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Abstract
We consider the block coordinate descent meth-
ods of Gauss-Seidel type with proximal regular-
ization (BCD-PR), which is a classical method of
minimizing general nonconvex objectives under
constraints that has a wide range of practical appli-
cations. We theoretically establish the worst-case
complexity bound for this algorithm. Namely, we
show that for general nonconvex smooth objective
with block-wise constraints, the classical BCD-
PR algorithm converges to an ε-stationary point
within Õ(ε−1) iterations. Under a mild condi-
tion, this result still holds even if the algorithm
is executed inexactly in each step. As an appli-
cation, we propose a provable and efficient algo-
rithm for ‘Wasserstein CP-dictionary learning’,
which seeks a set of elementary probability distri-
butions that can well-approximate a given set of
d-dimensional joint probability distributions. Our
algorithm is a version of BCD-PR that operates
in the dual space, where the primal problem is
regularized both entropically and proximally.

1. Introduction
Consider the minimization of a continuous function f :
RI1×· · ·×RIm → [0,∞) on a cartesian product of convex
sets Θ = Θ(1) × · · · ×Θ(m):

θ∗ ∈ argmin
θ=[θ1,...,θm]∈Θ

f(θ1, . . . , θm). (1)

When the objective function f is nonconvex, the conver-
gence of any algorithm for solving (1) to a globally optimal
solution can hardly be expected. Instead, global conver-
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gence to stationary points of the objective function is de-
sired, and in some problem classes, stationary points could
be as good as global optimizers either practically as well as
theoretically (see (Mairal et al., 2010; Sun et al., 2015)).

In order to solve (1), we will consider the block coordinate
descent (BCD) methods of Gauss–Seidel type, which seeks
to minimize the objective function restricted to a subset
(block) of coordinates (Wright, 2015), often following the
cyclic order of blocks. For the minimization problem (1) we
refer to the set of coordinates in each Θ(i), i = 1, . . . ,m, a
block coordinate. Namely, let θ(i)n denote the ith block of
the parameter after n updates. Write

θ(i−1)
n := (θ(1)n , · · · , θ(i)n , θ

(i+1)
n−1 , · · · , θ(m)

n−1), (2)

f (i)
n (θ) := f

(
θ(1)n , · · · , θ(i−1)

n , θ, θ
(i+1)
n−1 , · · · , θ(m)

n−1

)
.

The algorithm we consider in this work updates θ(i−1)
n to

θ(i)
n by updating its ith block by minimizing the marginal

loss function g
(i)
n over the ith block Θ(i):

θ(i)n ← argmin
θ∈Θ(i)

g(i)n (θ) := f (i)
n (θ) +

λn

2
∥θ − θ

(i)
n−1∥2, (3)

where λn ≥ 0 is called proximal regularization coefficient
and ∥·∥ denotes the Frobenius norm. The proximal regu-
larzer λn∥θ − θ

(i)
n−1∥2 ensures that the next block iterate

θ
(i)
n is not too far from the previous iterate θ(i)n−1. The above

update is applied cyclicly for i = 1, . . . ,m. We call the
algorithm (3) BCD-PR for block coordinate descent with
proximal regularization.

Due to its simplicity, BCD type algorithms have been
applied to a wide range of nonconvex problems (Bottou,
2010), including matrix and tensor decomposition problems
such as nonnegative matrix factorization (Lee & Seung,
1999; 2001; Wang & Zhang, 2012) and nonnegative CAN-
DECOMP/PARAFAC (CP) decomposition (Tucker, 1966;
Harshman, 1970; Carroll & Chang, 1970). Notably, all these
decomposition problems enjoy block multi-convex structure,
wherein the objective function is convex when restricted on
each block coordinate so that each convex sub-problems
can be solved via standard convex optimization algorithms
(Boyd et al., 2004). However, such multi-convexity is not
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required to apply BCD, as simple coordinate-wise gradient
descent can be applied to find the approximate minimizer
of the sub-problems (Wright, 2015).

It is known that vanilla BCD ((3) with λn ≡ 0) does not
always converge to the stationary points of the non-convex
objective function that is convex in each block coordinate
(Powell, 1973; Grippo & Sciandrone, 2000). It is known that
BCD-PR with λn ≡ Const. is guaranteed to converge to the
set of stationary points (Grippo & Sciandrone, 2000). Un-
der a more general condition, BCD-PR and its prox-linear
variant are shown to converge to Nash equilibria. Local
convergence result with rate is known for these algorithms
under the stronger condition of Kurdyka-Łojasiewicz (At-
touch et al., 2010; Xu & Yin, 2013; Bolte et al., 2014).
For convex objectives, iteration complexity of O(ε−1) is
established in Hong et al. (2017). The BCD method has
been drawing attention as an alternative method for training
Deep Neural Network (DNN) models. In Zhang & Brand
(2017), a BCD method is shown to converge to stationary
points for Tikhonov regularized DNN models. In Zeng et al.
(2019), BCD-PR for training DNNs with general activation
functions is shown to have iteration complexity of O(ε−1).

Contribution. While being one of the fundamental noncon-
vex optimization methods, the worst-case iteration complex-
ity of BCD-PR (3) for general objectives under constraints
has not been established in the literature. We intend to fill
this gap with contributions summarized below:

• Global convergence to stationary points of BCD-PR
for L-smooth objective f under constraints;

• Worst-case bound of O(ε−1(log ε−1)2) on the num-
ber of iterations to achieve ε-approximate stationary
points;

• Robustness of the aforementioned results under inexact
execution of the algorithm.

To our best knowledge, we believe our work provides the
first result on the global rate of convergence and worst-case
iteration complexity of BCD-PR for the general smooth
objectives, especially with the additional robustness result.
For gradient descent methods with unconstrained nonconvex
objective, it is known that such rate of convergence cannot
be faster than O(ε−1) (Cartis et al., 2010), so our rate bound
matches the optimal result up to a (log ε−1)2 factor. We
emphasize that the above result does not claim that BCD-
PR is provably faster than existing non-convex optimization
algorithms. Instead, our novel analysis confirms that the
classic and practical algorithm of BCD-PR is guaranteed to
converge as fast as existing algorithms in the worst case.

The works (Attouch et al., 2010) and (Bolte et al., 2014)
assume that the objective function satisfies KL property

at every point in the parameter space and obtains a global
rate of convergence to a stationary point for block proximal
Gauss-Seidel (equivalent to our Algorithm 1) and block
proximal alternating linearized minimization. On the other
hand, Xu & Yin (2013) assumed local KL property and
obtained a local rate of convergence to a stationary point
for both types of BCD methods. In our work, we do not
assume KL property at any point and still obtain a global
convergence rate for block proximal Gauss-Seidel.

Application to Wasserstein CP-dictionary learning. In
order to motivate our theoretical underpinning of BCD-
PR, we consider the problem of Wasserstein CP-dictionary
learning for d-dimensional joint distributions, which seeks
a set of elementary probability distributions that can well-
approximate a given set of d-dimensional joint probability
distributions represented as d-mode tensors.

• We propose the Wasserstein CP-dictionary learning
(WCPDL) framework for learning elementary proba-
bility distributions that reconstruct d-dimensional joint
probability distributions represented as d-mode ten-
sors.

• We propose an algorithm for WCPDL based on BCD-
PR, where the sub-problems of Wasserstein reconstruc-
tion error minimization are handled by using entropic
regularization and dual formulation for computational
efficiency.

• We establish worst-case bound of O(ε−1(log ε−1)2)
on the number of iterations to achieve ε-approximate
stationary points for WCPDL.

We also demonstrate the advantage of the Wasserstein for-
mulation for distribution-valued dictionary learning through
a number of experiments and applications.

2. Preliminaries
Before stating our main results in the following sections, let
us recall a list of definitions for (1). We say θ∗ ∈ Θ is a
stationary point of a function f over Θ if

inf
θ∈Θ
⟨∇f(θ∗), θ − θ∗⟩ ≥ 0, (4)

where ⟨·, ·⟩ denotes the dot project on RI1+···+Im ⊇ Θ.
This is equivalent to saying that −∇f(θ∗) is in the normal
cone of Θ at θ∗. If θ∗ is in the interior of Θ, then it implies
∥∇f(θ∗)∥ = 0. For iterative algorithms, such a first-order
optimality condition may hardly be satisfied exactly in a
finite number of iterations, so it is more important to know
how the worst-case number of iterations required to achieve
an ε-approximate solution scales with the desired precision
ε. More precisely, we say θ∗ ∈ Θ is an ε-approxiate
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stationary point of f over Θ if

− inf
θ∈Θ

〈
∇f(θ∗),

(θ − θ∗)

∥θ − θ∗∥

〉
≤
√
ε. (5)

This notion of ε-approximate solution is consistent with
the corresponding notion for unconstrained problems. In-
deed, if θ∗ is an interior point of Θ, then (5) reduces to
∥∇f(θ∗)∥2 ≤ ε. It is also equivalent to a similar notion in
Def. 1 in Nesterov (2013), which is stated for non-smooth
objectives using subdifferentials instead of gradients as in
(5). Next, for each ε > 0 we define the worst-case itera-
tion complexity Nε of an algorithm computing (θn)n≥1 for
solving (1) as

Nε := sup
θ0∈Θ

inf

{
n | θn is an ε-approximate

stationary point of f over Θ

}
, (6)

where (θn)n≥0 is a sequence of estimates produced by the
algorithm with an initial estimate θ0. Note that Nε gives
the worst-case bound on the number of iterations for an
algorithm to achieve an ε-approximate solution due to the
supremum over the initialization θ0 in (6).

3. Statement of the results
We state the main result, Theorem 3.4. To our best knowl-
edge, this gives the first worst-case rate of convergence and
iteration complexity of BCD-type algorithms with proximal
regularization in the literature. We impose the following
two mild conditions for our theoretical analysis of BCD-PR
(3).
Assumption 3.1. For each i = 1, 2, · · · ,m, there ex-
ists a constant L(i) > 0 such that the function f :
Θ = Θ(1) × · · · × Θ(m) → [0,∞) is L(i)-smooth
in each block coordinate i, that is, the function θ 7→
∇f(θ(1), · · · , θ(i−1), θ, θ(i+1), · · · , θ(m)) is L(i)-Lipschitz
in Θ(i) for any θ(j) ∈ Θ(j), j = 1, 2, · · · , i − 1, i +
1, · · · ,m.
Assumption 3.2. The constraint sets Θ(i) ⊆ RIi , i =
1, . . . ,m are convex. Furthermore, the sub-level sets
f−1((−∞, a)) = {θ ∈ Θ : f(θ) ≤ a} are compact
for each a ∈ R.

We also allow an inexact computation of the solution to
the sub-problem (3). For a quantitative statement, for each
n ≥ 1, we define the optimality gap ∆n by

∆n := max
1≤i≤m

(
g(i)n (θ(i)n )− inf

θ∈Θ(i)
g(i)n (θ)

)
, (7)

where g(i)n is in (3). For our convergence results to hold, we
require the optimality gaps to decay sufficiently fast so that
they are summable:
Assumption 3.3. The optimality gaps ∆n are summable,
that is,

∑∞
n=1 ∆n <∞.

We now state our main result for BCD-PR.
Theorem 3.4. Let (θn)n≥0 be an inexct output of (3). Sup-
pose that Assumptions 3.1-3.3 hold. Let L(i) > 0 be such
that∇f is L(i)-Lipschitz in each block coordinate and sup-
pose the proximal regularizers (τ (i)n )n≥1 satisfy τ

(i)
n > L(i)

for n ≥ 1 and τn = O(1). Then the following hold:

(i) (Global convergence to stationary points) Every limit
point of (θn)n≥0 is a stationary point of f over Θ.

(ii) (Worst-case rate of convergence) There exists a constant
M independent of θ0 such that for n ≥ 1,

min
1≤k≤n

[
− inf

θ∈Θ

〈
∇f(θk),

(θ − θk)

∥θ − θk∥

〉]2
≤

M + 2m
∑∞

n=1 ∆n

n/(log n)2
. (8)

(iii) (Worst-case iteration complexity) Suppose the op-
timality gaps are uniformly summable, that is,
supθ0∈Θ

∑∞
n=1 ∆n < ∞. Then the worst-case iter-

ation complexity Nε for BCD-PR (3) satisfies Nε =
O(ε−1(log ε−1)2) if τn ≡ 1.

4. Application to d-dimensional Wasserstein
dictionary learning

We apply our optimization method of BCD-PR (3) to solve
d-dimensional Wasserstein dictionary learning, where the
goal is to learn a dictionary of product probability distri-
butions from a set of joint distributions. Namely, given
d-dimensional joint probability distributions (Xk)1≤k≤N ,
we seek to find a set of product distributions such that each
Xk can be approximated by a suitable mixture of the product
distributions.

4.1. Dictionary learning for distribution-valued signals

For N observed d-mode tensor-valued signals X1, . . . ,XN

in RI1×···×Id , we are interested in extracting r ‘features’
from this set, where each feature again takes the form of
d-mode tensors in RI1×···×Id . In other words, we seek to
learn a ‘dictionary’ D = [D1, . . . ,Dr] ∈ RI1×···×Id×r

of r ‘atoms’ so that each data tensor Xi can be linearly
approximated by the atoms D1, . . . ,Dr in the dictionary
D. Namely, there exists a suitable ‘code matrix’ Λ ∈ Rr×N

such that we have the following approximate factorization:

[X1, . . . ,XN ] ≈ [D1, . . . ,Dr]×d+1 Λ (9)
⇐⇒ X ≈ D ×d+1 Λ,

where×d+1 denotes the mode (d+1) tensor-matrix product
(see (Kolda & Bader, 2009)) and X := [X1, . . . ,Xn] de-
notes the (d+1)-mode tensor in RI1×···×Id×N that concate-
nates the tensor-valued signals X1, . . . ,Xn in RI1×···×Id
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along the last mode. As a special case, suppose d = 1
so that the signals X1, . . . ,Xn are in fact I1-dimensional
vectors. Then (9) becomes the usual matrix factorization
formulation for factorizing the data matrix X ∈ RI1×N into
the (matrix) product of a dictionary matrix D ∈ RI1×r and
the code matrix Λ ∈ Rr×N (Lee & Seung, 1999; Elad &
Aharon, 2006; Mairal et al., 2007; Peyré, 2009).

As a more precise optimization formulation of (9), we con-
sider

min
D∈RI1×···×Id×r,Λ∈Rr×N

δ

(
X , D ×d+1 Λ

)
, (10)

where δ : (RI1×···×Id×N )2 → [0,∞) is a ‘dissimilarity
function’ that maps a pair of tensors (X ,X ′) to a nonnega-
tive number δ(X ,X ′). This function is used to measure the
difference between the data tensor X and the ‘reconstruc-
tion’ D ×d+1 Λ. For d = 1, standard choices of δ include
the distance function induced by the Frobenius norm and
the KL divergence.

4.2. Wasserstein distance between d-dimensional
probability distributions

A natural notion of dissimilarity between two probability dis-
tributions on the same probability space is the p-Wasserstein
distance, which is a central notion in this paper, which we
will define below.

Define the cost tensor M ∈ RI1×···×Id × RI1×···×Id for
d-mode tensors to be the tensor defined by M(J1, J2) =
∥J1 − J2∥2 for all multi-indices J1, J2 ∈ [I1]× · · · × [Id].

One can regard M as giving weights on the difference be-
tween the J1- and the J2-entry of two tensors. For instance,
if d = 1, then the dissimilarity between the two random
variables Y1 and Y2 depends not only on the probability that
they differ but also on the actual value |Y1 − Y2|. The cost
matrix M, in this case, measures the probabilistic ‘cost’ of
having different probability mass on coordinates J1 and J2.
Next, for two one-dimensional probability mass functions
p1 ∈ Rm, p2 ∈ Rn, we call a two-dimensional joint distri-
bution T ∈ Σm,n a coupling between p1 and p2 if its row
(resp., column) sums agree with p1 (resp., p2). We denote
by

U(p1, p2) :=

T ∈ Σm,n

∣∣∣∣ p1(i) = n∑
j=1

T (i, j), p2(j) =

m∑
i=1

T (i, j)∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

}

the set of all couplings between p1 and p2.

Now, we can define the Wasserstein distance. Fix a
cost tensor M ∈ RI1×···×Id × RI1×···×Id and let M2 ∈

R(I1···Id)×(I1···Id) denote its matricization (see (Kolda &
Bader, 2009)). Fix a parameter γ ≥ 0. For A,B ∈
RI1×···×Id , define

Wγ(A,B) := Wγ(vec(A), vec(B))

:= min
T∈U(vec(A),vec(B))

〈
M2, T

〉
+ γ ⟨T, log T ⟩ ,

(11)

where vec(A) and vec(B) denote the vectorization of A
and B, respectively. When γ = 0, Wγ above is known as
the Wasserstein distance. The additional term γ⟨T, log T ⟩ is
known as the entropic regularization of Wasserstein distance
(Cuturi, 2013).

4.3. d-dimensional Wasserstein dictionary learning

We are interested in the case that the tensor-valued signals
X1, . . . ,XN describe d-dimensional probability mass func-
tions. Namely, we denote

ΣI1,...,Id :=

X ∈ RI1×···×Id
≥0

∣∣∣∣ ∑
i1,...,id

X[i1, . . . , id] = 1

 .

We can think of an element X of ΣI1,...,Id as the joint
probability mass function of d discrete random variables
(Y1, . . . , Yd) where each Yi takes values from {1, . . . , Ii}.
For this reason, we will call an element of ΣI1,...,Id simply
as a ‘d-dimensional joint distribution’. We also denote by
ΣN

I1,...,Id
the N -fold product of ΣI1,...,Id , which we identify

as a subset of RI1×···×Id×N in the usual way.

When each d-mode tensor Xi subject to the factorization in
(10) is a d-dimensional joint distribution, then the dissim-
ilarity function δ in (10) should measure the dissimilarity
between two tuples of d-dimensional joint distribution. By
using the entropy-regularized Wasserstein distance Wγ (see
(11)), we formulate the d-dimensional Wasserstein Dictio-
nary Learning (dWDL) as (9), where the dictionary atoms
D1, . . . ,Dr are taken to be d-dimensional joint distribu-
tions (elements of ΣI1,...,Id) and the dissimilarity function
δ : ΣN

I1,...,Id
× ΣN

I1,...,Id
→ [0,∞) is

δ([X1, . . . ,XN ], [X′
1, . . . ,X

′
N ]) :=

N∑
i=1

Wγ(Xi,X
′
i).

Equivalently, we formulate our problem (dWDL) as below:

(dWDL) min
D=[D1,...,Dr]∈Σr

I1,...,Id

Λ∈ΣN
r

fW (D,Λ), (12)

where fW (D,Λ) :=
N∑
i=1

Wγ (Xi, D ×d+1 Λ[:, i]) .

For d = 1, this formulation (12) has been discussed in the
study of Wasserstein dictionary learning, including (Sandler
& Lindenbaum, 2011), (Zen et al., 2014), and (Rolet et al.,
2016).
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4.4. Algorithm (dWDL)

Given the previous estimate (Λn−1,Dn−1), we compute the
updated estimate (Λn,Dn) by solving convex sub-problems
as follows:

Λn ∈ argmin
Λ∈ΣN

r

fW (Dn−1,Λ) +
τn
2
∥Λ− Λn−1∥2F (13)

Dn ∈ argmin
D∈Σr

I1×···×Id

fW (D,Λn) +
τn
2
∥D − Dn−1∥2F . (14)

For the standard nonnegative matrix factorization using the
Frobenius norm instead of the Wasserstein norm, solving
the corresponding convex sub-problems amounts to solv-
ing standard nonnegative least squares problem, which can
be done by applying standard projected gradient descent.
However, solving convex sub-problems in (13) and (14) is
computationally demanding since one is required to com-
pute N Wasserstein distances Wγ , each of which involves
finding an optimal transport plan by solving a separate op-
timization problem. Below, we propose a computationally
efficient algorithm where one is only required to solve a
single and simple subproblem (instead of N ) for each block
coordinate descent step.

Algorithm 1 dWDL (12)
1: Input: θ0 = (D0,Λ0) ∈ Σr

I1×···×Id
×ΣN

r (initial estimate);
N (number of iterations); (τn)n≥1, (non-decreasing sequence
in [1,∞));

2: for n = 1, . . . , N − 1 do:
3: Update estimate θn−1 = (Dn−1,Λn−1) by

Λn ← Algorithm 2 with input (Dn−1,Λn−1) (15)
Dn ← Algorithm 3 with input (Dn−1,Λn) (16)

4: end for
5: output: θN

We now describe Algorithms 2 and 3 that solve the convex
sub-problems in (13) and (14). To solve the primal problem
(13), we consider its dual problem. For simplicity, denote
the distance function and the proximal term by for X, y ∈
ΣI1×···×Id and for given λ0 ∈ Σr,

HX(y) := Wγ (X, y) and

Fλ0
(λ) :=

{
1
2∥λ− λ0∥2F for λ ∈ Σr,

+∞ otherwise .
(17)

Then, the primal problem (13) can be re-written as

min
Λ∈Rr×N

N∑
i=1

{HXi
(Dn−1 ×d+1 Λ[:, i])

+τnFΛn−1[:,i](Λ[:, i])}. (18)

Here, the condition Λ ∈ ΣN
r is enforced by F in the second

term.

Note that the above is a convex minimization problem but
solving it directly is computationally expensive since sim-
ply evaluating the function HXi above involves finding an
optimal transport map T ∈ U(vec(A), vec(B)). In order to
overcome this issue, we consider the dual problem of (18)
reminiscent of Cuturi (2013). Introducing a dual variable
G ∈ RI1×···×Id×N , we obtain the dual problem:

min
G∈RI1×···×Id×N

N∑
i=1

{H∗
Xi

(−G[:, i])

+ τnF
∗
Λn−1[:,i]

(Dn−1 ×≤d G[:, i]/τn)}. (19)

Here, the conjugate f∗ of f is defined as

f∗ : Rd → [−∞,+∞] : u 7→ sup
x
(⟨x, u⟩ − f(x)). (20)

This dual problem can be solved without having to deal with
a matrix-scaling problem, as in the primal one (see (Cuturi
& Peyré, 2016)). We postpone further discussion about the
conjugate functions H∗ and F ∗ to the subsequent sections.

Algorithm 2 Solving for Λ
1: Input: θn−1 = (Dn−1,Λn−1) ∈ Σr

I1×···×Id
×ΣN

r (current
estimate); (τn)n≥1;

2: Update estimate Λn−1 by

G◦
n ← the minimizer of (19)

Λn ←
(
Λn−1 +

Dn−1 ×≤d G◦
n

τn
− J◦ ⊗ c◦n

)
+

where c◦n ∈ RN×1 is chosen to satisfy Λn ∈ ΣN
r and all

entries of J◦ ∈ Rr×1 are one.
3: output: θn− 1

2
= (Dn−1,Λn)

Here, the 1, 2, · · · , d-mode product D ×≤d Λ of D ∈
RI1×···×Id×N with a tensor Λ ∈ RI1×I2×···×Id×J is

(D ×≤d Λ)[j] :=
∑

i1,i2,··· ,id

D[i1, i2, · · · , id]

× Λ[i1, i2, · · · , id, j]. (21)

Based on similar arguments, the dual problem of (14) can
be derived as follows:

min
G∈RI1×···×Id×N

{(
N∑
i=1

H∗
Xi

(−G[:, i])

)
+τnF

∗
Dn−1

(G×d+1 Λ
T
n/τn)

}
. (22)
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Algorithm 3 Solving for D
1: Input: θn− 1

2
= (Dn−1,Λn) ∈ Σr

I1×···×Id
× ΣN

r (current
estimate); (τn)n≥1;

2: Update estimate Dn−1 by

G†
n ← the minimizer of (22)

Dn ←
(
Dn−1 +

G†
n ×d+1 Λ

T
n

τn
− J† ⊗ c†n

)
+

where c†n ∈ Rr×1 is chosen to satisfy Dn ∈ Σr
I1×···×Id

and all entries of J† ∈ RI1I2···Id×1 are one.
3: output: θn = (Dn,Λn)

The per-iteration cost of Algorithms 2 and 3 is given by
O((I1 . . . Id)

2N).

5. Theoretical guarantees of Wasserstein
dictionary learning

We prove that our computationally efficient algorithm, Algo-
rithm 1, is actually solving BCD with proximal regulariza-
tion for our main problem (12). The proof of Theorem 5.1
can be found in Appendix B.

Theorem 5.1. (Per-iteration correctness) Algorithm 1
solves (13) and (14).

Formally speaking, the dual problem (19) is derived
from the primal problem (18) as follows: for given
(Dn−1,Λn−1) ∈ Σr

I1×···×Id
× ΣN

r and τn > 0,

min
Λ∈ΣN

r

HXi
(Dn−1 ×d+1 Λ[:, i]) + τnFΛn−1[:,i](Λ[:, i]),

= min
Λ∈ΣN

r ,

Q∈ΣN
I1×···×Id

max
G∈RI1×···×Id×N

HXi
(Q[:, i])

+ τnFΛn−1[:,i](Λ[:, i])

+ ⟨Q[:, i]−Dn−1 ×d+1 Λ[:, i], G[:, i]⟩,
= − min

G∈RI1×···×Id×N
H∗

Xi
(−G[:, i])

+ τnF
∗
Λn−1[:,i]

(Dn−1 ×≤d Gn[:, i]/τn).

The above derivation is standard in the classical theory of
convex optimization. However, solving Algorithm 1 re-
quires us to find the optimizers of the primal problem (13)
and (14) in terms of the inputs and their dual solutions. Due
to the constraints, D ∈ Σr

I1×···×Id
and Λ ∈ ΣN

r , this does
not directly follows.

To establish the correctness rigorously, we consider a gen-
eral minimization problem of a bivariate function under
inequality constraints in Lemma B.4: for given functions
f : K → (−∞,+∞], h : H → (−∞,+∞], and

R : H → K,

min
x∈H,Rx∈K

f(Rx) + h(x). (23)

Here, H and K are real Hilbert spaces with inner prod-
uct ⟨·, ·⟩, and K is a nonempty closed convex cone in K.
The key idea is based on Propositions 19.18 and 19.23 in
Bauschke et al. (2011), but we provide the proof in Ap-
pendix B for the sake of completeness.

Now we can obtain a convergence and complexity result for
Algorithm 1 using Theorems 5.1 and3.4.

Theorem 5.2. Suppose that Assumption 3.3 holds, the prox-
imal regularizers (τn)n≥1 satisfy τn > 1/γ for n ≥ 1 and
τn = O(1). For a output (θn)n≥0 of Algorithm 1, the
following hold:

(i) (Global convergence to stationary points) Every limit
point of (θn)n≥0 is a stationary point of fW over Θ :=
Σr

I1×···×Id
× ΣN

r .

(ii) (Worst-case rate of convergence) There exists a con-
stant M independent of θ0 such that for n ≥ 1, (8) in
Theorem 3.4 holds.

(iii) (Worst-case complexity) The worst-case iteration
complexity Nε for Algorithm 1 satisfies Nε =
O(ε−1(log ε−1)2). Furthermore, the worst-case com-
plexity of Algorithm 1 is

O(Nε · (worst-case cost of solving sub-problems))
= O(Nε · logNε · (cost of PGD step for dual))

= O(ε−1(log ε−1)3(I1 × · · · × Id)
2N).

Proof of Theorem 5.2. Let us first show that Algorithm 1
satisfies Assumptions 3.1, and 3.2. Then, (i) and (ii) follow
from Theorem 3.4. The conjugate function of HX given
in (17) has a closed form (Cuturi & Peyré, 2016): for g ∈
RI1×···×Id and given X ∈ ΣI1×···×Id ,

H∗
X(g; ΣI1×···×Id) := sup

y∈ΣI1×···×Id

⟨g, y⟩ −HX(y),

= γ (⟨X, logX⟩+ ⟨X, log(Kα)⟩) .

Here, K = exp(−M/γ) ∈
(
RI1×···×Id

)2
, α =

exp(g/γ) ∈ RI1×···×Id , and M ∈
(
RI1×···×Id

)2
is a given

cost matrix. It is known from Theorem 2.4 in Cuturi &
Peyré (2016) that this dual function is C∞. In addition, its
gradient function is 1/γ Lipschitz, and it is explicitly given
as

∇H∗
X(g) = α ◦

(
K

X

Kα

)
∈ ΣI1×···×Id . (24)
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Therefore, Assumption 3.1 is satisfied. Furthermore, the
constraint set Σr

I1×···×Id
and ΣN

r satisfy Assumption 3.2.

Next, we compute the per-iteration cost of Algorithms 2 and
3. The dual function of Fλ0

is given by for g ∈ Rr

F ∗
λ0
(g) := sup

λ∈Σr

⟨g, λ⟩ − 1

2
∥λ− λ0∥2F .

From Lemma D.1, the optimizer of the above is given as

λ∗ = (g + λ0 − c1r)+ (25)

where c is a constant chosen to satisfy λ ∈ Σr, and thus

F ∗
λ0
(g) =

1

2
(g + λ0 − c1r)+(g + λ0 + c1r)−

1

2
∥λ0∥2F .

By the duality as in Lem. 7.15 in Santambrogio (2015), its
gradient is given as the optimizer (25): ∇F ∗

λ0
(g) = λ =

(g + λ0 − c1r)+ ∈ Σr. Therefore, each gradient descent
step to solve (19) or (22) requires O((I1 . . . Id)

2N). Lastly,
(19) and (22) are convex problems, we conclude (iii).

6. Extension to Wasserstein CP-dictionary
learning

While it is possible to vectorize general d-mode tensor-
valued signals to reduce to the case of dictionary learning
for vector-valued signals, it would be more beneficial to
tailor the d-dimensional dictionary learning problem (10)
to exploit particular tensor structures that one desires to
respect. One such approach is to constrain further the type
of dictionary atoms D1, . . . ,Dr that we allow. Namely, the
CONDECOMP/PARAFAC (CP)-dictionary learning (Lyu
et al., 2020) assumes that each Di is a rank-1 tensor in the
sense that it is the outer product of some 1-dimensional
vectors. Also, exploiting Tucker-decomposition structure
on the dictionary atoms has been studied recently in Shakeri
et al. (2016); Ghassemi et al. (2017).

6.1. Wasserstein CP-dictionary learning

Suppose a data tensor X ∈ RI1×···×Id is given and fix
an integer r ≥ 1. In the CANDECOMP/PARAFAC (CP)
decomposition of X (Kolda & Bader, 2009), we would like
to find r loading matrices U (i) ∈ RIi×r for i = 1, . . . , d
such that the sum of the outer products of their respective
columns approximate X:

X ≈
r∑

k=1

d⊗
i=1

U (i)[:, k] =: [[U (1), U2, . . . , U (d)]]

where U (i)[:, k] denotes the kth column of the Ii×r loading
matrix matrix U (i) and

⊗
denotes the outer product. We

have also introduced the bracket operation [[·]].

As an optimization problem, the above CP decomposition
model can be formulated as the following the constrained
CP-decomposition problem:

argmin
U(1)∈Θ(1),...,U(d)∈Θ(d)

fCP(U
(1), . . . , U (d)) (26)

where

fCP(U
(1), . . . , U (d)) :=

∥∥∥X− [[U (1), U2, . . . , U (d)]]
∥∥∥2
F

and Θ(i) ⊆ RIi×r denotes a compact and convex constraint
set and λi ≥ 0 is a ℓ1-regularizer for the ith loading ma-
trix U (i) for i = 1, . . . , d. In particular, by taking λi = 0
and Θ(i) to be the set of nonnegative Ii × r matrices with
bounded norm for i = 1, . . . , d, (26) reduces to the nonneg-
ative CP decomposition (NCPD) (Shashua & Hazan, 2005;
Zafeiriou, 2009). Also, it is easy to see that fCP is equal to∥∥∥X− Out(U (1), . . . , U (d−1))×d (U

(d))T
∥∥∥2
F
, (27)

which is the CP-dictionary-learning problem introduced
in Lyu et al. (2020). Here ×d denotes the mode-d product
(see (Kolda & Bader, 2009)) the outer product of loading
matrices U (1), . . . , U (m) is defined as

Out(U (1), . . . , U (d)) :=[
d⊗

k=1

U (k)[:, 1],

d⊗
k=1

U (1)[:, 2], . . . ,

d⊗
k=1

U (k)[:, r]

]
(28)

Namely, we can think of the d-mode tensor X as Id obser-
vations of (d− 1)-mode tensors, and the R rank-1 tensors
in Out(U (1), . . . , U (d)) serve as dictionary atoms, whereas
the transpose of the last loading matrix U (d) can be regarded
as the code matrix.

The Wasserstein formulation of the CP-dictionary-learning
problem (26) is given as follows. As in the setting of (12),
we suppose that each d-mode tensor Xi is a d-dimensional
joint distribution. We aim to represent each data tensor Xi

based on the product distributions of d one-dimensional
distributions, U (i) ∈ Σr

Ii
for i = 1, · · · , d:

[X1, . . . ,XN ] ≈ Out(U (1), . . . , U (d))×d+1 Λ (29)

for some code matrix Λ ∈ ΣN
r where Out is given in (28).

Comparing the Wasserstein distance between each Xi and
the corresponding distribution, we formulate our main prob-
lem of Wasserstein CP-dictionary Learning (WCPDL):

argmin
U(1)∈Σr

I1
,...,U(d)∈Σr

Id
,

Λ∈ΣN
r

fWCP(U
(1), . . . , U (d),Λ) (30)

where

fWCP(U
(1), . . . , U (d),Λ)

:=

N∑
i=1

Wγ

(
Xi, Out(U

(1), . . . , U (d))×d+1 Λ[:, i]
)
.

7
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Algorithm 4 WCPDL (30)

1: Input: θ0 = (U
(1)
0 , . . . , U

(d)
0 ,Λ0) ∈ Σr

I1 ×· · ·×Σr
Id
×ΣN

r

(initial estimate); N (number of iterations); (τn)n≥1, (non-
decreasing sequence in [1,∞));

2: for n = 1, . . . , N − 1 do:
3: Update estimate θn−1 = (U

(1)
n−1, . . . , U

(d)
n−1,Λn−1) by

D ← Out(U (1)
n−1, . . . , U

(d)
n−1)

Λn ← Output of Algorithm 2 with input (D,Λn−1) ;

4: for k = 1, . . . , d do:
5: Update estimate U

(k)
n−1 by

Λ← Out(U (1)
n , . . . , U (k−1)

n , U
(k+1)
n−1 , . . . , U

(d)
n−1,Λ

T
n )

Λ← Inserting the last mode of Λ into the kth mode

U (k)
n ← Output of Algorithm 3 with input (U (k)

n−1,Λ)

6: end for
7: end for
8: output: θN

6.2. Algorithm (WCPDL)

We state our algorithm to solve Wasserstein CP-
dictionary Learning (30). Given the previous estimates
U

(1)
n−1, . . . , U

(d)
n−1 and Λn−1, we compute the updated es-

timate U
(1)
n , . . . , U

(d)
n and Λn by solving convex sub-

problems, iteratively, as follows.

First, let Dn−1 be Out(U (1)
n−1, . . . , U

(d)
n−1) ∈ Σr

I1×I2×···×Id
.

For a given data tensor X ∈ ΣN
I1×I2×···×Id

, τn > 0, and
the previous estimates above, the code matrix is updated as
follows:

Λn ∈ argmin
Λ∈ΣN

r

(
N∑
i=1

Wγ (Xi, (Dn−1 ×d+1 Λ)[:, i])

)
+

τn
2
∥Λ− Λn−1∥2F . (31)

Next, for each k ∈ {1, 2, · · · , d}, let Λ ∈
RI1×I2×···×Ik−1×r×Ik+1×···×Id×N be obtained from

Out(U (1)
n , . . . , U (k−1)

n , U
(k+1)
n−1 , . . . , U

(d)
n−1,Λ

T
n )

in RI1×I2×···×Ik−1×Ik+1×···×Id×N×r by inserting the last
mode into the kth mode. Given Λ, the dictionaries are
updated as follows:

U (k)
n ∈ argmin

U∈Σr
Ik

(
N∑
i=1

Wγ

(
Xi, Λ[:, i]×k UT

))
+

τn
2
∥U (k) − U

(k)
n−1∥2F . (32)

Theorem 6.1. (Per-iteration correctness) Algorithm 4
solves (31) and (32).

7. Experiments
7.1. Wasserstein barycenter problem

We first provide the simplest example when r = 1. In
this case, Λ ∈ ΣN

1 and thus all entries of Λ are 1’s, which
corresponds to the Wasserstein barycenter problem with
equal weights: minD∈ΣI1,...,Id

∑N
i=1 Wγ (Xi, D) .

For data living in the space of probability distributions,
using the Wasserstein metric instead of the Euclidean metric
may provide a better representation. Figure 1 provides the
barycenter with respect to Wasserstein distance and the
Frobenius norm when d = 1, r = 1, and N = 3.

As shown in the figure, the Wasserstein barycenter of three
Gaussian distributions is close to the Gaussian distribution,
while the Frobenius one is given as the vertical average
of three distributions, which shows a significant difference
between the two formulations.
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Distributions

0 20 40 60 80 100
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Frobenius
Wasserstein
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0.16
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Objective function (dWDL)

Figure 1. Finding the barycenter of three Gaussian distributions
with respect to Wasserstein distance and the Frobenius norm
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Figure 2. Finding the barycenter of two ⊔-shaped distributions
with respect to Wasserstein distance for different γ’s

As defined in (11), the regularized Wasserstein distance Wγ

depends on the parameter γ > 0. In Figure 2, we solve the
Wasserstein barycenter problem for different γ’s and two ⊔-
shaped distributions. While two peaks appear in γ = 0.002
and γ = 0.005, the distribution is getting close to Gaussian.
This illustrates the importance of choosing appropriate γ to
find out the geometric property of data sets.

7.2. Wasserstein dictionary learning

The additional knowledge of the underlying spaces can be
utilized in Wasserstein dictionary learning. To illustrate
this, we consider a sequence of figures generated by John
Conway’s Game of Life, which has a periodic domain. We
solve the problems of Wasserstein dictionary learning with

8
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0 50

Figure 3. Wasserstein dictionary learning with r = 4, N = 100,
and the Euclidean distance; a sequence of images (left), dictionar-
ies (middle), code matrices (right)
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Figure 4. Wasserstein dictionary learning with r = 4, N = 100,
and the distance on a torus; dictionaries (left), the translated top
right dictionary (middle) code matrices (right)

two different ground metrics: the usual Euclidian distance
in Figure 3 and the distance on a torus in Figure 4. It can
be seen in Figure 4 that all dictionaries are similar up to
translations.

The results for Wasserstein dictionary learning on MNIST
for different r’s are given as follows.
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Figure 5. Wasserstein dictionary learning on MNIST; r = 9 (left)
and r = 16 (right)

In Figure 6, we provide a numerical simulation of Algorithm
4 for Wasserstein CP-dictionary learning and verify our
theoretical convergence results in Theorems 3.4 and 5.2. We
observe faster convergence with the presence of proximal
regularization with a suitable regularization coefficient.

8. Conclusion
We provide a theoretical analysis of the block coordinate
descent methods with proximal regularization. The global
convergence to the stationary points and the worst-case
bound are obtained. We provide Wasserstein CP-dictionary
learning as an application of our method.

 

  Figure 6. Plot of relative reconstruction error vs. time for
Wasserstein CP-dictionary learning using Algorithm 4 with
various choices of proximal regularization coefficient τ ∈
{0, 0.1, 0.01, 1}. The tensor on the left and right has sizes
(100, 100, 500) and (100, 100, 1000), respectively. Data tensors
are generated by taking the outer product of randomly generated
factor matrices of 10 columns plus i.i.d. noise of Uniform(0, 10).
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A. Block Coordinate Descent with proximal regularization
A.1. Proof of Theorem 3.4

Throughout this section, we let (θn)n≥1 denote an inexact output of Algorithm (3) and write θn = [θ
(1)
n , . . . , θ

(m)
n ] for each

n ≥ 1. For each n ≥ 1 and i = 1, . . . ,m, denote

f (i)
n : θ 7→ f(θ(1)n , . . . , θ(i−1)

n , θ, θ
(i+1)
n−1 , . . . , θ

(m)
n−1), (33)

which is L-smooth under Assumption 3.1. By Lemma D.6, it is also L-weakly convex. From this, it is easy to see that
g
(i)
n (θ) = f

(i)
n (θ) +

τ(i)
n

2 ∥θ − θ
(i)
n−1∥2 is (τ (i)n − L(i))-strongly convex. Also, denote

τ−n := min
i=1,...,m

τ (i)n , τn := max
i=1,...,m

τ (i)n for all n ≥ 1, L := max
i=1,...,m

L(i). (34)

We will use the notations above as well as this observation throughout this section.

Proposition A.1 (Forward monotonicity). Suppose Assumptions 3.1-3.3. Then the following hold:

(i) f(θn−1)− f(θn) ≥ τ−
n

2 ∥θn−1 − θn∥2 −m∆n;

(ii)
∑∞

n=1 τ
−
n ∥θn − θn−1∥2 < supθ∈Θ f(θ) +m

∑∞
n=1 ∆n <∞.

Proof. Fix i ∈ {1, . . . ,m}. Let θ(i⋆)n be the exact minimizer of the (τ
(i)
n − L(i))-strongly convex function g

(i)
n (θ) over the

convex set Θ(i). Then g
(i)
n (θ

(i)
n ) ≤ f

(i)
n (θ

(i)
n−1) = g

(i)
n (θ

(i)
n−1), for n ≥ 1. Hence we deduce

f (i)
n (θ

(i)
n−1)− f (i)

n (θ(i)n ) = g(i)n (θ
(i)
n−1)− g(i)n (θ(i)n ) + g(i)n (θ(i)n )− f (i)

n (θ(i)n ) ≥ −∆n +
τ
(i)
n

2
∥θ(i)n − θ

(i)
n−1∥2. (35)

It follows that

f(θn−1)− f(θn) (36)

=

n∑
i=1

f([θ(1)n , . . . , θ(i−1)
n , θ

(i)
n−1, θ

(i+1)
n−1 , . . . , θ

(m)
n−1])− f([θ(1)n , . . . , θ(i−1)

n , θ(i)n , θ
(i+1)
n−1 , . . . , θ

(m)
n−1]) (37)

=

n∑
i=1

f (i)
n (θ

(i)
n−1)− f (i)

n (θ(i)n ) (38)

≥
m∑
i=1

(
τ
(i)
n

2
∥θ(i)n − θ

(i)
n−1∥2 −∆n

)
=

τ−n
2
∥θn−1 − θn∥2 −m∆n. (39)

This shows (i).

Next, to show (ii), adding up the above inequality,

n∑
k=1

τ−k
2
∥θk−1 − θk∥2 ≤

(
n∑

k=1

f(θk−1)− f(θk)

)
+m

∞∑
n=1

∆n = f(θ0) +m

∞∑
n=1

∆n <∞, (40)

where we have used the fact that
∑∞

n=1 ∆n <∞ due to Assumption 3.3.

Proposition A.2 (Finite first-order variation). Suppose Assumptions 3.1-3.2. Also assume τ−n ≥ 1 for all n ≥ 1. Suppose
that

∑∞
n=1 ∆n <∞. Then

∞∑
n=1

|⟨∇f(θn+1), θn − θn+1⟩| <
L+ 2

2
sup
θ∈Θ

f(θ) + 3m

∞∑
n=1

∆n <∞.

12
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Proof. According to Assumptions 3.1 and 3.2, it follows that ∇f over Θ is Lipschitz with Lipshitz constant L. Hence by
Lemma D.3, for all t ≥ 1,

|f(θn)− f(θn+1)− ⟨∇f(θn+1), θn − θn+1⟩| ≤
L

2
∥θn − θn+1∥2F .

Using Proposition A.1, it follows that

|f(θn−1)− f(θn)| ≤ f(θn−1)− f(θn) + 2m∆n. (41)

Hence this yields

|⟨∇f(θn+1), θn − θn+1⟩| ≤
L

2
∥θn − θn+1∥2F + |f(θn)− f(θn+1)| (42)

≤ L

2
∥θn − θn+1∥2F + f(θn)− f(θn+1) + 2m∆n (43)

for n ≥ 1. Also note that
∑n

t=1 f(θt)− f(θt+1) = f(θ1)− f(θn+1) ≤ f(θ1). Hence

∞∑
n=0

|⟨∇f(θn+1), θn − θn+1⟩| ≤
L

2

( ∞∑
n=0

∥θn − θn+1∥2F

)
+ f(θ0) + 2m

∞∑
n=1

∆n

≤ L

2

( ∞∑
n=0

τ−n ∥θn − θn+1∥2F

)
+ f(θ0) + 2m

∞∑
n=0

∆n

≤ 2f(θ0) + 3m

∞∑
n=1

∆n <∞,

where we have used Proposition A.1 (ii).

Proposition A.3 (Boundedness of iterates). Under Assumptions 3.2 and 3.3, the set {θn : n ≥ 1} is bounded.

Proof. Let T := m
∑∞

k=1 ∆k, which is finite by Assumption 3.3. Recall that by Proposition A.1, we have

sup
n≥1

f(θn) ≤ f(θ1) + T <∞. (44)

Then we can conclude by using Assumption 3.2.

Proposition A.4 (Asymptotic first-order optimality). Suppose Assumptions 3.1-3.3. Fix a sequence (bn)n≥1 with bn > 0
for n ≥ 1. Then there exists constants c1, c2 > 0 independent of θ0 ∈ θ such that for all n ≥ 1,

⟨∇f(θn+1), θn+1 − θn⟩ ≤ bn+1 inf
θ∈θ

〈
∇f(θn),

θ − θn

∥θ − θn∥

〉
+ c0bn+1∥θn − θn+1∥ (45)

+ c1∥θn+1 − θn∥2 + c2(L+ τn+1)b
2
n+1 +∆n+1. (46)

Proof. Fix arbitrary θ = [θ(1), . . . , θ(m)] ∈ Θ such that ∥θ−θn∥ ≤ bn+1. By convexity of Θ(i), θ(i)n +a(θ(i)−θ(i)n ) ∈ Θ(i)

for all a ∈ [0, 1]. Let θ(i⋆)n+1 denote the exact minimizer of g(i)n+1 over Θ(i). Then we have

f
(i)
n+1(θ

(i)
n+1) +

τ
(i)
n+1

2
∥θ(i)n+1 − θ(i)n ∥2 −∆n+1 ≤ f

(i)
n+1(θ

(i⋆)
n+1) + τ

(i)
n+1∥θ

(i⋆)
n+1 − θ(i)n ∥2 (47)

≤ f
(i)
n+1

(
θ(i)n + a(θ(i) − θ(i)n )

)
+

τ
(i)
n+1a

2

2
∥θ(i) − θ(i)n ∥2. (48)

Recall that each f
(i)
n+1 is L(i)-smooth by Assumption 3.1. Hence by subtracting f

(i)
n+1(θ

(i)
n ) from both sides and using

Lemma D.3, we get〈
∇f (i)

n+1(θ
(i)
n ), θ

(i)
n+1 − θ(i)n

〉
≤ a

〈
∇f (i)

n+1(θ
(i)
n ), θ(i) − θ(i)n

〉
(49)

+
L(i)

2
∥θ(i)n+1 − θ(i)n ∥2 +

L(i)

2
∥θ(i) − θ(i)n ∥2 +

τ
(i)
n+1a

2

2
∥θ(i) − θ(i)n ∥2 +∆n+1. (50)

13
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Adding up these inequalities for i = 1, . . . ,m ,〈[
∇f (1)

n+1(θ
(1)
n ), . . . ,∇f (m)

n+1(θ
(m)
n )

]
, θn+1 − θn

〉
≤ a

〈[
∇f (1)

n+1(θ
(1)
n ), . . . ,∇f (m)

n+1(θ
(m)
n )

]
, θ − θn

〉
(51)

+
L

2
∥θn+1 − θn∥2 +

(L+ τn+1a
2)

2
∥θ − θn∥2 +∆n+1. (52)

Since for each i = 1, . . . ,m ∇f is L(i)-Lipschits in the ith block coordinate, we have

∥∇if(θ
(1)
n , . . . , θ(m)

n )−∇f (i)
n+1(θ

(i)
n )∥ ≤ L(i)∥θn − θn+1∥. (53)

Hence there exists constants c1, c2 > 0 independent of θ0 ∈ Θ, such that

⟨∇f(θn+1), θn+1 − θn⟩ ≤ a ⟨∇f(θn), θ − θn⟩+ amL∥θn − θn+1∥ · ∥θ − θn∥ (54)

+ c1∥θn+1 − θn∥2 + c2(L+ τn+1a
2)∥θ − θn∥2 +∆n+1. (55)

The above inequality holds for all a ∈ [0, 1].

Viewing the right hand side as a quadratic function in a, the only possibly negative term is the linear term
a ⟨∇f(θn), θ − θn⟩, whose absolute value is bounded above by a∥∇f(θn)∥∥θ − θn∥. By Proposition A.3 and As-
sumption 3.3, ∥∇f(θn)∥ is uniformly bounded, so this is bounded above by ac3∥θ − θn∥ for some constant c3 > 0. Hence
we may choose c2 > 0 large enough so that the right hand side above is non-increasing in a. Thus the inequality above
holds for all a ≥ 0. In particular, we can choose a = bn+1/∥θ − θn∥. This and using ∥θ − θn∥ ≤ bn+1 yield

⟨∇f(θn+1), θn+1 − θn⟩ ≤ bn+1

〈
∇f(θn),

θ − θn

∥θ − θn∥

〉
+ c0∥θn − θn+1∥bn+1 (56)

+ c1∥θn+1 − θn∥2 + c2(L+ τn+1)b
2
n+1 +∆n+1, (57)

where we wrote c0 := mL.

We have shown that the above holds for all θ ∈ Θ such that ∥θ − θn∥ ≤ bn+1. It remains to argue that (56) also holds
for all θ ∈ Θ with ∥θ − θn∥ ≥ bn+1. Indeed, for such θ, let θ′ be the point in the secant line between θ and θn such
that ∥θ′ − θn∥ ≤ bn+1. Then θ′ ∈ Θ and (56) holds for θ replaced with θ′. However, the right hand side is unchanged
when replacing θ with any point on the line passing through θ and θn. Thus (56) holds for all θ ∈ Θ. This shows the
assertion.

Proposition A.5 (Optimality gap for iterates). For each n ≥ 1 and i ∈ {1, . . . ,m}, let θ(i⋆)n be the exact minimizer of the
(τ

(i)
n − L(i))-strongly convex function θ 7→ g

(i)
n (θ) in (3) over the convex set Θ(i). Then

τ
(i)
n − L(i)

2
∥θ(i⋆)n − θ(i)n ∥2 ≤ ∆n. (58)

Proof. The assertion follows from

τ
(i)
n − L(i)

2
∥θ(i⋆)n − θ(i)n ∥2 ≤ g(i)n (θ(i)n )− g(i)n (θ(i⋆)n ) ≤ ∆n (59)

for n ≥ 1. Indeed, the first inequality follows from the second-order growth property (see Lemma D.4) since g
(n)
n is

(τ
(i)
n − L(i))-strongly convex minimized at θ(i)n , and the second inequality follows from the definition of optimality gap ∆n

in (7).

We are now ready to give a proof of Theorem 3.4.

Proof of Theorem 3.4. Suppose Assumptions 3.1-3.3 and τ
(i)
n > L(i) + δ for n ≥ 1 for some δ > 0. Also assume τ

(i)
n =

O(1). We first show (i). Fix a convergent subsequence (θnk
)k≥1 of (θn)n≥1. We wish to show that θ∞ = limk→∞ θnk

14
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is a stationary point of f over Θ. To this end, for each i ∈ {1, · · · ,m}, let θ(i⋆)n denote the exact minimizer of the
(τ

(i)
n − L(i))-strongly convex function g

(i)
n defined in (3). By using the first-order optimality of θ(i⋆)n , we have〈

∇g(i)n (θ(i⋆)n ), θ − θ(i⋆)n

〉
=
〈
∇f (i)

n (θ(i⋆)n ) + τ (i)n (θ(i⋆)n − θ
(i)
n−1), θ − θ(i⋆)n

〉
≥ 0 ∀θ ∈ Θ(i). (60)

Let T := m
∑∞

k=1 ∆k, which is finite by Assumption 3.3. Recall that by Proposition A.1, we have

sup
n≥1

f(θn) ≤ f(θ1) + T <∞. (61)

Let K := {θ : f(θ) ≤ f(θ1) + T} and let K(T ) := {θ : ∃θ′ ∈ K s.t. ∥θ − θ′∥ ≤ T} denote the T -neighborhood of K.
By Assumption 3.2, K is compact, so K(T ) is also compact. Since f is L(i)-smooth in its ith blook coordinate, ∥∇g(i)n ∥ is
uniformly bounded over θ ∈ K(T ) by some constant, say, LK > 0. Now observe that〈

∇g(i)n (θ(i⋆)n ), θ − θ(i)n

〉
≥
〈
∇g(i)n (θ(i⋆)n ), θ − θ(i⋆)n

〉
−
∣∣∣〈∇g(i)n (θ(i⋆)n ), θ(i)n − θ(i⋆)n

〉∣∣∣ (62)

≥ −∥∇g(i)n (θ(i⋆)n )∥ ∥θ(i)n − θ(i⋆)n ∥ (63)
≥ −LK∆n. (64)

Next, using L(i)-Lipschitzness of∇f in the ith block coordinate and Proposition A.5, we have∣∣∣〈∇g(i)n (θ(i⋆)n ), θ − θ(i)n

〉
−
〈
∇g(i)n (θ(i)n ), θ − θ(i)n

〉∣∣∣ (65)

≤
∣∣∣〈∇f (i)

n (θ(i⋆)n )−∇f (i)
n (θ(i)n ) + τ (i)n (θ(i⋆)n − θ(i)n ), θ − θ(i)n

〉∣∣∣ (66)

≤
(
∥∇f (i)

n (θ(i⋆)n )−∇f (i)
n (θ(i)n )∥+ τ (i)n ∥θ(i⋆)n − θ(i)n ∥

)
∥θ − θ(i)n ∥ (67)

≤ (L(i) + τ (i)n )∥θ − θ(i)n ∥ ∥θ(i⋆)n − θ(i)n ∥ (68)

≤ (L(i) + τ (i)n )∥θ − θ(i)n ∥

√
2∆n

τ
(i)
n − L(i)

= ∥θ − θ(i)n ∥

√√√√ 8τ
(i)
n ∆n

1− L(i)/τ
(i)
n

, (69)

where for the last equality we have used that τ (i)n > L(i) for n ≥ 1. From Assumption 3.3, we can deduce ∆n = o(1).
Using the hypotheses τ (i)n > L(i) + δ for n ≥ 1 for some δ > 0 (see Algorithm (3)), and τ

(i)
n = O(1), we see that the term

inside the square root in the last expression is o(1). Furthermore, ∥θ − θ
(i)
nk∥ is uniformly bounded in k since θ

(i)
nk converges

as k →∞. Hence

lim inf
k→∞

〈
∇g(i)nk

(θ(i)nk
), θ − θ(i)nk

〉
≥ 0 ∀θ ∈ Θ(i). (70)

Note that by Proposition A.1 (ii) and τ
(i)
n = O(1), we get τ (i)n ∥θn − θn−1∥ = o(1). So if we write θ∞ = [θ

(1)
∞ , . . . , θ

(m)
∞ ],

For each θ ∈ Θ(i), by the hypothesis, we get

lim
k→∞

∣∣∣〈∇f (i)
nk

(θ(i)nk
) + 2τ (i)nk

(θ(i)nk
− θ

(i)
nk−1), θ − θ(i)nk

〉
−
〈
∇f (i)

nk
(θ(i)nk

), θ − θ(i)nk

〉∣∣∣ (71)

≤ lim
k→∞

2τ (i)nk
∥θ(i)nk

− θ
(i)
nk−1∥ ∥θ − θ

(i)
nk−1∥ (72)

= 2∥θ − θ(i)∞ ∥ lim
k→∞

τ (i)nk
∥θ(i)nk

− θ
(i)
nk−1∥ = 0. (73)

It follows that, for each θ ∈ Θ(i), using the continuity of∇f in Assumption 3.2,〈
∇if(θ

(1)
∞ , . . . , θ(i−1)

∞ , θ(i)∞ , θ(i+1)
∞ , . . . , θ(m)

∞ ), θ − θ(i)∞

〉
= lim

k→∞

〈
∇f (i)

nk
(θ(i)nk

), θ − θ(i)nk

〉
≥ 0. (74)

This holds for all i = 1, . . . ,m. Therefore we verify ⟨∇f(θ∞), θ − θ∞⟩ ≥ 0 for all θ ∈ Θ, which means that θ∞ is a
stationary point of f over Θ, as desired. This shows (i).
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Next, we show (ii). Let bn be any square-summable sequence of positive numbers. By Cauchy-Schwarz inequality,

n∑
k=1

bk∥θk − θk+1∥ ≤

(
n∑

k=1

b2k

)1/2( n∑
k=1

∥θk − θk+1∥2
)1/2

. (75)

Then by Proposition A.1, the right hand side is uniformly bounded in n ≥ 1, so we see that the left hand side is also
uniformly bounded in n. Hence using Propositions A.1 and A.2,

∞∑
n=1

bn+1

[
− inf

θ∈Θ

〈
∇f(θn),

θ − θn

∥θ − θn∥

〉]
≤ C

(
sup
θ∈Θ

f(θ) +

∞∑
n=1

∆n(θ0) +

∞∑
n=1

b2n +

∞∑
n=1

bn∥θn − θn+1∥

)
(76)

for some constant C > 0 independent of θ0, and the right hand side is finite. Thus by taking bn = 1/(
√
n log n), using

Lemma D.2, we deduce

min
1≤k≤n

[
− inf

θ∈Θ

〈
∇f(θk),

θ − θk

∥θ − θk∥

〉]
≤

M + c
∑∞

n=1 ∆n(θ0)√
n/ log n

(77)

for some constants M, c > 0 independent of θ0. This shows (ii).

Lastly, we show (iii). Assume supθ0∈Θ

∑∞
n=1 ∆n(θ0) < ∞. Then the above implies that for some constant M ′ > 0

independent of θ0,

min
1≤k≤n

sup
θ0∈Θ

[
− inf

θ∈Θ

〈
∇f(θk),

θ − θk

∥θ − θk∥

〉]2
≤ M ′(log n)2

n
. (78)

Then one can conclude (iii) by using the fact that n ≥ 2ε−1(log ε−1)2 implies (log n)2/n ≤ ε for all sufficiently small
ε > 0. This completes the proof.

B. Proof of Theorem 5.1
In this section, we establish Theorem 5.1, the per-iteration correctness of Algorithm 1. This directly follows from
Propositions B.1 and B.2 below.

Proposition B.1. For given (Dn−1,Λn−1) ∈ Σr
I1×···×Id

× ΣN
r and τn > 0, let Λn ∈ ΣN

r be a solution of (18). Suppose
each fiber of Dn−1 along the last mode is not identically zero. Then, Λn is uniquely determined by

Λn =

(
Λn−1 +

Dn−1 ×≤d G
◦
n

τn
− J◦ ⊗ c◦n

)
+

. (79)

Here, G◦
n ∈ RN is defined as the unique solution of the dual problem (19), c◦n ∈ RN×1 is chosen to satisfy Λn ∈ ΣN

r and
all entries of J◦ ∈ Rr×1 are one.

As shown later in the proof, the assumption on Dn−1 in the above proposition is required to ensure the above derivation. It
is worth pointing out that it can be easily achieved in the algorithm by adding small noise, if necessary.

Proposition B.2. For given (Dn−1,Λn) ∈ Σr
I1×···×Id

×ΣN
r , let Dn ∈ Σr

I1×···×Id
be a solution of (14). Suppose each fiber

of Λn ∈ ΣN
r along the 2nd mode is not identically zero. Then Dn is uniquely determined by

Dn =

(
Dn−1 +

G†
n ×d+1 Λ

T
n

τn
− J† ⊗ c†n

)
+

. (80)

Here, G†
n is defined as the unique solution of the dual problem (22), c†n ∈ Rr×1 is chosen to satisfy Dn ∈ Σr

I1×···×Id
and all

entries of J† ∈ RI1I2···Id×1 are one.

The following definitions are taken from (Bauschke et al., 2011).

Definition B.3. (Bauschke et al., 2011)(Definitions 9.12, 19.10, 19.15 & 19.22)
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• For a nonempty closed convex cone K ⊂ K, we say that R : H → K is convex with respect to K if

R(αx+ (1− α)y)− αRx− (1− α)Ry ∈ K

for all x, y ∈ H and α ∈ (0, 1).

• The set of proper lower semicontinuous convex functions fromH to (−∞,+∞] is denoted by Γ0(H).

• The Lagrangian of J : H×K → (−∞,+∞] is a function given as

L : H×K → [−∞,+∞] : (x, v) 7→ inf
y∈K

(J (x, y) + ⟨y, v⟩) . (81)

Moreover, (x, v) ∈ H ×K is a saddle point of L if

L(x, v) = supL(x,K) = inf L(H, v).

• The primal problem and the dual problem of J : H×K → (−∞,+∞] are respectively given as

min
x∈H
J (x, 0), and min

v∈K
J ∗(0, v). (82)

We first observe that the primal problem of

J : H×K → (−∞,+∞] : (x, y) 7→

{
f(Rx− y) + h(x), if Rx ∈ y +K,

+∞, if Rx /∈ y +K,
(83)

is the minimization problem (23). Its dual problem, the Lagrangian of J , and the saddle point are given in the following
lemma.
Lemma B.4 (Characterization of saddle point for general coding problem). Let f ∈ Γ0(K), h ∈ Γ0(H), and K be a
nonempty closed convex cone in K. Let R : H → K be continuous, convex with respect to K such that K ∩R(domh) ̸= ∅.
For J given in (83), the following hold:

1. The dual problem of J is given as

min
v∈K

f∗(−v;K) + h∗(R∗v) (84)

where f∗(·;K) = supz∈K⟨z, ·⟩ − f(z).

2. The Lagrangian L : H×K → [−∞,+∞] is given as

L(x, v) =


−∞ if x ∈ domh and v /∈ domf∗(·;K);

−f∗(v;K) + h(x) + ⟨Rx, v⟩ if x ∈ domh and v ∈ domf∗(·;K);

+∞ if x /∈ domh.

(85)

3. Suppose that the optimal values µ and µ∗ of the primal problem and the dual problem satisfy the strong duality
µ = −µ∗. Then, (x◦,−v◦) ∈ H ×K is a saddle point of L if and only if

x◦ ∈ domh, Rx◦ ∈ K, −v◦ ∈ domf∗(·;K),

R∗v◦ ∈ ∂h(x◦) and − v◦ ∈ ∂f(Rx◦).

Proof. (1): For any v ∈ K, it holds that

J ∗(0, v) = sup
(x,y)∈H×K

⟨y, v⟩ − J (x, y),

= sup
(x,y)∈H×K s.t. Rx−y∈K

⟨y, v⟩ − h(x)− f(Rx− y),

= sup
(x,z)∈H×K

⟨x,R∗v⟩ − h(x) + ⟨z,−v⟩ − f(z),

= h∗(R∗v) + f∗(−v;K).
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From the definition of the dual problem, we conclude.

(2): If x /∈ domh, then h(x) = ∞. As f ∈ Γ0(K), we have J (x, v) = ∞ and thus the Lagrangian L(x, v) = ∞. For
x ∈ domh and v ∈ domf∗(·;K), we have

L(x, v) = h(x) + inf
y∈K s.t. Rx−y∈K

f(Rx− y) + ⟨y, v⟩,

= h(x) + ⟨Rx, v⟩+ inf
z∈K

f(z)− ⟨z, v⟩,

= h(x) + ⟨Rx, v⟩ − sup
z∈K
⟨z, v⟩ − f(z),

= h(x) + ⟨Rx, v⟩ − f∗(v;K).

If x ∈ domh and v /∈ domf∗(·;K), the above relation yields that L(x, v) = −∞.

(3): From f ∈ Γ0(K), h ∈ Γ0(H), and the convexity of R with respect to K, we have that J ∈ Γ0(H × K). Applying
Corollary 19.17 in (Bauschke et al., 2011), we obtain that (x◦,−v◦) is a saddle point of L if and only if x◦ is a solution of
the primal problem (23) and v◦ is a solution of the dual problem (84).

As µ = −µ∗, the equivalence in Corollary 19.1 from (Bauschke et al., 2011) concludes our claim.

Now we are ready to prove Proposition B.1.

Proof of Proposition B.1. The primal problem (18) for updating Λ has convex objective function and is strictly feasible
under the hypothesis that Dn−1 consists of nonzero tensor slices Di. Hence the primal problem (18) obtains strong duality
(see, e.g., (Boyd et al., 2004)).

Let Λn and Gn be the optimizers of the primal problem (18) and the dual problem (19), respectively. In what follows, we
will apply Lemma B.4. For K = ΣN

I1×···×Id
, let us consider

J : Rr×N × RI1×···×Id×N → (−∞,+∞] :

(Λ, Y ) 7→

{∑N
i=1

{
HXi

(Dn−1 ×d+1 Λ[:, i]− Y [:, i]) + τnFΛn−1[:,i](Λ[:, i])
}

if Dn−1 ×d+1 Λ ∈ Y +K,

+∞, if Dn−1 ×d+1 Λ /∈ Y +K.

Then, (18) and (19) are the primal problem and the dual problem of J , respectively.

From Cor. 19.17 in (Bauschke et al., 2011), (Λn,−Gn) is a saddle point of the Lagrangian associated with J . Applying
Lemma B.4(3), we get Dn−1 ×≤d Gn ∈ τn∂F (Λn). Note that ξ + J◦ ⊗ c◦n ∈ ∂F (Λn) for any c◦n ∈ RN×1, where all
entries of J◦ ∈ Rr×1 are one, and ξ ∈ Rr×N satisfies{

ξ[i, j] = Λn[i, j]− Λn−1[i, j] if Λn[i, j] > 0,

ξ[i, j] ∈ (−∞,−Λn−1[i, j]] if Λn[i, j] = 0,
(86)

for all i = 1, 2, · · · , r, and j = 1, 2, · · · , N . Hence

Dn−1 ×≤d Gn/τn = ξ + J◦ ⊗ c◦n (87)

for some ξ satisfying (86) and c◦n ∈ RN×1. Now combining (87) and (86) yields (79). Finally, since we must have
Λn ∈ dom(F ), c◦n ∈ RN×1 should be such that Λn in (79) satisfies Λn ∈ ΣN

r .

C. Proof of Theorem 6.1
Here, we only prove the following proposition. The rest of arguments is parallel to the proof of Theorem 5.1

Proposition C.1. For each k ∈ {1, 2, · · · , d}, let Λ ∈ RI1×I2×···×Ik−1×r×Ik+1×···×Id×N be obtained from

Out(U (1)
n , . . . , U (k−1)

n , U
(k+1)
n−1 , . . . , U

(d)
n−1,Λ

T
n ) ∈ RI1×I2×···×Ik−1×Ik+1×···×Id×N×r (88)
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by inserting the last mode into the kth mode. Let U (k)
n ∈ Σr

Ik
be a solution of (14). Suppose each fiber of Λn ∈ ΣN

r along

the kth mode is not identically zero. Then U
(k)
n is uniquely determined by

U (k)
n =

(
U

(k)
n−1 +

G†
n × ̸=k Λ

τn
− J† ⊗ c†n

)
+

. (89)

Here, G†
n is defined as the unique solution of the dual problem (22), c†n ∈ Rr×1 is chosen to satisfy U

(k)
n ∈ Σr

Ik
and all

entries of J† ∈ RIk×1 are one.

Proof. We first obtain the dual of (32):

min
U∈Σr

Ik

(
N∑
i=1

HXi
(Λ[:, i]×k UT )

)
+ τnFU

(k)
n−1

(U)

= min
U∈Σr

Ik
,Q∈ΣN

I1×···×Id
,Q[:,i]=Λ[:,i]×kUT

(
N∑
i=1

HXi
(Q[:, i])

)
+ τnFU

(k)
n−1

(U),

= min
U∈Σr

Ik
,Q∈ΣN

I1×···×Id

max
G∈RI1×···×Id×N

N∑
i=1

{
HXi

(Q[:, i]) + ⟨Q[:, i]− Λ[:, i]×k UT , G[:, i]⟩
}
+ τnFU

(k)
n−1

(U),

(a)
= max

G∈RI1×···×Id×N
min

U∈Σr
Ik

,Q∈ΣN
I1×···×Id

N∑
i=1

{
HXi

(Q[:, i]) + ⟨Q[:, i]− Λ[:, i]×k UT , G[:, i]⟩
}
+ τnFU

(k)
n−1

(U),

= max
G∈RI1×···×Id×N

N∑
i=1

−

{
max

Q∈ΣN
I1×···×Id

⟨Q[:, i],−G[:, i]⟩ −HXi
(Q[:, i])

}

+ min
U∈Σr

Ik

τnFU
(k)
n−1

(U)−
n∑

i=1

⟨Λ[:, i]×k UT , G[:, i]⟩,

(b)
= − min

G∈RI1×···×Id×N

[
N∑
i=1

{
H∗

Xi
(−G[:, i])

}
+ max

U∈Σr
Ik

{
⟨Λ×k UT , G⟩ − τnFU

(k)
n−1

(U)
}]

,

(c)
= − min

G∈RI1×···×Id×N

N∑
i=1

{
H∗

Xi
(−G[:, i])

}
+ τnF

∗
U

(k)
n−1

(G× ̸=k Λ/τn).

Here, (a) uses strong duality for convex objectives; (b) uses the fact that

(Λ×k UT ) = [Λ[:, 1], . . . ,Λ[:, N ]]×k UT =
[
Λ[:, 1]×k UT , . . . ,Λ[:, N ]×k UT

]
, (90)

and (c) follows from the identity ⟨Λ×k UT , G⟩ = ⟨U,G× ̸=k Λ⟩, which is easily verified from the definition. Then we can
conclude similarly as in the proof of Proposition B.1 by using Lemma B.4 with K = ΣN

I1×···×Id
and

J : RIk×r × RI1×···×Id×N → (−∞,+∞] :

(U, Y ) 7→

{∑N
i=1 HXi

(
Λ[:, i]×k UT − Y [:, i]

)
+ τnFU

(k)
n−1

(U) if Λ×k UT ∈ Y +K,

+∞, if Λ×k UT /∈ Y +K.

D. Auxiliary lemmas
Lemma D.1. Fix g ∈ Rr and let Σr := {(x1, . . . , xr) ∈ Rr

≥0 :
∑r

i=1 xi = 1}. The optimality condition of the problem

sup
λ∈Σr

⟨g, λ⟩ − 1

2
∥λ− λ0∥2F (91)
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is given as

λ∗ = (g + λ0 − c1r)+ (92)

where c is a constant chosen to satisfy λ∗ ∈ Σr.

Proof. As the cost function of (91) is strictly concave and Σr is a closed set, there exists a unique maximizer λ∗ ∈ Σr of
(91). For any ϵ ∈ [0, 1] and λ ∈ Σr, consider

h(ϵ) := ⟨g, λ∗ + ϵ(λ− λ∗)⟩ − 1

2
∥λ∗ + ϵ(λ− λ∗)− λ0∥2F .

Noting that λ∗ + ϵ(λ− λ∗) is also in Σr for any ϵ ∈ [0, 1].

As h(ϵ) attains its maximum at ϵ = 0, we have that for all λ ∈ Σr

0 ≥ h′(0) = ⟨g − λ∗ + λ0, λ− λ∗⟩. (93)

For I1 := {i ∈ {1, 2, · · · , r} : λ∗[i] > 0} and I2 := {i ∈ {1, 2, · · · , r} : λ∗[i] = 0}, we obtain

0 ≥
∑
i∈I1

(g − λ∗ + λ0)[i]× (λ− λ∗)[i] +
∑
i∈I2

(g − λ∗ + λ0)[i]× λ[i]. (94)

As λ ∈ Σr is arbitrary, there exists a constant c ∈ R such that for i ∈ I1

(g − λ∗ + λ0)[i] = c. (95)

This yields that

0 ≥
∑
i∈I1

c× (λ− λ∗)[i] +
∑
i∈I2

(g − λ∗ + λ0)[i]× λ[i], (96)

=
∑
i∈I2

(g − λ∗ + λ0[i]− c)× λ[i]. (97)

The last equality is due to λ, λ∗ ∈ Σr, As a consequence, (g − λ∗ + λ0)[i] ≤ c and we conclude.

Lemma D.2. Let (an)n≥0 and (bn)n≥0 be sequences of nonnegative real numbers such that
∑∞

n=0 anbn <∞. Then

min
1≤k≤n

bk ≤
∑∞

k=0 akbk∑n
k=1 ak

= O

( n∑
k=1

ak

)−1
 . (98)

Proof. The assertion follows from noting that(
n∑

k=1

ak

)
min

1≤k≤n
bk ≤

n∑
k=1

akbk ≤
∞∑
k=1

akbk <∞. (99)

Lemma D.3 (Convex Surrogate for Functions with Lipschitz Gradient). Let f : Rp → R be differentiable and ∇f be
L-Lipschitz continuous. Then for each θ,θ′ ∈ Rp,∣∣f(θ′)− f(θ)− ⟨∇f(θ), θ′ − θ⟩

∣∣ ≤ L

2
∥θ − θ′∥2. (100)

Proof. This is a classical Lemma (see, e.g., Lem 1.2.3 in (Nesterov, 1998)). We include a proof of this statement for
completeness. First write

f(θ′)− f(θ) =

∫ 1

0

〈
∇f

(
θ + s(θ′ − θ)

)
, θ′ − θ

〉
ds. (101)
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By Cauchy-Schwarz inequality and L-Lipscthizness of∇f ,∣∣∣∣∫ 1

0

〈
∇f

(
θ + s(θ′ − θ)

)
, θ′ − θ

〉
−
∫ 1

0

〈
∇f (θ) , θ′ − θ

〉
ds

∣∣∣∣ ≤ ∫ 1

0

∥∥∇f (θ + s(θ′ − θ)
)
−∇f (θ)

∥∥ ∥θ′ − θ∥ ds

(102)

≤
∫ 1

0

Ls∥θ′ − θ∥2 ds (103)

=
L

2
∥θ − θ′∥2. (104)

Then the assertion follows.

Lemma D.4 (Second-Order Growth Property). Let g : Rp → [0,∞) be µ-strongly convex and let Θ is a convex subset of
Rp. Let θ∗ denote the minimizer of g over θ. Then for all θ ∈ θ,

g(θ) ≥ g(θ∗) +
µ

2
∥θ − θ∗∥2. (105)

Proof. See Lem. B.5 in (Mairal, 2013).

Lemma D.5 (Characterization of weak convexity). Let f : Rp → R be a smooth function. Fix a convex set Θ ⊆ Rp and
ρ > 0. The following conditions are equivalent.

(i) (Weak convexity) θ 7→ f(θ) + ρ
2∥θ∥

2 is convex on Θ;

(ii) (Hypermonotonicity) ⟨∇f(θ)−∇f(θ′), θ − θ′⟩ ≥ −ρ∥θ − θ′∥2 for all θ,θ′ ∈ Θ;

(iii) (Quadratic lower bound) f(θ)− f(θ′) ≥ ⟨∇f(θ′), θ − θ′⟩ − ρ
2∥θ − θ′∥2 for all θ,θ′ ∈ Θ.

Proof. See Lem. B.2 in (Lyu, 2022). See also Thm. 7 in (Daniilidis & Malick, 2005) for an equivalent statement for a more
general case of locally Lipschitz functions.

Lemma D.6. Let f : Rp → R be a function such that∇f is L-Lipscthiz for some L > 0. Then f is L-weakly convex, that
is, θ 7→ f(θ) + L

2 ∥θ∥
2 is convex.

Proof. Follows immediately by Lemmas D.3 and D.5.
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