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ABSTRACT

Techniques that explain the predictions of black-box machine learning models are
crucial to make the models transparent, thereby increasing trust in AI systems. The
input features to the models often have a nested structure that consists of high- and
low-level features, and each high-level feature is decomposed into multiple low-
level features. For such inputs, both high-level feature attributions (HiFAs) and
low-level feature attributions (LoFAs) are important for better understanding the
model’s decision. In this paper, we propose a model-agnostic local explanation
method that effectively exploits the nested structure of the input to estimate the
two-level feature attributions simultaneously. A key idea of the proposed method
is to introduce the consistency property that should exist between the HiFAs and
LoFAs, thereby bridging the separate optimization problems for estimating them.
Thanks to this consistency property, the proposed method can produce HiFAs and
LoFAs that are both faithful to the black-box models and consistent with each
other, using a smaller number of queries to the models. In experiments on image
classification in multiple instance learning and text classification using language
models, we demonstrate that the HiFAs and LoFAs estimated by the proposed
method are accurate, faithful to the behaviors of the black-box models, and pro-
vide consistent explanations.

1 INTRODUCTION

The rapid increase in size and complexity of machine learning (ML) models has led to a growing
concern about their black-box nature. Models provided as cloud services are literal black boxes,
as users have no access to the models themselves and the training data used. This opacity raises
numerous concerns, including issues of trust, accountability, and transparency. Consequently, tech-
niques to explain the predictions made by those black-box models have been attracting significant
attention (Danilevsky et al., 2020; Došilović et al., 2018; Saeed & Omlin, 2023).

Various model-agnostic local explanation methods have been proposed to explain the predictions
of black-box models. The representative methods are, for example, local interpretable model-
agnostic explanation (LIME) (Ribeiro et al., 2016) and kernel Shapley additive explanations (Kernel
SHAP) (Lundberg & Lee, 2017), which estimate the feature attributions of the individual prediction
by approximating the model’s behavior with local linear surrogate models around the input.

In LIME and Kernel SHAP, the input to the model is generally assumed to be a flat structure, where
the input features are treated as independent variables. In many realistic tasks for various domains,
such as image, text, geographic, e-commerce, and social network data, however, the input features
have a nested structure that consists of high- and low-level features, and each high-level feature is
decomposed into multiple low-level features. A typical task with such nested features is multiple
instance learning (MIL) (Ilse et al., 2018) where the model is formulated as set functions (Kimura
et al., 2024). In MIL, the input is a set of instances, the high-level feature is an instance in the set,
and the low-level features represent the features of the instance. In addition, even if the input is not
represented with a nested structure when it is fed into the model, it may be more natural to interpret
it with the nested structure. For example, although a text input is usually represented as a sequence
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Figure 1: Example of the black-box model prediction for a nested structured input and its corre-
sponding high- and low-level feature attributions estimated by the proposed method with consis-
tency constraints. Objects in each high-level feature represent the low-level features.

of words, it is natural to interpret it as having high-level features such as phrases, sentences, and
paragraphs.

The two-level features enable us to understand the model predictions with two types of feature
attributions that have different levels of granularity in explanation, which we name high-level feature
attributions (HiFAs) and low-level feature attributions (LoFAs), respectively. Figure 1 shows an
example of the prediction for a nested structured input and its corresponding HiFAs and LoFAs. The
HiFAs represent how much each of the high-level features contributes to the prediction. These are
also referred to as instance attributions in the MIL literature (Early et al., 2022; Javed et al., 2022),
which are used to reveal which instances strongly affected the model’s decision. On the other hand,
the LoFAs represent how much each of the low-level features contributes to the prediction, providing
a more fine-grained explanation of how the components of the instances affected the prediction.
Both the HiFAs and LoFAs are important for understanding the model’s decision. However, existing
studies have focused on estimating either-level attributions, and no study has addressed estimating
the HiFAs and LoFAs simultaneously.

For the estimation of the HiFAs and LoFAs, two naive approaches can be applied. One is to estimate
the HiFAs and LoFAs separately by applying existing model-agnostic local explanation methods
to the high- and low-level features, respectively. The other is to estimate the LoFAs first, as with
the former approach, and then estimate the HiFAs by aggregating the LoFAs. However, these ap-
proaches have two rooms for improvement in terms of using the nested structure of the input. First,
even though the queries to the black-box model are often limited in practice due to the computational
time and request costs, the input structure is not utilized to reduce the number of queries in the esti-
mation. Second, the former approach can produce inconsistent explanations between the HiFAs and
LoFAs, for example, the most influential high-level feature and the high-level feature to which the
most influential low-level feature belongs may not match.

To address these issues, we propose a model-agnostic local explanation method that effectively ex-
ploits the nested structure of the input to estimate the HiFAs and LoFAs simultaneously. A key idea
of the proposed method is to introduce the consistency property that should exist between the HiFAs
and LoFAs, thereby bridging the separate optimization problems for them. We solve a joint opti-
mization problem to estimate the HiFAs and LoFAs simultaneously with the consistency constraints
depicted in Figure 1 based on the alternating direction method of multipliers (ADMM) (Boyd et al.,
2011). The algorithm is a general framework that can also introduce various types of regularizations
and constraints for the HiFAs and LoFAs, such as the ℓ1 and ℓ2 regularizations and non-negative
constraints, which lead to the ease of interpretability for humans.

In experiments, we quantitatively and qualitatively assess the HiFAs and LoFAs estimated by
the proposed method on image classification in the MIL setting and text classification using lan-
guage models, compared with estimating them separately and using a recent attribution method for
MIL (Early et al., 2022). The experimental results show that the HiFAs and LoFAs estimated by
the proposed method 1) satisfy the consistency property, 2) are faithful explanations to the black-
box models even when the number of queries to the model is small, 3) can accurately guess the
ground-truth positive instances and their features in the MIL task, and 4) are reasonable explana-
tions visually.
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The contributions of this work are summarized as follows:

• This study is the first to propose a model-agnostic local explanation method to estimate the two-
level nested feature attributions simultaneously, which satisfies the consistency property between
them.

• In the experiments on practical tasks, we demonstrated that the proposed method could produce
accurate, faithful, and consistent two-level feature attributions with a smaller number of queries
to the black-box models.

2 RELATED WORK

Numerous methods for explaining the individual predictions of black-box models have been pro-
posed in the literature (Ribeiro et al., 2016; Lundberg & Lee, 2017; Ribeiro et al., 2018; Petsiuk
et al., 2018; Plumb et al., 2018). A versatile approach is to explain feature attributions estimated by
approximating the model predictions with surrogate models around the input, such as LIME (Ribeiro
et al., 2016) and Kernel SHAP (Lundberg & Lee, 2017). The proposed method is in line with this
type of approach.

Set data is one of the nested input features, which treats a set of multiple instances as a single
input. Set data appears in various ML applications, such as point cloud classification (Guo et al.,
2021), medical image analysis (Cheplygina et al., 2019), and group recommendation (Dara et al.,
2020), and the explainability on those applications has also been studied in the literature (Tan &
Kotthaus, 2022; van der Velden et al., 2022). Unlike our work, most such studies focus only on
estimating instance attributions corresponding to those of high-level features. For example, Early et
al. proposed to estimate instance attributions by learning surrogate models with MIL-suitable kernel
functions (Early et al., 2022).

Several studies have addressed estimating feature attributions effectively by leveraging group in-
formation of input features. In the natural language processing literature, some studies estimated
sentence- and phrase-level feature attributions by grouping words in the same sentence and phrase
together and regarding them as a single feature (Zafar et al., 2021; Mosca et al., 2022). In addi-
tion, Rychener et al. showed that word-level feature attributions can be improved by generating
perturbations at a sentence level, mitigating the issues of out-of-distribution for the model and high-
dimensional search space (Rychener et al., 2023). In the official SHAP library (shap (Github), 2024),
by grouping input features by hierarchical clustering in advance and generating perturbations at the
group level, one can reduce the number of queries to the model.

If we consider high-level features as nodes and low-level features as the features of the nodes and
then somehow put edges between the nodes, we can think of an input as a graph. By doing so,
model-agnostic explanation methods for graphs, such as GNNExplainer (Ying et al., 2019) and
GraphLIME (Huang et al., 2023), can be applied to our task. However, since this approach highly
relies on the graph structure, additional information is required to create appropriate edges.

3 PROPOSED METHOD

3.1 TWO-LEVEL NESTED FEATURE ATTRIBUTIONS WITH SURROGATE MODELS

The model f to be explained is a trained black-box model that takes an arbitrary input, such as
tabular, image and text, x ∈ X , and outputs a prediction y = f(x) ∈ [0, 1]C where X is the input
space and C is the number of classes. The input x is made of two-level nested features, referred to as
high-level and low-level features, and the high-level feature is decomposed into multiple low-level
features. In particular, the input x is represented as a set or sequence of J high-level features, i.e.,
x = {xj}Jj=1 where xj ∈ RDj is the Dj-dimensional low-level feature vector representing the j-th
high-level feature. One example of such input appears in image classification under the MIL setting.
In this setting, the input is a bag of images, the high-level feature is an image in the bag, and the
low-level features correspond to super-pixels in the image. Another example appears in a document
classification where the input is a sequence of sentences, the high-level feature is a sentence in the
sequence, and the low-level features correspond to the words in the sentence.
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We consider estimating the high-level feature attributions (HiFAs) and low-level feature attributions
(LoFAs) that explain the prediction of the black-box model f for the input x using surrogate models
as with LIME and Kernel SHAP. The HiFAs and LoFAs represent how much high- and low-level
features in the input contribute to the prediction, respectively. In the aforementioned MIL setting,
the HiFAs represent how much images in the input bag contribute to the prediction, which is also
referred to as instance attributions in the literature, and the LoFAs represent how much super-pixels
in the images contribute to the prediction. To estimate the HiFAs and LoFAs, we introduce two-
level local linear surrogate models for high-level and low-level features, eH and eL, that mimic the
behaviors of the black-box model f around the input x, as follows:

eH(zH;α) =

J∑
j=1

αjz
H
j , eL(zL;β) =

J∑
j=1

Dj∑
d=1

βjdz
L
jd, (1)

where zH ∈ {0, 1}J and zL = {zL
j }Jj=1 with zL

j ∈ {0, 1}Dj are simplified inputs associated with
the input x, which are used to indicate the presence or absence of the high- and low-level features
in x, respectively; α ∈ RJ and β = {βj}Jj=1 with βj ∈ RDj are the learnable coefficients of these
surrogate models, and after learning, they will be the HiFAs and LoFAs themselves, respectively.
For ease of computation below, we define the concatenation of β and zL over the high-level features
as β† = concat(β1,β2, · · · ,βJ) ∈ RD†

and zL† = concat(zL
1 , z

L
2 , · · · , zL

J) ∈ {0, 1}D†
, where

D† =
∑J

j=1 Dj .

The surrogate models are learned with the predictions of the black-box model f for perturbations
around the input x. The perturbations are generated by sampling the simplified inputs zH and
zL† from binary uniform distributions and then constructing masked inputs ϕH

x (z
H), ϕL

x(z
L†) ∈ X

depending on the simplified inputs, respectively. Here, ϕH
x and ϕL

x are mask functions that replace
the input x’s dimensions associated with the dimensions being zero in the simplified inputs zH

and zL† with uninformative values, such as zero, respectively. Let ZH ∈ {0, 1}NH×J and ZL ∈
{0, 1}NL×D†

be the matrices whose rows are the generated simplified inputs for the high- and low-
level features, respectively, where NH and NL are the numbers of perturbations used to estimate
the HiFAs and LoFAs, respectively. Also, let ỹH = [ỹH1 , ỹ

H
2 , · · · , ỹHNH

]⊤ ∈ RNH×C and ỹL =

[ỹL1 , ỹ
L
2 , · · · , ỹLNL

]⊤ ∈ RNL×C be the predictions of the black-box model for the perturbations where
ỹHn = f(ϕH

x (Z
H
n )) and ỹLn = f(ϕL

x(Z
L
n)).

Simply, the parameters of the surrogate models, i.e., the HiFAs α̂ and LoFAs ˆ
β†, can be estimated

by solving the following weighted least squares separately:

α̂ = argmin
α

LH(α) + λHΩH(α) where LH(α) =
1

2
(ỹH −ZHα)⊤WH(ỹH −ZHα), (2)

ˆ
β† = argmin

β†
LL(β

†) + λLΩL(β
†) where LL(β

†) =
1

2
(ỹL −ZLβ†)⊤W L(ỹL −ZLβ†),

(3)

where WH ∈ RNH×NH and W L ∈ RNL×NL are the diagonal matrices whose nth diagonal elements
represent the sample weights for the nth perturbation; ΩH and ΩL are the regularizers for the HiFAs
and LoFAs, respectively; λH ≥ 0 and λL ≥ 0 are the regularization strengths.

3.2 JOINT OPTIMIZATION WITH CONSISTENCY CONSTRAINTS

Although the HiFAs and LoFAs provide different levels of explanations, these explanations for the
same black-box model should be consistent between them. From the linearity of the surrogate
models and the fact that each high-level feature can be decomposed into low-level features, the
following property is expected to be satisfied:

Property 1 (Consistency between two-level feature attributions).

αj =

Dj∑
d=1

βjd (∀j ∈ [J ]). (4)
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The two surrogate models (1) satisfying the consistency property behave equivalently for the sim-
plified inputs zH and zL such that if zHj = 0 then zL

j = 0Dj
, and if zHj = 1 then zL

j = 1Dj
where

0Dj
and 1Dj

are the Dj-dimensional zero and one vectors, respectively.

The consistency property is essential to provide consistent and convincing explanations to humans.
However, it is often not satisfied for two reasons in practice. First, the number of perturbations is
insufficient to accurately estimate the feature attributions because the number of queries to the model
f is often limited due to the computational time and request costs. Second, in the predictions for
the perturbations, the behaviors of the model f can differ between when the high-level features are
masked out and when the low-level ones are masked out due to missingness bias (Jain et al., 2022).
To overcome these problems, the proposed method estimates the HiFAs and LoFAs simultaneously
by solving the following optimization with consistency constraints:

α̂, β̂
†
= argmin

α,β†
LH(α) + LL(β

†) + λHΩH(α) + λLΩL(β
†) s.t. αj =

Dj∑
d=1

βjd (∀j ∈ [J ]).

(5)

The consistency constraints bridge the two surrogate models, forcing them to behave equivalently.
This helps complement the insufficiency of the queries to the model and mitigate the negative effects
of the missingness bias on the estimation of the HiFAs and LoFAs.

We solve the optimization based on the alternating direction method of multipliers (ADMM) (Boyd
et al., 2011). The detailed derivation of the optimization algorithm is provided in Appendix A. An
advantage of employing the ADMM is that despite the interdependence of α and β† caused by
the consistency constraints, they can be estimated independently as in (2) and (3). In addition, the
solution has another merit in that we can implement various types of regularizations and constraints
for α and β, such as sparse regularization and non-negative constraints in ΩH and ΩL. In this paper,
we instantiate the proposed method with the LIME-like formulation, that is, we use the cosine
kernel for calculating the sample weights WH and W L and the ℓ2 regularization for ΩH and ΩL.
The optimization algorithm for this instantiation is provided in Algorithm 1 in Appendix A.

Computational Complexity. In the proposed method, the dominant computation cost is brought
by the predictions of the black-box model f for the perturbations, whose computational time com-
plexity is O((NH +NL)Q) where NH and NL are the numbers of perturbations for the HiFAs and
LoFAs, respectively, and Q is the computational time complexity of f in prediction once. Q is often
large when executing large models and models provided as cloud services. Therefore, estimating
the HiFAs and LoFAs accurately with small NH and NL is crucial. In the experiments in Section 4,
we demonstrate that the proposed method can estimate high-quality HiFAs and LoFAs even when
NH and NA are small. A detailed discussion on the computational time complexity is provided in
Appendix B.

4 EXPERIMENTS

We conducted experiments on two tasks, image classification in an MIL setting and text classi-
fication using language models, to evaluate the effectiveness of the proposed method, referred to
as Consistent Two-level Feature Attribution (C2FA). In the experiments, we implemented the pro-
posed method in Algorithm 1 in Appendix A. Its hyperparameters, λH, λL, and µ1, were tuned
using the validation subset of each dataset within the following ranges: λH, λL ∈ {0.1, 1}, and
µ2 ∈ {0.001, 0.01, 0.1}. The remaining hyperparameters were set to µ1 = 0.1, ϵ1 = ϵ2 = 10−4,
respectively. All the experiments were conducted on a server with an Intel Xeon Gold 6148 CPU
and an NVIDIA Tesla V100 GPU.

Comparing Methods. As comparing methods, we used the following five methods, named
LIME (Ribeiro et al., 2016), MILLI (Early et al., 2022), Bottom-Up LIME (BU-LIME), Top-Down
LIME (TD-LIME), and Top-Down MILLI (TD-MILLI). With LIME, we estimated the HiFAs and
LoFAs separately by solving (2) and (3), respectively, where we used the cosine kernel for the sample
weights and ℓ2 regularization for ΩH and ΩL. Hence, LIME can be regarded as the proposed method
without the consistency constraints. MILLI is the state-of-the-art instance attribution method in the
MIL setting, which was proposed for estimating the HiFAs only. Therefore, we estimated the LoFAs
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Figure 2: Quantitative evaluation on the image classification task. (a) NDCG (higher is better) and
deletion scores (lower is better) of the estimated HiFAs. (b) AUROC (higher is better) and deletion
scores (lower is better) of the estimated LoFAs. (c) Consistency scores (lower is better) and the
agreement scores of MIHL (higher is better). The error bars represent the standard deviations of the
scores over three runs with different random seeds.

in MILLI as with LIME. With BU-LIME, we first estimated the LoFAs using LIME and then cal-
culated the HiFAs of each high-level feature by summing the LoFAs associated with the high-level
feature. This method always satisfies the consistency property because the HiFAs are calculated
from the LoFAs. With TD-LIME and TD-MILLI, we first estimated the HiFAs using LIME and
MILLI, respectively. Then, for the jth high-level feature, we determined the FAs associated with it,
βj , with the samples from the normal distribution with the mean of the jth HiFA αj and the standard
deviation of 1/Dj . Finally, by selecting the dth low-level feature at random and replacing it with
βjd = αj −

∑
d′∈[Dj ]\{d} βjd′ , we obtained the LoFAs associated with the jth high-level feature

such that they satisfy the consistency property.

4.1 IMAGE CLASSIFICATION IN MULTIPLE INSTANCE LEARNING

Dataset. We constructed an MIL dataset from the Pascal VOC semantic segmentation dataset (Ev-
eringham et al., 2015) that allows us to evaluate the estimated HiFAs and LoFAs with the ground-
truth instance- and pixel-level labels. With the training subset of the dataset, each sample (bag)
has from three to five images (high-level features) drawn at random from the training subset of the
Pascal VOC. Here, low-level features correspond to regions (super-pixels) of each image, which are
obtained by the quick shift algorithm (Vedaldi & Soatto, 2008). Each bag is labeled positive if at
least an image in the bag is associated with “cat” label and negative otherwise. Also, each image
pixel is labeled positive if the pixel is associated with “cat” label and negative otherwise. We used
the instance- and pixel-level supervision only for evaluation. Similarly, we constructed validation
and test subsets whose samples contain images from the training and test subsets of the Pascal VOC,
respectively. The number of samples in training, validation, and test subsets is 5,000, 1,000, and
2,000, respectively, and the positive and negative samples ratio is equal.

Black-box Model. We used DeepSets permutation-invariant model (Zaheer et al., 2017) with
ResNet-50 (He et al., 2016) as black-box model f to be explained. We describe the implementation
details of the model in Appendix C.1. Here, the test accuracy of the model was 0.945.
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Quantitative Evaluation. We assessed the estimated HiFAs and LoFAs in terms of correctness,
faithfulness, and consistency. The correctness is evaluated using the ground-truth instance- and
pixel-level labels. Following the evaluation in the MIL study (Early et al., 2022), we evaluated the
estimated HiFAs with normalized discounted cumulative gain (NDCG). For the estimated LoFAs,
as with the evaluation of the LoFAs for single image classification (Sampaio & Cordeiro, 2023), we
evaluated them as the predictions of the pixel-level labels by the area under ROC curve (AUROC)
in the binary semantic segmentation manner. In the faithfulness evaluation, we assessed whether
the estimated HiFAs and LoFAs are faithful to the behaviors of the model f based on insertion and
deletion metrics. The insertion and deletion metrics evaluate the change in the predictions of the
model f when features deemed important in the LoFAs are gradually added and removed from the
sample, respectively (Petsiuk et al., 2018). In our experiments, we gradually add and remove the
low-level features across all the high-level features in descending order of their LoFAs. Also, for
the HiFAs, we add and remove the high-level features instead of the low-level ones, respectively.
In terms of the consistency evaluation, we used the following two metrics. The first one is the
consistency between the estimated HiFAs and LoFAs, which is calculated with ∥α−Mβ†∥2 used
to calculate the penalty for the consistency constraints in (7). The second one is the agreement of
the most important high- and low-level feature (MIHL), which is calculated by the ratio that the
high-level feature of the highest HiFA is identical to the one associated with the low-level feature of
the highest LoFA.

We evaluated the above metrics using only the samples with the positive bag label because we could
not evaluate the correctness of those with the negative bag label. We ran the evaluations three times
with different random seeds and reported the average scores and their standard deviation.

4.1.1 RESULTS

Input (bag of images)

C2FA
IA = 0.01 IA = 0.05 IA = 0.05 IA = 0.89

LIME
IA = -0.00 IA = 0.04 IA = 0.04 IA = 0.91

Figure 3: Example of the estimated HiFAs
and LoFAs on the image classification task
when NH = 20 and NL = 50. The input is
shown on the first row, where the image with
the red border is the positive instance. The
LoFAs of super-pixels estimated by the pro-
posed method and LIME are shown on the
second and third rows, respectively, where
the green color’s intensity indicates the mag-
nitude of the LoFA.

Figure 2a shows the NDCG and deletion scores of
the estimated HiFAs over various numbers of per-
turbations for the LoFAs, NL, where we fixed the
number of perturbations for the HiFAs, NH = 5.
We found that the proposed method (C2FA) consis-
tently achieved the best NDCG and deletion scores,
and the superiority of the proposed method is es-
pecially noticeable when NL is small. Although
BU-LIME improved the scores as NL increased,
the scores were still lower than those of the pro-
posed method. Since the other comparing methods
estimate the HiFAs without the effects of the Lo-
FAs, their scores were constant regardless of the
value of NL. In Appendix C.2, we show that sim-
ilar results were obtained in terms of the insertion
metric. In addition, when we fixed NH = 20, the
methods other than BU-LIME equally achieved the
highest NDCG and insertion scores regardless of
NL because NH was sufficiently large to estimate
the HiFAs accurately.

Figure 2b shows the AUROC and deletion scores
of the estimated LoFAs over various values of NL

where we fixed NH = 20. When NL is small,
we found that the proposed method significantly
achieved the highest AUROC and deletion scores.
In particular, the AUROC score of the proposed
method at NL = 50 was much the same as those of
the second-best methods, LIME, MILLI, and BU-
LIME, at NL = 150, and the deletion score of the proposed method at NL = 50 was much the same
as that of the second-best methods at NL = 100. These results show that the proposed method is
very efficient for the number of queries to the model f owing to the simultaneous estimation of the
HiFAs and LoFAs.
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Figure 2c shows the consistency scores and the agreement scores of MIHL over various values of NL

where we fixed NH = 20. Here, the consistency scores of BU-LIME, TD-LIME, and TD-MILLI
are always zero by definition. We found that the consistency scores of LIME and MILLI were worse
because they estimated the HiFAs and LoFAs separately. On the other hand, those of the proposed
method were nearly zero, which means that the estimated HiFAs and LoFAs satisfied the consistency
property. With the agreement scores of MIHL, we found that the proposed method outperformed
the other methods regardless of the values of NL, and the differences in the scores were especially
noticeable at the small NL values, i.e., NL ≤ 150.

We visualize an example of the estimated HiFAs and LoFAs by the proposed method and the best-
comparing method, LIME, in Figure 3. Here, we only display the LoFAs larger than 0.1 for ease of
understanding. The figure shows that the proposed method assigned a high LoFA to the super-pixel
in the high-level feature with the positive and highest HiFA (HiFA = 0.89), although LIME assigned
high LoFAs to the super-pixels in the negative instances. The critical difference between the two
methods is whether the HiFAs and LoFAs are estimated simultaneously or separately. Since both
the proposed method and LIME assigned the highest HiFA to the positive instance correctly, the
result indicates that estimating the HiFAs and LoFAs simultaneously is effective. Similar results
were obtained in other examples shown in Appendix C.3.

4.2 TEXT CLASSIFICATION USING LANGUAGE MODELS

Another practical application of the proposed method is to explain the attributions of sentences and
the words they contain in text classification with language models.

Dataset. For evaluation, we constructed a dataset whose validation and test subsets are made of
500 and 1,000 product review texts extracted randomly from the training and test subsets of the
Amazon reviews dataset (Zhang et al., 2015), respectively. Each sample in the dataset is made of
multiple sentences regarded as high-level features, where each sentence is represented as a sequence
of words regarded as low-level features, and the sample label represents the review’s polarity, posi-
tive or negative.

Black-box Model. To simulate access to black-box language models provided as cloud services,
we experimented using BERT (Devlin et al., 2018) with the weights fine-tuned on the original Ama-
zon reviews dataset, which is provided on Hugging Face (fabriceyhc , Hugging Face). The test
accuracy of the model is 0.947. When masking a word in the input to generate perturbed inputs, we
replaced the word with the predefined mask token [MASK]. Similarly, when masking a sentence,
we replaced all the words in the sentence with the mask token.

Quantitative Evaluation. Because no ground-truth labels for HiFAs and LoFAs are available in
the dataset, we evaluated the estimated HiFAs and LoFAs only in terms of faithfulness and consis-
tency, as with Section 4.1.

4.2.1 RESULTS

Figure 4a shows the deletion scores of the estimated HiFAs and LoFAs over various values of NL

where we fixed NH = 5 and 50, respectively. With the deletion scores of the HiFAs, although
the scores of the proposed method were equal to or worse than those of MILLI and TD-MILLI at
NL ≤ 150, the proposed method achieved the best at NL ≥ 200. We found that in this task, the
LIME-based methods, including the proposed method, were worse than the MILLI-based methods
at the small NL values. As NL increased, the proposed method benefited from the consistency
constraints and became the only LIME-based method that outperformed the MILLI-based methods.
In Appendix D.1, we show that similar results were obtained in terms of the insertion metric, and
when we fixed NH = 50, the scores did not change regardless of the values of NL because NH

was sufficiently large to estimate the HiFAs accurately. With the deletion scores of the LoFAs, the
proposed method outperformed the other methods regardless of the values of NL.

Figure 4b shows the consistency scores and the agreement scores of MIHL over various values of
NL where we fixed NH = 50. Again, in this task, the consistency scores of the proposed method
were nearly zero regardless of the values of NL. With the agreement scores of MIHL, the proposed
method kept high scores regardless of the values of NL, although the scores of BU-LIME were
slightly better than the proposed method at NL ≤ 100.
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Figure 4: Quantitative evaluation on the text classification task. (a) Deletion scores of the estimated
HiFAs and the estimated LoFAs (lower is better). (b) Consistency scores (lower is better) and the
agreement scores of MIHL (higher is better).

Input (bag of sentences)
S1: do not buy this product .

S2: they break too easily and when you want to

replace them it is labeled poorly .

C2FA

0.00 0.02 0.04

S1

S2

0.00 0.01

poorly (S2)
not (S1)
and (S2)
this (S1)
buy (S1)

BU-LIME

0.00 0.25 0.50

S1

S2

0.00 0.05 0.10

poorly (S2)
and (S2)

is (S2)
it (S2)

replace (S2)

Figure 5: Example of the estimated HiFAs
and LoFAs for a negative review text when
NH = 50 and NL = 50. The review text
is shown at the top, and the HiFAs (left) and
the top-5 highest LoFAs (right) estimated by
each method are shown at the bottom. Here,
the words on the pink background in the re-
view text are those appearing in the chart of
the LoFAs.

Figure 5 shows an example of the HiFAs and Lo-
FAs estimated by the proposed method and the
second-best method, BU-LIME. In the example,
we fixed at NH = 50 and NL = 50; that is,
NL is insufficient to estimate the LoFAs accurately.
We found that although the comparing method
assigned higher LoFAs to the words in the sec-
ond sentence (S2), the proposed method assigned
higher LoFAs to the words in the first sentence
(S1). This result is because the proposed method
can regularize the LoFAs by exploiting the fact that
S1 has a high HiFA via the consistency constraints.
Other examples are shown in Appendix D.3.

5 LIMITATIONS
AND BROADER IMPACTS

A possible limitation of the proposed method is that
the quality of the HiFAs and LoFAs may be worse
in cases where the consistency property is inher-
ently not satisfied. For example, they may hap-
pen when the HiFAs and LoFAs are estimated with
the combination of different approaches, such as
MILLI and LIME, and when the behaviors of the
black-box model vary significantly between per-
turbed inputs that high- and low-level features are
partially masked. To detect such an undesirable sit-
uation early, monitoring the losses of the surrogate models, LH in (2) and LL in (3), is effective
because they are likely to be worse even if the objective (5) is minimized.
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Our work contributes to improving the transparency of black-box models. However, it should be
noted that high-quality feature attributions may give hints about stealing the information that the
model’s providers want to hide, such as the training data and the model’s decision-making process.
To prevent such risks, it is essential to establish guidelines that ensure that the feature attributions
are not used for malicious purposes.

6 CONCLUSION

We proposed a model-agnostic local explanation method for nested structured inputs, which explains
two-level feature attributions, referred to as HiFAs and LoFAs, simultaneously. We hypothesized
that the consistency property naturally derived from the characteristics of the surrogate models is
essential to produce explanations that are accurate, faithful and consistent between HiFAs and LoFAs
with a smaller number of queries to the model. Then, we presented an optimization algorithm
that estimates the HiFAs and LoFAs while forcing them to ensure the consistency property. We
demonstrated that the proposed method can produce high-quality explanations query-efficiently in
the experiments on image classification in multiple instance learning and text classification using
large language models. In future work, we will expand the applicability of the proposed method
by extending it to tasks with three or more levels of nested features, such as multi-multi instance
learning (Tibo et al., 2020).
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Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. Explainable artificial intelligence: A survey.
In Proceedings of the International Convention on Information and Communication Technology,
Electronics and Microelectronics, pp. 210–215, 2018.

Joseph Early, Christine Evers, and SArvapali Ramchurn. Model Agnostic Interpretability for Mul-
tiple Instance Learning. In Proceedings of the International Conference on Learning Representa-
tions, 2022.

M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
Pascal Visual Object Classes Challenge: A Retrospective. International Journal of Computer
Vision, 111(1):98–136, 2015.

fabriceyhc (Hugging Face). fabriceyhc/bert-base-uncased-amazon polarity, 2022. URL https:
//huggingface.co/fabriceyhc/bert-base-uncased-amazon_polarity. Ac-
cessed: 2024-2-2.

Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun. Deep
Learning for 3D Point Clouds: A Survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(12):4338–4364, 2021.

10

https://huggingface.co/fabriceyhc/bert-base-uncased-amazon_polarity
https://huggingface.co/fabriceyhc/bert-base-uncased-amazon_polarity


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. GraphLIME: Local Inter-
pretable Model Explanations for Graph Neural Networks. IEEE Transactions on Knowledge and
Data Engineering, 35(7):6968–6972, 2023.

Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based Deep Multiple Instance Learn-
ing. In Proceedings of the International Conference on Machine Learning, volume 80, pp. 2127–
2136, 2018.

Saachi Jain, Hadi Salman, Eric Wong, Pengchuan Zhang, Vibhav Vineet, Sai Vemprala, and Alek-
sander Madry. Missingness Bias in Model Debugging. In Proceedings of the International Con-
ference on Learning Representations, 2022.

Syed Ashar Javed, Dinkar Juyal, Harshith Padigela, Amaro Taylor-Weiner, Limin Yu, and Aaditya
Prakash. Additive MIL: intrinsically interpretable multiple instance learning for pathology. Ad-
vances in Neural Information Processing Systems, pp. 20689–20702, 2022.

Masanari Kimura, Ryotaro Shimizu, Yuki Hirakawa, Ryosuke Goto, and Yuki Saito. On
permutation-invariant neural networks. arXiv preprint arXiv:2403.17410, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the International Conference on Learning Representations, 2015.

Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. Advances
in Neural Information Processing Systems, pp. 4765–4774, 2017.
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