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Abstract

Stochastic gradient-based optimization methods, such as L-SVRG and its accelerated vari-
ant L-Katyusha (Kovalev et al., 2020), are widely used to train machine learning models.
Theoretical and empirical performance of L-SVRG and L-Katyusha can be improved by
sampling the observations from a non-uniform distribution (Qian et al., 2021). However,
to design a desired sampling distribution, Qian et al. (2021) rely on prior knowledge of
smoothness constants that can be computationally intractable to obtain in practice when
the dimension of the model parameter is high. We propose an adaptive sampling strategy
for L-SVRG and L-Katyusha that learns the sampling distribution with little computa-
tional overhead, while allowing it to change with iterates, and at the same time does not
require any prior knowledge on the problem parameters. We prove convergence guarantees
for L-SVRG and L-Katyusha for convex objectives when the sampling distribution changes
with iterates. These results show that even without prior information, the proposed adap-
tive sampling strategy matches, and in some cases even surpasses, the performance of the
sampling scheme in Qian et al. (2021). Extensive simulations support our theory and the
practical utility of the proposed sampling scheme on real data.

1 Introduction

We aim to minimize the following finite-sum problem:

min
x∈Rd

F (x) := 1
n

n∑
i=1

fi(x), (1)

where each fi is convex, differentiable, and Li-smooth – see Assumptions 1, 2. The minimization problem
equation 1 is ubiquitous in machine learning applications, where fi(x) typically represents the loss function
on the i-th data point of a model parametrized by x. We denote the solution to problem 1 as x⋆. Due
to computational concerns, one typically solves equation 1 via a first-order method (Bottou et al., 2018),
however, when the sample size, n, is large, even computing the full gradient ∇F (x) can be computationally
expensive. As a result, stochastic first-order methods, such as stochastic gradient descent (SGD) (Robbins
& Monro, 1951), are the modern tools of choice for minimizing equation 1.

Since SGD iterates cannot converge to the minimizer without decreasing the stepsize due to nonvanishing
variance, a number of variance reduced methods, such as SAG (Schmidt et al., 2017), SAGA (Defazio et al.,
2014), SVRG (Johnson & Zhang, 2013), and Katyusha (Allen-Zhu, 2017), have been proposed, and such
methods can converge to the optimum of equation 1 even with a constant stepsize. In this paper, we focus
on L-SVRG and L-Katyusha (Kovalev et al., 2020), which improve on SVRG and Katyusha by removing
the outer loop in these algorithms and replace it with a biased coin-flip. This change simplifies parameter
selection, leads to a better practical performance, and allows for a more clear theoretical analysis.

Stochastic first-order methods use a computationally cheap estimate of the full gradient ∇F (x) when min-
imizing equation 1. For example, at the beginning of the round t, SGD randomly draws it ∈ [n] according
to a sampling distribution pt over [n], and forms an unbiased estimate ∇fit(x) of ∇F (x). Typically, the
sampling distribution pt is the uniform distribution, pt = (1/n, · · · , 1/n), for all t. However, using a non-
uniform sampling distribution can lead to faster convergence (Zhao & Zhang, 2015; Needell et al., 2016; Qian
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et al., 2019; Hanzely & Richtárik, 2019; Qian et al., 2021). For example, when the sampling distribution
is pIS = (pIS

1 , · · · , pIS
n ), with pIS

i = Li/(
∑n

i=1 Li) = Li/(nL̄), then the convergence rate of L-SVRG and
L-Katyusha can be shown to depend on the average smoothness L̄ := (1/n)

∑n
i=1 Li, rather than on the max-

imum smoothness Lmax := max1≤i≤n Li (Kovalev et al., 2020). Sampling from a non-uniform distribution is
commonly referred to as importance sampling (IS).

While sampling observations from pIS can improve the speed of convergence, pIS depends on the smoothness
constants {Li}i∈[n]. In general, these constants are not known in advance and need to be estimated, for
example, by computing supx∈Rd λmax(∇2fi(x)), i ∈ [n], where λmax(·) denotes the largest eigenvalue of
a matrix. When the dimension d is large, it is computationally prohibitive to estimate the smoothness
constants, except in some special cases, such as linear and logistic regression. In this paper, we develop a
method for designing a sequence of sampling distributions that leads to the convergence rate of L-SVRG
and L-Katyusha that depends on L̄, instead of Lmax, without prior knowledge of {Li}i∈[n].

Rather than designing a fixed sampling distribution, where pt ≡ p for all t, we design a dynamic sampling
distribution that can change with iterations of an optimization algorithm, that is, we generate a sequence of
sampling distributions. We follow a recent line of work that formulates the design of the sampling distribution
as an online learning problem (Salehi et al., 2017; Borsos et al., 2019; Namkoong et al., 2017; Hanchi &
Stephens, 2020; Zhao et al., 2021). Using the gradient information obtained in each round, we update the
sampling distribution with minimal computational overhead. This sampling distribution is subsequently
used to adaptively sample the observations used to compute the stochastic gradient. When the sequence of
designed distributions is used for importance sampling, we prove convergence guarantees for L-SVRG, under
both strongly convex and weakly convex settings, and for L-Katyusha under strongly convex setting. These
convergence guarantees show that it is possible to design a sampling distribution that not only does as well
as pIS , but can improve over it without using prior information. We focus on the comparison with pIS as
it is the most widely used fixed sampling distribution (Qian et al., 2021) and it leads to the best-known
convergence rates with fixed sampling distribution (Zhao & Zhang, 2015; Needell et al., 2016).

Our paper makes the following contributions. We develop an adaptive sampling algorithm for L-SVRG
and L-Katyusha that does not require prior information, such as smoothness constants, resulting in the
first practical sampling strategy for L-SVRG and L-Katyusha. We prove convergence guarantees for L-
SVRG, under both strong and weak convexity, and L-Katyusha, under strong convexity, with a sequence of
sampling distributions that change with iterations. These theoretical results tell us when the sequence of
sampling distributions performs as well as pIS , and, surprisingly, in what case it does better. Our numerical
experiments support these findings. While both the control variate technique in SVRG and adaptive sampling
are trying to minimize the variance of stochastic gradients, they are actually reducing the variance from
different aspects. We also illustrate this difference in a simulation. Extensive simulations are designed to
provide empirical support to various aspects of our theory, while real data experiments show the practical
benefits of adaptive sampling. Given the low computational cost and superior empirical performance, we
believe that our adaptive sampling should be considered as the default alternative to the uniform sampling
used in L-SVRG and L-Katyusha.

Related work. Our paper contributes to the literature on non-uniform sampling in first-order stochastic
optimization methods. Zhao & Zhang (2015) and Needell et al. (2016) studied non-uniform sampling in
SGD, Richtárik & Takác (2016) in stochastic coordinate descent, and Qian et al. (2021) in L-SVRG and
L-Katyusha. Prior work focused on sampling from a fixed design, while we allow the sampling distribution to
change with iterates. This is an important difference as the best sampling distribution changes with iterations
and a fixed sampling distribution is a poor substitute to the best sequence. The sampling distribution can be
designed adaptively using an online learning framework (Namkoong et al., 2017; Salehi et al., 2017; Borsos
et al., 2018; 2019; Hanchi & Stephens, 2020; Zhao et al., 2021). We call this process adaptive sampling, and
its goal is to minimize the cumulative sampling variance, which appears in the convergence rates of L-SVRG
and L-Katyusha (see Section 3). More specifically, Namkoong et al. (2017); Salehi et al. (2017) designed
the sampling distribution by solving a multi-armed bandit problem with the EXP3 algorithm. Borsos
et al. (2018) took an online convex optimization approach and made updates to the sampling distribution
by follow-the-regularized-leader algorithm. Borsos et al. (2019) considered the class of distributions that
is a linear combination of a set of given distributions and used an online Newton method to update the
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weights. Hanchi & Stephens (2020); Zhao et al. (2021) investigated non-stationary approaches to learning
sampling distributions. Zhao et al. (2021) is the only work that compared their sampling distribution to
a dynamic comparator that can change with iterations without requiring stepsize decay. While our theory
quantifies the effect of any sampling distribution on the convergence rate of L-SVRG and L-Katyusha, we use
AdaOSMD Zhao et al. (2021), which leads to the best upper bound and yields the best empirical performance.

Notation. For a positive integer n, let [n] := {1, · · · , n}. We use ∥ · ∥ to denote the l2-norm in the
Euclidean space. Let Pn−1 = {x ∈ Rn :

∑n
i=1 xi = 1, xj ≥ 0, j ∈ [n]} be the (n − 1)-dimensional simplex.

For a symmetric matrix A ∈ Rd×d, we use λmax(A) to denote its largest eigenvalue. For a vector x ∈ Rd, we
use xj or x[j] to denote its j-th entry. For two sequences {an} and {bn}, an = O(bn) if there exists C > 0
such that |an/bn| ≤ C for all n large enough; an = Θ(bn) if an = O(bn) and bn = O(an) simultaneously.

Organization of the paper. In Section 2, we introduce the algorithm for designing the sampling distribu-
tion. In Section 3, we give the convergence analysis. Extensive simulations that demonstrate various aspects
of our theory are given in Section 4. Section 5 illustrates an application to real world data. Finally, we
conclude the paper with Section 6.

2 AS-LSVRG and AS-LKatyusha

To solve equation 1 with SGD, one iteratively samples it ∈ [n] uniformly random and updates the model
parameter by xt+1 ← xt − ηt∇fit

(xt). However, due to the non-vanishing variance V[∇fit
(xt)], xt cannot

converge to x⋆ unless one adopts diminishing step size, that is, letting ηt → 0. To address this issue, L-
SVRG (Kovalev et al., 2020) constructs an adjusted gradient estimation gt = ∇fit

(xt)−∇fit
(wt)+∇F (wt),

where wt is a control variate that is updated to xt with probability ρ in each iteration. Note that gt is still
an unbiased estimate of ∇F (xt). Since both xt and wt converge to x⋆, we have V[gt] → 0 and thus xt can
converge to x⋆ even with constant step size. Besides, Kovalev et al. (2020) also introduces L-Katyusha which
incorporates a Nesterov type acceleration to improve the dependency of the computational complexity on
the condition number under the strongly convex setting.

Recently, Qian et al. (2021) proposes that one may use non-uniform sampling probability to choose it, and
can achieve faster convergence speed. More specifically, at iteration t, given the current model parameter
xt, suppose that we choose it ∈ [n] by sampling distribution pt = (pt

1, . . . , pt
n), then we can construct an

unbiased estimate of ∇F (xt) by

gt = 1
npt

it

(
∇fit(xt)−∇fit(wt)

)
+∇F (wt).

It is easy to verify that gt is an unbiased estimate of ∇F (xt). Besides, we have the variance of gt be

V
[
gt

]
= V t

e

(
pt

)
−

∥∥∇F (xt)−∇F (wt)
∥∥2

,

where

V t
e

(
pt

)
:= 1

n2

n∑
i=1

1
pt

i

∥∥∇fi(xt)−∇fi(wt)
∥∥2

. (2)

We let V t (pt) := V [gt] be the sampling variance of a sampling distribution pt, and V t
e (pt) be the effective

variance. Thus, in order to minimize the variance of gt, we can choose pt to minimize V t
e (pt). Let pt

⋆ =
arg minp∈Pn−1 V t

e (pt) be the oracle optimal dynamic sampling distribution at the t-th iteration, which has
the closed form as

pt
⋆,i = ∥∇fi(xt)−∇fi(wt)∥∑n

j=1 ∥∇fj(xt)−∇fj(wt)∥
, i ∈ [n]. (3)

However, we cannot compute pt
⋆ in each iteration since computing it requires to know all {∇fi(xt)}n

i=1 and
{∇fi(wt)}n

i=1 (if that is the case, we can simply use full-gradient descent and there is no need for both
sampling and control variate). This way, some kind of approximations of pt

⋆ is unavoidable for practical
purpose.

3



Under review as submission to TMLR

Algorithm 1 AS-LSVRG
1: Input: stepsizes {η}t≥1, ρ ∈ (0, 1].
2: Initialize: x0 = w0; p0 = (1/n, · · · , 1/n).
3: for t = 0, 1, · · · , T − 1 do
4: Sample it from [n] with pt = (pt

1, · · · , pt
n).

5: gt = 1
npt

it

(∇fit
(xt)−∇fit

(wt)) +∇F (wt).
6: xt+1 = xt − ηtg

t.

7: wt+1 =
{

xt with probability ρ,

wt with probability 1− ρ.

8: Update pt to pt+1 by OSMD sampler (Algorithm 3) or AdaOSMD sampler (Algorithm 4).
9: end for

Algorithm 2 AS-LKatyusha
1: Input: stepsizes {η}t≥1, ρ ∈ (0, 1], θ1, θ2 ∈ [0, 1], 0 < κ < 1, L > 0.
2: Initialize: v0 = w0 = z0.
3: for t = 0, 1, · · · , T − 1 do
4: xt = θ1zt + θ2wt + (1− θ1 − θ2)vt.
5: Sample it from [n] with pt = (pt

1, · · · , pt
n).

6: gt = 1
npt

it

(∇fit
(xt)− fit

(wt)) + F (wt).
7: zt+1 = 1

1+ηtκ

(
ηtκxt + zt − ηt

L gt
)

8: vt+1 = xt + θ1(zt+1 − zt).

9: wt+1 =
{

vt with probability ρ,

wt with probability 1− ρ.

10: Update pt to pt+1 by OSMD sampler (Algorithm 3) or AdaOSMD sampler (Algorithm 4).
11: end for

Qian et al. (2021) proposes to substitute each ∥∇fi(xt) − ∇fi(wt)∥ with its upper bound. Based on the
smoothness assumption (Assumption 2 in Section 3), we have ∥∇fi(xt) − ∇fi(wt)∥ ≤ Li∥xt − wt∥. Thus,
by substituting ∥∇fi(xt) − ∇fi(wt)∥ with Li∥xt − wt∥ in equation 2, we obtain an approximate sampling
distribution which is denoted by pIS = (pIS

1 , · · · , pIS
n ), with pIS

i = Li/(
∑n

i=1 Li) = Li/(nL̄). By using pIS ,
Qian et al. (2021) shows that both L-SVRG and L-Katyusha can achieve faster convergence speed than
uniform sampling. However, one difficulty of applying pIS in practice is that we need to know Li for all
i = 1, . . . , n. While such information can be easy to access in some cases, for example in linear and logistic
regression problems, it is in general hard to estimate, especially when the dimension of model parameter
is high. To circumvent this problem, a recent line of work that formulates the design of the sampling
distribution as an online learning problem (Salehi et al., 2017; Borsos et al., 2019; Namkoong et al., 2017;
Hanchi & Stephens, 2020; Zhao et al., 2021). More specifically, at each iteration t, after sampling it with
sampling distribution pt, we can receive the information about ∥∇fit

(xt) − ∇fit
(wt)∥. While we cannot

have ∥∇fi(xt)−∇fi(wt)∥ for all i = 1, . . . , n, the partial information obtained from the past history, namely
{∥∇fis(xs)−∇fis(ws)∥}t

s=0 and {ps}t
s=0 can still be helpful for us to make a decision on pt+1 to minimize

V t
e (pt). Based on this intuition, the aforementioned research then relies on online learning to make update of

the sampling distribution. In this paper, we adapt the methods proposed in Zhao et al. (2021) for L-SVRG
and L-Katyusha and apply them in our experiments; however, our analysis is not restrictive to this choice
and can fit other methods as well.

We introduce our modifications of L-SVRG and L-Katyusha that use adaptive sampling, namely, Adaptive
Sampling L-SVRG (AS-LSVRG, Algorithm 1) and Adaptive Sampling L-Katyusha (AS-LKatyusha, Algo-
rithm 2). The key change here is that instead of using a fixed sampling distribution pt ≡ p, t ≥ 0, we
allow the sampling distribution to change with iterations and adaptively learn it. More specifically, Step 8
of Algorithm 1 and Step 10 of Algorithm 2 use OSMD sampler or AdaOSMD sampler (Zhao et al., 2021) to
update the sampling distribution, which are described in Algorithm 3 and Algorithm 4, respectively. While
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Algorithm 3 OSMD sampler
1: Input: Learning rate η; parameter α ∈ (0, 1], A = PM−1 ∩ [α/M,∞)M ; number of iterations T .
2: Output: pt for t = 1, . . . , T .
3: Initialize: p1 = (1/n, . . . , 1/n).
4: for t = 1, 2, . . . , T − 1 do
5: Sample it from [n] by pt. Let at

it
= ∥∇fit

(xt)−∇fit
(wt)∥2.

6: Compute the sampling loss gradient estimate ∇V̂ t
e (pt) ∈ Rn: all entries are zero except for the it-th

entry, which is [
∇V̂ t

e (pt)
]

it

= − 1
n2 ·

at
it

(pt
it

)3 . (6)

7: Solve pt+1 = arg min
p∈A

η⟨p,∇V̂ t
e (pt)⟩+ DΦ

(
p ∥pt

)
using Algorithm 5 with the learning rate η.

8: end for

OSMD sampler and AdaOSMD sampler allow for choosing a mini-batch of samples in each iteration, here we
focus on choosing only one sample in each iteration. We choose Φ to be the unnormalized negative entropy,
that is, Φ(x) =

∑n
i=1 xi log xi −

∑n
i=1 xi, x = (x1, . . . , xn)⊤ ∈ [0,∞)n, with 0 log 0 defined as 0. Besides,

DΦ (x ∥ y) = Φ(x)−Φ(y)−⟨∇Φ(y), x−y⟩ is the Bregman divergence between any x, y ∈ (0,∞)n with respect
to the function Φ.

The key insight of OSMD Sampler is to adopt Online Stochastic Mirror Descent (OSMD) (Lattimore &
Szepesvári, 2020) to minimize the cumulative sampling loss

∑T
t=1 V t

e (pt), where V t
e (pt) is defined in equa-

tion 2. In order to apply OSMD, we first construct an unbiased estimate of the gradient of V t
e (pt), which is

shown in equation 6. Then in Step 7, we make update of sampling distribution by taking a mirror descent.
Intuitively, the optimization objective in Step 7 involves two terms, where the first term encourages the
sampling distribution to fit the most recent history, while the second term keeps it not deviate too far from
the previous decision. By choosing a learning rate η, we then keep a trade-off between these two concerns,
while a larger learning rate implies a stronger fit towards the most recent history. To automatically choose
the best learning rate, AdaOSMD uses a set of expert learning rates and combines them using exponentially
weighted averaging. Note that the total number of iterations T is assumed to be known and used as an
input to AdaOSMD. When the number of iterations T is not known in advance, Zhao et al. (2021) proposed
a doubling trick, which could also be used here. The set of expert learning rates is given as

E :=
{

2h−1 · α3

n3ā1

√
log n

2T

∣∣∣∣∣ h = 1, 2, . . . , H

}
, (4)

where

H = ⌊12 log2

(
1 + 4 log(n/α)

log n
(T − 1)

)
⌋+ 1. (5)

The learning rate in AdaOSMD is set as γ = α
n

√
8

T ā1 , where ā1 = maxi∈[n] ∥∇fi(x0)∥. For all experiments
in the paper, we set α = 0.4.

The main computational bottleneck of both OSMD sampler and AdaOSMD sampler is the mirror descent
step. Fortunately, Step 7 of Algorithm 3 and Step 11 of Algorithm 4 can be efficiently solved by Algorithm 5.
The main cost of Algorithm 5 comes from sorting the sequence {p̃t+1

m }n
i=1, which can be done with the

computational complexity of O(n log n). However, note that we only update one entry of pt to get p̃t+1

and pt is sorted in the previous iteration. Therefore, most entries of p̃t+1 are also sorted. Using this
observation, we can usually achieve a much faster running time, for example, by using an adaptive sorting
algorithm Estivill-Castro & Wood (1992).
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Algorithm 4 AdaOSMD sampler
1: Input: Meta-algorithm learning rate γ; expert learning rates E = {η1 ≤ η2 ≤ · · · ≤ ηH}; α ∈ (0, 1];
A = Pn−1 ∩ [α/n,∞)n. Number of iterations T .

2: Output: pt for t = 1, . . . , T .
3: Set θ1

h = (1 + 1/H)/(h(h + 1)), h ∈ [H].
4: Initialize: p1

h = (1/n, . . . , 1/n) for h ∈ [H].
5: for t = 1, 2, . . . , T − 1 do
6: Compute pt =

∑H
h=1 θt

hpt
h.

7: Sample it from [n] by pt. Let at
it

= ∥∇fit(xt)−∇fit(wt)∥2.
8: for h = 1, 2, . . . , H do
9: Compute the sampling loss estimate

V̂ t
e (pt

h; pt) = 1
n2 ·

at
it

pt
it

pt
h,it

. (7)

10: Compute the sampling loss gradient estimate ∇V̂ t
e (pt

h; pt) ∈ Rn: all entries are zero except for the
it-th entry, which is [

∇V̂ t
e (pt

h; pt)
]

it

= − 1
n2 ·

at
it

pt
it

(pt
h,it

)2 . (8)

11: Solve pt+1
h = arg minp∈A ηh⟨p,∇V̂ t

e (pt
h; pt)⟩+DΦ (p ∥pt

h) using Algorithm 5 with the learning rate
ηh.

12: end for
13: Update the weights of each expert

θt+1
h =

θt
h exp

{
−γV̂ t

e (pt
h; pt)

}
∑H

h=1 θt
h exp

{
−γV̂ t

e (pt
h; pt)

} , h ∈ [H].

14: end for

Algorithm 5 OSMD Solver: Solve pt+1 = arg minq∈A η⟨q, ût⟩+ DΦ(q ∥pt)
1: Input: pt, ût, A = Pn−1 ∩ [α/n,∞)n. Learning rate η.
2: Output: pt+1.
3: Let p̃t+1

i = pt
i exp (−ηût

i) for i ∈ [n].
4: Sort {p̃t+1

i }n
i=1 in a non-decreasing order: p̃t+1

π(1) ≤ . . . ≤ p̃t+1
π(n).

5: Let vi = p̃t+1
π(i)

(
1− i−1

n α
)

for i ∈ [n].
6: Let zi = α

n

∑n
j=i p̃t+1

π(j) for i ∈ [n].
7: Find the smallest i such that vi > zi, denoted as i⋆.

8: Let pt+1
i =

{
α/n if π(i) < i⋆(
(1− ((i⋆ − 1)/n)α)p̃t+1

i

)
/

(∑n
j=i⋆

p̃t+1
π(j)

)
otherwise.

3 Convergence analysis

We provide convergence rates for AS-LSVRG (Algorithm 1) and AS-LKatyusha (Algorithm 2), for any
sampling distribution sequence {pt}t≥0. We start by imposing assumptions on the optimization problem in
equation 1.
Assumption 1 (Convexity). For each i ∈ [n], the function fi(·) is convex and first-order continuously
differentiable:

fi(x) ≥ fi(y) + ⟨∇fi(y), x− y⟩ for all x, y ∈ Rd.
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Assumption 2 (Smoothness). For each i ∈ [n], the function fi is Li-smooth, that is,

∥∇fi(x)−∇fi(y)∥ ≤ Li∥x− y∥ for all x, y ∈ Rd.

Furthermore, the function F is LF -smooth, that is,

∥∇F (x)−∇F (y)∥ ≤ LF ∥x− y∥ for all x, y ∈ Rd.

Recall that L̄ = (1/n)
∑n

i=1 Li and Lmax = max1≤i≤n Li. By the convexity of ∥ · ∥ and Jensen’s inequality,
we have that LF ≤ L̄. Finally, for some results, we will assume that F is strongly convex.
Assumption 3 (Strong Convexity). The function F (·) is µ-strongly convex, that is,

F (x) ≥ F (y) + ⟨∇F (y), x− y⟩+ µ

2 ∥x− y∥2

for all x, y ∈ Rd, where µ > 0.

Besides, the optimization heterogeneity is defined as

σ2
⋆ := 1

n

n∑
i=1
∥∇fi(x⋆)∥2, (9)

and the smoothness heterogeneity is defined as Lmax/L̄.

3.1 Convergence analysis of AS-LSVRG

We start by providing a convergence rate of AS-LSVRG (Algorithm 1) under strong convexity. Let

Dt := 1
n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

. (10)

Roughly speaking, Dt measures the weighted distance between control-variates wt and the minimizer x⋆,
where the weights are the inverse of Lipschitz constants.
Theorem 1. Suppose Assumptions 1-3 hold. Let ηt ≡ η for all t, where η ≤ 1/(6L̄ + LF ), and let

α1 := max
{

1− ηµ, 1− ρ

2

}
.

Then

E
[∥∥xT − x⋆

∥∥2 + 4η2L̄

ρ
DT

]
≤ αT

1 E
[∥∥x0 − x⋆

∥∥2 + 4η2L̄

ρ
D0

]
+ η2

T∑
t=0

αT −t
1 E

[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

See proof in Appendix A.1. From the convergence rate in Theorem 1, we see that a good sampling distribution
sequence should minimize the cumulative sampling variance

∑T
t=0 αT −t

1 E [V t
e (pt)]. This justifies usage of

AdaOSMD to design a sequence of sampling distributions, as its purpose is to minimizes the cumulative
sampling variance (Zhao et al., 2021). When

T∑
t=0

αT −t
1 E

[
V t

e

(
pt

)
− V t

e

(
pIS

)]
= O

(
αT

)
, (11)

the iteration complexity to achieve ϵ-accuracy is O(1/(log(1/α1)) log(1/ϵ)). When ρ = 1/n, η = 1/(6L̄+LF ),
and both L̄/µ and n are large, this bound is O((n+L̄/µ) log(1/ϵ)), which recovers the complexity of L-SVRG
when sampling from pIS (Qian et al., 2021).
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When equation 11 holds, we can further compare the iteration complexity of AS-LSVRG with the iteration
complexity of SGD with importance sampling from pIS , which is O((σ2

⋆/(µ2ϵ) + L̄/µ) log(1/ϵ)), where σ2
⋆

is defined in equation 9 (Needell et al., 2016), and the iteration complexity of L-SVRG, which is O((n +
Lmax/µ) log(1/ϵ)) (Kovalev et al., 2020). First, we observe that the iteration complexities of AS-LSVRG
and L-SVRG do not depend on σ2

⋆, while the iteration complexity of SGD does. This shows that control-
variate improves upon optimization heterogeneity. Second, we observe that both iteration complexities of
AS-LSVRG and SGD depend on L̄, while the iteration complexity of L-SVRG depends on Lmax. This shows
that adaptive sampling improves upon smoothness heterogeneity. Based on these two observations, we have
the following important takeaway:

While the control-variate and adaptive sampling are both reducing the variance of stochastic gradient,
the control-variate is improving upon optimization heterogeneity and adaptive sampling is improving upon
smoothness heterogeneity.

Another important observation is that when pt = pt
⋆, we have V t

e (pt
⋆) ≤ V t

e

(
pIS

)
. Therefore, the per-

formance of the oracle optimal dynamic sampling distribution is at least as good as the fixed sampling
distribution pIS . The gains from using a dynamic sampling distribution can be significant, as we show in
experiments in Section 4 and Section 5. While the closed form of pt

⋆ in equation 3 requires knowledge of
∇fi(xt) − ∇fi(wt), which is not available in practice, we can minimize the cumulative sampling variance∑T

t=1 V t
e (pt) sequentially using AdaOSMD, which results in the approximation pt, without the need for

prior information. We discuss in Section 3.3 below when this adaptive sampling strategy can perform better
than pIS .

The following result provides the convergence rate when F (x) is weakly convex.
Theorem 2. Suppose Assumptions 1 and 2 hold. Let ηt ≡ η for all t, where η ≤ 1/(6LF ), and let x̂T =
(1/T )

∑T
t=1 xt. Then

E
[
F (x̂T )− F (x⋆)

]
≤ 4

T

(
F (x0)− F (x⋆)

)
+ 5

T

{
1
2η

∥∥x0 − x⋆
∥∥2 + 12ηL̄(1− ρ)

5ρ

(
F (w0)− F (x⋆)

)}
+ 3η

T

T∑
t=0

E
[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

See proof in Appendix A.2. In the weakly convex case, the cumulative sampling variance is defined as∑T
t=0 E [V t

e (pt)] and a good sampling distribution sequence should minimize it. When η = 1/(6LF ), ρ =
1/n, and

∑T
t=0 E

[
V t

e (pt)− V t
e

(
pIS

)]
= O(T (LF + n)), the iteration complexity to reach ϵ-accuracy is

O((LF + n)(1/ϵ)), which recovers the rate of L-SVRG when sampling from pIS Qian et al. (2021).

3.2 Convergence analysis of AS-LKatyusha

We prove a convergence rate for AS-LKatyusha (Algorithm 2) under strong convexity. Let

Zt := L(1 + ηtκ)
2ηt

∥∥zt − x⋆
∥∥2

,

Vt := 1
θ1

(
F (vt)− F (x⋆)

)
,

Wt := θ2(1 + θ1)
ρθ1

(
F (wt)− F (x⋆)

)
,

(12)

and Ψt := Zt + Vt +Wt. We then have the following theorem. See proof in Appendix A.3.
Theorem 3. Suppose Assumptions 1-3 hold. Let ηt ≡ η for all t, where η = ((1 + θ2)θ1)−1θ2, and κ = µ/L
with L = L̄. Let θ2 = 1/2, θ1 ≤ 1/2, and

α2 := max
{

1
1 + ηκ

, 1− θ1

2 , 1− ρθ1

1 + θ1

}
.

8
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Then

E
[
ΨT

]
≤ αT

2 Ψ0 + 1
4L̄θ1

T −1∑
t=0

αT −t−1
2 E

[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

Here, the cumulative sampling variance is defined as
∑T −1

t=0 αT −t−1
2 E [V t

e (pt)], and it can be used as the min-
imization objective to design a sequence of sampling distributions. When ρ = 1/n, θ1 = min{

√
2κn/3, 1/2},

and
∑T −1

t=0 αT −t−1
2 E

[
V t

e (pt)− V t
e

(
pIS

)]
= O(αT

2 ), then the iteration complexity to reach ϵ-accuracy is

O((n +
√

nL̄/µ) log(1/ϵ)), which recovers the rate of L-Katyusha when sampling from pIS Qian et al.
(2021). Additionally, when compared with the rate of L-Katyusha Kovalev et al. (2020), we see that the
dependency on Lmax is improved to L̄, which is consistent with our conclusion in Section 3.1 that adaptive
sampling is responsible for improving smoothness heterogeneity.

3.3 Benefits of adaptive sampling

We analyze when adaptive sampling will improve over sampling from pIS . We first emphasize that sampling
from pIS requires knowledge of Lipschitz constants {Li}i∈[n] that, in general, are expensive to compute. On
the other hand, the additional computational cost of adaptive sampling is usually comparable to the cost of
computing a stochastic gradient.

In addition to computational benefits, there are certain settings where adaptive sampling may result in
improved convergence, despite not using prior information. A key quantity to understand is

∆V
(
p1:T )

:=
T∑

t=0
αTE

[
V t

e

(
pIS

)
− V t

e

(
pt

)]
,

where α ∈ {α1, α2, 1}, depending on what algorithm is used and what Assumptions are made. The larger
∆V

(
p1:T )

is, the more beneficial adaptive sampling is. In the following, we discuss when ∆V (p1:T
⋆ ) is large.

Despite the fact that p1:T
⋆ is not available in practice, ∆V (p1:T

⋆ ) can be used to understand when adaptive
sampling methods that approximate pt

⋆ will be superior to using pIS for importance sampling.

In many machine learning applications, fi(x) has the form fi(x) = l(x, ξi), where ξi is the i-th data point.
Let x⋆

i ∈ Rd be such that ∇l(x⋆
i , ξi) = 0. Then ∥∇fi(x)∥ = ∥∇l(x, ξi) −∇l(x⋆

i , ξi)∥. This way, we see that
the variability of norms of gradients of different data points has two sources: the first source is the difference
between ξi’s, the second source is the difference between x⋆

i ’s. We name the first source as the context-shift
and the second source as the concept-shift.

When fi(x) is twice continuously differentiable, we have

Li = sup
x∈Rd

λmax
(
∇2fi(x)

)
= sup

x∈Rd

λmax
(
∇2li(x, ξi)

)
.

Thus, when we use pIS to sample, we ignore the concept-shift and only leverage the context-shift with the
sampling distribution. As a result, pIS is most useful when the context-shift dominates. On the other hand,
adaptive sampling takes both the concept-shift and context-shift into consideration. When the major source
of gradient norm differences is the concept-shift, adaptive sampling can perform better than sampling from
pIS . This is illustrated in Section 4.3.

4 Synthetic data experiment

We use synthetic data to illustrate our theory and compare several different stochastic optimization al-
gorithms. We use L-SVRG, Optimal-LSVRG, and IS-LSVRG to denote L-SVRG + uniform sampling,
L-SVRG + oracle optimal sampling, and L-SVRG + sampling from pIS , respectively. SGD, Optimal-SGD,
IS-SGD, L-Katyusha, Optimal-LKatyusha, and IS-LKatyusha are defined similarly. Besides, AS-LSVRG
and AS-LKatyusha are referring to Algorithm 1 and Algorithm 2 with AdaOSMD sampler (Algorithm 4),
respectively; except for Section 4.4, where we use OSMD Sampler (Algorithm 3).

9
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We set ρ = 1/n for all algorithms. The algorithm parameters of L-Katyusha with all sampling strategies
are set as in Theorem 3, where L = L̄ for Optimal-LKatyusha and IS-LKatyusha, L = Lmax for L-SVRG.
We let L = 0.4Lmax + 0.6L̄ for AS-LKatyusha. For the parameters of AdaOSMD, we set them as stated in
Section 2; when we choose a mini-batch of samples in each iterate, we set them as in Zhao et al. (2021).

Data generation: We generate data from a linear regression model: bi = ⟨θ⋆, ai⟩ + ζi, where ai
i.i.d.∼

N(0, si · Σ) with Σ = diag(25
0

d−1 −1, · · · , 25
d−1
d−1 −1) and si

i.i.d.∼ eN(0,ν2), ζi
i.i.d.∼ N(0, σ2), and the entries of θ⋆

are generated i.i.d. from N(10.0, 3.02). We let fi(x) := l(x; ai, bi), where l(x; ai, bi) := (1/2)(bi−⟨x, ai⟩)2 is the
square error loss. In this setting, the variance σ2 controls the optimization heterogeneity in equation 9, with
larger σ2 corresponding to larger optimization heterogeneity, while ν controls the smoothness heterogeneity,
with larger ν corresponding to larger smoothness heterogeneity. Under this model, the variability of the
norms of gradients is caused mainly by the differences between bi’s, which corresponds to the context-shift.
Therefore, we expect that sampling according to pIS would perform similarly to oracle optimal sampling.
Note that in this setting, we have Li = ∥ai∥2, thus we set pIS

i = ∥ai∥2/(
∑n

j=1 ∥aj∥2) for all i = 1, . . . , n. We
set n = 100, d = 10, and report the results averaged across 10 independent runs.

4.1 SGD v.s. L-SVRG

We compare SGD and Optimal-SGD with L-SVRG and Optimal-LSVRG. From the results in Figure 1, we
have three main observations. First, with large optimization heterogeneity (rightmost column), Optimal-
LSVRG converges faster and can achieve a smaller optimal value compared to Optimal-SGD. This observation
is consistent with our conclusion in Section 3.1 that the control variate is responsible for improving opti-
mization heterogeneity. Second, Optimal-LSVRG always improves the performance over L-SVRG, with the
largest improvement observed when the smoothness heterogeneity is large (bottom row). This observation
illustrates our conclusion that importance sampling can improve smoothness heterogeneity. Finally, we ob-
serve that L-SVRG is more vulnerable to the smoothness heterogeneity compared to SGD, which can also be
seen from the condition on the step size: we need η ≤ 1/(6Lmax) for L-SVRG (Theorem 5 of Kovalev et al.
(2020)) and we only need η ≤ 1/Lmax for SGD (Theorem 2.1 of Needell et al. (2016)) to ensure convergence.

4.2 Non-uniform sampling for L-SVRG and L-Katyusha

We compare L-SVRG and L-Katyusha with different sampling strategies. Figure 2 shows results for L-SVRG.
We observe that the performances of Optimal-LSVRG and IS-LSVRG are similar, since the context-shift
dominates the variability of the norms of the gradients. Furthermore, we see that adaptive sampling improves
the performance of L-SVRG compared to uniform sampling. The improvement is most significant when the
smoothness heterogeneity is large (bottom row).

Figure 3 shows results for L-Katyusha. We set the stepsize as in Theorem 3. The oracle optimal sam-
pling distribution results in considerable improvement over sampling from pIS after adding acceleration. In
addition, we note that adaptive sampling efficiently improves over uniform sampling.

4.3 Importance sampling v.s. adaptive sampling

We provide an example where adaptive sampling can perform better than sampling from pIS . We generate
data from a linear regression model bi = ⟨θ⋆, ai⟩ + ζi, where ζi

i.i.d.∼ N(0, 0.52) and, for each ai ∈ Rd, we
choose uniformly at random one dimension, denoted as supp(i) ∈ [d], and set it to a nonzero value, while
the remaining dimensions are set to zero. The nonzero value ai[supp(i)] is generated from N(1.0, 0.12). The
entries of θ⋆ are generated i.i.d. from eN(0,ν2). Therefore, ν controls the variance of entries of θ⋆. We let
n = 300 and d = 30.

In this setting, we have Li = ∥ai∥2 = |ai[supp(i)]|2 ≈ 1.0, and thus sampling from pIS will perform similarly
to uniform sampling. On the other hand, we have

∥∇fi(x)∥ = |(x− θ⋆) [supp(i)] · ai[supp(i)] + ζi| .

10
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Figure 1: Comparison of four methods: SGD, Optimal-SGD, L-SVRG, and Optimal-LSVRG. Columns
correspond to different σ values, while rows correspond to different ν values. The stepsize the same for all
algorithms, and is 0.1 when ν = 0, is 0.05 when ν = 0.5, and is 0.005 when ν = 1.0.

Thus, the variability of the norms of the gradient is mainly determined by the variance of entries of θ⋆. For
each i ∈ [n], we can understand fi as a separate univariate quadratic function with the minimizer θ⋆[supp(i)],
and the variance of entries of θ⋆ can be understood as the concept-shift. In this case, we expect that sampling
from pIS will not perform as well as oracle optimal sampling or adaptive sampling.

We implement Optimal-LSVRG, IS-LSVRG, and AS-LSVRG with the stochastic gradient obtained from a
mini-batch of size 5, rather than choosing only one random sample, to allow adaptive sampling to explore
more efficiently.1 The stepsize is set as 0.3. Figure 4 presents the results. We see that as ν increases, the
gap between oracle optimal sampling and sampling from pIS increases as well, due to the concept-shift. In
addition, we see that adaptive sampling also performs better than sampling from pIS , despite the fact that
it does not use prior knowledge, since adaptive sampling can asymptotically approximate oracle optimal
sampling.

1AdaOSMD relies on the feedback obtained by exploration to update sampling distribution. A larger batch size will allow
adaptive sampling to explore more efficiently (in other words, to ’see’ more samples in each iteration). Compared with the fixed
sampling distribution, where a larger batch size is only reducing the variance of a stochastic gradient, a larger batch size will
also help adaptive sampling to make faster updates of the sampling distribution. Therefore, the adaptive sampling strategy is
generally more sensitive to batch size than sampling with a fixed distribution.
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Figure 2: Comparison of four methods: L-SVRG, Optimal-LSVRG, IS-LSVRG, AS-LSVRG. Columns cor-
respond to different σ values, and rows correspond to different ν values. The stepsize is the same for all
algorithms, and is 0.1 when ν = 0, is 0.05 when ν = 0.5, and is 0.005 when ν = 1.0.

4.4 Nonconvex Objective

In this section, we compare L-SVRG, IS-LSVRG and AS-LSVRG with nonconvex objective under the similar
setting as in Section 4.2. We increase d to 100 and n to 1000. Instead of fitting the data with a linear
regression, we use a two-layer neural network with the number neurons in the hidden layer to be 10. While
we still minimize the mean squared error loss, the objective function is now nonconvex due to the nonconvexity
of the neural network model. To estimate pIS , we still set pIS

i = ∥ai∥2/(
∑n

j=1 ∥aj∥2) as in Section 4.2. For
AS-LSVRG, we use the OSMD Sampler (Algorithm 3). Both the optimization stepsize and the learning rate
of OSMD Sampler is tuned that such that AS-LSVRG converges in the fastest speed.

The result is shown in Figure 5. We see that adaptive sampling still obtains advantage over uniform sampling
and importance sampling, especially when the smoothness heterogeneity is large. It is worth noting that
pIS does not perform well in this case. We suspect that this is because ∥ai∥2 is a bad estimate of Li in this
case; however, it is unclear if there exists an easy way to accurately estimate Li with nonconvex models.
This result justifies the motivation of adaptive sampling since it can achieve advantageous performance over
uniform sampling without the need to estimate the smoothness constants.
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Figure 3: Comparison of four methods: L-Katyusha, Optimal-LKatyusha, IS-LKatyusha, AS-LKatyusha.
Columns correspond to different σ values, and rows correspond to different ν values. The stepsizes are set
based on Theorem 3.

Figure 4: Optimal-LSVRG v.s. IS-LSVRG v.s. AS-LSVRG. Columns correspond to different ν values.
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Figure 5: Comparison of L-SVRG, IS-LSVRG and AS-LSVRG with nonconvex objective. Columns corre-
spond to different σ values, and rows correspond to different ν values. The stepsize of each method is tuned
such that the method converges in the fastest speed.

5 Real data experiment

We use the w8a dataset from LibSVM classification tasks Zeng et al. (2008); Chang & Lin (2011). On a
real dataset, obtaining the theoretically optimal sampling distribution is infeasible, while constructing pIS

requires access to Lipschitz constants of each loss function. Therefore, here we only show the performance
of L-SVRG and AS-LSVRG on the following logistic regression problem:

min
x∈Rd

− 1
n

n∑
i=1

(yi log pi + (1− yi) log(1− pi)),

where pi(x) = pi = (1 + exp−xT zi)−1, yi ∈ {0, 1} is the response variable, and zi is the d-
dimensional feature vector. The stepsizes for both L-SVRG and AS-SVRG are initially tuned over the
grid {10−2, 10−1.5, . . . , 102}. The initial search showed us that the optimal stepsize should be in the interval
(0, 1). Therefore, we tune the stepsizes over a grid of 20 evenly spaced points on [0.05, 1]. The two algorithms
are then used to train the model for 1000 iterations, repeated 10 times, and the best stepsize is chosen by
picking the one that corresponds to the lowest loss at the 1000-th iteration.
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Figure 6: LSVRG v.s. AS-LSVRG. Columns correspond to different batch sizes.
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Figure 7: L-Katyusha v.s. AS-LKatyusha. Columns correspond to different batch sizes. The stepsizes are
set according to Theorem 3.2 from (Qian et al., 2021) and Theorem 3 in this paper.

Figure 6 corresponds to the average log cross entropy loss over 10 runs against the number of iterations. The
shaded region corresponds to the standard deviation of the loss. When the batch size is 1, AS-LSVRG and
L-SVRG have similar convergence behaviour, but the standard deviation is reduced for AS-LSVRG. When
the batch size is 5, AS-LSVRG significantly outperforms L-SVRG.

We illustrate the performance of L-Katyusha and AS-LKatyusha by solving the following ℓ2-regularized
optimization problem

min
x∈Rd

− 1
n

n∑
i=1

(yi log pi + (1− yi) log(1− pi)) + µ

2 ∥x∥
2,

where pi = pi(x) has the form as before and µ = 10−7 to ensure that the problem is strongly convex. Figure 7
shows results over 10 runs. AS-LKatyusha significantly outperforms its uniform sampling counterpart. While
some of the improvement in performance could be attributed to our superior dependence on the Lipschitz
constant, the losses we obtain enjoy slightly reduced variances.
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6 Conclusion and future directions

We studied the convergence behaviour of L-SVRG and L-Katyusha when non-uniform sampling with a
dynamic sampling distribution is used. Compared to previous research, we do not restrict ourselves to a fixed
sampling distribution, but allow it to change with iterations. This flexibility enables us to design the sampling
distribution adaptively using the feedback from sampled observations. We do not need prior information that
can be computationally expensive to obtain in practice to design a well-performing sampling distribution.
Therefore, our algorithm is practically useful. We derive upper bounds on the convergence rate for any
sampling distribution sequence for both L-SVRG and L-Katyusha under commonly used assumptions. Our
theoretical results justify the usage of online learning to design the sequence of sampling distributions. More
interestingly, our theory also explains when adaptive sampling with no prior knowledge can perform better
than a fixed sampling distribution designed using prior knowledge. Extensive experiments on both synthetic
and real data demonstrate our theoretical findings and illustrate the practical value of the methodology.

We plan to extend the adaptive sampling strategy to a broader class of stochastic optimization algorithms.
For example, stochastic coordinate descent (Zhu et al., 2016) and stochastic non-convex optimization algo-
rithms (Fang et al., 2018). In addition, exploring adaptive sampling with second-order methods, such as
stochastic Quasi-Newton method (Byrd et al., 2016), could be a fruitful future direction.
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A Proof of Main Theorems

A.1 Proof of Theorem 1

We use the proof technique from Theorem 5 of Kovalev et al. (2020). The key step is to decompose the
variance of the stochastic gradient. Let Ft = σ(x0, w0, x1, w1, · · · , xt, wt) be the σ-algebra generated by
x0, w0, x1, w1, · · · , xt, wt, and let Et[·] := E[ · | Ft] be the conditional expectation given Ft.

Note that Et[gt] = ∇F (xt). By Assumption 3, we have

Et

[∥∥xt+1 − x⋆
∥∥2

]
= Et

[∥∥xt − ηgt − x⋆
∥∥2

]
=

∥∥xt − x⋆
∥∥2 − 2η

〈
∇F (xt), xt − x⋆

〉
+ η2Et

[∥∥gt
∥∥2

]
≤

∥∥xt − x⋆
∥∥2 − 2η

(
F (xt)− F (x⋆)− µ

2 ∥x
t − x⋆∥2

)
+ η2Et

[∥∥gt
∥∥2

]
= (1− ηµ)

∥∥xt − x⋆
∥∥2 − 2η

(
F (xt)− F (x⋆)

)
+ η2Et

[∥∥gt
∥∥2

]
. (13)

Furthermore, we have

Et

[∥∥gt
∥∥2

]
= Et

[∥∥gt − Et

[
gt

]∥∥2
]

+
∥∥Et

[
gt

]∥∥2

= V t
e

(
pt

)
−

∥∥∇F (xt)−∇F (wt)
∥∥2 +

∥∥∇F (xt)
∥∥2

= V t
e

(
pIS

)
−

∥∥∇F (xt)−∇F (wt)
∥∥2 +

∥∥∇F (xt)
∥∥2 + V t

e

(
pt

)
− V t

e

(
pIS

)
= L̄

n

n∑
i=1

1
Li

∥∥∇fi(xt)−∇fi(wt)
∥∥2 −

∥∥∇F (xt)−∇F (wt)
∥∥2

+
∥∥∇F (xt)

∥∥2 + V t
e

(
pt

)
− V t

e

(
pIS

)
≤ L̄

n

n∑
i=1

1
Li

∥∥∇fi(xt)−∇fi(wt)
∥∥2 +

∥∥∇F (xt)
∥∥2 + V t

e

(
pt

)
− V t

e

(
pIS

)
. (14)

By Assumption 1 and Assumption 2 that F (·) is convex and LF -smooth, we have∥∥∇F (xt)
∥∥2 =

∥∥∇F (xt)−∇F (x⋆)
∥∥2 ≤ 2LF

(
F (xt)− F (x⋆)

)
. (15)

With Dt in equation 10, we have

L̄

n

n∑
i=1

1
Li

∥∥∇fi(xt)−∇fi(wt)
∥∥2

≤ 2L̄

n

n∑
i=1

1
Li

∥∥∇fi(xt)−∇fi(x⋆)
∥∥2 + 2L̄

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

≤ 2L̄

n

n∑
i=1

1
Li

(2Li)
(
fi(xt)− fi(x⋆)− ⟨∇fi(x⋆), xt − x⋆⟩

)
+ 2L̄Dt

= 4L̄
(
F (xt)− F (x⋆)

)
+ 2L̄Dt. (16)

Combining equation 14-equation 16, we have

Et

[∥∥gt
∥∥2

]
≤ 4L̄

(
F (xt)− F (x⋆)

)
+ 2LF

(
F (xt)− F (x⋆)

)
+ 2L̄Dt + V t

e

(
pt

)
− V t

e

(
pIS

)
. (17)

Combining equation 17 and equation 13, we have

Et

[∥∥xt+1 − x⋆
∥∥2

]
≤ (1− ηµ)

∥∥xt − x⋆
∥∥2 − 2η(1− 2ηL̄− ηLF )

(
F (xt)− F (x⋆)

)
+ 2η2L̄Dt + η2 {

V t
e

(
pt

)
− V t

e

(
pIS

)}
.
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Using Lemma 4, for any β > 0, we have

Et

[∥∥xt+1 − x⋆
∥∥2

]
+ βEt

[
Dt+1]

≤ (1− ηµ)
∥∥xt − x⋆

∥∥2 −
(
2η(1− 2ηL̄− ηLF )− 2βρ

) (
F (xt)− F (x⋆)

)
+

(
2η2L̄ + β(1− ρ)

)
Dt + η2 {

V t
e

(
pt

)
− V t

e

(
pIS

)}
.

With β = 4η2L̄/ρ, we have

Et

[∥∥xt+1 − x⋆
∥∥2

]
+ 4η2L̄

ρ
Et

[
Dt+1]

≤ (1− ηµ)
∥∥xt − x⋆

∥∥2 − 2η(1− 6ηL̄− ηLF )
(
F (xt)− F (x⋆)

)
+ 4η2L̄

ρ

(
1− ρ

2

)
Dt + η2 {

V t
e

(
pt

)
− V t

e

(
pIS

)}
.

Since η ≤ 1/(6L̄ + LF ), we further have

Et

[∥∥xt+1 − x⋆
∥∥2

]
+ 4η2L̄

ρ
Et

[
Dt+1]

≤ (1− ηµ)
∥∥xt − x⋆

∥∥2 + 4η2L̄

ρ

(
1− ρ

2

)
Dt + η2 {

V t
e

(
pt

)
− V t

e

(
pIS

)}
.

Recalling that
α1 := max

{
1− ηµ, 1− ρ

2

}
,

we have

Et

[∥∥xt+1 − x⋆
∥∥2 + 4η2L̄

ρ
Dt+1

]
≤ α1

(∥∥xt − x⋆
∥∥2 + 4η2L̄

ρ
Dt

)
+ η2 {

V t
e

(
pt

)
− V t

e

(
pIS

)}
.

Taking the full expectation on both sides and recursively repeating the above relationship from t = T − 1 to
t = 0, we have

E
[∥∥xT − x⋆

∥∥2 + 4η2L̄

ρ
DT

]
≤ α1E

[∥∥xT −1 − x⋆
∥∥2 + 4η2L̄

ρ
DT −1

]
+ η2E

[
V T −1

e

(
pT −1)

− V T −1
e

(
pIS

)]
≤ αT

1 E
[∥∥x0 − x⋆

∥∥2 + 4η2L̄

ρ
D0

]
+ η2

T∑
t=0

αT −t
1 E

[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

A.2 Proof of Theorem 2

We use the technique from Theorem 17 of Qian et al. (2021). The key difference here is the decomposition
of the variance of the stochastic gradient. Let

Ξt := 1
2ηt

∥∥xt − x⋆
∥∥2 + 6ηtL̄(1− ρ)

5ρ
Dt. (18)

Let Ft = σ(x0, w0, x1, w1, · · · , xt, wt) be the σ-algebra generated by x0, w0, x1, w1, · · · , xt, wt, and let Et[·] :=
E[ · | Ft] be the conditional expectation given Ft.

Note that Et[gt] = ∇F (xt). We have

F (x⋆) ≥ F (xt) + ⟨∇F (xt), x⋆ − xt⟩
= F (xt) + Et

[
⟨gt, x⋆ − xt⟩

]
= F (xt) + Et

[
⟨gt, x⋆ − xt+1⟩

]
+ Et

[
⟨gt, xt+1 − xt⟩

]
= F (xt) + Et

[
⟨gt, x⋆ − xt+1⟩

]
+ Et

[
⟨gt −∇F (xt), xt+1 − xt⟩

]
+ Et

[
⟨∇F (xt), xt+1 − xt⟩

]
. (19)
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By Assumption 1 and 2, we have

F (xt+1)− F (xt)− ⟨∇F (xt), xt+1 − xt⟩ ≤ LF

2
∥∥xt+1 − xt

∥∥2
.

Thus,
F (xt) + ⟨∇F (xt), xt+1 − xt⟩ ≥ F (xt+1)− LF

2
∥∥xt+1 − xt

∥∥2
.

Combined with equation 19, we have

F (x⋆) ≥ Et

[
F (xt+1)

]
− LF

2 Et

[∥∥xt+1 − xt
∥∥2

]
+ Et

[〈
gt −∇F (xt), xt+1 − xt

〉]
+ Et

[〈
gt, x⋆ − xt+1〉]

. (20)

Since ⟨a, b⟩ ≤ 1
2β ∥a∥

2 + β
2 ∥b∥

2 for all a, b ∈ Rd and β > 0 by Young’s inequality, we have

Et

[
⟨gt −∇F (xt), xt − xt+1⟩

]
≤ β

2Et

[∥∥gt −∇F (xt)
∥∥2

]
+ 1

2β
Et

[∥∥xt − xt+1∥∥2
]

, β > 0.

Equivalently,

Et

[
⟨gt −∇F (xt), xt+1 − xt⟩

]
≥ −β

2Et

[∥∥gt −∇F (xt)
∥∥2

]
− 1

2β
Et

[∥∥xt+1 − xt
∥∥2

]
, β > 0.

By Lemma 3, we then have

Et

[
⟨gt −∇F (xt), xt+1 − xt⟩

]
≥ −2βL̄

(
F (xt)− F (x⋆)

)
− βL̄

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

− β

2
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
− 1

2β
Et

[∥∥xt+1 − xt
∥∥2

]
. (21)

Combine equation 20-equation 21 and noting that〈
gt, x⋆ − xt+1〉

= 1
η

〈
xt+1 − xt, x⋆ − xt+1〉

= 1
2η

∥∥xt − xt+1∥∥2 + 1
2η

∥∥xt+1 − x⋆
∥∥2 − 1

2η

∥∥xt − x⋆
∥∥2

,

we have

F (x⋆) ≥ Et

[
F (xt+1)

]
− LF

2 Et

[∥∥xt+1 − xt
∥∥2

]
− βL̄

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

− β

2
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
− 1

2β
Et

[∥∥xt+1 − xt
∥∥2

]
+ 1

2η
Et

[∥∥xt − xt+1∥∥2
]

+ 1
2η

Et

[∥∥xt+1 − x⋆
∥∥2

]
− 1

2η

∥∥xt − x⋆
∥∥2

= Et

[
F (xt+1)

]
+

(
1
2η
− LF

2 −
1

2β

)
Et

[∥∥xt − xt+1∥∥2
]

+ 1
2η

Et

[∥∥xt+1 − x⋆
∥∥2

]
− 1

2η

∥∥xt − x⋆
∥∥2

− 2βL̄
(
F (xt)− F (x⋆)

)
− βL̄

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2 − β

2
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
.

Therefore,

2βL̄
(
F (xt)− F (x⋆)

)
+ β

2
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
+ 1

2η

∥∥xt − x⋆
∥∥2

≥ Et

[
F (xt+1)

]
− F (x⋆) +

(
1
2η
− LF

2 −
1

2β

)
Et

[∥∥xt − xt+1∥∥2
]

+ 1
2η

Et

[∥∥xt+1 − x⋆
∥∥2

]
− βL̄

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

.
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Then by definition of Dt in equation 10 and Lemma 4, for any α > 0, we have

2(βL̄ + αρ)
(
F (xt)− F (x⋆)

)
+ β

2
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
+ 1

2η

∥∥xt − x⋆
∥∥2 + α(1− ρ)Dt

≥ Et

[
F (xt+1)

]
− F (x⋆) + 1

2

(
1
η
− LF −

1
β

)
Et

[∥∥xt − xt+1∥∥2
]

+ 1
2η

Et

[∥∥xt+1 − x⋆
∥∥2

]
+

(
α− βL̄

)
Et

[
Dt+1]

.

Let β = 6
5 η and α = βL̄

ρ = 6ηL̄
5ρ . Since η ≤ 1

6LF
, we have 1

η − LF − 1
β = 1

6η − LF ≤ 0. Then

4
5

(
F (xt)− F (x⋆)

)
+ 3

5η
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
+ 1

2η

∥∥xt − x⋆
∥∥2 + 6ηL̄(1− ρ)

5ρ
Dt

≥ 24
5 ηL̄

(
F (xt)− F (x⋆)

)
+ 3

5η
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
+ 1

2η

∥∥xt − x⋆
∥∥2 + 6ηL̄(1− ρ)

5ρ
Dt

≥ Et

[
F (xt+1)− F (x⋆)

]
+ 1

2η
Et

[∥∥xt+1 − x⋆
∥∥2

]
+ 6ηL̄(1− ρ)

5ρ
Et

[
Dt+1]

.

From the definition of Ξt in equation 18, we have

Et

[
F (xt+1)− F (x⋆)

]
+ Et

[
Ξt+1]

− Ξt ≤ 4
5

(
F (xt)− F (x⋆)

)
+ 3

5η
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
Taking the full expectation on both sides and recursively repeating the above relationship from t = T to
t = 0, we have

T∑
t=0

E
[
F (xt+1)− F (x⋆) + Ξt+1 − Ξ0]

≤ 4
5

T∑
t=0

E
[
F (xt)− F (x⋆)

]
+ 3

5η

T∑
t=0

E
[
V t

e

(
pt

)
− V t

e

(
pIS

)]
,

which implies that

1
5

T∑
t=1

E
[
F (xt)− F (x⋆)

]
≤ E

[
F (xT +1)− F (x⋆) + ΞT +1]

+ 1
5

T∑
t=1

E
[
F (xt)− F (x⋆)

]
≤ 4

5
(
F (x0)− F (x⋆)

)
+ Ξ0 + 3

5η

T∑
t=0

E
[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

By convexity of F (·) and since x̂T = (1/T )
∑T

t=1 xt, we have

E
[
F (x̂T )− F (x⋆)

]
≤ 4

T

(
F (x0)− F (x⋆)

)
+ 5Ξ0

T
+ 3η

T

T∑
t=0

E
[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

Finally, by Lemma 1, we have

Ξ0 = 1
2η

∥∥x0 − x⋆
∥∥2 + 6ηL̄(1− ρ)

5ρ
D0

≤ 1
2η

∥∥x0 − x⋆
∥∥2 + 6ηL̄(1− ρ)

5ρ

1
n

n∑
i=1

1
Li

(2Li)
(
fi(w0)− fi(x⋆)−

〈
∇fi(x⋆), xt − x⋆

〉)
≤ 1

2η

∥∥x0 − x⋆
∥∥2 + 12ηL̄(1− ρ)

5ρ

(
F (w0)− F (x⋆)

)
.
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Thus, we have

E
[
F (x̂T )− F (x⋆)

]
≤ 4

T

(
F (x0)− F (x⋆)

)
+ 5

T

{
1
2η

∥∥x0 − x⋆
∥∥2 + 12ηL̄(1− ρ)

5ρ

(
F (w0)− F (x⋆)

)}
+ 3η

T

T∑
t=0

E
[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

A.3 Proof of Theorem 3

We use the proof technique of Theorem 11 ion Kovalev et al. (2020). The key step is to decompose the
variance of the stochastic gradient. We let Ft = σ(x0, w0, v0, z0, · · · , xt, wt, vt, zt) be the σ-algebra generated
by x0, w0, v0, z0, · · · , xt, wt, vt, zt, and let Et[·] := E[ · | Ft] be the conditional expectation given Ft.

By Assumption 3, we have

F (x⋆) ≥ F (xt) +
〈
∇F (xt), x⋆ − xt

〉
+ µ

2
∥∥xt − x⋆

∥∥2

= F (xt) + µ

2
∥∥xt − x⋆

∥∥2 +
〈
∇F (xt), x⋆ − zt

〉
+

〈
∇F (xt), zt − xt

〉
. (22)

Note that
xt = θ1zt + θ2wt + (1− θ1 − θ2)vt.

Thus
zt = 1

θ1
xt − θ2

θ1
wt − 1− θ1 − θ2

θ1
vt

and
zt − xt = 1− θ1

θ1
xt − θ2

θ1
wt − 1− θ1 − θ2

θ1
vt = θ2

θ1

(
xt − wt

)
+ 1− θ1 − θ2

θ1

(
xt − vt

)
.

Since Et[gt] = ∇F (xt), combining the above relationships with equation 22, we have

F (x⋆) ≥ F (xt) + µ

2
∥∥xt − x⋆

∥∥2 +
〈
∇F (xt), x⋆ − zt

〉
+ θ2

θ1

〈
∇F (xt), xt − wt

〉
+ 1− θ1 − θ2

θ1

〈
∇F (xt), xt − vt

〉
= F (xt) + θ2

θ1

〈
∇F (xt), xt − wt

〉
+ 1− θ1 − θ2

θ1

〈
∇F (xt), xt − vt

〉
+ Et

[µ

2
∥∥xt − x⋆

∥∥2 +
〈
gt, x⋆ − zt

〉]
= F (xt) + θ2

θ1

〈
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〉
+ 1− θ1 − θ2

θ1

〈
∇F (xt), xt − vt

〉
+ Et

[µ

2
∥∥xt − x⋆

∥∥2 +
〈
gt, x⋆ − zt+1〉

+
〈
gt, zt+1 − zt

〉]
.

By Lemma 5, we have

〈
gt, x⋆ − zt+1〉

+ µ

2
∥∥xt − x⋆

∥∥2 ≥ L̄

2η

∥∥zt − zt+1∥∥2 + Zt+1 − 1
1 + ηκ

Zt.

Thus

F (x⋆) ≥ F (xt) + θ2
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〈
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〉
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〉
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]
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〉
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]

. (23)
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By Lemma 6, we have

L̄

2η

∥∥zt+1 − zt
∥∥2 +

〈
gt, zt+1 − zt

〉
≥ 1

θ1

(
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)
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2L̄(1− ηθ1)
∥∥gt −∇F (xt)

∥∥2
.

Note that η = θ2
(1+θ2)θ1

. Thus η
2L̄(1−ηθ1) = θ2

2L̄θ1
. Then, by equation 23, we have
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pIS

)
− θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
= F (xt) + θ2

θ1

〈
∇F (xt), xt − wt

〉
+ 1− θ1 − θ2

θ1

〈
∇F (xt), xt − vt

〉
+ Et

[
Zt+1 − 1

1 + ηκ
Zt

]
+ Et

[
1
θ1

(
F (vt+1)− F (xt)

)]
− θ2

2θ1n

n∑
i=1

1
Li

∥∥∇fi(xt)− fi(wt)
∥∥2 − θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
.

By Assumption 1 and 2, and Lemma 2, we have

1
n

n∑
i=1

1
Li

∥∥∇fi(xt)− fi(wt)
∥∥2 ≤ 1

n

n∑
i=1

1
Li

(2Li)
(
fi(wt)− fi(xt)−

〈
∇fi(xt), wt − xt

〉)
= 2

(
F (wt)− F (xt)−

〈
∇F (xt), wt − xt

〉)
.

On the other hand, note that ⟨∇F (xt), xt − vt⟩ ≥ F (xt)− F (vt). Thus, we further have

F (x⋆) ≥ F (xt) + θ2

θ1

〈
∇F (xt), xt − wt

〉
+ 1− θ1 − θ2

θ1

〈
∇F (xt), xt − vt

〉
+ Et

[
Zt+1 − 1

1 + ηκ
Zt

]
+ Et

[
1
θ1

(
F (vt+1)− F (xt)

)]
− θ2

θ1

(
F (wt)− F (xt)−

〈
∇F (xt), wt − xt

〉)
− θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
= F (xt) + 1− θ1 − θ2

θ1

(
F (xt)− F (vt)

)
− 1

1 + ηκ
Zt − θ2

θ1

(
F (wt)− F (xt)

)
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+ Et

[
Zt+1 + 1

θ1

(
F (vt+1)− F (xt)

)]
− θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
= −1− θ1 − θ2

θ1
F (vt)− 1

1 + ηκ
Zt − θ2

θ1
F (wt)

+ Et

[
Zt+1 + 1

θ1
F (vt+1)

]
− θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
= F (x⋆)− 1− θ1 − θ2

θ1

(
F (vt)− F (x⋆)

)
− 1

1 + ηκ
Zt − θ2

θ1

(
F (wt)− F (x⋆)

)
+ Et

[
Zt+1 + 1

θ1

(
F (vt+1)− F (x⋆)

)]
− θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
.

Recalling the definition of Vt in equation 12, we have

Et

[
Zt+1 + Vt+1]

≤ (1− θ1 − θ2)Vt + 1
1 + ηκ

Zt + θ2

θ1

(
F (wt)− F (x⋆)

)
+ θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
.

Since

Et

[
F (wt+1)− F (x⋆)

]
= (1− ρ)

(
F (wt)− F (x⋆)

)
+ ρ

(
F (vt)− F (x⋆)

)
= (1− ρ)

(
F (wt)− F (x⋆)

)
+ θ1ρVt,

recalling the definition of Wt in equation 12, we have

Et

[
Zt+1 + Vt+1 +Wt+1]
≤ (1− θ1 − θ2)Vt + 1

1 + ηκ
Zt + θ2

θ1

(
F (wt)− F (x⋆)

)
+ θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
+ θ2(1 + θ1)

ρθ1

(
(1− ρ)

(
F (wt)− F (x⋆)

)
+ θ1ρVt

)
+ θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
= 1

1 + ηκ
Zt + (1− θ1(1− θ2))Vt +

(
1− ρθ1

1 + θ1

)
Wt + θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
.

By the definition of α2 in Theorem 3 and since θ2 = 1/2, taking the full expectation on both sides, we have

E
[
Zt+1 + Vt+1 +Wt+1]

≤ α2E
[
Zt + Vt +Wt

]
+ 1

4L̄θ1
E

[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

Recursively repeating the above relationship from t = T − 1 to t = 0, we have

E
[
ΨT

]
≤ α2E

[
ΨT −1]

+ 1
4L̄θ1

E
[
V T −1

e

(
pT −1)

− V T −1
e

(
pIS

)]
≤ αT

2 Ψ0 + 1
4L̄θ1

T −1∑
t=0

αT −t−1
2 E

[
V t

e

(
pt

)
− V t

e

(
pIS

)]
B Useful Lemmas

We state and prove technical lemmas that are used to prove the main theorems.
Lemma 1. Let F (·) be defined in equation 1. Suppose Assumption 1 and Assumption 2 hold. Then F (·) is
convex and L̄-smooth, where L̄ = (1/n)

∑n
i=1 Li.

Proof. Under Assumption 1, F (·) is a linear combination of convex functions and, thus, is convex. To prove
that it is L̄-smooth, we only need to note that

∥∇F (x)−∇F (y)∥ ≤ 1
n

n∑
i=1
∥∇fi(x)−∇fi(y)∥ ≤ 1

n

n∑
i=1

Li∥x− y∥ = L̄∥x− y∥, x, y ∈ Rd,

where the first inequality follows from the Jensen’s inequality and the second inequality follows from As-
sumption 2.
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Lemma 2. Assume that f(·) is a differentiable convex function on Rd and is L-smooth. Then, for all
x, y ∈ Rd, we have

0 ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L

2 ∥x− y∥2, (24)

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≥ 1
2L
∥∇f(x)−∇f(y)∥2. (25)

Proof. See Theorem 2.1.5 of Nesterov (2013).

Lemma 3. Suppose Assumption 1 and Assumption 2 hold. Let xt, wt, gt and pt be defined as in Algorithm 1.
We have

Et

[∥∥gt −∇F (xt)
∥∥2

]
≤ 4L̄

(
F (xt)− F (x⋆)

)
+ 4L̄

(
F (wt)− F (x⋆)

)
+ V t

e

(
pt

)
− V t

e

(
pIS

)
.

Proof. Note that E
[
∥x− E[x]∥2]

= E
[
∥x∥2]

− ∥E[x]∥2 for any random vector x ∈ Rd. Thus we have

Et

[∥∥gt −∇F (xt)
∥∥2

]
= Et

[∥∥∥∥ 1
npt

it

(
∇fi(xt)− fi(wt)

)
−

(
∇F (xt)−∇F (wt)

)∥∥∥∥2
]

= Et

[∥∥∥∥ 1
npt

it

(
∇fi(xt)− fi(wt)

)∥∥∥∥2
]
−

∥∥∇F (xt)−∇F (wt)
∥∥2

= V t
e

(
pt

)
−

∥∥∇F (xt)−∇F (wt)
∥∥2

≤ V t
e

(
pt

)
= V t

e

(
pIS

)
+ V t

e

(
pt

)
− V t

e

(
pIS

)
, (26)

where V t
e (pt) is defined in equation 2. On the other hand, note that

V t
e

(
pIS

)
= L̄

n

n∑
i=1

1
Li

∥∥∇fi(xt)−∇fi(wt)
∥∥2

≤ 2L̄

n

{
n∑

i=1

1
Li

∥∥∇fi(xt)−∇fi(x⋆)
∥∥2 +

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

}

≤ 2L̄

n

{
n∑

i=1

1
Li

(2Li)
(
fi(xt)− fi(x⋆)−

〈
∇fi(x⋆), xt − x⋆

〉)
+

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

}

≤ 4L̄
(
F (xt)− F (x⋆)

)
+ 2L̄

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

, (27)

where the second inequality follows Assumption 1, Assumption 2 and Lemma 2, and the last inequality
follows from that ∇F (x⋆) = 0. Combining equation 26 and equation 27, we have

Et

[∥∥gt −∇F (xt)
∥∥2

]
≤ 4L̄

(
F (xt)− F (x⋆)

)
+ 2L̄

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2 + V t

e

(
pt

)
− V t

e

(
pIS

)
.

Lemma 4. Suppose Assumption 1 and Assumption 2 hold. Let Dt be defined as in equation 10. We have

Et

[
Dt+1]

≤ 2ρ
(
F (xt)− F (x⋆)

)
+ (1− ρ)Dt.
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Proof. By the update rule of wt, we have

Et

[
1
n

n∑
i=1

1
Li

∥∥∇fi(wt+1)−∇fi(x⋆)
∥∥2

]

= 1− ρ

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2 + ρ

n

n∑
i=1

1
Li

∥∥∇fi(xt)−∇fi(x⋆)
∥∥2

≤ ρ

n

n∑
i=1

1
Li

(2Li)
(
fi(xt)− fi(x⋆)−

〈
∇fi(x⋆), xt − x⋆

〉)
+ 1− ρ

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

= 2ρ
(
F (xt)− F (x⋆)

)
+ 1− ρ

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

,

where the second inequality follows Assumption 1, Assumption 2, and equation 24 of Lemma 2, and the last
inequality follows from ∇F (x⋆) = 0.

Lemma 5. Suppose the conditions of Theorem 3 hold. Then

〈
gt, x⋆ − zt+1〉

+ µ

2
∥∥xt − x⋆

∥∥2 ≥ L̄

2η

∥∥zt − zt+1∥∥2 + Zt+1 − 1
1 + ηκ

Zt,

where Zt is defined in equation 12.

Proof. Note that

zt+1 = 1
1 + ηκ

(
ηκxt + zt − η

L̄
gt

)
,

where κ = µ/L̄. Thus,

gt = µ
(
xt − zt

)
+ L̄

η

(
zt − zt+1)

,

which implies that

〈
gt, zt+1 − x⋆

〉
= µ

〈
xt − zt+1, zt+1 − x⋆

〉
+ L̄

η

〈
zt − zt+1, zt+1 − x⋆

〉
= µ

2

(∥∥xt − x⋆
∥∥2 −

∥∥xt − zt+1∥∥2 −
∥∥zt+1 − x⋆

∥∥2
)

+ L̄

2η

(∥∥zt − x⋆
∥∥2 −

∥∥zt − zt+1∥∥2 −
∥∥zt+1 − x⋆

∥∥2
)

= µ

2
∥∥xt − x⋆

∥∥2 + L̄

2η

(∥∥zt − x⋆
∥∥2 − (1 + ηκ)

∥∥zt+1 − x⋆
∥∥2

)
− L̄

2η

∥∥zt − zt+1∥∥2
.

Combining with the definition of Zt, we then have the final result.

Lemma 6. Suppose that the conditions of Theorem 3 hold. Then

L̄

2η

∥∥zt+1 − zt
∥∥2 +

〈
gt, zt+1 − zt

〉
≥ 1

θ1

(
F (vt+1)− F (xt)

)
− η

2L̄(1− ηθ1)
∥∥gt −∇F (xt)

∥∥2
.
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Proof. By the definition of vt+1, we have

L̄

2η

∥∥zt+1 − zt
∥∥2 +

〈
gt, zt+1 − zt

〉
= 1

θ1

(
L̄

2ηθ1

∥∥θ1
(
zt+1 − zt

)∥∥2 +
〈
gt, θ1

(
zt+1 − zt

)〉)
= 1

θ1

(
L̄

2ηθ1

∥∥vt+1 − xt
∥∥2 +

〈
gt, vt+1 − xt

〉)
= 1

θ1

(
L̄

2ηθ1

∥∥vt+1 − xt
∥∥2 +

〈
∇F (xt), vt+1 − xt

〉
+

〈
gt −∇F (xt), vt+1 − xt

〉)
= 1

θ1

(
L̄

2
∥∥vt+1 − xt

∥∥2 +
〈
∇F (xt), vt+1 − xt

〉
+ L̄

2

(
1

ηθ1
− 1

) ∥∥vt+1 − xt
∥∥2 +

〈
gt −∇F (xt), vt+1 − xt

〉)
≥ 1

θ1

(
F (vt+1)− F (xt) + L̄

2

(
1

ηθ1
− 1

) ∥∥vt+1 − xt
∥∥2 +

〈
gt −∇F (xt), vt+1 − xt

〉)
,

where the last inequality follows Lemma 1 and Lemma 2. By Young’s inequality, ⟨a, b⟩ ≥ −∥a∥2

2β −
β∥b∥2

2 with
β = ηθ1

L̄(1−ηθ1) , we have

L̄

2η

∥∥zt+1 − zt
∥∥2 +

〈
gt, zt+1 − zt

〉
≥ 1

θ1

(
F (vt+1)− F (xt) + L̄

2

(
1

ηθ1
− 1

) ∥∥vt+1 − xt
∥∥2 − ηθ1

2L̄(1− ηθ1)
∥∥gt −∇F (xt)

∥∥2

− L̄

2

(
1

ηθ1
− 1

) ∥∥vt+1 − xt
∥∥2

)
= 1

θ1

(
F (vt+1)− F (xt)

)
− η

2L̄(1− ηθ1)
∥∥gt −∇F (xt)

∥∥2
.
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