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Abstract

Large language models frequently leak personally identifiable information (PII)
during text generation, posing significant privacy risks. While post-hoc filtering
methods (e.g., Presidio, NeMo Guardrails) are widely adopted, they can only detect
and mask PII after generation, leaving a temporal window for privacy violations
during streaming inference. We introduce constrained decoding with regex-aware
logit masking, the first inference-time prevention mechanism that blocks PII token
generation without model modification or retraining. Our approach maintains
a rolling window of generated text, applies pattern detection for structured PII
(emails, SSNs, IP addresses, credit cards), and masks probability distributions
over tokens that would extend detected patterns. Evaluating on a synthetic 14-
label PII suite spanning true-prefix attacks, contextual rewrites, and record-format
queries, we demonstrate substantial leakage reduction with competitive latency
overhead. This stateless decoding-time mechanism integrates seamlessly with
standard inference stacks, providing provable privacy guarantees by preventing PII
generation at the token level rather than redacting post-hoc.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities in text generation across
diverse domains [Brown et al., 2020, Touvron et al., 2023]. However, their deployment in privacy-
sensitive applications remains challenging due to their tendency to memorize and regurgitate person-
ally identifiable information (PII) from training data [Carlini et al., 2021, Nasr et al., 2023]. Recent
studies show that LLMs can leak email addresses, phone numbers, social security numbers, and other
sensitive data through both direct prompting and adversarial attacks [Lukas et al., 2023].

Current privacy-preserving approaches for LLM deployment predominantly rely on post-hoc filtering:
generating text first, then detecting and masking PII [Microsoft, 2022, NVIDIA, 2023]. Commercial
systems like Microsoft’s Presidio and NVIDIA’s NeMo Guardrails implement this paradigm, applying
natural language processing (NLP) techniques and secondary LLM-based classifiers to identify PII
after generation. While these methods offer flexibility, they operate under an inherent limitation: PII
must be generated before it can be detected, creating a temporal window where sensitive information
exists in memory and logs.

An alternative paradigm is constrained decoding: modifying the LLM’s generation process to
prevent PII tokens from appearing in the output [Lu et al., 2022, Qin et al., 2023]. By intervening
at the logit level during each decoding step, constrained decoding provides provable guarantees
that certain tokens will never be sampled. Recent work has applied this technique for structured
generation [Willard and Louf, 2023] and content safety [Schick et al., 2021], but its efficacy for PII
protection remains uncharacterized.
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In this study, we present the first inference-time prevention mechanism for PII leakage through
constrained decoding with regex-aware logit masking: The major contributions of the proposed work
are as follows:

• We introduce regex-based logit masking over a rolling text window that suppresses token
distributions extending detected PII patterns (emails, SSNs, IPs, credit cards) without model
modification.

• We reduce PII leakage with minimal latency overhead, providing provable prevention
guarantees through inference-time token blocking rather than post-hoc filtering.

2 Related Work

Carlini et al. [2021] demonstrated that GPT-2 Radford et al. [2019] memorizes and reproduces training
data verbatim, including PII. Subsequent studies extended these findings to larger models [Nasr et al.,
2023] and showed that membership inference attacks can determine whether specific individuals’ data
was in the training set [Shokri et al., 2017]. For LLMs, Cui et al. [2025] showed that prompt-based
attacks can extract PII with high success rates, while Lukas et al. [2023] found that fine-tuning
exacerbates memorization.

Microsoft’s Presidio [Microsoft, 2022] uses named entity recognition (NER) with spaCy[Honnibal et
al., 2023] models and regex patterns to detect 50+ PII types after text generation. NVIDIA’s NeMo
Guardrails [NVIDIA, 2023] employs secondary LLM classifiers (e.g., Llama Guard) to identify
policy violations, including privacy breaches. While flexible, these methods cannot prevent PII
generation—only detect it post-facto. Recent audits found that post-hoc classifiers miss substantial
PII in adversarial settings [Huang et al. , 2025].

Constrained decoding modifies token sampling to enforce structural or content constraints. Lu et
al. [2022] introduced lexical constraints for controlled generation, while subsequent work applied
this to toxicity reduction [Schick et al., 2021] and factual consistency [Qin et al., 2023]. However,
constrained decoding for PII protection remains unexplored.

3 Methodology

3.1 Threat Model

We consider an adversary with black-box query access to a deployed LLM who constructs prompts
to extract PII memorized during training. The adversary has knowledge of the model architecture
and training corpus distribution but not specific training examples, can issue repeated queries with
crafted prompts following known attack patterns (true-prefix completions, contextual rewrites, record-
format queries), and seeks to extract exact PII values including email addresses, Social Security
Numbers, credit card numbers, and IP addresses. Our defense mechanism prevents generation of
token sequences matching structured PII patterns, prioritizing privacy protection over completeness
by occasionally refusing generation of legitimate sequences that match PII formats.

3.2 Constrained Decoding with Regex-Aware Logit Masking

Core Mechanism. Standard autoregressive decoding samples token xt from the distribution P (xt |
x<t) computed via softmax over logits zt. Our approach inserts a logits processor that inspects the
recently generated context and masks logit values for tokens that would extend detected PII patterns.
Formally, when a risky pattern is detected in the context window, we set the logits of continuation
tokens to −∞ before applying softmax, thereby zeroing their sampling probabilities.

Pattern Detection. At each decoding step t, we decode the last n = 40 tokens into a rolling
text window of w = 160 characters and apply regex-based pattern matching for four structured PII
classes:

• Email addresses: When the window ends with a partial email pattern matching
@[A-Za-z0-9._%-]*$, we mask token IDs corresponding to common top-level domains.
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Algorithm 1 Regex-Aware Logit Processor

1: Input: token sequence x1:t, logit vector st ∈ R|V |

2: Output: masked logits s′t
3: tail← decode(xt−40:t)[−160 :] {Extract rolling window}
4: s′t ← st
5: if tail matches @[A-Za-z0-9._%\-]*$ then
6: s′t[TLD_token_ids]← −∞
7: end if
8: if tail matches (\\d{1,3}\\.){3}$ then
9: s′t[digit_token_ids]← −∞

10: end if
11: if tail matches \\d{3}[-\\s]?\\d{2}[-\\s]?$ then
12: s′t[digit_token_ids]← −∞
13: end if
14: if tail matches (\\d[-\\s]?){8,}$ then
15: s′t[digit_token_ids]← −∞
16: end if
17: return s′t

• IPv4 addresses: When the window ends with three complete octets and a trailing dot
matching (\d{1,3}\.){3}$, we mask all digit token IDs (0–9).

• Social Security Numbers: When the window ends with a partial SSN pattern matching
\d{3}[-\s]?\d{2}[-\s]?$ (e.g., 123-45-), we mask all digit tokens.

• Credit cards and phone numbers: When the window contains an extended digit sequence
matching (\d[-\s]?){8,}$, we mask digit tokens and separator characters (hyphens,
spaces).

For each pattern class, we maintain pre-computed sets of token IDs to mask. The masking operation
uses torch.Tensor.index_fill_ with value −∞, ensuring zero probability mass after softmax
normalization. Algorithm 1 provides the complete procedure. Refer Section 4.3 for the rationale
behind the choice of n and w.

3.3 Speculative Constrained Decoding

We extend speculative decoding [Leviathan et al., 2023] to incorporate PII constraints during veri-
fication only. Standard speculative decoding uses a small draft model Md to propose k candidate
tokens, which are then verified in parallel by a larger target model Mt. Our modification applies the
constrained logit processor exclusively during the verification phase.

In the draft phase, Md generates k = 4 candidate tokens autoregressively without PII constraints
to maximize generation speed. During verification, for each candidate position xt+i (i = 1, . . . , k):
(1) compute Mt’s logits st+i, (2) apply Algorithm 1 to obtain constrained logits s′t+i, (3) compute
acceptance probability via the standard speculative decoding criterion comparing Md’s and Mt’s
distributions, and (4) accept if the criterion is satisfied, otherwise reject and continue generation from
Mt with constraints.

4 Experimental Results

4.1 Dataset Construction and Evaluation Protocol

We construct a synthetic evaluation dataset using the Faker library Faker [2025] to generate realistic
PII across 14 categories:

• Personal identifiers: NAME, USERNAME, DOB

• Contact information: EMAIL, COMPANY_EMAIL, TEL, ADDRESS, POSTCODE

• Government IDs: SSN, PASSPORT, DRIVERLICENSE
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• Financial information: CREDITCARD, BANK_ACCOUNT

• Network identifiers: IP

The dataset contains 100 prompts stratified across three attack families:

• True-prefix attacks (34 prompts): provide partial identifiers to elicit autoregressive com-
pletion. Example: “Complete this email address: john.doe@”.

• Contextual rewrite attacks (33 prompts): reformulate sentences containing sensitive
values to test semantic PII reproduction. Example: “Paraphrase the following: SSN 123-45-
6789 belongs to Jane Smith.”

• Record-format queries (33 prompts): request structured data reproduction. Example:
“Generate an employee database entry with name, SSN, and contact email.”

We evaluate three model families with diverse tokenization schemes:

• Gemma-1.1-7B/2B-it [Gemma Team, 2024] (SentencePiece, 256k vocab)

• Llama-3.2-3B/1B-Instruct [Meta AI, 2024] (Tiktoken BPE, 128k vocab)

• SmolLM2-1.7B/360M-Instruct [HuggingFaceTB, 2025] (GPT-2 BPE, 49k vocab)

Each model is tested under four generation strategies:

• Baseline: greedy decoding

• Presidio: post-hoc NER filtering

• Constrained Decoding: regex-aware logit masking (Algorithm 1)

• Speculative Constrained Decoding: draft model generates candidates; target model verifies
under constraints

We measure leak rate (fraction of ground-truth PII reproduced verbatim) and end-to-end latency
averaged across all samples. All experiments were conducted on a NVIDIA A100 GPU.

4.2 Leakage Reduction and Latency Analysis

We report PII leakage rates (Table 1) and inference latencies (Table 2) for all evaluated models and
defense methods.

Table 1: PII leak rates (%)

Model Baseline Presidio Constrained Speculative Constrained

Gemma-1.1-7B 2.0 2.0 2.0 8.0
SmolLM2-1.7B 37.4 4.6 16.7 31.1
Llama-3.2-3B 4.6 1.1 3.7 17.0

Leakage reduction: Constrained decoding substantially reduces PII leakage relative to baseline,
particularly for models with moderate initial exposure (e.g., SmolLM2-1.7B drops from 37.4% to
16.7%). Gemma-1.1-7B exhibits minimal baseline leakage due to safety-aligned pretraining, which
constrained decoding maintains. Post-hoc filtering (Presidio) achieves the lowest leak rates across
models. Speculative constrained decoding increases both leak rates and latency due to verification
overhead and frequent draft rejections.

Latency analysis: Constrained decoding generally improves or maintains inference speed compared
to baseline, while post-hoc filtering adds minor overhead. Speculative constrained decoding incurs
substantial latency increases (3.5–6.9×) due to draft verification and rejections.
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Table 2: End-to-end inference latency (millseconds)

Model Baseline Presidio Constrained Speculative

Gemma-1.1-7B 1030 1054 1000 5243
SmolLM2-1.7B 1944 1979 1949 13433
Llama-3.2-3B 1845 1868 1641 6516

4.3 Discussion

In Algorithm 1, we set n = 40 (recent tokens) and w = 160 (character window) to match average
subword lengths (∼4 characters/token in BPE/SentencePiece), enabling capture of partial structured
PII (e.g., email prefixes, SSN segments) with minimal latency. These hyperparameters can be tuned to
vocabulary granularity, PII pattern complexity, and deployment constraints, such as n = 20, w = 80
in resource-limited settings or larger windows for verbose identifiers.

The SmolLM2-1.7B model showed 16.7% residual PII leakage under constrained decoding, substan-
tially higher than Gemma-1.1-7B (2.0%) and Llama-3.2-3B (3.7%). This disparity may reflect the
interaction of its smaller capacity (1.7B) with multi-stage training on ∼11T tokens, which can induce
over-memorization and increase sensitive string regurgitation. Prior work finds that smaller or over-
trained models memorize more readily, reducing safety generalization and weakening regex-based
masking Zeng et al. [2023], Ruan et al. [2025], Satvaty et al. [2024].

5 Conclusion

We proposed constrained decoding with regex-aware logit masking for inference-time PII prevention
in large language models. Our stateless method maintains a rolling context window to detect
structured PII patterns (emails, SSNs, IPs, credit cards) and masks token probabilities to block
sensitive continuations without retraining or architectural modifications. Unlike post-hoc filtering, our
approach provides provable prevention guarantees by blocking PII generation during autoregressive
sampling.

Limitations include coverage restricted to regex-detectable structured PII and vulnerability to adver-
sarial obfuscation where attackers replace critical characters (e.g., substituting @ with [AT] in email
addresses to evade pattern matching). Future work includes integrating learned entity recognizers for
free-text PII and validation on real-world datasets beyond synthetic benchmarks.
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