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Abstract

Chemical language models have recently become a powerful tool for the de novo
generation of drug-like molecules represented as SMILES strings. A central
challenge is steering generation toward compounds with favorable properties such
as solubility and absorption. To this end, we investigate inference time control of
generative chemical language models using activation steering. Using contrastive
activation addition, we seek to improve three relevant properties: molecular size,
aqueous solubility (log S), and lipophilicity (log P) without changing the model
weights. We compare two interventions: a single global vector which is added
to the activation in the last transformer layer, and a novel vector field where the
addition vector is computed as a function of the current hidden state. Across
multiple protein targets and two pre-trained models, the global steering vector
yields desired results in just over half of our experiments, while the vector field
achieves larger shifts at the expense of a decrease in the validity rate.

1 Introduction

Controlling molecular properties during de novo generation is a core challenge in computational
drug discovery. Existing approaches such as policy-gradient reinforcement learning, conditional
generation via property tags, and latent-space optimization can be compute-intensive and brittle under
distribution shift or noisy property oracles [4, 11, 6, 5]. We investigate a lightweight, inference-time
alternative—contrastive activation addition (CAA)—based on activation steering [8] for chemical
language models (CLMs). CAA pre-computes a steering vector in the transformer activation space
from contrastive pairs of positive and negative samples. During generation, this vector is added to
the model’s activation state, nudging the distribution of generated molecules toward the desirable
properties represented by the positive samples.

In contrast to post-hoc optimization pipelines, where conditional models must be retrained on property
labels [1, 7] or reinforcement learning updates are performed after each generation step [4, 11, 6],
activation steering offers a single inference-time knob with modest computational overhead. The
traditional steering vector approach computes a global steering vector from contrastive molecule pairs,
then adds this vector into a transformer layer during decoding. We also introduce a token-aligned
steering vector field that conditions the added vector on the evolving hidden state at each generation
step (figure 1). These interventions require only the hidden-state activations of a frozen CLM and do
not modify the model weights.

We target three physico-chemical properties: molecular size (number of heavy atoms), aqueous
solubility (logS), and lipophilicity (logP). These are inexpensive to predict using RDKit for atom
counts, SolTranNet for solubility [3], and the Wildman–Crippen fragment model for logP [13].
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Our study addresses two questions: (i) Can CLMs be steered toward desired property ranges via
contrastively derived activation vectors? (ii) What are the trade-offs between property shift, validity,
and uniqueness when applying a global vector versus a token-embedding-aligned vector?

Contributions. (1) We adapt contrastive activation addition (CAA) to chemical language models
and demonstrate decode-time control of size, logS, and logP . (2) We introduce a novel approach to
activation addition steering: the steering vector field. (3) We compare the original global steering
vector approach with our vector field and characterize the power–stability trade-off.

2 Methods

Overview. We study test-time control for chemical language models (CLMs) via contrastive
activation addition (CAA). CAA builds a “steering” direction in transformer-layer activation space
from contrastive example pairs and injects that direction during decoding, leaving all model weights
frozen. To compute the global steering vector, we proceed in three steps. First, we sample molecules
from the model and construct positive–negative pairs based on the property of interest. Second, we
run each sample through the model and record the final-layer activations at a specified token position.
Finally, we compute the steering vector as the average of all difference vectors pointing from the
negative to the corresponding positive sample across pairs. The global vector approach assumes that
the desired shift in activation space has a constant direction and magnitude, regardless of the current
location. This assumption is limiting for properties such as logP, where successful steering requires
values to fall within a desirable range rather than being maximized or minimized. To address this, we
introduce a variant of CAA that we call a steering vector field. Here, the steering vector is defined
as a function of the current activation state. Instead of using a global mean of all difference vectors,
the field computes a weighted mean in which each pair contributes proportionally to its proximity:
vectors from negative samples closer to the current activation state receive higher weight. We evaluate
both approaches on two CLMs, DrugGen [10] and Plixer [12].

2.1 Generative model

DrugGen. DrugGen [10] is a GPT-style CLM fine-tuned on ∼800k (target, SMILES) pairs. Using it,
we sample molecules using the prompt <|startoftext|><P>{protein_sequence}<L>

Plixer. Plixer [12] is a two-stage pocket-conditioned generator: (i) Poc2Mol, a 3D U-Net that inpaints
ligand voxels inside a protein-pocket voxel grid from a PDB structure; (ii) Vox2Smiles, a ViT encoder
with a GPT-style decoder that converts ligand voxels to SMILES. We steer only the decoder of
Vox2Smiles at layer ℓ = 11; weights stay frozen.

2.2 Protein targets and dataset curation

DrugGen. We uniformly sampled 21 UniProt targets from the training set (list in Appendix). For
each UniProt ID we retrieve the canonical sequence and prompt DrugGen to generate an initial pool
of N = 250 distinct SMILES. Invalid strings are rejected with RDKit; the remainder define the
per-target baseline.

Plixer. We use 20 protein pockets with resolved co-crystal ligands. For each pocket we compute
the pocket center from the ligand, remove the ligand from the PDB, voxelize the pocket with the
repository defaults, and run the combined protein-to-SMILES pipeline to produce an initial pool of
N = 250 distinct SMILES. Invalid strings are rejected with RDKit; the remaining unique molecules
define the per-target baseline.

2.3 Constructing contrastive pairs

Given valid molecules S = {s1, . . . , sm} for protein P , we form property-specific pairs:

1. Size (heavy-atom count nat): create ordered pairs (si, sj) with 0.6nat(sj) ≤ nat(si) ≤
0.8nat(sj), marking the smaller molecule as positive.

2. Aqueous solubility (logS): predict with SolTranNet [3]; in a pair, the more soluble molecule
is positive.
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3. Lipophilicity (logP ): estimate via Wildman–Crippen fragments; positive if 1 ≤ logP ≤ 3,
negative otherwise, following the recommended drug-like window [2].

Each element is prefixed with the protein prompt so the model sees complete sequences during
activation capture and 50 molecules are generated as a pool of molecules for constructing the pairs.

2.4 Contrastive Activation Addition (global vector)

Let h(ℓ)(x, t)∈Rd be the hidden state at layer ℓ, token t for string x. With positive set P and negative
set N (from §2.3), the global steering vector at layer ℓ is

v(ℓ) =
1

|P|
∑
p∈P

h(ℓ)(p, t⋆)− 1

|N |
∑
n∈N

h(ℓ)(n, t⋆), (1)

where t⋆ is a tunable token index (we use the last token before <eos> unless stated otherwise; cf. [9]).
At inference time we apply a linear intervention to all SMILES tokens,

h
(ℓ)
steered(x, t) = h(ℓ)(x, t) + λv(ℓ), (2)

λ controls effect size.

2.5 Token-aligned steering vector field

Figure 1: We depict a 2-D activation space where red denotes desirable regions and blue denotes
undesirable ones. Left (global steering): a single constant vector is added everywhere, inducing
a uniform vector field. The adjustment has the same direction and magnitude no matter where
the unsteered activation starts. Right (vector-field steering): the steering vector depends on the
current activation, so both direction and strength vary with location. This allows context-dependent
adjustments that move states toward the desirable region.

A single v(ℓ) applies the same offset everywhere. To capture location-dependent variation in steering
direction, we build a state-dependent vector field. For each pair (nj , pj) we store

aj = h(ℓ)(nj , t
⋆), ∆j = h(ℓ)(pj , t

⋆)− h(ℓ)(nj , t
⋆).
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At decode step t, let Tseq(x) be the current sequence length and

q(ℓ)(x) =
1

Tseq(x)

Tseq(x)∑
u=1

h(ℓ)(x, u).

We compute weights with a temperature-scaled softmax over ℓ2 distances:

wj

(
q(ℓ)(x)

)
=

exp
(
−∥q(ℓ)(x)− aj∥2/τ

)∑
k exp

(
−∥q(ℓ)(x)− ak∥2/τ

) , (3)

and define the local direction

vfield
(
q(ℓ)(x)

)
=

∑
j

wj

(
q(ℓ)(x)

)
∆j .

We intervene as h(ℓ)
field_steered(x, t) = h(ℓ)(x, t)+λvfield

(
q(ℓ)(x)

)
for t ≥ tmin. Smaller τ concentrates

on nearest anchors (stronger but less stable); larger τ smooths updates. This induces a bias–variance
trade-off: global vectors are stable but under-correct local structure; vector fields give larger shifts
but can reduce validity if too sharp.

2.6 Experimental protocol

For each protein: (i) build a steering object (global vector or vector field) from |P| unique molecules
and the chosen (ℓ, t⋆); (ii) generate G = 250 molecules under two conditions: no steering (λ = 0)
and positive (+λ), (iii) log summary stats and save SMILES.

2.7 Evaluation metrics

We compute molecule-level validity, uniqueness, and whether it is identical to a generated molecule
used for computing the steering vector (pair-pool-leaked), then test target-level property shifts (mean
size, mean logS, in-range fraction for logP ). Results are reported as #successes/#eligible targets per
property and intervention.

3 Results

Results at a glance. For around half of our experiments across protein targets, properties and
models we see a clear and consistent shift in the desired direction. In most of these successful cases,
we even see that the positive tail of the distribution for size and logS is shifted along with the mean,
showing that steering can ‘unlock’ parts of molecular space that could not have been reached merely
from oversampling the non-steered model (figures 3 and 4). However, we have to acknowledge that
for many targets, steering did not have a significant effect; in some cases, the effect was opposite
to the intended direction (figure 2). Overall, this suggests that steering is model and protein-target
dependent. It is worth trying if the results can be quickly and cheaply evaluated (as is the case with
our computationally assessable properties), but it is not reliable enough to assume steering will have
the desired effect for an arbitrarily chosen target.

3.1 Success criteria and filtering

A target counts as successfully steered for a property only if both hold:

(i) the intervention effect is in the correct direction and statistically significant on the filtered
set; and

(ii) at least 10% of generated molecules are valid, non-duplicate, and not pair-pool-leaked.

We pre-exclude targets whose baseline pool fails (ii). For size and logS, significance is a two-
sided Welch t-test on the filtered molecules (p<0.05). For logP , the outcome is the proportion
in range [1, 3]; we test whether this proportion is higher under the intervention using a one-sided
two-proportion test (Fisher’s exact test when any expected count is < 5), with success at p<0.05.

Multiple testing. P-values are computed per target and are not corrected across targets; the counts we
report are descriptive robustness indicators rather than family-wise error claims.
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Main results table. Each cell reports #targets passing / #eligible targets for a model
(rows), property (blocks), and intervention (Global vs. Field). Only targets that meet the baseline
quality filter (ii) are counted as eligible.

size log(S) log(P)
Global Field Global Field Global Field

DrugGen 15/21 7/21 14/21 17/21 9/21 13/21
Plixer 10/20 14/20 7/20 16/20 3/20 8/20

Table 1: Fraction of targets passing the success checks per property and intervention.

Figure 2: Unfiltered directional shift rates. For each model and intervention, bars show the proportion
of targets where the mean property moved in the intended direction (no significance test and no
quality filter). These rates are higher than the filtered success counts in Table 1 because they ignore
validity/uniqueness thresholds and p-value criteria.

Directional tendency vs. filtered success. Figure 2 summarizes raw steerability, whether the
mean shifted in the intended direction without applying the eligibility filter or significance tests. As
expected, these directional rates exceed the filtered success counts in Table 1. The gap quantifies
where steering nudges the distribution but either (i) effects are small and fail the statistical test, or (ii)
validity/uniqueness losses reduce eligibility.

Overall patterns. DrugGen: the Global vector is strongest for size (15/21) and competitive on
logS (14/21), while the Field dominates on logS (17/21) and logP (13/21). Plixer: the Field
outperforms Global on all three properties (size 14/20 vs. 10/20; logS 16/20 vs. 7/10; logP 8/20 vs.
3/10). These counts indicate a power–stability trade-off: the field achieves larger shifts more often;
the global vector is more conservative.

Model comparison. Plixer benefits more from the Field than DrugGen across all properties,
consistent with a decoder that conditions on richer intermediate representations, where a single global
direction under-corrects local structure. DrugGen shows a safer profile for size with the Global
intervention.
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Figure 3: Overlaid histograms of heavy-atom counts for four representative targets using the field
intervention on Plixer (baseline blue vs. steered red). Steering shifts the mass of the distribution
toward smaller molecules while preserving the overall shape for most targets. These examples are
drawn from targets that pass the baseline quality filter.

Size distributions. Figure 3 shows a reduced heavy atom count under steering both in the mean
and the left tail.

Solubility distributions. Figure 4 shows right-shifted logS histograms under steering. Several
targets exhibit heavier right tails, suggesting the steered model is generating molecules that would be
extremely unlikely under the non-steered model.

Lipophilicity. For logP we summarize via in-range counts only (Table 1). Gains concentrate on a
subset of targets and favor the Field intervention on both models.

Quality effects. Validity and uniqueness remain close to baseline for Global on DrugGen; the
Field can reduce validity on harder targets, consistent with stronger, state-dependent updates. These
effects are reflected in eligibility and pass counts.

4 Discussion

Our results show a clear trend suggesting that both Global CAA and steering vector fields can be used
to bias a range of molecular properties without having to fine-tune the generative model. However
the effectiveness is dependent on the protein target and desired property, working very well for some
proteins and failing on others. For some combinations of steered property and model our vector
field approach outperformed the global vector but it was not consistently better. The flexibility of
the field comes with risks: when the current hidden state lies outside the anchor cloud, interpolation
extrapolates, pushing decoding off-manifold and reducing validity. Compute-wise, the field adds a
lightweight per-step lookup and weighted sum over anchors; the overhead scales with anchor count.
We did not extensively explore hyper-parameters such as intervention layer token index and τ (the
softmax smoothing parameter for the field) however we did find it essential to adjust λ (multiplicative
factor on the added vector) when switching between models. Our observations suggest that the
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Figure 4: Overlaid histograms of logS predictions for four representative targets using the field
intervention on Plixer (baseline blue vs. steered red). Steering shifts the distribution toward higher
predicted solubility on most targets. Examples shown pass the baseline quality filter.

magnitude of the steering vector is a very important factor: too low will limit the effect size, while
too high can yield invalid generations.

5 Limitations

• Proxy oracles. Solubility and lipophilicity are estimated by predictors (SolTranNet, frag-
ment logP ); steering may exploit non-physically meaningful aspects of these oracles.

• Vector field. Performance can degrade when the current state lies outside the anchor
coverage; the interpolated direction then extrapolates and may reduce validity.

• No retraining baselines. We do not compare against retrained conditional or RL baselines
here; results show feasibility of test-time control, not superiority.

• Hyperparameter sensitivity. Meaningful shifts require tuning of layer ℓ, token index t⋆,
steering scale λ, and (for the field) temperature τ . The best settings differ by model and
property; naïve transfers can underperform or hurt validity.
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A Hyperparameters for steering

Unless otherwise noted, we use the following fixed settings:

• Layer and token index. Late transformer layer ℓ = 11; token index t⋆ is the last token
before the stop token.

• Intervention scope. Additions are applied to all SMILES tokens
• Steering scale. λ = 1 for positive steering for DrugGen and λ = 3 for Plixer (global variant

only)
• Vector-field temperature (if used). τ = 0.1 for DrugGen and τ = 1 for Plixer.
• Pair construction pool. Per target, construct contrastive pairs from a pool of M = 50

generated molecules, avoiding duplicates when required.
• Sampling. For each target, generate G = 250 molecules per condition.
• Start of SMILES. tmin is the first SMILES token; all interventions apply only for t ≥ tmin.

B Protein targets

DrugGen The 21 UniProt ids used in the DrugGen experiments:
P07900, P00734, Q14524, P19823, P78334, P14416, P08913, P03372, P35348,
P08172, P09622, P36956, P20309, P04818, P25100, P18825, P23634, Q8N1C3,
P03372, P48169, P10275

Plixer The 20 pockets used in the Plixer experiments:
6wny_U64_A_501, 6zxo_D16_C_401, 6s4h_KUQ_A_901, 6xzs_O5K_A_302,
6ukb_Q9V_A_601, 7nqw_UNW_A_405, 6ooj_J1X_B_301, 6tx4_HRZ_A_204,
6p3a_NQP_A_4000, 6uxx_QL1_A_701, 5qtz_QMY_A_601, 6jlr_BV9_A_401,
6jol_STI_A_1001, 6k9h_D40_A_501, 6kb8_2VN_A_502, 6knr_DL9_A_501,
6lj4_EF9_A_303, 6lob_EO0_A_601, 6lur_EVU_C_601, 6o9o_LUP_A_510
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