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Abstract

Large Language Models (LLMs) have achieved
human-level proficiency across diverse tasks, but
their ability to perform rigorous mathematical
problem solving remains an open challenge. In
this work, we investigate a fundamental yet
computationally intractable problem: determin-
ing whether a given multivariate polynomial is
nonnegative. This problem, closely related to
Hilbert’s Seventeenth Problem, plays a crucial
role in global polynomial optimization and has
applications in various fields. First, we intro-
duce SoS-1K, a meticulously curated dataset of
approximately 1,000 polynomials, along with
expert-designed reasoning instructions based on
five progressively challenging criteria. Evaluat-
ing multiple state-of-the-art LLMs, we find that
without structured guidance, all models perform
only slightly above the random guess baseline
(50%). However, high-quality reasoning instruc-
tions significantly improve accuracy—boosting
performance up to 85.6%. Furthermore, our 7B
model, SoS-7B, fine-tuned on SoS-1K for just 4
hours, outperforms the 671B DeepSeek-V3 and
GPT-40-mini in accuracy while only requiring
1.8% and 5% of the computation time needed
for letters, respectively. Our findings highlight
the potential of LLMs to push the boundaries of
mathematical reasoning and tackle NP-hard prob-

lems.
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1 Introduction

With Large Language Models (LLMs) reaching human-level
proficiency across a diverse range of tasks (Brown et al.,
2020; Singhal et al., 2023; Cai et al., 2023; Yoshikawa
et al., 2023), their ability to reason has emerged as a central
topic of interest (Wei et al., 2022; Huang & Chang, 2022).
Among these, mathematical reasoning stands out as one of
the most rigorous and demanding (Kant, 1908; Hendrycks
et al., 2021; Ahn et al., 2024; Liu et al., 2024). As a result,
the ability of LLMs to solve research-level mathematical
problems is not only a critical benchmark for evaluating
their reasoning capabilities but also has the potential to

transform mathematical research and practice.

Demonstrated by the success of OpenAl ol (OpenAl, 2024)
and DeepSeek-R1 (Guo et al., 2025), test-time scaling has
emerged as a promising technique for enhancing LLMs’
performance in mathematical reasoning (Snell et al., 2024a;
Welleck et al., 2024). This approach involves prompting
LLMs to generate more reasoning steps, either sequentially
(Snell et al., 2024b; Hou et al., 2025; Lee et al., 2025) or in
parallel (Brown et al., 2024; Xin et al., 2024), to increase the
accuracy of their final answers. However, the community’s
primary focus has been limited to relatively simple levels of
mathematics, ranging from high school and Olympiad-level
problems to early undergraduate topics (of America, 2024;
Hendrycks et al., 2021). Whether the promise of test-time
scaling extends to research-level mathematics remains an

open question.

In this paper, we investigate a fundamental yet formally
well-posed problem in mathematics: determining whether a
given multivariate polynomial is nonnegative. This question
is closely related to Hilbert’s Seventeenth Problem, which
was posed by David Hilbert in 1900 as part of his famous
23 problems presented at the International Congress of
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Mathematicians (ICM) (Hilbert, 1893), and it remains
central to global polynomial optimization. Many key
challenges in applied and computational mathematics can
be reframed as deciding the nonnegativity of certain poly-
nomials including control theory (Parrilo, 2000), quantum
computation (Doherty et al., 2002), polynomial games
(Gvozdenovi¢ & Laurent, 2007), tensor methods (Zhu
& Cartis, 2024; Ahmadi et al., 2023a) and combinatorial

optimization (Gvozdenovi¢ & Laurent, 2007).

Testing whether a general polynomial is nonnegative is prov-
ably NP-hard, even for polynomials of relatively low de-
grees or with a small number of variables. People usually
seek special cases of polynomials where the challenging
nonnegativity constraints can be replaced with more man-
ageable conditions. For instance, the sum of squares (SoS)
condition, a mathematical technique in polynomial optimiza-
tion where a polynomial is expressed as a sum of squared
polynomials, provides a sufficient criterion for polynomial
nonnegativity. Classical solvers, such as SOSTOOLS, YALMIP,
and Gloptipoly have been developed to verify these SoS
conditions (Prajna et al., 2002). However, a significant lim-
itation of these approaches lies in the typically large size
of the resulting semidefinite programming (SDP) problem.
Specifically, for a polynomial with n variables and a degree
of 2d, the SDP’s dimension is given by N = ("+2d) , mak-

2d
ing it challenging to scale this approach to larger problems.

To evaluate if state-of-the-art (SOTA) reasoning LLMs
like Openai ol and DeepSeek-R1 can solve large-scale
SoS programming problems, we introduce SoS-1K, a
meticulously curated dataset of approximately 1,000
polynomials—along with expert-designed, SoS-specialized,
reasoning-guiding instructions based on five progressively
challenging criteria: polynomial degree, nonnegativity
of the leading search direction, identification of special
structures, assessment of square-form expressions, and
matrix decomposition into the quadratic form of mono-
mials. Our comprehensive evaluation of multiple SOTA
LLMs, including DeepSeek-R1, DeepSeek-V3, GPT-4o,
OpenAl ol-mini, Qwen?2.5 series, and QwQ-32B-Preview,
demonstrate the following interesting findings:

* When presented with a plain question, all SOTA LLMs
bluntly fail to solve SoS with most models achieving

only around 60% accuracy, just slightly above the random

guess baseline of 50%.!

* When prompted with high-quality reasoning traces, we
consistently observe a significant accuracy boost across
all models, up to 21%. And models perform better with

higher-quality reasoning traces.

* Reasoning-focused LLMs generally outperform general-
purpose LLMs, regardless of prompt quality.

* Higher-capacity models require fewer thinking tokens to
make correct predictions, while lower-capacity models
need more reasoning steps to achieve their optimal perfor-

mance.

We further demonstrate that supervised fine-tuning (SFT) of
a pre-trained 7B model on SoS-1K for just 4 hours using 2
A100 GPUs significantly improves accuracy from 54% to
70% with significantly faster response times. Specifically,
SoS-7B requires only 1.8% and 5% of the computation time
needed for DeepSeek-V3 and GPT-40-mini, respectively.
The resulting SoS-7B surpasses much larger models, includ-
ing the 671B DeepSeek-V3 and GPT-40-mini. More inter-
estingly, when prompted with high-quality reasoning, the
models demonstrate an understanding of research-level ques-
tions. For instance, Qwen2.5-14B-Instruct-1M leverages
the Motzkin polynomial to generate new, previously unseen
counterexamples to Hilbert’s 17th problem (Motzkin, 1967).
Such examples are nontrivial, as the first counterexample
to Hilbert’s 17th problem was discovered 27 years after
Hilbert originally posed it (Hilbert, 1893). These findings
suggest that LLMs exhibit reasoning patterns, expanding
the boundaries of solving NP-hard problems.

Our work serves as a pilot study on leveraging reasoning
LLM:s for solving SoS problems, paving the way for tackling
large-scale research-level questions in mathematics using
AL

1.1 Related Work

The study of SoS and nonnegative polynomials has a rich
history spanning over 120 years, with numerous scholars

ISince SoS is a binary classification problem, random guessing
yields 50% accuracy.
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Question: Can you determine whether the following polynomial is SoS?
59.1 + 30.3x; + 4.8x,- 6.7x3 + -+ + 356.2x5%9 — 548.4xgX1¢ + 993.7x% — 835.9x9x1 + 1286.7x%,
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Figure 1: Demonstration of SoS Plain (left), SoS Simple (mid), and SoS Reasoning (right).

contributing to this field. Classical methods for characteriz-
ing an SoS polynomial involve expressing the polynomial
as a quadratic form of monomials and then reformulating
the problem as a semidefinite program (SDP) (Lasserre,
2000; 2001). Classic techniques, such as the Lasserre hi-
erarchy, date back to 2001 (Lasserre, 2001). The develop-
ment of numerical solvers began in 2009, with tools like
GloptiPoly and SoSTOOLS introduced in (Henrion et al.,
2009; Papachristodoulou et al., 2013). More details on the

literature review for SoS can be found in Appendix A.

The first attempt to tackle SoS-related mathematical diffi-
culty via Al was presented in (Alfarano et al., 2024). The au-
thors trained Transformers to address a long-standing open
problem in mathematics: discovering a Lyapunov function
that guarantees the global stability of a dynamical system.
The global stability of polynomial Lyapunov systems is
closely tied to SoS framework. Their approach was tested
on relatively small systems (with at most five equations for
polynomial systems) and demonstrated promising results

compared to state-of-the-art conventional solvers.

2 SoS-1K Dataset

In this section, we first provide the definition of SoS poly-
nomials. We describe the expert-annotated reasoning traces
based on five criteria of increasing difficulty in Section 2.1,
which lead to the generation of the SoS-1K dataset, detailed

in Section 2.2.

Definition 2.1. SoS polynomial (Ahmadi et al., 2023a;
Ahmadi & Parrilo, 2013; Kojima, 2003) A 2d-degree
Rn

., Zp] € R™ is a sum of squares (SoS) if there ex-

multivariate polynomial g(x) — R where x =
[1,..
ist polynomials ¢i,...,q, : R® — R, for some r € N,
such that ¢(x) = >-7_, g;(x)* for all x € R™ (?)Def. 1]ah-

madi2023higher.

Further details on the theory for SoS polynomials can be
found in Appendix B.

2.1 Expert-Designed Reasoning Instructions for SoS

Instructions play a crucial role in guiding LLMs toward
better reasoning and problem-solving (Zhang et al., 2023).
The way an LLLM processes a problem can be significantly

improved with carefully crafted instructions that provide
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structure, constraints, and logical flow.

To evaluate the capacity of SOTA LLMs on SoS reasoning,
we create three sets of reasoning-guiding instructions with
increasing quality that can be applied across multiple SoS
problem types: (1) plain question (SoS Plain); (2) simple
SoS instruction (SoS Simple); (3) reasoning-guiding SoS
instruction (SoS Reasoning).

SoS Plain simply asks LLMs: “Please analyze if this poly-

nomial can be expressed as a Sum of Squares (SOS)”.

SoS Simple classifies SoS polynomials into five distinct
groups, each defined by a concise, one-line criterion. The
full instruction set for SoS Simple contains 78 words
and 647 characters, with complete details provided in Ap-

pendix C.

SoS Reasoning is a structured five-step framework designed
to identify SoS polynomials. Unlike SoS Simple, which
provides only basic classification criteria, SoS Reasoning
encourages the model follow a step by step mathematical
verification process. The framework introduces progres-
sively more detailed reasoning steps to guide the model in
verifying whether a polynomial is SoS. Specifically, we pro-
vide a logical reasoning trace based on proofs and theorems,
offering necessary and sufficient conditions for identifying
SoS polynomials. A large number of positive and nega-
tive examples accompany each set of theorems, helping
the model recognize special structures, symmetries, and
mathematical forms inherent to SoS polynomials. Addi-
tionally, SoS Reasoning introduces intermediate steps and
incorporates key and challenging reasoning processes, such
as the Q matrix and the squared form p;, enabling deeper

reasoning and iterative refinement.

Below is an illustration of SoS Reasoning. The full version

is provided in Appendix D.

Step 1. Check the Degree: An SoS polynomial must have
an even highest degree.

Step 2. Check for Non-negativity: SoS polynomials are
nonnegative for all real inputs. We verify this by examining
the constant term, the coefficients of the leading term, and
performing a grid-based numerical check.

Step 3. Check for Well-known Special Cases: Any non-

negative quadratic polynomial and any nonnegative quartic

polynomial in one or two variables is SoS.

Step 4. Check for Square Form: By Definition 2.1, an
SoS polynomial can be expressed as: ps(x) = >_. ¢;(x)?,

where each ¢;(x) is a polynomial.

Step 5. Check for Matrix Decomposition: Based on The-
orem B.2, we express the polynomial as p(x) = y*TQy*7
where Q is a symmetric matrix>. We then check whether Q

is positive semidefinite.

2.2 Construction of SoS-1K Test Set

Building on the above expert design, we construct SoS-
1K, a dataset comprising five subsets of polynomials, each
corresponding to polynomials filtered out at steps 1-5. Ap-
pendix E provides a comprehensive summary of the SoS-1K
test set and its subsets. Since most LLMs struggle with very
long polynomials, we have ensured that the majority remain
within a length of 4,000. Approximately half of the poly-
nomials are SoS, while the other half are not. The number
of variables and the polynomial degree both range from 2
to 10. For all test subsets (except Set 1), we provide two
corresponding sets: one containing SoS polynomials and
another containing non-SoS polynomials. Each polynomial
is labeled as either SoS or non-SoS, with accompanying
justifications and difficulty levels. For certain polynomial
classes, we provide theoretical proofs confirming their SoS
status, while the remaining polynomials are labeled based

on results from standard solvers.

3 Evaluation of LLMs on SoS

In this section, we compare the performance of SOTA LLMs
using SoS Plain, SoS Simple, and SoS Reasoning on a
subset of SoS-1K of approximately 340 randomly chosen
from all sub-classes of test problems (see Table 3). These
test samples are drawn such that the number of samples in
each subtest is approximately equal. We test across sub-
classes and report results per test subclasses. The models
evaluated include reasoning-purpose models like DeepSeek-
R1, OpenAl ol-mini, and QwQ-32B-Preview, as well as
general-purpose models such as DeepSeek-V3, GPT-40, and

2Q and y* are provided in Appendix D
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Model H Accuracy on Valid Samples ‘

Accuracy on Total Samples

‘ Response Time (s)

Instruction Type

H SoS Plain ‘ SoS Simple ‘ SoS Reasoning H SoS Plain ‘ SoS Simple ‘ SoS Reasoning H SoS Plain ‘ SoS Simple ‘ SoS Reasoning

General-purpose LLMs

Qwen?2.5-7B-Instruct 55% 61% 76% 52% 59% 62% 22.4 31.2 68.5
Qwen?2.5-7B-Instruct-1M 54% 64% 75% 54% 64% 63% 5.6 8.4 35.2
Qwen?2.5-14B-Instruct 55% 66% 74% 52% 66% 69% 12.9 23.1 483
Qwen?2.5-14B-Instruct-1M 56% 60% 74% 56% 59% 67% 12.7 20.7 52.7
Qwen?2.5-32B-Instruct 56% 58% 67% 55% 58% 62% 13.0 18.0 37.4
Qwen3-8B-nothinking 56.5% 61.2% 69.2% 56.5 % 60.9% 67.4 % 14.1 33.75 40.2
Qwen3-32B-nothinking 63% 63.5% 72.8% 63 % 63.5 % 72.6% 22.4 39.11 44

DeepSeek-V3 54% 60% 70% 54% 60% 69% 29.6 39.8 95.0
GPT-40-mini 59% 67 % 72% 59% 67 % 69% 10.8 15.4 53.1

GPT-40 60% 61% 75% 59% 61% 75% 14.6 16.2 27.8

Reasoning-purpose LLMs

QwQ-32B-Preview 64% 71% 79% 44% 54% 52% 105.7 101.8 100.0
Qwen3-8B-thinking 70% 73.9% 75% 70% 73.2% 75% 238 288.5 222

OpenAlI ol-mini 58% 61% 77% 57% 61% 76% 8.3 18.1 34.9
DeepSeek-R1 62% 62% 81% 55% 55% 56% 514.5 565.6 492.5
Qwen3-32B-thinking 78.3% 79 % 85.6% 77.3% 78.5% 85.6% 276 310 185.5
Average H 57% ‘ 63% ‘ 75% H 54% ‘ 60% ‘ 65% H 68.2 ‘ 78.0 ‘ 95.0

Table 1: Accuracy comparison across various SOTA LLMs on a subset of SoS-1K with 340 samples. Results are divided

into “Valid Samples” and “Total Samples”, as we found that LLMs sometimes suffer from timeout issues.

Qwen2.5 series.

The full results for each model on each test set are sum-
marized in Table 1. We summarize our main observations

below:

OB1. All LLMs fail when presented with a plain ques-
tion. When given SoS-plain, all LLMs exhibit poor accu-
racy, ranging from 50% to 60%, with QwQ-32B-Preview be-
ing the sole exception, achieving 64% valid accuracy. This
result suggests that, despite being trained on vast amounts
of mathematical data, SOTA LLMs struggle to solve SoS

problems without explicit prompting.

0B2. LLMs have a significant performance boost when
prompted with high-quality reasoning-guiding instruc-
tions. We consistently observe a substantial accuracy im-
provement across all models. With SoS Simple, QwQ-32B-
Preview achieves 71% accuracy, while DeepSeek-R1 with
the highest-level SoS Reasoning reaches the highest accu-
racy (81%). It suggests that while LLMs may possess the
underlying knowledge to solve SoS problems, they require

clear and structured instructions to effectively retrieve and

apply it.

Furthermore, it is worth mentioning that SoS Reasoning
plays a crucial role in achieving these improvements. The
improvement from SoS Simple over the baseline (SoS Plain)
is relatively small, averaging 5% increase in the accuracy
of valid samples and 6% increase in the accuracy of valid
samples, whereas SoS Reasoning improves performance by

17% and 11%, respectively over the same baseline.

OB3. Reasoning-purpose LLMs benefit more from high-
quality instructions than general-purpose LLLMs. Over-
all, reasoning-focused LLMs such as DeepSeek-R1, Ope-
nAl ol-mini, and QwQ-32B-Preview achieve a higher aver-
age accuracy (79.0%) compared to general-purpose LLMs
(72.9%). This result suggests that stronger reasoning capa-
bilities contribute to improved performance in solving SoS

problems.

0OB4. Many LLMs struggle to consistently provide valid
answers to SoS questions. Most LLM:s fail to consistently
provide valid answers, often encountering timeout issues.
Nevertheless, GPT-40, DeepSeek-V3, and ol-mini demon-
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strate robustness in this regard, consistently producing ef-

fective and reliable answers.

4 Further Analysis

In this section, we outline several research questions that

the authors find particularly intriguing.

Q1: Does the model follow a truly mathematical step by

step verification process?

We find that LLMs are able to generate answers that are
both logically and mathematically correct, step-by-step, fol-
lowing our SoS Reasoning instruction. For instance, we
demonstrate ol-mini’s response in Appendix F where we
can observe that the responses are logically and mathemati-
cally correct, and the model stops naturally once it derives
an answer, rather than blindly going through all possible

steps.

Q2: Can LLMs effectively retrieve critical information
from long-context polynomials?

Unlike standard text input, polynomials are complex al-
gebraic expressions consisting of variables, coefficients,
exponents, and terms. Thus, it is crucial for LLMs to effec-
tively interpret and extract critical information from such
structured formats. Our analysis reveals that while QwQ-
32B-Preview struggles with questions exceeding 4K tokens
in length, most SOTA LLMs can successfully extract the
necessary coefficients from 4K-length polynomials for eval-

uation, producing correct answers.

Q3: At which of the Steps 1 through 5 in SoS Reasoning
does the accuracy improve?

In Figure 2, we illustrate the accuracy improvement across
different test sets for the ol-mini model under SoS Plain,
SoS Simple, and SoS Reasoning.> We observe that the
simplest test set, Test Set 1 (corresponding to Step 1), un-
surprisingly achieves 100% accuracy across all prompting
methods. For the more challenging test sets, Test Sets 2a,
3.1a, 5.1a-5.4a, we observe a continuous improvement from
SoS Plain to SoS Simple and further to SoS Reasoning. This
improvement is attributed to Steps 2 and 5 in SoS Reason-
ing, where a series of mathematical verification methods for

3Similar patterns are observed for other models.

non-negativity are introduced, including constant coefficient
check, grid evaluation, leading order and dominant terms
comparison, finding minima, matrix decomposition, and

finding symmetry and translation.

Prompt Types
—— S0S Simple
—— SoS Plain
—— So0S Reasoning

T55.3a

Figure 2: Accuracy of different test sets using ol-mini.

Q4. Will LLMs become lazy (take shortcuts) during

reasoning?

Yes, another interesting phenomenon observed under the
SoS Reasoning prompt is that the model tends to be lazy
in Step 5. Specifically, instead of fully executing Step 5,
it often avoids matrix decomposition or semidefinite pro-
gramming (SDP) due to complexity and instead guesses an
answer based on prior steps. This behavior is particularly
prevalent for long inputs and complex polynomials, such
as those in Test Set 5.4a. For simpler problems, reasoning
models such as o1-mini (which had the shortest runtime of
17s) and larger models like QwQ-32B-Preview tend to take
shortcuts, skipping Step 5 and inferring the answer from
earlier, simpler steps. In contrast, DeepSeek-V3 does not
take shortcuts and instead spends significantly more time
solving all steps properly (40s).

QS5: How does reasoning length affect accuracy? Fig-
ure 3 shows that higher-capacity models generally require
fewer thinking tokens to make correct predictions, whereas
lower-capacity models need more reasoning steps to reach
optimal performance. For instance, DeepSeek-R1 and ol-
mini achieve the highest number of correct predictions with
a 1K-2K response length, whereas the Qwen2.5 series re-
quire 3K—4K tokens to produce correct answers.
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Correct Sample Distribution by Response Length

=)
3

50

Number of Correct Samples

1 2 3 4 5 6
Response Length (K tokens)

Quen2.5-7B-Instruct-TM =+ Qwen2.5-32B-Instruct == of-mini —e= DeepSeek-R1

Figure 3: Number of correct samples with various response

lengths.

Q6: Do SOTA LLMs have any limitations? Though we
demonstrate that SoS Reasoning effectively improves accu-
racy, it is subject to the following limitations. Firstly, for
long input cases, invalid samples occur. For example, in
DeepSeek-R1, only 234 out of 340 samples were valid. Sec-
ondly, when handling complex problems, "taking shortcuts"
may save time; however, stopping prematurely at difficult
steps and guessing an answer can negatively impact predic-
tion accuracy. Thirdly, while these LLMs excel on small-
sized polynomials (achieving accuracy close to 90%), they
struggle in cases where the quadratic form of the polynomial
involves a low-rank matrix decomposition.

S Performing SFT on SoS-1K

We further conduct supervised fine-tuning (SFT) with
Qwen2.5-7B-Instruct-1IM on SoS-1K using LLaMA-
Factory (Zheng et al., 2024). The training process was
performed on 2x NVIDIA A100 GPUs for 4 hours. The
resulting model, SoS-7B, establishes a SOTA total accu-
racy of 70%, outperforming 671B DeepSeek-V3 (69%),
while requiring only 1.8 seconds response time compared to
DeepSeek-V3’s 100 seconds. While Qwen3-32B-thinking
achieves a higher accuracy (85.6%), it is acceptable as our
model is only trained with 1K dataset and enjoys a much

faster response time, i.e., 1.8s vs 34.9s.

6 Model’s Understanding of SoS and
Nonnegativity

One might ask: Did the model merely learn to classify, or
has it truly developed the ability to “think” and “construct”

Table 2: Accuracy Comparison on SoS Reasoning Bench-
mark, where "—" denotes the undisclosed model size. Ac-

curacy is measured on full evaluation samples.

Model Size Acc. (%)
Closed Source

GPT-40 — 75
ol-mini — 76
Open Source

Qwen?2.5-7B-Instruct-1M 7B 63
Qwen2.5-32B-Instruct 32B 62
QwQ-32B-Preview 32B 52
DeepSeek-V3 671B 69
DeepSeek-R1 671B 56
Qwen3-8B-thinking 8B 75
Qwen3-32B-thinking 32B 85.6
SoS-7B (Ours) 7B 70

new proofs and examples? When faced with research ques-
tions in SoS or polynomial optimization, can the model

generate mathematically meaningful insights?

To explore this, we designed a series of research-driven ques-
tions (Appendix H) to test the model’s ability to understand
the mathematical concepts behind Sum of Squares (SoS)
and nonnegativity properties. Finding nonnegative polyno-
mials that are not Sum of Squares (NNSoS) is a fundamental
and ongoing research problem in real algebraic geometry
and polynomial optimization (Ahmadi et al., 2023b; 2024;
Ahmadi & Zhang, 2022). This problem is closely connected
to Hilbert’s 17th problem, semidefinite programming (SDP),
and positivity certificates in polynomial optimization.

We test the model’s ability to create and analyze unseen
mathematical examples. We asked the following question to
Qwen-7B-1M and Qwen-14B-1M: Can you provide a new
NNSoS that was never found in the literature?

Interestingly, when prompted with SoS plain, Qwen-14B-
IM can only give examples that are well-known in the liter-

ature and Qwen-7B-1M returned an incorrect example:

4 4 2 2 2.2
pa(X) =27 +a5+1— 2] — 25 — xiz5.

Although this example is incorrect, it is nontrivial, as classic
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solvers such as YALMIP also fail to extract global optimality*.
The reason this example is challenging is that it has four
-1), (-1,1), and (-1,-1),

with a global minimum value of 0. The number of global

global minima at (1,1), (1,

minima exceeds the rank of the moment matrix, making it

difficult to extract global optimality certificates.

However, when the same research question was posed to
the model with SoS reasoning, the model correctly iden-
tified that p, is not a valid solution to our question. This
improvement can be attributed to Step 4 of SoS Reason-
ing (Appendix D), where the trained model recognized that
pa(X) is a nonnegative quartic polynomial in two variables
and, therefore, cannot be NNSoS.

Moreover, using SoS reasoning, Qwen-14B-1M derived a

new valid example for NNSoS,

Ga(X) = xia32s + 232523 + 25 + 1 — 3aiada?.
We cross-checked this polynomial using the classic solver
YALMIP and confirmed that ¢, is indeed a NNSoS. The
trained model’s approach to constructing this example is par-
ticularly interesting. It began with the well-known example
of NNSoS such as p,, (x) = 222 +22234+ 132223, Then,
the model then introduced a new variable and slightly modi-
fied the coefficients to generate ¢,. This demonstrates that
the trained model not only recognizes existing patterns in
polynomial optimization but also generalizes and constructs
novel cases, providing valuable mathematical insights.

7 Conclusion and Discussion

This paper investigates the capacity of LLMs on a research-
level mathematical problem: determining whether a given
multivariate polynomial is SoS. This problem, closely re-
lated to Hilbert’s Seventeenth Problem, plays a crucial role
in various fields. We first introduce SoS-1K, a dataset of
approximately 1,000 polynomials, along with a set of SoS-
specific reasoning-guiding instructions. Our results show
that with our expert-designed, current SOTA LLMs is able
to achieve up to 81% accuracy. Furthermore, an in-depth
analysis of model responses reveals several intriguing in-
sights. This study highlights the potential of Al in tackling

*YALMIP returns status 0, indicating that although the SDP is
solvable, rank conditions cannot ensure global optimality.

large-scale open problems in mathematics, paving the way

for future advancements.

8 Limitation and Potential Risks

One limitation of this study is that we constrain the context
length of SoS question within 4K, as some LLMs tend to fail
with longer sequence length. Due to this reason, most SoS
polynomials are within the capacity of traditional solvers.
In the future, we will extend our dataset, targeting more
challenging questions with a scale that is beyond traditional
SoS solvers. One potential risk of this study is that LLMs
have the chance to make wrong decisions, which might be
misleading, and therefore we need to use traditional solvers

to verify.
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A Literature Review for SoS

The problem of determining whether a multivariate polyno-
mial is nonnegative is inherently linked to the task of finding
its global minimum—a fundamental challenge in the opti-
mization community (Ahmadi et al., 2023a; Zhu & Cartis,
2024; Lasserre, 2000; Parrilo & Sturmfels, 2001). Testing
whether a general polynomial is nonnegative is provably
NP-hard, even for polynomials of relatively low degrees
or with a small number of variables. For instance, it has
been shown that finding the global minimum of general
even-degree polynomials of degree at least four is NP-hard
(Ahmadi et al., 2023a; 2013; Ahmadi & Zhang, 2022; Murty
& Kabadi, 1987).

Due to the computational intractability of the general prob-
lem, we seek special cases of polynomials where the chal-
lenging nonnegativity constraints can be replaced with more
manageable conditions. The sum of squares (SoS) con-
dition, a mathematical technique in polynomial optimiza-
tion where a polynomial is expressed as a sum of squared
polynomials, provides a sufficient criterion for polynomial
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nonnegativity. The SoS property is particularly useful be-
cause it allows the nonnegativity problem to be reformulated
as a semidefinite programming (SDP) problem, for which
efficient algorithms, such as interior-point methods, exist.
In certain special cases, nonnegativity and SoS are equiv-
alent; for example, any nonnegative quadratic polynomial
or any nonnegative even-degree univariate polynomial can
always be expressed as a sum of squares (Hilbert, 1893;
Ahmadi & Parrilo, 2013; Ahmadi et al., 2023b). For more
complex polynomials, the Lasserre hierarchy provides a sys-
tematic way to approximate nonnegativity using a sequence
of SoS relaxations (Lasserre, 2001). This method constructs
a sequence of SDP problems that yield increasingly tighter

approximations to nonnegativity.

Many large-scale problems exhibit structured sparsity pat-
terns, enabling the application of a sparsity-adapted hierar-
chy of SDP relaxations (Camps & Sznaier, 2017; Lasserre,
2006; Molzahn & Hiskens, 2015; Waki et al., 2006). Ad-
ditional techniques for addressing large-scale problems in-
clude Structured DSoS and SDSoS programming, as well as
Bounded Degree SoS (BSoS) (Ahmadi & Majumdar, 2019;
Lasserre et al., 2017; Waki et al., 2006; Weisser et al., 2018;
Zheng et al., 2019). These approaches take advantage of
the structure of the problem (sparsity) to generate smaller
SDPs. There are also methods to reformulate the original
optimization problem to reduce the size of the optimization.
For instance, the optimization of a multivariate fourth-order
(quartic) homogeneous polynomial under quadratic con-
straints can be relaxed into a quadratic SDP (Luo & Zhang,
2010). In contrast to the SoS approach, which gives a matrix
variable of size at least NV x NV, the quadratic SDP system
has a size of n x n only. The resulting quadratic SDP can
be well approximated in polynomial time in some cases, but
it remains NP-hard. Yet, these methods primarily depend on
the specific structure of the problem, and generally, the scal-
ability of characterizing polynomial nonnegativity remains
a significant challenge in the literature.

B Mathematical Background for SoS

Definition 2.1 implies that the degree of an SoS polynomial

q has to be even and that the maximum degree of each

gj is de%[‘ﬂ. Therefore, we denote the degree of the SoS


http://arxiv.org/abs/2403.13372

SoS1: O1 and R1-Like Reasoning LLMs are Sum-of-Square Solvers

polynomial as p’ = 2d where d is a positive integer.

Definition B.1. (Total degree polynomial space) Let
x,]T be the

variables. We denote P, [x] as the general representation

n > 0 be the dimension and x = [z4,...,

of the polynomial spaces, where p’ represents the highest
degree each entry can take. The associated multi-index set
as a = [ag,qz,...,a,) € [Z]0,p']]" where each . is
an integer between 0 to p’ inclusively and the indices sat-
isfy Y.'_, @ < p’. The number of monomial bases are
N = (";r,p )

Theorem B.2. (From (Parrilo, 2000)) For a variable x =
[#1,...,2,]T and an even integer p' = 2d, let ¢4(x) be
the vector of all monomials of degree at most d in x; for
1 < j < n. A polynomial p : R™ — R of degree p' is SoS if
and only if there exists a symmetric matrix Q such that (i)

P(x) = ¢a(x)TQ¢a(x) for allx € R™, (ii) @ = 0.
C SoS Simple

Step 1: Examine if the highest degree is odd or even.

Step 2: For the even highest degree d, examine the coef-
ficients of highest-degree terms. Check for any negative

values.

Step 3: Consider these special properties:

* Properties of quadratic polynomials
* Properties of quartic polynomials in 1-2 variables.

* Properties of quartic homogeneous polynomials in 1-3
variables.

* Properties of even-degree univariate polynomials.

Step 4: Try direct sum of squares representation.

Step 5: Consider matrix methods if needed.

D SoS Reasoning

Step 1. Degree: An SoS polynomial must have an even
degree (i.e., its highest-degree term must have an even expo-
nent). Any odd-degree polynomial cannot be expressed as a
sum of squared polynomials. This is the simplest criterion
and should always be checked first.
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If the highest-degree univariate term (i.e., z¢, ..., %) has a
negative coefficient, then the polynomial is not SoS. Other-
wise, we cannot determine whether it is SoS and proceed to

the next step.

Example 1: p(x) = o — x5 + 23 + 23x3. Since the highest-
degree univariate term has a negative coefficient (namely,
—x73), by letting x5 — oo, it is clear that p(z) becomes

negative. Therefore, it is not SoS.

Example 2: p(x) = 2} + x5 + 23 — 22323 + z175. All the
highest-degree univariate terms have non-negative coeffi-
cients (i.e., x7, 73, 23). Thus, we cannot determine whether

it is SoS, and we move to the next step.

Example 3: p(x) = 2} + x5 — 22222, This polynomial is
SoS because it can be rewritten as: p(x) = (2 —x3)2. Note
that a negative coefficient in the highest-degree cross term
is allowed. For instance, in this case, we have the negative
coefficient cross term —2x2x3. However, the highest-degree

univariate terms are positive (i.., 21, 73).

Test Set Construction: Test Set 1 is constructed such that
the highest-degree term is odd, thereby ensuring that the

polynomials are not SoS.

Step 2. Non-negativity: SoS polynomials are nonnegative
for all real inputs. For example, if a polynomial p(x) has a
negative constant term, then p(0) < 0, proving it is not SoS.
Similarly, if a horizontally translated and scaled polynomial
q(x) = ep(x + d) (for any ¢ € R and d € R™) satisfies
q(0) < 0, then p(x) cannot be SoS.

To determine whether a polynomial is nonnegative, please

use the following approaches:

Constant coefficient check: If the constant coefficient is
negative, then p(0) < 0. For instance, p(z) = o* + 23 — 1,
p(x) = 23 + 2323 + x5 — 0.1. are no SoS polynomials.

Grid evaluation: Try finding the minimum value of the
polynomial over a selected evaluation grid. It is crucial
to perform this step. Substitute multiple values of x, such
as (1,0,0,...), (0,1,0,...), (0,0,1,...), etc., to check

whether the polynomial evaluates to a negative value.

Leading order and dominant terms: Analyze the highest-
degree terms and explore symmetries among cross terms.

Evaluate the magnitude of negative coefficients relative to
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positive coefficients.

Finding minima: Attempt to find the local or global mini-

mum of the polynomial to determine if it is negative.

Finding Symmetry and Translation: Example 1: Consider
a horizontally translated and scaled polynomial: p(x) =
1.82% +10.8z1 +1.22% +4.875 +20.82. Rewriting, p(x) =
1.8(z1 +3)% 4+ 1.2(z2 + 2)* — 0.18. Since p(—3, —2) < 0,
the polynomial is still not SoS.

Step 3. Square Form: An SoS polynomial p(x) can be
written as p(x) = >, ¢;(x)?, where each ¢;(x) is a polyno-
mial. Examples and counterexamples are provided in Test
Set 2, as this is the most common method for checking SoS.

(z1 — 2122)% + (23 — )2,

which is an SoS polynomial. However, polynomials are

Example: Consider p(x) =
sometimes given in their expanded form. For instance, the
same polynomial can be written as: p(x) = —2z%xo +
22 + 2§ — 22123 + 2223 + 3. On the other hand, consider
p(x) = (x1 — 2122)% + (23

is not SoS. To determine whether an expanded polynomial

— )% — 20. This polynomial

can be expressed in SoS form with a negative constant, one
should analyze the symmetries of the terms and the structure

of the cross terms.

Test Set Construction: Examples and counterexamples are

provided in Test Set 2.

Step 4. Special Structures and Cases:

a) Any nonnegative quadratic polynomial is a sum of
squares (SoS).
Examples: p(x) = x3 + 23 — 22129, p(X) = 27 + 23 +
423 — 3x973. These are SoS.
Counterexamples: p(x) = z3 +x3—2x 22— 1, p(x) =

22 + 23 + 423 — broxs.

b) Any nonnegative quartic polynomial in one or two
variables is SoS.
Example: p(x) = i + 22320 — 203 + 23 — 220+ 1 =
(22 + 29 — 1)2.
Counterexample: p(x) = z} + 22379 — 223 + 23 —
229 = (2% + 29 — 1)2 — 1.

¢) Any nonnegative quartic homogeneous polynomial in

one, two, or three variables is SoS.
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d) Any nonnegative even-degree univariate polynomial is
SoS.

Example: p(z) = 25+32*+222, which is nonnegative
and SoS.

Counterexample: p(x) = 2% + 3% + 2z, which takes
negative values and is not SoS.

e) Any nonnegative polynomial with a quadratic term and

quartic regularization is SoS.

Therefore, if a polynomial meets one of the above criteria
and is nonnegative, it is an SoS polynomial. Nonnegativity
can be verified by determining the global minimum, check-

ing the descent direction, or performing a grid search.

Test Set Construction: Examples are provided in Test Set
3.1, 3.2, and 4, while counterexamples are constructed as

polynomials that take negative values.

Step 5. Matrix Decomposition and Check for Symmetric
Positive Definite Q: If the above checks fail, we can use
the following theoretical reasoning:

a) For an even degree 2d polynomial in [z, ..., x,], con-

struct a monomial basis using canonical ordering:

* 2

y

s, (27) n

(@)% (25)).

—— * *
= (27, ... Xl

* ok
THT3, -

n+2d) )

This vector y* has length ("7

b) Express the polynomial as p(x) = y* ' Qy*, where Q

is a symmetric matrix of size ("37?) x ("779). Note
that this representation is not unique; there are multiple

valid forms of Q.

¢) Check whether () is positive definite. This can be done
by finding its smallest eigenvalue. If such a @) exists,
then p(x) is a sum of squares (SoS). Otherwise, p(z)

is very likely not SoS.

If all the above tests fail, we can try Semidefinite Program-
ming (SDP), which is the test used by existing solvers (e.g.,
YALMIP) to verify whether a polynomial is SoS. For example,

to determine if

o] —4xdzy + Trlxd — dryad — 4z ao + 25

p(x)
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is SoS. We convert the problem to the following. We solve
the SDP

Y =minp = ys0 — 4yz1 + Ty22 — 4y13 — 4y11 + You

subject to the constraint

1 w0 yor | w0y oo |
Yio | Y20 Y11 | Yo Y21 Y12
Yor | Y11 Yo2 | Y21 Y12 Yo3 =0
Y20 | Yso Y21 | Y40 Y31 Y22
Y11 | Y21 Y12 | Y31 Y22 Y13
| Yo2 | Y12 Yo3 | Y22 Y13 Yo4a |

If v* > 0, then p is SoS; otherwise, it is not.

Test Set Construction: Examples and counterexamples are
provided in Test Set 5.1-5.4. The examples are constructed
using different positive semidefinite (PSD) matrices Q, such
as sparse PSD Q, low-rank PSD Q, and ill-conditioned PSD
Q. The counterexamples are generated using an indefinite
Q and the corresponding polynomials are likely to not be
SoS. However, to conclusively prove that a polynomial is
not SoS, all possible Q must be examined. In our test set,
we cross-checked the results with classic solvers to confirm
the "Not SoS" classification for Test Sets 5.1-5.4.

E Details for Test Subsets

We provide the details of test subsets in Table 3.

F Sample Model’s Response under SoS
Reasoning Prompt

F.1 ol-mini response for a simple polynomial under
SoS Reasoning Prompt

To determine whether the given polynomial is a sum of

squares (SoS), we will follow the provided steps:
Step 1: Check the Highest Degree

The highest degree of a polynomial is the largest total degree
among its terms. When expanding these squared terms, the
highest degree terms are of the form acf’ (e.g., x?, x%, etc.),

which are degree 3 terms.

Since 3 is an odd degree, according to Step 1: If the highest
degree of a polynomial is odd, it is not SoS. Therefore, the
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polynomial cannot be expressed as a sum of squares.

F.2 ol-mini response for a difficult polynomial under
SoS Reasoning Prompt

To determine whether the given polynomial is a sum of

squares (SoS), we follow the outlined steps meticulously.
Step 1: Check the Highest Degree

The highest total degree among the terms is 4, which is even.
Since the highest degree is even, we proceed to the next

step.

Step 2: Check Highest Degree Univariate Terms for
Negative Coefficients

Univariate Terms of Degree 4: 7.9x7 (Coefficient: 7.9)
4.1x5 (Coefficient: 4.1) 0.91x§ (Coefficient: 0.91) 2.0x}
(Coefficient: 2.0) 0.92x§ (Coefficient: 0.92)

Conclusion: All highest degree univariate terms have posi-
tive coefficients. We cannot determine the SoS property yet

and move to the next step.
Step 3: Check for Negative Values

Testing Specific Points: Point (1, 1, 1, 0, 0), Evaluated
p(1,1,1,0,0) = 66.89 (Positive). Point (0, 0, 0, 1, 1),
Evaluated p(0,0,0,1,1) = 6.52 (Positive). Point (1, 1, 1,
1, 0), Evaluated p(1, 1,1, 1,0) = 2.037 (Positive).

Conclusion: At tested points, the polynomial remains non-
negative. While this doesn’t guarantee it’s SoS, it suggests
the possibility.

Step 4: Special Cases Analysis: The polynomial doesn’t
clearly fit into any of the special cases (a to f) outlined for

immediate determination.

Step 5: Advanced Methods - Matrix Decomposition and
SDP: Given the complexity of the polynomial, performing
matrix decomposition or semidefinite programming (SDP)
manually is impractical. However, based on the evaluations
in Step 3 and the positive coefficients in Step 2, there’s a
strong indication that the polynomial does not take negative

values.

Final Conclusion: Based on the evaluations and the ab-

sence of negative terms in critical components, the polyno-



SoS1: O1 and R1-Like Reasoning LLMs are Sum-of-Square Solvers

Polynomial Type length<4000 length>4000 Total IsitSoS? Difficulty
Test Set 1: Odd Degree Polynomial 150 50 200 NO Easy
Test Set 2a: SoS (Expanded Form) 69 51 120 YES Hard
Test Set 2b: Negative (Expanded Form) 23 40 63 NO Hard
Test Set 2.1a: SoS (Squared Form) 105 15 120 YES Easy
Test Set 2.1b: Negative (Squared Form) 38 25 63 NO Easy
Test Set 3.1a: Nonnegative Quadratic Quartic 100 0 100 YES Medium
Test Set 3.1b: Negative Quadratic Quartic 100 0 100 NO Medium
Test Set 3.2a: Nonnegative Quartic with 2 variables 100 0 100 YES Medium
Test Set 3.2b: Negative Quartic 100 0 100 NO Medium
Test Set 4a: Nonnegative Quadratic Quartic 100 0 100 YES Medium
Test Set 4b: Negative Quartic 100 0 100 NO Medium
Test Set 5.1a: PSD Q 80 16 96 YES Hard
Test Set 5.1b: Non-PD Q 80 16 96 NO Hard
Test Set 5.2a: PSD Spare Q (Sparsity 0.1) 56 16 72 YES Hard
Test Set 5.2b: Non-PD Spare Q (Sparsity 0.1) 56 16 72 NO Hard
Test Set 5.3a: PSD Low Rank Q (rank 3) 42 18 60 YES Hard
Test Set 5.3b: Non-PD Low Rank Q (rank 3) 28 12 40 NO Hard
Test Set 5.4a: PSD Ill-Conditioned Q (A = 1 — 10'?) 20 15 35 YES Hard
Test Set 5.4b: Non-PD Il1-Conditioned Q 40 30 70 NO Hard

Table 3: Summary of SoS-1K Test Sets.

mial is a sum of squares. 2. Can you construct a general formula for nonnegative
polynomials that are not SoS?

G Further Results for Performance of SOTA
LLMs

3. Can you provide a new nonnegative polynomial that is

not SoS and has never been found in the literature?

H Research Level SoS and Nonnegativity

Note that the first three polynomials are well-known exam-
Questions ples of nonnegative but not sum-of-squares (SoS) polynomi-

als. The first is the Motzkin polynomial, a classic example

1. Can you comment on the sum of squares (SoS) and . . .
o o5 of the followine polvnomials? of a nonnegative polynomial that is not SoS. The second
nonnegativity properties o & poly ’ is the Robinson polynomial, a counterexample to Hilbert’s

o p(x) = 2}2d + 2223 + 1 — 32222, 17th problem. The last polynomial is a recent result from
o p(x) = 2% + 28 + 2§ — 222 — %22 — ada? — Ahmadi’s work (?)Thm 3.3]ahmadi2023sums.
waf — wjaf — a3w3 + 3riria, Finding nonnegative polynomials that are not sum of squares
e p(x) = (2 + 25 + 23) + 2(2? + 23 + 23) +  (SoS) is a significant ongoing research problem in real al-
8(zx122 + 2123 + T23) + % gebraic geometry and polynomial optimization (Ahmadi
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SoS1: O1 and R1-Like Reasoning LLMs are Sum-of-Square Solvers

Model ‘ # Total Samples ‘ # Valid Samples
Instruction Type ‘ ‘ SoS Plain ‘ SoS Simple ‘ SoS Reasoning
DeepSeek-R1 340 300 302 234
QWQ-32b 340 233 259 225
ol-mini 340 338 340 337
Qwen2.5-7b 340 323 332 277
GPT-40 340 336 338 337
Qwen2.5-7b-1m 340 340 339 286
Qwen2.5-14b 340 325 340 316
Qwen2.5-14b-1m 340 340 336 309
GPT-40-mini 340 339 339 327
DeepSeek-V1 340 340 340 332
Qwen2.5-32b 340 334 339 315
Average ‘ 340 ‘ 323 ‘ 328 ‘ 300

Table 4: # Total Samples and Valid Samples of Different
Models.

et al., 2023b; 2024; Ahmadi & Zhang, 2022). It connects to
Hilbert’s 17th problem, semidefinite programming (SDP),
and positivity certificates in polynomial optimization.
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