diverse codewords to avoid statistical patterns that could be exploited by ad-
versaries. Specifically, the codeword generation strategy serves two purposes: (1) excluding all-zero
codewords prevents degenerate cases that could impact detection accuracy, and (2) generating code-
word pairs with maximum Hamming distance enhances robustness by ensuring diverse bit patterns.
The detailed generation procedure is provided in Appendix [B.T]

3.2.3 DISTRIBUTED EMBEDDING ALGORITHM

Our embedding algorithm processes text generation in blocks of length n tokens, where each block
embeds exactly one codeword. Algorithm [I|provides the complete procedure.

Soft vs. Hard Embedding Schemes: The soft scheme adds bias 4 to target list logits before applying
softmax, allowing natural variation while encouraging codeword-consistent tokens. The hard scheme
restricts sampling entirely to the target list, ensuring perfect codeword embedding at a potential cost

'If an application does not carry a payload, one may set m = 0* and use only 9 for per-block variability;
the detector remains unchanged. We emphasize our default use is multi-bit payloads.
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to text quality. The choice between schemes provides a tunable trade-off between watermark strength
and naturalness.

Algorithm 1 Distributed Watermark Embedding Algorithm 2 Window Shifting Detection
Require: Prompt, key I, codeword queue Q, Require: Text, Q, Smax, threshold 6, block

code length n, bias d, scheme € {soft, hard} length n
Ensure: Watermarked tokens Ensure: Detection decision
1: N, < prompt length 1: extract blocks B (Alg.[4)
2: fort =0,1,2,...do 2: matched « 0, total +— min(|B|,|Q|)
3: logits () « LM 3: S {0} U{Smaxs--»—1,1,. .., Smax}
4: if ¢ < N, then 4: fori =0,...,total — 1 do
5: sample from softmax(¢(!)); continue 5: b« Bli], ¢ <= Qli]; success<False
6: end if 6: for s € S do
7. (j,b) « divmod(t — N,,n) 7: b(*) < ROTATE(b, s mod n)
8  if b= 0and Q[j] uninit then 8 & + SAFEDECODE(b(*)) (Alg.[3)
9: choose ¢ € C; Q[j] + ¢ 9: if ¢ = c then
10: seed; H(K, j); build (d)])j ﬁgj)) 10: matched < matched + 1;
11: end if success<—True
12: L) Q[j][b], Y/ g(t) 11: break
13: add +6 to £, for k € £Y) ; 123 end if
. k 2 13: end for
14: if scheme=hard then , 14 end f
15: 0+ —oo for k ¢ £Y) cendor
: k z(®) 15: match_ratio +— matched/total
16: end if ) .
: (t) y 16: return match ratio > 0
17: sample s'Y ~ softmax(¢')
18: end for

3.3 WINDOW SHIFTING FOR INCREMENTAL EVIDENCE RECOVERY

The key innovation enabling incremental detection under insertion/deletion attacks is our window
shifting mechanism. When tokens are inserted or deleted within a block, the extracted bit sequence
becomes a cyclic shift of the original codeword. Our detection algorithm systematically searches for
and recovers individual codewords.

Bit Extraction and Segmentation. Given the candidate text, we obtain the corresponding bit se-
quence using the same vocabulary partitioning strategy as in the embedding stage. Each token s; is
mapped to a bit b; according to its block-specific partition, and the resulting sequence is segmented
into blocks of length n as b; = f;(s¢), (§,b) = divmod(t — Ny, n), B = {bjo:n); bjn:2n), - - - }-
Each block represents an independent detection unit for incremental evidence accumulation. The
full extraction algorithm, including seed initialization and lookup construction, is provided in Ap-

pendix [B.2]

Safe Decoding with Error Handling. To ensure robust incremental detection even when individ-
ual blocks contain uncorrectable errors, we implement a safe decoding subroutine that gracefully
handles decoder failures. The decoder accepts only codewords within the correction radius ¢ and
returns None otherwise, preventing spurious matches while allowing other blocks to contribute to
the watermark strength score. The concrete decoding procedure and full algorithm are provided in

Appendix [B.3]

Incremental Detection via Window Shifting. Our core detection algorithm 2] augments standard
error-correcting decoding with systematic circular shifting, allowing recovery from misalignments
caused by token insertions or deletions. Circular Shifting Rationale: When r tokens are inserted
at position p within a block, all subsequent bits shift left by r positions. Circular left shifting by r
positions can recover the original bit pattern, provided the total corruption (including substitution
errors) remains within the error-correction capability of the code.
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Error-Correcting Code Selection and Parameterization. Our framework is agnostic to the spe-
cific choice of error-correcting code. We primarily adopt BCH codes due to their efficiency and well-
understood properties, but the framework also accommodates alternatives such as Reed—Solomon,
LDPC, or convolutional codes. Detailed selection guidelines and parameterization examples are

provided in Appendix

3.4 PARAMETER SELECTION AND OPTIMIZATION

We provide general guidelines for parameter selection, focusing on block length n, bias parameter
0, and maximum shift sp,,,. These parameters govern the trade-off between robustness, detection
accuracy, and text quality. Comprehensive trade-off analyses and recommended configurations are
deferred to Appendix

3.5 COMPUTATIONAL COMPLEXITY ANALYSIS AND SECURITY PROPERTIES

The embedding procedure has the same O(|V|) per-token complexity as existing methods, while de-
tection introduces an additional factor proportional to the maximum shift sy,,x. Formal derivations
and detailed complexity expressions are given in Appendix Our approach inherits the security
guarantees of the underlying hash function and error-correcting code, while introducing additional
resilience via block-wise embedding and codeword diversity. A full discussion of key security, code-
word diversity, and block independence is provided in Appendix

4 ANALYTICAL BOUNDS FOR FPR/FNR IN ECC-BACKED WATERMARKS

This section develops finite-sample bounds for the proposed watermarking scheme based on block-
wise codeword-presence detection with window shifting. We quantify false positive (FPR) and false
negative (FNR) probabilities under general g-ary linear codes, and isolate the role of the embedding
bias parameter J in the soft-embedding regime. We summarize here the setup and key intuition,
while deferring detailed theorems and proofs to Appendix [D}

Setup and Notation. We consider a g-ary linear block code C' C 3™ with unique-decoding radius
t. Each text block embeds a designated codeword via §-biased sampling from a green/red partition
of the vocabulary. Detection is performed by unique decoding with window shifting to counter
misalignments. (Detailed definitions in Appendix [D.1])

False Positives. We analyze two types of tests: (i) a naive “any-codeword” presence test, and (ii)
the proposed designated-codeword test with window shifting. Theorems [1] and [2] (Appendix
quantify single-block and aggregate FPR under these schemes, highlighting exponential sup-
pression in the block length n and the number of blocks M.

False Negatives. The impact of soft embedding (J-bias) and adversarial edits is modeled via an
effective symbol error probability piot. Theorem [5| (Appendix shows that the aggregate FNR
decays exponentially in M provided pior < t/n.

Design Implications. The combined FPR/FNR bounds yield a clear design rule: choose param-
eters (n,t, Smax, 0, M, d) so that 6 balances the two Chernoff exponents, and ¢ is large enough to
keep the embedding error below ¢/n. See Appendix for proofs, examples, and entropy-based
parameter guidelines.

5 RESULTS

5.1 EXPERIMENTAL SETUP

Models and Datasets. We evaluate on two open-source LLMs, OPT-1.3B and LLaMA-3.2-3B,
using datasets from Qu et al.| (2025): the C4 corpus (large-scale diverse English text) and the Open-
Gen dataset (3,000 two-sentence samples from WikiText-103). Unless noted otherwise, OPT-1.3B
and C4 are used as defaults.
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Baselines. We compare with RS-Watermark(Qu et al.[(2025)), which uses Reed—Solomon codes.
For fairness, we used the official implementation released by the authors and kept all parameter
settings identical. We did not include the LDPC-based scheme of |Chao et al.|(2024) in our compar-
isons, as no official implementation has been released; we leave its reproduction and evaluation for
future work.

Parameters and Metrics. For watermark embedding, we adopt BCH(n=31, k=6, t=T), select-
ing n=31 as it provides a balanced TPR-FPR trade-off compared to shorter codewords (n=15,
high TPR but high FPR) and longer ones (n=63, low FPR but poor TPR), as detailed in Ap-
pendix We evaluate both soft and hard watermarking but adopt soft by default for better text
quality (Appendix ; in the soft setting we vary the insertion strength § € {1.5,2.0,3.0,6.0}.
During detection, we use a window-shift range of sy.x € {0, 1,3, 5}, chosen based on the analysis
in Appendix to recover alignment under insertion or deletion attacks. Our incremental de-
tection protocol quantifies watermark strength by counting recovered codewords: by default, a text
is deemed watermarked if at least one originally embedded codeword is recovered, but the system
reports the total number of matched codewords as a continuous confidence score. This enables pro-
gressive watermark verification where detection confidence increases with each recovered block. A
stricter threshold (> 2 matches) reduces FPR but also lowers TPR (Appendix [E.5), demonstrating
the flexibility of our graduated detection approach. Between the two detector variants, the Naive ver-
sion consistently exhibits high FPR, whereas the structured version achieves FPR ~ 0.0 with com-
parable TPR by leveraging incremental evidence accumulation (Appendix [E.T). Hence, we adopt the
structured detector in all experiments. We evaluate texts truncated to fixed lengths 7' € {200, 500}
and report standard metrics (TPR, FPR, Precision, F1) alongside the watermark strength score for
incremental analysis.

5.2 SYNONYM SUBSTITUTION ATTACK

We evaluate robustness under synonym substitution, where words in a watermarked text are re-
placed with semantically equivalent alternatives. Such variations, covering both paraphrasing and
obfuscation, may disrupt token—codeword alignment. Our prior analysis showed that larger water-
mark insertion strengths ¢ reduce the bit error rate (BER), yielding more reliable codeword recovery
and higher TPR (Appendix [E.Z). We categorize attacks into three types depending on their effect
on token count: token-preserving (no change), token-decreasing (shorter replacements, deletion-
like), and token-increasing (longer replacements, insertion-like). Experiments were conducted at
substitution rates of 5% and 10% on the C4 dataset, with complete metrics in Appendix [E.8] Sup-
plementary experiments on the OpenGen dataset are also reported in Appendix [E.4]

5.2.1 TOKEN-PRESERVING SYNONYM SUBSTITUTION

Token-preserving replacements maintain token alignment but alter the statistical distribution of sam-
pled tokens. As shown in Figure [2] both Structured-Ours and RS-Watermark achieve high TPR as
0 increases, but RS-Watermark suffers from FPR values close to 1.0 (e.g., 0.930 at § = 3). In con-
trast, Structured-Ours keeps FPR near zero, yielding a far clearer separation between watermarked
and unwatermarked texts. We observe the same trends on the OpenGen dataset, as detailed in Ap-

pendix [E.4]

5.2.2 TOKEN-ALTERING SYNONYM SUBSTITUTION (DELETION/INSERTION-LIKE)

When replacements alter token counts, codeword—token alignment is disrupted: fewer tokens shift
watermark positions forward (deletion-like), while more tokens shift them backward (insertion-like).
As shown in Figure[3] increasing the window-shift parameter sy, consistently improves TPR across
both weak (6 = 1.5) and strong (6 = 6.0) watermark insertion strengths. For example, under 10%
insertion at 7" = 500 with OPT-1.3B at 6 = 6.0, TPR improves from about 0.430 at $,,x = 0 to
0.960 at syax = 5, showing the pronounced benefit of window-shift detection.

Figure [] further shows that Structured-Ours maintains low FPR even when TPR is comparable to
RS-Watermark For instance, at 7' = 500 with § = 3, both methods achieve near-perfect TPR (1.0
vs. 0.995), but FPR diverges sharply (0.160 vs. 0.945). Similarly, Figure [5] confirms that across
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Figure 4: Comparison with RS-Watermark un-
der 10% deletion attacks at sy, = 5. Across
watermark strengths, our method maintains high
TPR while substantially lowering FPR com-
pared to RS-Watermark, indicating more reli-
able detection.
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Figure 5: Comparison with RS-Watermark un-
der 10% insertion attacks at Sy, = 5. Our
method consistently achieves higher TPR and
markedly lower FPR than RS-Watermark across
different 0 values, demonstrating robustness
against insertion-like perturbations.

all insertion strengths, Structured-Ours consistently yields much lower FPR than RS-Watermark,

highlighting its superior reliability.

5.3 PARAPHRASING ATTACK

As shown in Table [2] Structured-Ours maintains consistently low FPR across all substitution
strengths and datasets, even under paraphrasing-based perturbations. Increasing the watermark in-
sertion strength § further improves TPR, demonstrating that our method remains robust to semantic
rewriting performed by the T5_Paraphrase_Paws model.

In contrast, RS-Watermark exhibits high TPR but suffers from extremely high FPR (often exceeding
90%), making it difficult to reliably distinguish watermarked texts from unwatermarked ones. This
highlights a fundamental limitation of existing multi-bit schemes and underscores the necessity of
strong false-positive control for practical deployment.
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Table 2: Structured-Ours vs. RS-Watermark under paraphrasing (T5_Paraphrase_Paws) on C4 and
OpenGen. Structured-Ours maintains low FPR across all ¢ and sy, values.

Setting \ T200
‘ C4 ‘ OpenGen
Model 0  Smax ‘ TPR FPR Precision F1_score ‘ TPR FPR Precision F1_score
1.5 - 0.950 0.950 0.5000 0.6552 | 0.920 0.960 0.4894 0.6389
- 0.920 0.930 0.4973 0.6456 | 0.960 0.960 0.5000 0.6575
RS-Watermark
- 0.960 0.970 0.4974 0.6553 | 0.960 0.920 0.5106 0.6667
6 - 0.980 0.900 0.5213 0.6806 | 0.980 0.930 0.5131 0.6735
0 0.360 0.020 0.9474 0.5217 | 0.450 0.020 0.9574 0.6122
s 1 0.410 0.040 0.9111 0.5655 | 0.400 0.000 1.0000 0.5714
’ 3 0.350 0.030 0.9211 0.5072 | 0.570 0.050 0.9194 0.7037
5 0.480 0.100 0.8276 0.6076 | 0.480 0.100 0.8276 0.6076
0 0.330  0.000 1.0000 0.4962 | 0.520 0.010 0.9811 0.6797
) 1 0.530 0.030 0.9464 0.6795 | 0.540 0.020 0.9643 0.6923
3 0.560  0.060 0.9032 0.6914 | 0.710 0.030 0.9595 0.8161
Structured-Our 5 0.580 0.140 0.8056 0.6744 | 0.530 0.130 0.8030 0.6386
0 0.360  0.000 1.0000 0.5294 | 0.600 0.000 1.0000 0.7500
3 1 0.450 0.040 0.9184 0.6040 | 0.630 0.060 0.9130 0.7456
3 0.650 0.040 0.9420 0.7692 | 0.710 0.060 0.9221 0.8023
5 0.680 0.110 0.8608 0.7598 | 0.720 0.040 0.9474 0.8182
0 0.550  0.000 1.0000 0.7097 | 0.550 0.010 0.9821 0.7051
6 1 0.720 0.030 0.9600 0.8229 | 0.780 0.080 0.9070 0.8387
3 0.710 0.100 0.8765 0.7845 | 0.700 0.070 0.9091 0.7910
5 0.810 0.120 0.8710 0.8394 | 0.910 0.070 0.9286 0.9192

6 CONCLUSION

In this paper, we proposed an incremental detection framework to overcome the limitations of ex-
isting ECC-based watermarking methods. Unlike prior approaches, the proposed scheme effectively
suppresses false positives while maintaining stable detection performance under various attacks. Ex-
perimental results demonstrate that our method achieves near-zero FPR with consistently high TPR,
outperforming the scheme of RS-Watermark and establishing a more reliable watermarking solution.
These results highlight the potential of our framework for practical deployment in LLM watermark-
ing. Future research will explore extensions to larger LLMs, more diverse adversarial scenarios, and
general linear code structures to further enhance robustness and applicability.
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A LLM USAGE STATEMENT

During the preparation of this paper, we used ChatGPT to improve clarity, enhance writing consis-
tency, and assist with grammar refinement. We also used Perplexity.ai to support literature search
and discovery (e.g., identifying related work and relevant references). All conceptual contributions,
theoretical analyses, model designs, experiments, and research conclusions were developed entirely
by the authors.

B DETAILED ALGORITHMS

B.1 DIVERSE CODEWORD GENERATION

This algorithm provides the detailed procedure for generating diverse codewords. As described in
Section[3] we exclude the all-zero codeword and use maximum-weight pairs to maximize Hamming
distance and ensure robustness.

Algorithm 3 Diverse Codeword Generation

Require: Error-correcting code C with parameters (n, k, t), secret key K
Ensure: Diverse codeword set Q
I: Define message space M < {0, 1}*\ {0*} > exclude all-zero message
Q<« 10
Find maximum weight codeword ¢;.x = arg max.cc wt(c)
while |Q| < required_blocks do
Sample random message m ~ Uniform(M)
Encode: ¢; = £(m)
Compute distant pair: co = ¢1 D Crmax
Randomly select ¢ € {c1,co}
Q«+ 9U{c}
end while
return Q

TRYRIADIUNRLR

—_ =

B.2 BIT SEQUENCE EXTRACTION
For completeness, we provide the full pseudocode of the bit extraction procedure that maps gener-

ated tokens to binary sequences and segments them into fixed-length blocks. This expands on the
conceptual description given in Section 3]

B.3 SAFE ERROR-CORRECTING DECODER

This algorithm expands on the safe decoding strategy summarized in Section [3] It ensures robust
handling of uncorrectable blocks by returning None when decoding exceeds the correction radius.

12
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Algorithm 4 Bit Sequence Extraction

Require: Text tokens {so, ..., sr}, secret key K, code length n
Ensure: Blocks B = {bjo.n), bn:2n), - - -}

1: N, < prompt length; U <+ T — N, +1

2: Initialize bit array bg.;y—1

30 Jprev & —1 > no block cached yet
4: fort = Np, N, +1,...,T do

5: (4,b) < divmod(t — Np,n)

6: if j # jprey then > entering a new block: init once
7: seed; «— H(IKC,7)

8: Build partitions L5, £} using seed;

9: Precompute a lookup f;(v) € {0,1} for all vocab items v
10: jprev — ]
11: end if
12: bi—n, < fi(se) > O(1) token-to-bit lookup
13: end for
14: Segmenting: let U’ < |U/n| -n > drop incomplete tail; or pad if enabling progressive

detection
15: B+ {b[O:n)v b[n:2n)7 tey b[U/—n:U’) }
16: return 5

Algorithm 5 Safe Error-Correcting Decoder

Require: Bit sequence z € {0, 1}", code C, correction radius ¢
Ensure: (¢,d) if decodable within ¢; otherwise None
: (once per block upstream) ensure field/parity structures for C are initialized
try (¢,d) < DECODEWITHDISTANCE(z) > returns Hamming distance d to ¢
except any decoder error: return None
if d <t then
return (¢, d)
else
return None
end if

A A ol e

C ADDITIONAL ANALYSES

C.1 ERROR-CORRECTING CODE SELECTION AND PARAMETERIZATION

We primarily employ BCH codes Blahut|(1983) due to their well-understood properties and efficient
implementation. For code length n = 2™ — 1, we select parameters based on the trade-off between
error-correction capability and false-positive rates:

* BCH(31,16,3): Corrects up to 3 errors, suitable for moderate attack scenarios

* BCH(63,45,3): Longer blocks with same error-correction, better for clean text

* BCH(127,92,5): High error-correction capability for adversarial scenarios

C.1.1 ALTERNATIVE ERROR-CORRECTING CODES

Our framework readily accommodates other linear block codes Richardson & Urbanke| (2008):

Reed-Solomon Codes: Optimal for burst error correction, particularly effective when inser-
tion/deletion attacks create localized corruption patterns.

LDPC Codes: Superior performance for longer blocks, but increased computational complexity.
Recommended for applications requiring very low false positive rates.

Convolutional Codes: Well-suited for streaming applications where text is generated and detected
incrementally.

13
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Code Selection Guidelines:

* Choose code length n based on expected text length and block granularity requirements
* Select error-correction capability ¢ based on anticipated attack strength

* Balance code rate k/n against false positive requirements using our theoretical analysis
(Section )

C.2 PARAMETER SELECTION AND OPTIMIZATION

C.2.1 BLOCK LENGTH OPTIMIZATION

The choice of block length n involves several trade-offs:

Shorter blocks (n < 31):

* Advantages: Better localization of insertion/deletion effects, faster detection

» Disadvantages: Higher false positive rates, reduced error-correction capability
Longer blocks (n > 63):

* Advantages: Lower false positive rates, stronger error correction

* Disadvantages: Larger vulnerability to insertion/deletion within blocks

We recommend n = 31 for most applications, providing a good balance between robustness and
efficiency.

C.2.2 BIAS PARAMETER TUNING

The bias parameter ¢ controls the strength of watermark embedding:

* § € [1.5,2.0]: Minimal text quality impact, moderate watermark strength
* § € [2.0,2.5]: Balanced trade-off for most applications

* § € [2.5,3.0]: Strong watermarking for high-security scenarios

C.2.3 WINDOW SHIFT RANGE

The maximum shift parameter s,,,x should be chosen based on expected insertion/deletion rates:

Smax = Q¢ * T - Dins/del (D

where pins/der 1S the expected insertion/deletion rate and « > 1.5 provides a safety margin. For typical
scenarios with pingder < 0.2, we recommend S, = 10 for n = 31.

C.3 COMPUTATIONAL COMPLEXITY ANALYSIS

C.3.1 EMBEDDING COMPLEXITY

The computational overhead during text generation consists of:

* Hash computation: O(1) per token
* Vocabulary partitioning: O(|V|) per block, amortized O(]V|/n) per token
¢ Logit modification: O(|V|) per token

Total embedding complexity: O(|V|) per token, the same as existing methods.

14
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C.3.2 DETECTION COMPLEXITY

Detection complexity depends on the number of shift operations:

* Bit extraction: O(T) for text length T
» Error correction per block: O(n?) using standard algorithms

 Window shifting: O(syay - n%) per block in worst case

Total detection complexity: O(T - Smax - n2), where the factor sy, represents the overhead of shift
search. For practical parameters (Spmax = 10, n = 31), this remains computationally tractable.

C.4 SECURITY PROPERTIES

Our method inherits the cryptographic properties of the underlying hash function and error-
correcting code while providing additional security benefits through block-wise design.

Key Security: The secret key K determines vocabulary partitioning and codeword selection. Without
knowledge of /C, an adversary cannot distinguish watermarked from unwatermarked text beyond
statistical artifacts due to the one-wayness of the cryptogrpahic hash function.

Codeword Diversity: Random codeword generation prevents statistical attacks based on repeated
patterns. Each text embeds different codewords, making it infeasible to infer watermarking parame-
ters from multiple samples.

Block Independence: Unlike methods that embed single codewords across multiple blocks, our
approach ensures that the compromise of one block does not affect others, providing better security
compartmentalization.

The following section provides a formal theoretical analysis of detection bounds and false positive
rates under our framework.

D FINITE-SAMPLE BOUNDS: DETAILED PROOFS AND EXAMPLES

This appendix contains the complete derivations, theorems, proofs, and examples for the finite-
sample bounds introduced in Section

D.1 SETUP AND NOTATION

Let ¥ = {0,1,...,g — 1} and let C C X" be a g-ary linear block code with length n, dimension
k, and minimum Hamming distance d,;,. Its unique-decoding radius is ¢ = | (dmin — 1)/2]. Define
the g-ary Hamming ball volume as

V,(n,t) 2 th (’Z) (q— 1) @)

=0

A text is partitioned into M disjoint blocks. For block j € {1,..., M}, a secret seed seed; (derived
from a global key and block index) deterministically specifies (i) a single designated codeword
cU) € C to be embedded in that block and (ii) a partition of the vocabulary into green/red (or more
generally ¢-ary) token lists aligned with the symbols of ¢(7).

Embedding. In soft embedding, logits of tokens in the green list are shifted by +d while others
are left unchanged, and a token is sampled from the resulting softmax. In ~ard embedding, sampling
is restricted to the green list (formally, § — o).

Detection. Given a candidate text, the detector extracts a g-ary symbol sequence b)) € X" from
each block j according to the green/red partition induced by seed;, then applies a unique decoder

for C' to decide whether b) lies within Hamming distance < ¢ from ¢\/). To counter local mis-
alignments (e.g., due to in-block insertions/deletions), the detector searches over circular shifts of
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magnitude at most Sp,,x; denote S £ 25max + 1 the number of shifts (including zero). The global
decision is based on the fraction of blocks that decode successfully: if the match ratio exceeds a
threshold @ € (0, 1), the text is declared watermarked.

Stochastic model. Under # (no watermark), the per-block symbol sequence is modeled as uni-
formly random in 3". Under H; (watermark present), each block independently suffers symbol er-
rors (from soft embedding and/or adversarial editing) with per-symbol error probability piot € [0, 1],
and at most sy, circular misalignment is introduced within the block.

D.2 NAIVE “ANY-CODEWORD” PRESENCE TEST

Consider the (undesirable) test that declares a watermark if there exists any codeword of C' within
Hamming distance ¢ of the observed block.

Theorem 1 (FPR of the any-codeword test). Ift < |(dwin — 1)/2] so that Hamming balls of radius
t around distinct codewords are disjoint, then under Hq the single-block false-positive probability
of the any-codeword test is

_ [ClVg(n,t)

FPRuwy = =5 = ¢""Vy(n,t). 3)

Proof. Under H,, the block is uniform on X". The event “within distance ¢ of some codeword” is
the disjoint union of the |C'| Hamming balls of radius ¢, each of volume V;(n, t). The probability is
therefore |C |V, (n,t)/q". O
Remark 1 (Binary specialization and magnitude). For ¢ = 2, Va(n,t) = Si_, (7). Even for
modest parameters, the value can be large: e.g., with BCH-like (n,t) = (31, 3) one gets Vo = 4,992
and FPRxy = 28~"Vy, which is unacceptably high unless k < n. For (n, k,t) = (31,16,3) BCH
codes, FPR = 0.152. This motivates the designated-codeword test below.

D.3 DESIGNATED-CODEWORD TEST

Our scheme designates exactly one valid codeword per block j via seed;; only proximity to this
codeword is considered.

Theorem 2 (Single-block FPR under designated-codeword test). Under H, the single-block FPR
for the designated-codeword test equals

Vy(n,t
po = Yalt). @)
q
With window shifting over S circular offsets, the FPR obeys the union bound
péShift) < min{1, Spo}. (5)

If the S shifted decoding events are independent (a benign approximation when the decoder’s ac-
ceptance regions overlap negligibly), then

p(()shift) —1— (1 _ pO)S = Spo + O(pg) (6)

Proof. For a fixed designated codeword cU), under H, the probability a uniform vector falls within
Hamming radius ¢ of c¢U) is V,(n,t)/q", giving equation {4} Searching S shifts yields at most S
chances to fall into a (shifted) acceptance region, whence equation [5] Under independence, the
complement probability multiplies across shifts, yielding equation [6] O

Remark 2 (Entropy bound). For any q, Vy(n,t) < q"Ha®/") ywhere H,(-) is the q-ary entropy.
Thus

po < g (= Ha(t/n)) p(()shift) < G g n(=Hq(t/n), (7)
This highlights the exponential FPR decay in n at fixed t /n.

Example 1 (Binary instances). For ¢ = 2 and (n,t) = (31,3), po = 3,572,224/231 ~ 1.6634 x

1072, With $max = 10 (S = 21), pi™™) ~ 3.43578 x 1075 via equation|e] For (n,t) = (63,3) and

(127,5), po ~ 4.52 x 10715 and 1.56 x 10739, respectively.
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D.4 AGGREGATE FPR WITH A MATCH-RATIO THRESHOLD

Let X; be the indicator that block j decodes successfully under H. Write p = pésmft).

Theorem 3 (Aggregate FPR under thresholding). Assume {X; };‘il are independent Bernoulli(p).
Then for any 6 € (0, 1),

1 M
Eg [M;Xj 29] Sexp(—MD(QHP)), ®)

where D(a||b) = alog % + (1 — a)log 1=% is the Bernoulli KL divergence.

Proof. This is the standard Chernoff (Cramér—Chernoff) bound for Binomial tails. O

Remark 3 (Design implication). Choosing 6 > p makes the aggregate FPR exponentially small
in M. In particular, combining equation[/|and Theorem 3)yields doubly-exponential suppression in

(n, M) at fixed t/n and S.

D.5 SOFT EMBEDDING: SYMBOL ERROR INDUCED BY §-BIAS

Let m € (0, 1) denote the pre-bias total softmax mass of the green list at a generation step. After
applying the logit shift 49 to the green tokens, the probability that the next token is drawn from the
green list is

me‘s

med + (1 —m)
where o(u) = 1/(1 + e~™) and logit(m) = log(m/(1 —m)).

Theorem 4 (Per-symbol embedding error in soft mode). When the designated symbol requires sam-
pling from the green list, the per-symbol embedding error probability is

Pgreen(& m) = = U(logit(m) + (5), 9)

1—-m

mes+ (1—m) {10

pemb((s; m) =1- Pgreen((s; m) =

In the balanced case m = %, pemy,(8; 3) = 1—0(8). For a target p* € (0,1/2), it suffices to choose

*

0 > log — logit(m) (11)

fo guarantee Pemp(0;m) < p*.

Proof. 1t is straightforward from the softmax with a uniform logit shift on the green subset. The
inequality is obtained by solving 1 — Pyeen(d;m) < p* for 4. O

Example 2. Form = 3,6 € {2.0, 2.5, 3.0} yields pemb =~ {0.1192, 0.0759, 0.0474}, respectively.

D.6 DETECTION POWER UNDER EMBEDDING AND ATTACK NOISE

Let patt € [0, 1] be the adversarial symbol error rate within a block (e.g., substitutions after align-
ment). A conservative union bound gives piot < Pemb + Datt-

Theorem 5 (Single-block success and aggregate FNR). Suppose a block experiences i.i.d. symbol
errors with probability pyoy and circular misalignment < sy,.x S0 that the correct shift is included
in the search. Then the single-block success probability is

t

. ny n—i
b1 (nat7pt0t) = Pr[Bln(naptot) < t] = Z (i)ptot(l - ptot) . (12)
i=0

IfY; are i.i.d. indicators of success across blocks under H,, the aggregate false-negative probability
obeys

1 M
P [MX_jY <6 <exp (= 21 D0)) (13)
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Proof. Unique decoding succeeds iff the number of symbol errors does not exceed ¢; the Binomial
tail gives the expression. The Chernoff bound for the lower tail yields the aggregate exponent. [

Example 3 (Guideline at (n,t) = (31,3)). Withm = % and 0 = 2.5, pemp ~ 0.0759. If payt €
[0,0.01], then pior € [0.0759,0.0859], giving p1 ~ 0.79 to 0.73. For M = 32 and threshold
0 = 0.5, the aggregate FNR is exponentially small by Theorem /3]

D.7 SHIFT RECOVERY AND LOCAL EDITS

Lemma 6 (Sufficient condition for perfect recovery). If a block suffers at most syax circular shift
and at most t symbol substitutions after the correct shift is applied, then window shifting over S =
28max 1+ 1 offsets followed by unique decoding correctly identifies the designated codeword.

Proof. The correct shift lies in the search set, and under that shift the Hamming distance to the
designated codeword is < ¢. Unique decoding is therefore exact by the definition of £. O

Remark 4 (Modeling in-block insertions/deletions). When insertions/deletions are confined within
a block and do not exceed the shift window, their net effect can be abstracted as a circular shift
(alignment) plus residual substitutions. Lemmal6|then applies.

D.8 PARAMETER SELECTION VIA ENTROPY BOUNDS

The entropy control in equation [7] together with Theorems [3] and [5] suggests a simple two-sided
design: pick (n, ¢, Smax, 0, M, &) so that

exp ( _ MD(QHP(()shift))) <a, péshift) ~1—(1—po)S,po < g (A Halt/n) (14)
FPR target o
exp ( - MD(Gle)) <8, p1 = Pr[Bin(n, prot) < t], Prot S Pemb(d5m) + Page- (15)
FNR target §

Remark 5 (Balanced operation). A convenient choice is to set 0 near the Chernoff intersection that
equalizes exponents D(0]| pés}nft)) ~ D(0||p1), and to tune 6 to keep por < t/n so that py remains

bounded away from 1/2.

D.9 GENERALIZATIONS

Proposition 7 (Direct g-ary extension). All the bounds above hold verbatim for g > 2 with Vy(n, t)
from equation E} in particular,

V. t ‘hi (shift)
Q(Za )7 p(()shlft) < min{l, Spo}, Er [match ratio > 9} < e—MD(9HPO hift )
q 0

bo =

Proof. ldentical combinatorial counting applies because the unique-decoding radius ¢ depends only
on dpin and the metric, not on the field size beyond the volume V,(n, ). ]
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Figure 7: Average Bit Error Rate (BER) as a function of watermark insertion strength 6.
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Figure 6: False Positive Rate (FPR) across insertion strengths § for Naive-Ours and Structured-Ours
under no-attack settings.

This experiment evaluates detection performance of watermarking techniques in clean environments
without adversarial attacks, focusing on how watermark insertion strength § and text length 7" influ-
ence reliability.

Figure [6]shows that Naive-Ours suffers from consistently high FPR across all § values, failing to dis-
tinguish watermarked from unwatermarked text. In contrast, Structured-Ours maintains FPR close to
zero regardless of §, demonstrating the effectiveness of structured decoding. For example, at §=3.0
with T'=200, Naive-Ours attains TPR=1.000 but FPR=0.499, whereas Structured-Ours achieves a
comparable TPR=0.987 with FPR=0.013.

E.2 BIT ERROR RATE ANALYSIS BY WATERMARK INSERTION STRENGTH ¢

This experiment evaluates the effect of watermark insertion strength § on bit-level codeword recon-
struction. As shown in Figure [7] unwatermarked text consistently exhibits about 50% BER, which
corresponds to random guessing. In contrast, watermarked text yields significantly lower BERs, with
the error rate steadily decreasing as ¢ increases. These results demonstrate that stronger watermark
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insertion improves the reliability of codeword reconstruction, whereas smaller values of § result in
BERs closer to random noise, rendering detection more difficult.

E.3 TEXT QUALITY UNDER WATERMARKING

Table 3: comparison of text quality across watermarking schemes.

Scheme 1) PPL () BLEU (1) BERTScore(F1) (1)
Unwatermark - 8.28 31.81 0.8201
1.5 1278 30.99 0.8132
e 2 00 2 o7
6.0 22.16 10.14 0.6688
.5 1241 29.14 0.8132
smowssom ooy 30 L2 2 0w
6.0 23.67 10.16 0.6864
Structured-Ours (hard) - 28.61 6.69 0.6312

Tables [3| report text quality under a variety of watermarking techniques. Unwatermarked baselines
achieve the best overall performance with the lowest performance (PPL), the highest BLEU, and the
highest BERTScore, reflecting fluent and semantically faithful outputs.

Qu et al and our structured method (soft) both exhibit the same general trend: As the watermarking
insertion strength § increases, PPL increases and BLEU and BERTScore decrease, resulting in poor
text quality. However, our structured method consistently retains text quality better than Qu et al for
all § values. For example, when § = 2.0, our method achieves BLEU score of 27.78 and BERTScore
of 0.8082 compared to 22.31 and 0.7740 of Qu et al, respectively. Even in the strongest settings
(6 = 6.0, our approach provides slightly higher BLEU and BERTScore.

On the other hand, a hard variant of our method results in severe quality degradation (PPL 28.61,
BLEU 6.69 and BERTScore 0.6312), indicating that it is more watermarking than is impractical
for quality-sensitive applications. These results highlight that the soft method provides a balanced
balance between the robustness of watermarking and text quality.

E.4 GENERALIZATION STUDY ON THE OPENGEN DATASET

As shown in Figure [8] both methods improve TPR as § increases. However, while RS-Watermark
consistently exhibits high FPR across all § values, our detector keeps FPR close to zero. For example,
under a 10% substitution attack, when 7" = 500 and § = 6, our method achieved an FPR of only
0.015, whereas RS-Watermark reported an FPR of 0.93.

Figure O] further illustrates that insertion and deletion lead to token—codeword misalignments. Ex-
panding the window size sy,,x allows the detector to resynchronize with the embedded codewords,
thereby significantly improving TPR. In particular, under a 10% insertion attack, when 7" = 500 and
0 = 6.0, the TPR improved dramatically from 0.46 at s;,, = 0 t0 0.945 at sy = 5.

Furthermore, as shown in Figures [T0] and [T1] our method consistently maintains high TPR while
keeping FPR low, whereas RS-Watermark achieves high TPR only at the cost of elevated FPR. For
example, under a 10% deletion attack, when 7" = 500 and § = 3, our method achieved perfect
detection (TPR = 1.0) with an FPR of only 0.2, while RS-Watermark attained the same TPR (1.0)
but suffered from an FPR as high as 0.945.

E.5 EFFECT OF THRESHOLD INCREASE

This experiment investigates how raising the detection threshold—i.e., the number of required
matched codewords—affects detection performance under synonym substitution attacks. Specifi-
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Figure 8: Comparison with RS-Watermark un-
der token-preserving synonym substitution (5%
and 10%) at syax = 5. While achieving com-
petitive TPR, our method maintains near-zero
FPR across §, whereas RS-Watermark exhibit
consistently high FPR.
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Figure 9: Effect of window-shift parameter
Smax on TPR under 10% deletion/insertion at-
tacks (OpenGen). Increasing sy,ax consistently
improves TPR for both weak (6 = 1.5) and
strong (6 = 6.0) watermarks, demonstrating
its effectiveness in recovering alignment mis-
matches.
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Figure 10: Comparison with RS-Watermark un-
der token-decreasing (deletion-like) substitution
(5% and 10%) at symax = 5. Our method sus-
tains high TPR with markedly lower FPR across
¢ compared to RS-Watermark

Watermark Insertion Strength &

Figure 11: Comparison with RS-Watermark un-
der token-increasing (insertion-like) substitu-
tion (5% and 10%) at s;h.x = 5. Our method
keeps FPR low while attaining competitive TPR
as ¢ grows, unlike RS-Watermark whose FPR
remains high.

cally, the threshold is increased from requiring at least one matched codeword to requiring at least

two.

Figurereports the True Positive Rate (TPR) across different window shift parameters s,,,x under
substitution rates of 5% and 10% at T" = 200. The results show that stricter thresholds consistently
lower TPR across all settings, indicating that some watermarked texts are missed.

Figure 13| presents the corresponding False Positive Rate (FPR). In contrast to TPR, FPR decreases
significantly as the threshold increases, with Structured-Ours-t2 achieving values near zero even
under higher substitution rates and large sy ax. Together, these results highlight the fundamental
trade-off: higher thresholds suppress false positives but also reduce TPR.
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Figure 12: TPR under synonym substitution
(rows: 5%, 10%; columns: deletion-like vs.
insertion-like, 7' = 200). Increasing the detec-
tion threshold from one to two codewords con-
sistently lowers TPR across all s, and 9.
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Figure 13: FPR under synonym substitution
(rows: 5%, 10%; columns: deletion-like vs.
insertion-like, 7' = 200). Increasing the detec-
tion threshold from one to two codewords con-
sistently lowers FPR across all s,,,x and 4.

E.6 COMPUTATIONAL COST OF WINDOW-SHIFT DETECTION

The window-shift procedure is applied only during detection, and therefore incurs minimal computa-
tional overhead. As shown in Table[d] inference time remains well below one second even with larger
codeword lengths n and higher shift budgets Sy,.x. This demonstrates that our detection framework
is computationally lightweight and practical for real-world use.

Table 4: Inference time (seconds) for varying Spax and codeword lengths n.

Setting ‘ Inference Time (sec)

T n Smax =0 Snax =1 Spax =3 Snax =5
15 0.0252 0.0474 0.0861 0.1262

200 31 0.0270 0.0526 0.1146 0.1682
63 0.0270 0.0607 0.1345 0.2017
15 0.0394 0.0931 0.1698 0.2741

500 31 0.0489 0.1127 0.2577 0.3788
63 0.0552 0.1540 0.3431 0.5342

E.7 EFFECT OF CODEWORD PARAMETERS ON DETECTION PERFORMANCE

5,t = 3), a medium

We compared three configurations at 7' = 200: a short codeword (n = 15, k
t = 15). The results are

codeword (n = 31,k = 6,t = 7), and a long codeword (n = 63,k = 7,
summarized in Figure [I4]

The short codeword achieved very high TPR but at the cost of large FPR (e.g., under 10% deletion
with § = 3.0, TPR = 1.000 but FPR = 0.945; Table[5). By contrast, the long codeword consistently
kept FPR near zero but suffered from reduced TPR, especially under insertion attacks (e.g., under
10% insertion with § = 1.5, TPR dropped to 0.025 while FPR remained 0.000; Table [g).

In between, the medium codeword provided a balanced trade-off, maintaining high TPR while keep-
ing FPR moderate. For this reason, we adopted the medium codeword setting (n = 31,k = 6,t = 7)
as the default in our main experiments.
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Figure 14: Trade-off between TPR and FPR under token substitution attacks at 7' = 200 (Syax="5,
§ € {1.5,6.0}). Left: token-decreasing (Deletion). Right: token-increasing (Insertion). Short code-
words (n=15) yield higher TPR but increased FPR, long codewords (n=63) yield lower FPR but
reduced TPR, while medium codewords (n=31) provide a balanced trade-off.

Table 5: Detection performance under token-decreasing synonym substitution for BCH codes (n =
15,k = 5,t = 3) with T' = 200.

Setting | 1% Deletion | 5% Deletion | 10% Deletion

Model 4 Smax  TPR FPR  Precision F1 TPR FPR  Precision F1 TPR FPR  Precision F1
0 0.925 0.175 0.8409 0.8809 0.880 0.230  0.7928  0.8341 0.900 0.230 0.7965  0.8451

15 1 1.000 0.530  0.6536  0.7905 0.990 0475 0.6758  0.8032 0.970 0535 0.6445  0.7745
3 0.995 0815 0.5497 0.7082 0995 0.830 0.5452  0.7044 1.000 0.800  0.5556  0.7143

5 0.995 0955 05113  0.6746 1.000 0935 0.5168  0.6814 0.995 0.955 0.5103  0.6746

0 0.920 0220 0.8070  0.8598 0.930 0.300 0.7561  0.8341 0.895 0.180 0.8326  0.8627

20 1 0.995 0440 0.6934 08173 1.000 0.500 0.6667  0.8000 0.995 0.500 0.6656  0.7976
3 1.000 0.815 0.5510  0.7105 1.000 0.790  0.5587  0.7168 1.000 0.835  0.5450  0.7055
Structured-Ours (n=15) 5 1.000 0955 05115  0.6768 1.000 0.970  0.5076  0.9734 1.000 0930 05181  0.6826
0 0915 0200 0.8206 0.8652 0900 0.195 0.8219 0.8592 0.925 0.215 0.8114 0.8645

30 1 1.000 0.575  0.6350  0.7767 0.995 0485  0.6723  0.8024 1.000 0.525 0.6557  0.7921
3 1.000 0.780  0.5618  0.7194 1.000 0.860  0.5376  0.6993 1.000 0.795  0.5571  0.7156

5 1.000 0945 05141  0.6791 1.000 0.955 05115 0.6768 1.000 0.930 0.5181  0.6826

0 0.950 0.185 0.8370 0.8899 0945 0215 0.8147 08750 0.900 0.165 0.8451  0.8717

6.0 1 0.995 0510 0.6611 07944 1.000 0.505 0.6645  0.7984 0.995 0.500 0.6656  0.7976
3 1.000 0.850  0.5405 0.7018 1.000 0.835 0.5450  0.7055 1.000 0.830 0.5464  0.7067

5 1.000 0955 05115  0.6768 1.000 0.930  0.5181  0.6826 1.000 0945 05141  0.6791

E.8 SYNONYM SUBSTITUTION: FULL TABLES AND FIGURES

Figures[TSHI7] present representative results under 5% synonym substitution attacks, while the main
text highlights the 10% case as the most challenging setting. In all figures, results are shown for both
OPT-1.3B and LLaMA-3.2-3B, consistently demonstrating that our method achieves comparable or
higher TPR and substantially lower FPR than RS-Watermark

Tables [OH20] complement these plots by reporting detailed detection metrics (TPR, FPR, Precision,
F1) for each substitution type (token-preserving, deletion-like, insertion-like) across substitution
ratios (5%, 10%) and text lengths (17" = 200, 500), separately for OPT-1.3B and LLaMA-3.2-3B.

E.9 ROBUSTNESS UNDER MIXED SYNONYM SUBSTITUTION
(INSERTION-DELETION-REPLACEMENT)

We further evaluate robustness under a mixed synonym substitution attack, where 20% of the tokens
are replaced with synonyms that induce insertion-like, deletion-like, and replacement-like effects
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Table 6: Detection performance under token-increasing synonym substitution for BCH codes (n =
15,k = 5,t = 3) with T' = 200.
Setting ‘ 1% Insertion ‘ 5% Insertion ‘ 10% Insertion
Model 5 Smax  TPR FPR  Precision Fl1 TPR FPR  Precision F1 TPR FPR  Precision F1
0 0875 0245 07813 08255 0530 0205 07211 06110 0440 0.30 07719  0.5605

15 1 0.945 0490 0.6585 0.7762 0.760 0470  0.6179  0.6816 0.625 0.500  0.5556  0.5882
3 0.985 0.820 0.5457 0.7023 0940 0.815 0.5356  0.6824 0.945 0.790 0.5447  0.6910

5 1.000 0.930 05181  0.6826 0995 0.955 0.5103 0.6746 0.980 0.925 0.5144  0.6747

0 0.865 0210 0.8047 0.8337 0.690 0.195 0.7797 0.7321 0.545 0.175  0.7569  0.6337

20 1 0.980 0.505 0.6599 0.7887 0.870 0.520 0.6259  0.7280 0.790 0.455 0.6345  0.7038
3 1.000 0.825 0.5479  0.7080 0.955 0.820  0.5380  0.6883 0.940 0.775  0.5481  0.6924
Structured-Ours (n=15) 5 1.000  0.965  0.5089  0.6745 0995 0.945 0.5129 0.6769 0985 0.925 0.5157  0.6770
0 0.885 0215 08045 0.8429 0.745 0225 0.7680  0.7563 0.620 0.230  0.7294  0.6703

30 1 0.950 0475 0.6667 0.7835 0.890 0480 0.6496  0.7511 0.775 0495 0.6102  0.6828
3 1.000 0.815 0.5510 0.7105 0970 0.815 0.5434  0.6966 0.975 0845 0.5357  0.6915

5 1.000 0920  0.5208  0.6849 0990 0.945 0.5116 0.6746 1.000 0.930 0.5181  0.6826

0 0.905 0.195 08227 0.8619 0.725 0230 0.7592  0.7417 0.645 0.190 0.7725  0.7030

6.0 1 0.990 0.560 0.6387  0.7765 0.895 0.505 0.6393  0.7458 0.860 0.505  0.6300  0.7273
3 1.000 0.820  0.5495  0.7092 0.990 0.825  0.5455  0.7034 0.970 0.800  0.5480  0.7004

5 1.000 0970  0.5076  0.6734 1.000 0.950  0.5128  0.6780 1.000 0945 05141  0.6791

Table 7: Detection performance under token-decreasing synonym substitution for BCH codes (n =
63,k = 7,t = 15) with T" = 200.

Setting ‘ 1% Deletion ‘ 5% Deletion ‘ 10% Deletion
Model d  Smax TPR  FPR  Precision F1 TPR  FPR  Precision F1 TPR  FPR  Precision F1
0 0.585 0 1.0000 0.7382  0.490 0 1.0000 0.6577  0.560 0 1.0000 0.7179
s 1 0.715 0 1.0000  0.8338 0.650 0 1.0000  0.7879 0.640 0.005  0.9922  0.7781

3 0.725 0 1.0000  0.8406 0.660 1.0000  0.7952  0.650 0 1.0000  0.7879
5 0.660 0 1.0000  0.7952 0.675 0 1.0000  0.8060 0.625 0 1.0000  0.7692

0 0.820 0 1.0000  0.9011 0.775 0 1.0000  0.8732 0.770 0 1.0000  0.8701

(=1

20 1 0.955 0 1.0000  0.9770  0.920 0 1.0000  0.9583 0.935 0 1.0000  0.9664
3 0.955 0 1.0000  0.9770  0.960 0 1.0000  0.9796 0.920 0 1.0000  0.9583
Structured-Ours (n=63) 5 0.965 0.010 09897 09772 0.960 0 1.0000  0.9796 0.940 0 1.0000  0.9691
0 0.910 0 1.0000  0.9529 0.880 0 1.0000  0.9362 0.830 0 1.0000  0.9071

30 1 1.000 0 1.0000  1.0000 0.990 0 1.0000  0.9950 0.975 0 1.0000  0.9873
3 1.000  0.005  0.9950  0.9975 0.995 0 1.0000  0.9975 0.995 0 1.0000  0.9975

5 1.000 0 1.0000 1.0000  1.000 0 1.0000  1.0000 1.000 0 1.0000  1.0000

0 0.925 0 1.0000  0.9610 0.890 0 1.0000  0.9418 0.855 0 1.0000  0.9218

6.0 1 0.995 0 1.0000  0.9975 0.980 0 1.0000  0.9899 0.995 0 1.0000  0.9975
3 1.000 0 1.0000  1.0000 1.000 0 1.0000  1.0000 1.000 0 1.0000  1.0000

5 1.000 0 1.0000 1.0000 1.000 0.005  0.9950  0.9975 1.000 0 1.0000  1.0000

Table 8: Detection performance under token-increasing synonym substitution for BCH codes (n =
63,k = 7,t = 15) with T' = 200.

Setting ‘ 1% Insertion ‘ 5% Insertion ‘ 10% Insertion

Model 8  Smax TPR FPR Precision F1 TPR  FPR  Precision F1 TPR  FPR  Precision F1
0 0.440 0 1.0000  0.6111 0.110 0 1.0000  0.1982 0.025 0 1.0000  0.0488
15 1 0490 0 1.0000  0.6577 0.155 0 1.0000  0.2684 0.010 0 1.0000  0.0198
’ 3 0.595 0 1.0000  0.7461 0.210 0 1.0000  0.3471  0.060 0 1.0000  0.1132
5 0.615 0 1.0000  0.7616 0.230 0.005  0.9787  0.3725 0.050 0 1.0000  0.0952
0 0.635 0 1.0000  0.7768 0.240 0 1.0000  0.3871 0.065 0 1.0000  0.1121
20 1 0.805 0 1.0000  0.8920 0.255 0 1.0000  0.4064 0.080 0 1.0000  0.1481
’ 3 0.875 0 1.0000 09333 0.350 0 1.0000  0.5185 0.115 0 1.0000  0.2063
Structured-Ours (n=63) 5 0.915 0 1.0000  0.9556 0.485 0 1.0000  0.6532 0.145 0 1.0000  0.2533
0 0800 0 1.0000  0.8889 0.320 0 1.0000  0.4848 0.105 0 1.0000  0.1900
30 1 0900 0 1.0000  0.9474 0515 0 1.0000  0.6799 0.145 0 1.0000  0.2533
’ 3 0960 0 1.0000  0.9796 0.645 0 1.0000  0.7842 0.280 0 1.0000  0.4375
5 0.985 0 1.0000  0.9924 0.710 0 1.0000 0.8304 0305 0.005 09861  0.5221
0 0840 0 1.0000 09130 0.395 0 1.0000  0.5663 0.145 0 1.0000  0.2533
6.0 1 0900 0 1.0000  0.9474 0.530 0 1.0000  0.6928 0.250 0 1.0000  0.4000
’ 3 0.985 0 1.0000  0.9924 0.735 0 1.0000  0.8473 0.430 0 1.0000  0.6014
5 0.995 0 1.0000  0.9975 0.850 0 1.0000  0.9189 0.490 0 1.0000  0.6577
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Figure 15: Comparison with RS-Watermark under 5% token-preserving synonym substitution at
Smax = 0. Both methods achieve high TPR, but RS-Watermark exhibits substantially higher FPR,

whereas our method keeps FPR near zero, indicating more reliable watermark detection.
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Figure 16: Comparison with RS-Watermark under 5% deletion-like synonym substitution at sy, =
5. Our method achieves higher TPR and substantially lower FPR than RS-Watermark, demonstrating

that our watermark detector operates more reliably in this challenging setting.

simultaneously. This setting combines the three previously analyzed cases (token-preserving, token-
decreasing, and token-increasing) and represents the most challenging form of synonym-based per-

turbation.
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Figure 17: Comparison with RS-Watermark under 5% insertion-like synonym substitution at
Smax = 9. Our method achieves higher TPR and substantially lower FPR than RS-Watermark,
demonstrating that our watermark detector operates more reliably in this challenging setting.

Table 9: Detection performance under 5% token-preserving synonym substitution with OPT-1.3B.

Setting T200 T500

Model 1) TPR FPR  Precision F1 TPR FPR  Precision F1

1.5 0960 0935 05066 0.6632 1.000 0910 0.5236  0.6873
0955 0935 05053 0.6609 1.000 0.930 0.5181 0.6826
0980 0.930 0.5131 0.6735 0965 0960 0.5013  0.6598

6 0960 0940 05053 0.6621 0950 0925 0.5067 0.6609

1.5 0645 0.015 09773 0.7771 0.740 0.030 0.9610 0.8362
0.760 0.010 09870 0.8588 0.745 0.025 09675 0.8418
0.805 0.000  1.0000 0.8920 0.900 0.025 09730 0.9351

6 0985 0.030 09704 09777 0.990 0.080 0.9252  0.9565

RS-Watermark

Structured-Ours

Tables |2 1|and 22| show that Structured-Ours yields lower TPR than RS-Watermark under this strong
mixed attack, which is expected given the severe distortions introduced. However, RS-Watermark’s
apparently stable TPR is misleading: its FPR remains extremely high (often near 1.0), causing the de-
tector to label most texts—including unwatermarked ones—as watermarked. In contrast, Structured-
Ours consistently maintains low FPR across all § and sy, values for both 7=200 and T=500.

This reliable false-positive control enables clear separation between watermarked and unwater-
marked texts even under 20% mixed synonym substitution, highlighting the practical robustness
and reliability of our detection framework.
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Table 10: Detection performance under 5% token-preserving synonym substitution using LLaMA-
3.2-3B.

Setting T200 T500
Model 0 TPR FPR  Precision Fl-score TPR FPR  Precision Fl-score

1.5 0950 0940 0.5026 0.6574 0935 0.950  0.4960 0.6480
0925 0930 0.4986 0.6479 0950 0.965  0.4961 0.6518
0950 0915  0.5093 0.6631 0930 0925 0.5013 0.6514

6 0930 0925 0.5013 0.6514 0930 0910 0.5054 0.6549

1.5 0.730 0.005 0.9931 0.8414  0.750 0.010  0.9868 0.8522
0.880 0.005  0.9943 0.9336  0.795 0.025  0.9695 0.8736
0.865 0.015  0.9829 0.9202 0.845 0.010 0.9883 09111

6 0.885 0.005 0.9943 0.9365 0910 0.015 0.9837 0.9454

RS-Watermark

Structured-Ours

Table 11: Detection performance under 10% token-preserving synonym substitution with OPT-1.3B.
Setting T200 T500

Model 1) TPR FPR  Precision F1 TPR FPR  Precision F1

1.5 0965 0925 05106 0.6678 0990 0900 0.5238  0.6851
0960 0.925 05093 0.6655 1.000 0940 0.5155 0.6803
0980 0.920 05158 0.6759 0965 0940 0.5066  0.6644

6 0970 0925 05132 0.6724 0975 0950 0.5065  0.6667

1.5 0585 0.010 09832 0.7335 0.470 0.030 09400 0.6267
0.630 0.005  0.9921 0.7706  0.675 0.005  0.9926  0.8036
0.760 0.000  1.0000 0.8636 0.765 0.040 0.9503  0.8476

6 095 0020 09797 09723 0975 0.070 09330 0.9535

RS-Watermark

Structured-Ours

Table 12: Detection performance under 10% token-preserving synonym substitution using LLaMA-
3.2-3B.

Setting T200 T500
Model 1) TPR FPR  Precision Fl-score TPR FPR  Precision Fl-score

1.5 0940 0940  0.5000 0.6527 0935 0950  0.4960 0.6481
0920 0930 0.4979 0.6456 0955 0940  0.5039 0.6597
0955 0905 0.5134 0.6678 0955 0925  0.5079 0.6631

6 0930 0920 0.5027 0.6526  0.950 0945 0.5013 0.6563

1.5 0.560 0.030  0.9491 0.7044  0.600 0.015  0.9756 0.7430
0.695 0.010 0.9858 0.8152  0.695 0.020 0.9720 0.8104
0.760 0.020  0.9743 0.8539  0.800 0.030  0.9638 0.8743

6 0775 0.010 0.9869 0.8555 0.880 0.020 0.9777 0.9263

RS-Watermark

Structured-Ours

27



Under review as a conference paper at ICLR 2026

Table 13: Detection performance under 5% token-decreasing synonym substitution with OPT-1.3B.

Setting \ T200 \ T500
Model 0 Smax TPR  FPR Precision F1 TPR  FPR  Precision F1
1.5 - 0.940 0.980 0.4896 0.6438 0980 0935 0.5117 0.6724

- 0970 0955 05039 0.6632 0975 0935 05105 0.6701
- 0995 0.940 0.5142 0.6780 0.970 0.920 0.5132 0.6713
- 0975 0935 05105 0.6701 0.965 0.960 0.5013  0.6598

RS-Watermark

0 0.810 0.000  1.0000  0.8950 0.900 0.030  0.9677  0.9326

15 1 0.895 0.025 09728 09323 0985 0.075 09292  0.9563
3 0.900 0.095 0.9045 09023 0995 0.140 0.8767  0.9321

5 0915 0.120  0.8841 0.8993 1.000 0.245 0.8032  0.8909

0 0905 0.005 0.9945 09476 0905 0.015 09837  0.9427

20 1 0985 0.025 09801 09801 0.995 0.060 0.9431 0.9684
3 0995 0.045 09567 09755 1.000 0.130 0.8850  0.9390
Structured-Ours 5 0.995 0.080 0.9256  0.9590 1.000 0.250 0.8000  0.8888
0 0.920 0.005 0.9946 09558 0.905 0.020 0.9784  0.9403

3.0 1 0995 0.030 09707 09827 0995 0.075 0.9299 09614
3 1.000  0.055 09479 09732 1.000 0.185 0.8439 09153

5 1.000 0.090 09174 09569 1.000 0.260 0.7937  0.8850

0 0.920 0.000  1.0000 09583 0.950 0.030 0.9694  0.9596

6.0 1 1.000 0.045 09569 09780 0.995 0.075 0.9299 0.9614
3 1.000  0.070  0.9346 09662 1.000 0.200  0.8333  0.9091

5 1.000 0.080  0.9259 09615 1.000 0.285 0.7782  0.8753

Table 14: Detection performance under 5% token-deleting synonym substitution using LLaMA-3.2-
3B.

Setting \ T200 \ T500
Model ) Smax  TPR FPR  Precision Fl-score TPR FPR  Precision Fl1-score
1.5 - 0.945 0.955 0.4973 0.6517 0.945 0.950 0.4986 0.6528
2.0 - 0.940 0.935 0.5013 0.6539  0.945 0.955 0.4973 0.6517
RS-Watermark
30 - 0.925 0.935 0.4973 0.6468 0.930 00915 0.5041 0.6537
6.0 - 0.945 0.955 0.4973 0.6517  0.955 0.965 0.4973 0.6541
0 0.935 0.040 0.9589 0.9468 0.820 0.015 0.9820 0.8937
15 1 0.930 0.025 0.9738 0.9514 0915 0.010 0.9891 0.9506
’ 3 0.935 0.080 09211 0.9280 0.935 0.045 0.9541 0.9444
5 0.950 0.120 0.8878 0.9178 0.945 0.105 0.9000 0.9219
0 0.920 0.010 0.9892 0.9533  0.930 0.015 0.9841 0.9563
20 1 0.990 0.030 0.9705 0.9801 1.000 0.030 0.9708 0.9852
’ 3 0.990 0.065 0.9383 0.9635 0.990 0.035 0.9658 0.9777
Structured-Ours 5 0.975 0.110  0.8986 0.9352  0.980 0.105 0.9032 0.9400
0 0.900 0.010  0.9890 0.9424  0.940 0.030 0.9691 0.9543
3.0 1 0.995 0.035 0.9660 0.9802  1.000 0.025 0.9756 0.9876
’ 3 1.000 0.065 0.9389 0.9685 1.000 0.065 0.9389 0.9685
5 1.000 0.080  0.9259 0.9615 1.000 0.115 0.8968 0.9456
0 0.925 0.015 0.9840 0.9536  0.930 0.010 0.9893 0.9587
6.0 1 1.000 0.005 0.9950 0.9975 1.000 0.015 0.9852 0.9925
’ 3 1.000 0.060  0.9433 0.9708 1.000 0.090 0.9174 0.9569
5 0.995 0.130 0.8844 0.9364 1.000 0.110 0.9009 0.9478
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Table 15: Detection performance under 10% token-decreasing synonym substitution with OPT-1.3B.

Setting \ T200 \ T500
Model 0 Smax TPR  FPR Precision F1 TPR  FPR  Precision F1
1.5 - 0.940 0.925 0.5040 0.6562 0.990 0.950 0.5103 0.6735

- 0965 0925 05106 0.6678 0970 0.940 0.5079  0.6667
- 0985 0910 0.5198 0.6805 0955 0945 0.5026  0.6586
- 0980 0915 05172 0.6770 0970 0.935 0.5092  0.6678

RS-Watermark

0 0.750 0.005  0.9934 0.8547 0.870 0.030 0.9647  0.8865

15 1 0.900 0.020 09783 09375 0.965 0.065 0.9369  0.9508
3 0905 0.055 09427 09235 0980 0.175 0.8485  0.9095

5 0910 0.100 09010 09055 0.995 0.320 0.7567  0.8596

0 0.875 0.020 09777 09235 0.900 0.030 0.9611 0.9326

20 1 0985 0.030 09704 09777 0985 0.040 09610 0.9728
3 0.995 0.080 0.9256 09590 0995 0.150 0.8690  0.9277
Structured-Ours 5 0995 0.075 09299 09614 1.000 0.190 0.8403 09132
0 0.895 0.010 09889 09396 0935 0.020 0.9791  0.9565

3.0 1 1.000 0.010  0.9901 09950 0.995 0.075 0.9299 0.9614
3 1.000 0.045 0.9569 09780 1.000 0.160 0.8621  0.9259

5 1.000 0.105 0.9050  0.9501 1.000 0.280 0.7813  0.8772

0 0.905 0.020 09784 09403 0925 0.030 0.9686  0.9463

6.0 1 0990 0.025 09754 09826 0.995 0.080  0.9256  0.9590
3 1.000  0.070  0.9346 09662 1.000 0.165 0.8584  0.9238

5 1.000 0.125 0.8889 09412 1.000 0.265 0.7905  0.8830

Table 16: Detection performance under 10% token-deleting synonym substitution using LLaMA-
3.2-3B.

Setting \ T200 \ T500
Model ) Smax  TPR FPR  Precision Fl-score TPR FPR  Precision Fl1-score
1.5 - 0.940 0.955 0.4960 0.6493  0.930 0.930 0.5000 0.6503
2.0 - 0.940 0930 0.5026 0.6551 0.925 0.950 0.4933 0.6435
RS-Watermark
30 - 0.955 0960 0.4986 0.6552 0945 0.925 0.5053 0.6585
6.0 - 0.925 0930 0.4986 0.6479  0.945 0.930 0.5040 0.6573
0 0.945 0.015 0.9843 0.9642  0.830 0.025 0.9707 0.8948
15 1 0.930 0.030 0.9687 0.9489  0.900 0.065 0.9326 0.9160
’ 3 0.955 0.050 0.9502 0.9526  0.950 0.060 0.9405 0.9452
5 0.950 0.055 0.9452 0.9476  0.905 0.075 0.9234 0.9141
0 0.900 0.015 0.9836 0.9399 0915 0.025 0.9734 0.9433
20 1 0.965 0.050 0.9507 0.9578  0.990 0.040 0.9611 0.9753
’ 3 0.970 0.090 009151 0.9417  0.990 0.065 0.9383 0.9635
Structured-Ours 5 0.995 0.120 0.8923 0.9408 0.990 0.090 0.9166 0.9519
0 0.925 0.005 0.9946 0.9585 0.935 0.020 0.9791 0.9565
3.0 1 0.990 0.020 0.9801 0.9851 0.985 0.045 0.9563 0.9704
’ 3 0.985 0.070  0.9336 0.9586 1.000 0.065 0.9389 0.9685
5 1.000 0.095 0.9132 0.9546  0.995 0.080 0.9255 0.9590
0 0.940 0.010 0.9894 0.9641 0915 0.010 0.9892 0.9506
6.0 1 0.995 0.030 0.9707 0.9827 0.995 0.030 0.9707 0.9827
’ 3 1.000 0.065 0.9389 0.9685 1.000 0.045 0.9569 0.9779
5 1.000 0.085 0.9216 0.9592 1.000 0.115 0.8968 0.9456
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Table 17: Detection performance under 5% token-increasing synonym substitution with OPT-1.3B.

Setting \ T200 \ T500
Model 0 Smax TPR  FPR Precision F1 TPR  FPR  Precision F1
1.5 - 0.945 0.925 0.5053 0.6585 0.965 0.945 0.5052 0.6632

- 0965 0920 0.5119  0.6669 0950 0.960 04974  0.6529
- 0970 0915 05146 0.6724 0.960 0.960  0.5000  0.6575
- 0.960 0.920 0.5106 0.6667 0.940 0.920 0.5034  0.6573

RS-Watermark

0 0.245 0.010 09601 03904 0.305 0.025 0.9242 0.4586

15 1 0.380 0.025 09383  0.5409 0.440 0.060 0.8800 0.5867
3 0.525 0.050 09130 0.6667 0.500 0.155 0.7634  0.6042

5 0.635 0.075 0.8844  0.7427 0.730 0.195 0.7892  0.7584

0 0.345 0.020 0.9452  0.5055 0.370 0.020 0.9487  0.5324

20 1 0.515 0.025 09537 0.6688 0.635 0.090 0.8759 0.7362
3 0.695 0.090 0.8854 0.7787 0.765 0.130  0.8547  0.8074
Structured-Ours 5 0.885 0.120  0.8806  0.8828 0.830 0.265 0.7580  0.7924
0 0.520 0.020 0.9629  0.6753 0475 0.020 0.9596  0.6355

3.0 1 0.735 0.050 09363 0.8235 0.695 0.115 0.8580  0.7980
3 0.840 0.070 09231 0.8796 0.920 0.185 0.8326 0.8741

5 0930 0.085 09163 09231 0945 0.250 0.7908  0.8610

0 0.600 0.020  0.9677  0.7407 0.565 0.020 0.9658  0.7128

6.0 1 0.755 0.020 09742 0.8507 0.770 0.080  0.9059  0.8324
3 0.950 0.080  0.9223 09360 0.935 0.185 0.8348  0.8821

5 0935 0.100 0.9034 09189 0975 0.255 0.7927 0.8744

Table 18: Detection performance under 5% token-inserting synonym substitution using LLaMA-
3.2-3B.

Setting \ T200 \ T500
Model ) Smax  TPR FPR  Precision Fl-score TPR FPR  Precision Fl1-score
1.5 - 0.940 0920 0.5053 0.6573  0.945 0.925 0.5053 0.6585
2.0 - 0.940 0.935 0.5013 0.6539  0.945 0.945 0.5000 0.6539
RS-Watermark
30 - 0.955 0.945 0.5026 0.6586  0.950 0.920 0.5080 0.6620
6.0 - 0.940 0950 0.4973 0.6505 0915 0.940 0.4932 0.6409
0 0.460 0.025 0.9484 0.6195 0.345 0.015 0.9583 0.5073
15 1 0.505 0.035 0.9351 0.6558  0.460 0.025 0.9484 0.6195
’ 3 0.620 0.055 0.9185 0.7402  0.575 0.060 0.9055 0.7033
5 0.725 0.130  0.8479 0.7816  0.705 0.130 0.8443 0.7683
0 0.470 0.005 0.9894 0.6372  0.445 0.040 0.9175 0.5993
20 1 0.600 0.025 0.9600 0.7384  0.565 0.010 0.9826 0.7174
’ 3 0.790 0.075 0.9132 0.8471  0.715 0.100 0.8773 0.7878
Structured-Ours 5 0.820 0.100 0.8913 0.8541 0.810 0.110 0.8804 0.8437
0 0.515 0.015 0.9716 0.6732  0.585 0.010 0.9832 0.7335
3.0 1 0.675 0.025 0.9642 0.7941 0.795 0.020 0.9754 0.8760
’ 3 0.865 0.060  0.9351 0.8987  0.820 0.055 0.9371 0.8746
5 0.935 0.075 0.9257 0.9303 0.940 0.085 0.9171 0.9283
0 0.580 0.010 0.9831 0.7295 0.655 0.015 0.9776 0.7844
6.0 1 0.830 0.015 0.9822 0.8997  0.705 0.025 0.9657 0.8150
’ 3 0.890 0.095 0.9035 0.8967 0.945 0.060 0.9402 0.9426
5 0.955 0.085 0.9182 0.9362 0.960 0.085 0.9186 0.9388
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Table 19: Detection performance under 10% token-increasing synonym substitution with OPT-1.3B.

Setting \ T200 \ T500
Model 0 Smax TPR  FPR Precision F1 TPR  FPR  Precision F1
1.5 - 0970 0.975 0.4987 0.6587 0985 0.940 0.5117 0.6735

- 0960 0.960  0.5000 0.6575 0.980 0.945 0.5091  0.6701
- 0970 0.930 0.5105 0.6690 0.980 0945 0.5052  0.6632
- 0985 0.935 0.5130 0.6747 0.965 0.950  0.5039  0.6621

RS-Watermark

0 0.150 0.025 0.8571  0.2553 0.145 0.025 0.8529  0.2479

15 1 0.165 0.040 0.8049 0.2739 0.305 0.055 0.8472  0.4485
3 0.305 0.050 0.8592  0.4502 0455 0.155 0.7459  0.5852

5 0360 0.085 0.8090 0.4983 0460 0.310 0.5974 0.5198

0 0.185 0.020  0.9024  0.3071 0.245 0.010 0.9608  0.3904

20 1 0.310 0.055 0.8493 0.4542 0370 0.085 0.8132  0.5086
3 0.380 0.080 0.8261  0.5205 0.580 0.160 0.7838  0.6667
Structured-Ours 5 0480 0.115 0.8067 0.6019 0.645 0.305 0.6789  0.6615
0 0.325 0.010  0.9701 0.4869 0.355 0.015 09595 05182

3.0 1 0.505 0.020 09619 0.6623 0.530 0.075 0.8760  0.6604
3 0.645 0.070 09021 0.7522 0.755 0.135 0.8483  0.7989

5 0.710 0.110  0.8659  0.7802 0.865 0.260  0.7689  0.8141

0 0.355 0.005 09861  0.5221 0430 0.015 09663  0.5952

6.0 1 0.500 0.035 0.9346 0.6515 0.630 0.075 0.8936  0.7390
3 0.730 0.050 0.9359 0.8202 0.815 0.105 0.8859  0.8490

5 0.815 0.110  0.8810  0.8468 0960 0.265 0.7837  0.8629

Table 20: Detection performance under 10% token-inserting synonym substitution using LLaMA-
3.2-3B.

Setting \ T200 \ T500
Model ) Smax  TPR FPR  Precision Fl-score TPR FPR  Precision Fl1-score
1.5 - 0.920 0940 0.4946 0.6433  0.920 0.940 0.4946 0.6433
2.0 - 0.920 0.935 0.4960 0.6444  0.945 0.955 0.4973 0.6517
RS-Watermark
30 - 0915 0.975 0.4841 0.6332  0.930 0.905 0.5068 0.6561
6.0 - 0.915 0930 0.4959 0.6432  0.935 0.945 0.4973 0.6493
0 0.215 0.020 0.9148 0.3481 0.210  0.000 1.0000 0.3471
15 1 0.195 0.020  0.9069 0.3209  0.265 0.040 0.8688 0.4061
’ 3 0.370 0.070  0.8409 0.5138  0.350 0.065 0.8433 0.4946
5 0.425 0.060 0.8762 0.5723  0.430 0.105 0.8037 0.5602
0 0.315 0.020  0.9402 0.4719  0.245 0.040 0.8596 0.3813
20 1 0.335 0.030 0.9294 0.5543  0.340 0.035 0.9066 0.4945
’ 3 0.480 0.050 0.9056 0.6274  0.495 0.105 0.8250 0.6187
Structured-Ours 5 0.565 0.100  0.8496 0.6786  0.520 0.065 0.8888 0.6561
0 0.370 0.010 09736 0.5362  0.430 0.005 0.9885 0.5993
3.0 1 0.420 0.035 0.9231 0.5773  0.420 0.025 0.9438 0.5813
’ 3 0.565 0.070  0.8897 0.6911  0.575 0.060 0.9055 0.7033
5 0.690 0.130 0.8414 0.7582  0.695 0.100 0.8742 0.7743
0 0.390 0.000 1.0000 0.5611 0.370 0.015 0.9610 0.5443
6.0 1 0.515 0.040 0.9279 0.6623  0.485 0.045 0.9151 0.6339
’ 3 0.720 0.075 0.9056 0.8022  0.660 0.050 0.9295 0.7719
5 0.765 0.095 0.8895 0.8225 0.800 0.120 0.8695 0.8333
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Table 21: Detection performance of Structured-Ours and RS-Watermark under a 20% mixed syn-
onym substitution attack (combining insertion-like, deletion-like, and replacement-like effects) on
the C4 dataset using OPT-1.3B.Structured-Ours maintains consistently low FPR, whereas RS-
Watermark exhibits extremely high FPR despite high TPR.

Setting \ T200 \ T500
Model 5  Smax | TPR  FPR  Precision Flscore | TPR  FPR Precision F1score
15 - 109650 09500 0.5039  0.6621 | 0.9400 0.9700  0.4921 0.6460
2 - | 09200 09600 04894  0.6389 | 0.9400 0.9500 04974  0.6505
RS-Watermark
3 - | 09300 09600 04921 0.6436 | 0.9850 0.9100 05198  0.6805
6 - 109600 09050 05147  0.6702 | 0.9850 0.9350  0.5131 0.6747
0 | 0.0150 0.0000 1.0000  0.0296 | 0.0700 0.0300  0.7000  0.1273
s 1 | 00700 00200 07778 01284 |0.1250 0.1000 05556  0.2041
‘ 3 101100 0.0550 0.6667  0.1888 | 0.2050 0.1550 05694  0.3015
5 | 0.1150 0.0500 06970  0.1974 | 03100 02150 0.5905  0.4066
0 | 00150 0.0100 0.6000  0.0293 | 0.0300 0.0150 0.6667  0.0574
5 1 | 00600 00300 06667  0.1101 | 0.1400 0.0500 0.7368  0.2353
3 101400 0.0550 0.7179 02343 | 0.2100 0.1800 0.5385  0.3022
Structured-Our 5 |0.1700 0.0900 0.6538  0.2698 | 0.3400 0.1750  0.6602  0.4488
0 |0.0700 00150 0.8235 0.1290 | 0.0800 0.0250 0.7619  0.1448
3 1 | 0.1000 0.0200 0.8333 0.1786 | 0.1250 0.0850  0.5952  0.2066
3 101800 0.0700 0.7200  0.2880 | 0.3400 0.1750  0.6602  0.4498
5 | 02100 0.1000 0.6774 03206 | 0.3900 0.2800  0.5821 0.4671
0 |0.1150 0.0150 0.8846  0.2035 | 0.0750 0.0300 0.7143  0.1357
6 1 |0.1450 0.0350 0.8056  0.2458 | 0.2700 0.0450  0.8571 0.4106
3 103300 0.0800 0.8049 04681 | 04350 0.1700 0.7190  0.5421
5 | 03650 0.1500 07087  0.4818 | 0.5600 0.2000 0.7368  0.6364

Table 22: Detection performance under the same 20% mixed synonym substitution attack on the
OpenGen dataset. Structured-Ours again maintains low FPR across settings, while RS-Watermark
shows near-random FPR across 4 values.

Setting \ T200 \ T500
Model 0 Smax ‘ TPR FPR  Precision F1 score ‘ TPR FPR  Precision F1 score
1.5 - 0.9150  0.9600 0.4880 0.6365 | 0.9600 0.9750 0.4961 0.6542
- 0.9400  0.9300 0.5027 0.6551 | 0.9350 0.9300 0.5013 0.6527
RS-Watermark
- 0.9300  0.9200 0.5027 0.6526 | 0.9700 0.9200 0.5132 0.6713
- 0.9300 0.9350 0.4987 0.6492 | 0.9900 0.9450 0.5116 0.6746
0 0.0350  0.0050 0.8750 0.0673 | 0.0300 0.0150 0.6667 0.0574
15 1 0.0700  0.0350 0.6667 0.1267 | 0.1150 0.0900 0.5610 0.1909
’ 3 0.0650  0.0600 0.5200 0.1156 | 0.2000 0.1650 0.5479 0.2930
5 0.1300 0.1150 0.5306 0.2088 | 0.3100 0.1950 0.6139 0.4120
0 0.0300 0.0100 0.7500 0.0577 | 0.0350 0.0350 0.5000 0.0654
2 1 0.0450 0.0150 0.7500 0.0849 | 0.1750 0.0750 0.7000 0.2800
3 0.1300  0.0700 0.6500 0.2167 | 0.2600 0.1700 0.6047 0.3636
Structured-Our 5 0.2100 0.1150 0.6462 0.3170 | 0.3350 0.2250 0.5982 0.4295
0 0.0650  0.0050 0.9286 0.1215 | 0.0750 0.0250 0.7500 0.1364
3 1 0.1150 0.0150 0.8846 0.2035 | 0.1600 0.0850 0.6531 0.2570
3 0.1600  0.0800 0.6667 0.2581 | 0.3000 0.1300 0.6977 0.4196
5 0.2200  0.1200 0.6471 0.3284 | 0.4700 0.2650 0.6395 0.5418
0 0.0850  0.0050 0.9444 0.1560 | 0.1300 0.0400 0.7647 0.2222
6 1 0.1400  0.0450 0.7568 0.2363 | 0.3050 0.0650 0.8243 0.4453
3 0.3300 0.0850 0.7952 0.4664 | 0.4100 0.1600 0.7193 0.5223
5 0.3500 0.1150 0.7527 0.4778 | 0.6050 0.2600 0.6994 0.6488
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