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Abstract

Survey generation involves synthesizing com-
prehensive scientific papers from large collec-
tions of research literature. Despite recent
advances, this task remains challenging for
natural language processing (NLP), especially
when both input and output are long. While
current large language models (LLMs) support
extended context lengths, their ability to pro-
duce full-length surveys remains underexplored
due to the lack of suitable datasets and bench-
marks. We introduce GenSurvey, a dataset
of 700 human-written surveys paired with ref-
erence abstracts. We further create GenSec-
tion, a synthetic dataset for section-level gener-
ation created using chain-of-thought prompting
with GPT-4 and refined through human verifi-
cation. These datasets form LongSciArxiv, a
dual benchmark designed for real-world tasks
in education and research. These task requires
models to integrate hundreds of abstracts into
coherent surveys exceeding 10,000 words. In
our experiments, we evaluate 10 open-source
LLMs ranging from 1B to 70B parameters. Re-
sults show that mid-sized models such as Mis-
tral 7B and LLaMa3 8B offer the best trade-off
between performance and cost. Our findings
highlight the complexity of long-to-long gen-
eration and the need for scale-aware model de-
sign and benchmarking.

1 Introduction

Recent large language models (LLMs) such as GPT-
4 (OpenAl, 2024) and Gemini-1.5 (Google et al.,
2024) show strong performance in long-context
understanding and generation tasks. For example,
GPT-4 supports prompts up to 128,000 tokens. As
a result, recent work has focused on benchmarking
LLMs’ ability to handle long inputs and produce
extended outputs (Zhang et al., 2024; Wang et al.,
2024a; Li et al., 2024a; Koksal et al., 2024). Most
studies target summarization (Liu et al., 2024) or
story generation (Xie and Riedl, 2024), where mod-
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Figure 1: An example of long-to-long scientific text
generation.

els transform text into long and short forms. How-
ever, generating coherent and detailed long-form
output from large contexts remains a challenge (Wu
et al., 2025). Automatically generating scientific
surveys requires synthesizing many research ab-
stracts into a coherent, structured long-form docu-
ment (as illustrated in Figure 1). Despite advances
in LLMs, the task remains difficult due to its ex-
treme length, dense content, and structural com-
plexity. First, scientific surveys often exceed the
context window or output capacity of most models,
requiring incremental generation that risks context
loss and structural inconsistency (Hosseini et al.,
2025). Second, encoding a large set of reference
abstracts demands substantial memory and reason-
ing, especially under resource constraints (Jiang
et al., 2024b). Third, effective survey writing goes
beyond fluency. The capability of current LLMs is
still insufficient, as they have difficulties in provid-



ing precise topic coverage, coherent organization,
and accurate citation usage (Sel et al., 2025). We
further discuss challenges in long-form generation
in Appendix A.

Currently, Retrieval-Augmented Generation
(RAG) offers a solution by integrating external
knowledge to improve model accuracy (Lewis et al.,
2020; Chen et al., 2024). Recent work also em-
phasizes the efficiency benefits of RAG and the
advantages of using long-context models (Li et al.,
2024b). Despite these advances, the application
of LLMs, whether with long-context capabilities
or RAGs, to synthesize full survey articles from
multiple scientific sources is still underexplored.
Although few studies have taken initial steps in this
direction (Wang et al., 2024b), there are no public
benchmarks to evaluate this specific task.

To study these challenges systematically, we in-
troduce two new datasets. First, GenSurvey is a
dataset of 700 scientific survey papers from Arxiv.
All survey papers are written by humans, each
longer than 10,000 words. Each paper is linked
to about 100 reference abstracts. Then GenSec-
tion is built upon GenSurvey. It contains more
than 4,700 synthetic section-level scientific texts.
This dataset is generated using GPT-4 and manu-
ally verified by human annotators. Together, these
two datasets form LongSciArxiv supporting both
full-document and section-level evaluation. We
fine-tune and evaluate 10 open-source LLMs of
varying sizes to establish baseline performance.

The contributions of our study are as follows:

* We introduce LongSciArvix containing: Gen-
Survey is the first benchmark for full-
document scientific survey generation; and
GenSection is a high-quality instruction-
tuning dataset for modular scientific gener-
ation. They support evaluation at both the
document and section levels, with human and
synthetic references.

* We fine-tune and evaluate 10 open-source
LLMs (1B to 70B), including LLaMA3, Mis-
tral, DeepSeek and Qwen2, using multiple
training strategies. This enables a compre-
hensive analysis of model size, method, and
efficiency trade-offs.

* We conduct extensive automatic and human
evaluations on fluency, structure, and cita-
tion accuracy. Our findings show that mid-
sized models like Mistral 7B and LLaMA3

8B achieve the best quality-efficiency balance
and that larger LLMs benefit more from Re-
inforcement Learning with Human Feedback
optimization in long-form generation tasks.

2 GenSurvey Dataset

2.1 Data Construction

Figure 2 illustrates the construction process of the
GenSurvey dataset. The process includes four main
steps: data collection, annotation, validation, and
dataset splitting.

Data Collection We start by crawling ArXiv! for
computer science papers with the keyword "survey”
in their titles. We use PyPDF2? to convert each
PDF into plain text. For every selected paper, we
extract the reference list. We then retrieve the titles
and abstracts of each cited reference using publicly
available metadata.

Data Annotation Annotators with IT back-
ground follow clear instructions for filtering and
cleaning data. They remove survey papers that do
not meet quality standards. For selected papers,
the annotators assign a topic and remove all figures
and tables. Appendix B.1 describes the annotation
requirements in detail.

Data Validation The annotation team members
cross-validate their work. Each survey goes
through multiple validation rounds to ensure con-
sistency, completeness, and accuracy. This process
helps maintain high-quality annotations for train-
ing and evaluation. Appendix B.2 provides the
complete validation guideline. The results of the
process are 700 survey papers. Each instance in-
cludes the full text of a survey and a corresponding
set of reference abstracts. These pairs form the
foundation of the GenSurvey dataset.

Dataset Splitting We store all the annotated con-
tent and metadata in JSON format. Each instance
includes seven key attributes, listed in Table 7 (Ap-
pendix B.3). We divide the dataset into training,
validation, and test sets using a 4:1:2 ratio.

2.2 Dataset Statistic and Analysis

2.3 Dataset Statistics

We summarize the statistics of the GenSurvey
dataset in Table 1. To our knowledge, GenSurvey

1https://arxiv.org/
2ht’cps: //pypi.org/project/PyPDF2
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Figure 2: Data creation pipeline of GenSurvey Dataset.

is the first dataset designed for long-to-long gener-
ation with both long inputs and long outputs. On
average, each input contains 3,307 words. The cor-
responding survey outputs average 10,942 words.
In some cases, the inputs reach 31,639 words and
the outputs extend to 42,628 words.

Description Train Val Test Total
No. of survey articles 400 100 200 700
Avg no. of subject per survey 1.71 1.72 1.95 1.78
Avg no. of reference per survey 98.54  97.27  126.83 106.42
Avg no. of word per survey 11,995 10,264 12,677 10,942
Avg no. of word in input 2891 2844 4188 3307

Table 1: GenSurvey dataset statistic.

More detailed statistics and comparisons are pro-
vided in the Appendix B.3. For each survey, the
annotators identify 1 to 2 main topics and list ap-
proximately 100 references. According to Figure 5
in the Appendix, the most frequent topics are Ma-
chine Learning and Networking and Internet Ar-
chitecture.

3 GenSection Dataset

Although state-of-the-art LLMs perform well in
many downstream tasks, their ability to write scien-
tific surveys remains uncertain. We aim to explore
whether LLMs can serve as automatic annotators
for long-form generation. Previous work (Tan et al.,
2024) shows that LL.Ms can label raw data using
detailed instructions, even in domain-specific tasks.
GenSurvey provides fully human-written survey pa-
pers for benchmarking. However, training models
directly on GenSurvey is difficult because of the ex-
treme length of inputs and outputs. To address this,
we construct GenSection, a synthetic dataset that
breaks down survey generation into smaller instruc-
tion—input—output triplets. Each triplet represents
one section of a survey. This design enables effi-
cient instruction tuning and supports section-level

evaluation. In each triplet, instruction defines the ti-
tle of the section and the goal of writing. The input
includes relevant reference abstracts. The output
is the text of the section generated by GPT-4. All
outputs are reviewed by domain experts to ensure
quality. GenSection complements GenSurvey by
supporting scalable model training and providing a
synthetic baseline for comparison.

3.1 Data Construction

The construction of the GenSection dataset follows
a two-step process: survey structure generation and
survey content generation. Figure 3 illustrates the
full pipeline. We apply zero-shot chain-of-thought
(COT) prompting with GPT-4 (OpenAl, 2024) to
first generate a structured outline for a survey, then
produce the content for each section. All prompt
templates used in both steps are included in Ap-
pendix F.

Survey Structure Generation The input con-
sists of abstracts from reference papers and a list of
human-annotated topics. GPT-4 generates a struc-
ture for the survey, including sections such as In-
troduction, Body Sections, and Conclusion.

Survey Content Generation We design zero-
shot COT prompting again to generate the full text
for each section. The content is grounded in the
provided abstracts and topic list.

3.2 Data Annotation and Validation

Human annotators validate each generated survey
section for coherence, relevance, and alignment
with the input abstracts. The validation process
consists of two rounds. In the first round, two an-
notators with a background in IT independently re-
view the outputs generated by GPT-4. They follow
the detailed guidelines provided in the Appendix C.
In the second round, we evaluate all samples where
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Figure 3: GenSection Dataset Construction Pipeline. The pipeline generates survey structure and content using

zero-shot chain-of-thought (COT) prompting.

the annotators disagreed. The final decisions are
made using the same set of guidelines. As a result,
each instance includes an instruction prompt, a set
of reference abstracts, and the validated output for
one section of a survey paper.

3.3 Dataset Description

The GenSection dataset contains 4,792 instruction
sets derived from 700 survey papers. Each entry
corresponds to a single section within a survey. The
dataset uses an instruction-following format, where
the instruction guides the generation of a specific
section using reference abstracts and annotated top-
ics. This structure supports the training of models
for section-level generation.

Train Val Test Total

No. of sections 3072 340 1380 4792
Avg no. of section per survey 6 6 6 6
Avg no. of word in sections 5564 5130 4166 4951

Description

Table 2: GenSection dataset statistic.

Table 2 shows the statistics of the GenSection
dataset. On average, each survey contains around
six sections. The average word count per section is
highest in the training set with 5,564 words, slightly
lower in the validation set with 5,130 words, and
lowest in the test set with 4,166 words. Across the
entire dataset, the average length of the section is
4,951 words.

4 Experiments

In this study, we aim to evaluate the effectiveness
of large language models (LLMs) on the task of
long-to-long scientific text generation using our
proposed GenSurvey and GenSection datasets. We

organize our experiments around the following re-
search questions:

* RQ1: How do different-sized open-source
LLMs perform on long-to-long scientific text
generation across automatic and human evalu-
ation metrics?

¢ RQ2: What are the trade-offs between model
size, output quality, and computational effi-
ciency in handling long-context generation
tasks?

* RQ3: How effective are different fine-tuning
strategies (PEFT and RLHF) and LoRA vari-
ants in improving long-form generation per-
formance?

* RQ4: How does the performance of fine-
tuned open-source models compare to pro-
prietary models such as GPT-4 in terms of
fluency, structure, and citation handling?

4.1 Experimental Setup

As a baseline, we conduct the experiments to
evaluate the performance of 10 LLMs with vary-
ing model sizes on GenSurvey and GenSection
datasets. The models used are LLLaMa3 (Grattafiori
et al., 2024) with sizes 1B, 3B, and 8B; Qwen2
(Yang et al., 2024) with sizes 1.5B, 3B, 7B, and
72B; Mistral 7B (Jiang et al., 2023) and Mixtral of
Expert (8x7B) (Jiang et al., 2024a); and Deepseek
R1 (DeepSeek-Al et al., 2025) with 70B distilled
version.

For the GenSurvey dataset, we use full human-
written survey papers as outputs and their corre-
sponding reference abstracts as inputs. Unlike Gen-
Section, we do not split the surveys into smaller



sections. Instead, we preserve the original structure
to evaluate document-level scientific generation.
Each training instance includes a list of abstracts as
input and a complete survey paper as output. This
setting introduces a significant challenge for mod-
els, particularly those with limited context capacity,
since both inputs and outputs are extremely long.
This setup allows us to evaluate whether language
models can synthesize scientific literature across
extended contexts.

In contrast, the GenSection dataset is already
structured for instruction-following. Each entry
corresponds to a standalone section. We fine-tune
models on this dataset directly without additional
preprocessing. During evaluation, we concatenate
generated sections using their file IDs to reconstruct
the full survey paper. Additional implementation
details are provided in Appendix D.1.

We train all the models on 8x80GB NVIDIA
A100 GPU. We include the details of our training
parameter in Table 9 in the Appendix D.2. The
baseline models are fine-tuned using LoRA (Hu
et al., 2022), DeepSpeed (Aminabadi et al., 2022),
and Flash Attention (Dao, 2024). These techniques
allow us to train LLMs on 32k of input context, and
we set the generation text length to the maximum
of the capability of each model. The models are all
available on Hugging Face?.

4.2 Evaluation Metrics

For evaluation, we employ a combination of quan-
titative and qualitative metrics to assess model per-
formance. We use ROUGE scores (Lin, 2004)
(R-1, R-2, R-L) to measure the n-gram overlap
between the generated and human reference text.
BERTScore (Zhang et al., 2020) is used to assess
the contextual similarity between the generated
content and the reference texts. To evaluate how
well the generated survey content follows the struc-
tural organization of human-written surveys, we
use Soft Heading Recall (S-H Recall) (Frinti and
Mariescu-Istodor, 2023). This metric measures
the alignment between the section headings in the
generated output and those in the reference. In ad-
dition, we conduct a human evaluation to assess the
relevance, fluency, coherence, and citation captured
in the generated survey content. This evaluation
ensures a comprehensive evaluation of the mod-
els’ abilities. Additional details are provided in
Appendix D.4.

3We include the list of models on the Appendix D.3.

5 Overall Results

We evaluate the fine-tuned models using the test set
from the GenSurvey dataset. Table 3 summarizes
the results based on automatic metrics. We use
only the GenSurvey test set to ensure that all mod-
els are assessed on real-world data. Results from
both GenSurvey and GenSection offer insights
into model behavior across different input-output
formats.

GenSurvey Dataset Mistral 7B achieves the
highest scores on all automatic metrics. It records a
ROUGE-1 of 0.778, ROUGE-2 of 0.418, ROUGE-
L of 0.265, and a BERTScore of 0.886. These
results show strong fluency and semantic align-
ment in long-form scientific generation. LLLaMa3
8B and Qwen2 7B also perform well, confirming
the strength of mid-sized models in handling frag-
mented and context-rich input. DeepSeek R1 Dis-
tilled 70B obtains a extremely high S-H Recall of
0.997, demonstrating its ability to preserve docu-
ment structure despite lower lexical overlap. In
contrast, smaller Qwen2 models struggle with both
content quality and structural consistency.

GenSection Dataset On GenSection, perfor-
mance is more uniform across models. The overall
ROUGE scores are lower than those on GenSurvey,
but the gap between large and small models nar-
rows. LLaMa3 3B achieves the highest BERTScore
of 0.876, suggesting it can generate semantically
rich section content without full-document context.
Mistral 7B again performs consistently well across
all metrics. DeepSeek also leads in S-H Recall with
a score of 0.997. Meanwhile, Qwen2 1.5B and 3B
achieve relatively high BERTScores (0.855) but
much lower S-H Recall scores (0.517 and 0.527),
indicating poor structural alignment despite seman-
tic relevance.

Comparison Across both datasets, baseline
models generally achieve higher ROUGE and
BERTScore values on GenSurvey. However, S-
H Recall remains consistently high for DeepSeek
and Mistral 7B. This suggests that both models ef-
fectively capture structural and formatting patterns.
The largest gap in structure-aware performance ap-
pears in smaller Qwen2 models. These models
favor lexical overlap but fail to maintain coherent
section structure. Based on Table 3, we conclude
that Mistral 7B and DeepSeek R1 Distilled 70B
perform best in automatic evaluations (RQ1).



GenSurvey Dataset

GenSection Dataset

Model
R-17 R-217 R-L1T S-HRecall? BERTScoreT R-11 R-21 R-L7 S-HRecallT BERTScore T

DeepSeek R1 Distilled 70B  0.548 0.292  0.193 0.997 0.841 0.407 0.111 0.125 0.997 0.709
LLaMa3 1B 0.644 0318 0.207 0.964 0.871 0.336  0.096 0.117 0.964 0.717
LLaMa3 3B 0.726 0.298 0.216 0.966 0.719 0.336  0.097 0.117 0.966 0.876
LLaMa3 8B 0.735 0.389 0.253 0.966 0.876 0.337 0.098 0.116 0.966 0.719
Mistral 7B 0.778 0.418 0.265 0.977 0.886 0.343 0.100 0.115 0.977 0.721
Mixtral 8x7B 0.625 0.324 0.219 0.966 0.870 0.314 0.089 0.114 0.754 0.717
Qwen2 1.5B 0.631 0.294 0.211 0.518 0.855 0.338 0.100 0.119 0.517 0.711
Qwen?2 3B 0.600 0.279 0.210 0.527 0.855 0.354 0.104 0.126 0.527 0.855
Qwen2 7B 0.708 0.379 0.242 0.892 0.879 0.334 0.096 0.115 0.892 0.719
Qwen2 72B 0.695 0.363 0.247 0.936 0.878 0.357 0.104 0.121 0.936 0.721

Table 3: Model performance results on GenSurvey and GenSection datasets. Metrics include ROUGE scores (R-1,
R-2, R-L), S-H Recall, and BERTScore. The arrow indicates the higher values is the better. The bold text indicates
the highest scores while the underline text highlights the second best.

6 Discussion and Ablation Study

6.1 Human Evaluation

To further validate and analyze the generated text
from our baseline models, we employ two experts
in Computer Science to evaluate outputs from ten
models. Due to cost constraints, we randomly se-
lect 100 test samples from the test set. As a result,
each expert is required to rate a total of 1,000 gener-
ated texts across the ten models. The experts use a
5-point Likert scale, where (1) represents the worst
and (5) the best quality.

We evaluate the generated text based on three
key aspects: (i) Relatedness, which measures how
well the generated text matches the human-written
reference; (ii) Readability, which evaluates how
structured and coherent the text is; and (iii) Cita-
tion Capture, which quantifies how accurately the
model identifies and includes relevant citations in
the generated content. The details on implement-
ing human evaluation are provided in the Appendix
E.1.

We calculate the average score from both ex-
perts and summarize the results in Table 4. On
the GenSurvey dataset, LLLaMa3 8B achieves the
highest score in Relatedness and the second high-
est in Readability, while DeepSeek R1 Distilled
70B achieves the best score in Citation Captured.
LLaMa3 3B shows the strongest Readability, de-
spite slightly lower scores in the other dimensions.
The Qwen2 models show relatively low perfor-
mance in all three evaluation aspects. This is espe-
cially noticeable in the 1.5B and 3B variants.

On the GenSection dataset, DeepSeek R1 leads
in Citation Captured with a score of 3.500 on aver-
age and remains strong in Readability. LLaMa3 8B
stands out with the highest Readability of 3.600 and

the best overall Relatedness score of 2.984. In con-
trast, Qwen2 1.5B and 3B again score the lowest
in nearly all dimensions. The human evaluation
results indicate that LLL.aMa3 8B and DeepSeek
R1 Distilled 70B consistently generate more rel-
evant, readable, and citation-sensitive scientific
text (RQI). Mistral 7B also shows stable and com-
petitive performance across all criteria, though it
does not rank among the top in any single category.
However, human validation findings indicate that
even advanced LLMs such as DeepSeek Distilled
70B and Qwen2 72B are still unable to produce
scientific surveys that match the depth and coher-
ence of human-written texts. This underscores the
difficulty of our benchmarks and highlights the
ongoing challenges in long-to-long scientific text
generation.

6.2 Performance versus Model Sizes

In our experiments, we record the training time
for all baseline models. Figure 8 in Appendix E.2
shows the relationship between model performance
(P) and training time in hours (T). The performance
score (P) is calculated as the average of all evalua-
tion metrics. These include ROUGE, BERTScore,
and S-H Recall on the GenSurvey dataset.

We observe that models with smaller param-
eter sizes, such as Qwen2 1.5B and LLaMa3
1B, achieve moderate performance while requir-
ing much less training time. Larger models like
DeepSeek R1 70B and Qwen2 72B exceed 1,000
minutes of training time, but offer only marginal
improvements in performance compared to smaller
models. Mistral 7B and LLaMa3 8B achieve a fa-
vorable balance between performance and training
time. Both models attain high evaluation scores
while maintaining moderate computing demands.



GenSurvey Dataset

GenSection Dataset

Relatedness T Readability T Citation Captured T Relatedness T Readability T Citation Captured 1

Model

DeepSeek R1 Distilled 70B 3.200 2.900
LLaMa3 1B 3.010 3.333
LLaMa3 3B 3.050 3.500
LLaMa3 8B 3.300 3.400
Mistral 7B 3.250 3.200
Mixtral 8x7B 3.000 2.619
Qwen2 1.5B 2.300 1.800
Qwen2 3B 2.050 1.700
Qwen2 7B 3.050 2.900
Qwen2 72B 3.281 2.952

3.400 2.120 3.135 3.500
2.229 2.041 3.100 2.100
2.100 2.051 3.200 2.100
2.250 2.984 3.600 2.360
2.950 2.750 3.160 3.100
2.190 2.870 2.870 2.230
1.800 1.210 1.230 1.000
1.600 1.540 1.460 1.500
2.250 1.610 2.546 3.230
3.190 2.901 2.541 3.360

Table 4: Human evaluation results on GenSurvey and GenSection datasets. The arrow indicates the higher values is
the better. The bold text indicates the highest scores while the underline text highlights the second best.

The size of each bubble in Figure 8 reflects the
size of the model parameter. This visualization
reinforces the finding that larger model scale does
not lead to a linear gain in efficiency. These results
suggest that small and medium-sized LLMs are
practical choices when considering computa-
tional cost (RQ2). LLaMa3 1B, in particular, of-
fers a cost-effective option for resource-constrained
environments. Additional analysis is available in
Appendix E.2.

6.3 Supervised fine-tuning (SFT) versus
Reinforcement Learning from Human
Feedback (RLHF)

While supervised fine-tuning (SFT) enables large
language models to replicate human-written re-
sponses based on instruction—response pairs, its ef-
fectiveness depends on the quality and diversity of
labeled data. Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022) extends
this paradigm by using preference-based learning
signals derived from human judgments. Instead
of learning to reproduce specific outputs, RLHF
trains models to align with human preferences by
optimizing a reward model built from pairwise com-
parisons. We apply Direct Preference Optimization
(DPO) (Rafailov et al., 2023) to three representative
models: LLaMa3 1B, Mistral 7B, and DeepSeek
R1 Distill 70B. These models are selected based on
their strong performance in our earlier analysis. We
compare their performance to standard fine-tuning
with LoRA. DPO reformulates reinforcement learn-
ing as a binary classification problem. It directly
optimizes a loss function that favors preferred re-
sponses over rejected ones. This approach avoids
the need for reward modeling, policy sampling, and
extensive hyperparameter tuning.

We implement two configurations. The first ap-

plies DPO as a standalone training method. The
second uses LoRA for initial fine-tuning, followed
by DPO. We compare these results with the base-
line that uses LoRA only. Appendix E.3 describes
our detailed implementation.

Model Pipeline R-1 R-2 R-L BERTScore S-H recall
LoRA 0644 0318 0207 0871 0.964
:;LIEOMH“EI[E‘.W) LoRA+DPO 0717 0337 0212 0870 0957
clency DPO 0.501 0.198 0.178 0.885 0.937
Mistral 7B LoRA 0.778 0418 0.265  0.886 0.977
(#1 on Performance) LoRA+DPO 0758 0.386 0254  0.885 0.989
on Ferformance DPO 0716 0340 0221 0.882 0.990
DeepSeek LoRA 0548 0292 0193  0.841 0.997
R1 Distilled 70B LoRA+DPO 0587 0313 0202 0842 0.990
(#1 on Human evaluation) DPO 0593 0317 0203  0.844 0.991

Table 5: Performance comparison of three selected mod-
els under different fine-tuning pipelines.

Table 5 presents the results. For LLaMa3 1B,
the LoORA+DPO pipeline achieves the highest per-
formance across all metrics. ROUGE scores show
significant improvements. For Mistral 7B, the best
results come from using LoRA alone, especially
in ROUGE and BERTScore. For DeepSeek 70B,
DPO without LoRA achieves the top performance.

These results show that DPO benefits larger mod-
els by providing a stronger optimization signal. It
helps the model generate more human-like scien-
tific output. Overall, fine-tuning effectiveness
depends on model size. LORA+DPO performs
best for smaller models, while DPO alone scales
more effectively with larger models in long-form
generation (RQ3).

6.4 LoRA Variants

In recent years, Parameter-Efficient Fine-Tuning
(PEFT) methods (Xu et al., 2023) have gained pop-
ularity due to their ability to reduce trainable param-
eters while maintaining model performance. In our
main experiments, we use LoORA (Hu et al., 2022)
as the baseline fine-tuning approach for training



LLMs.

In this analysis, we extend our investiga-
tion to several LoRA variants. These include
QLoRA (Dettmers et al., 2023), DoRA (Mao
et al., 2024), and PiSSA (Meng et al., 2024). Ap-
pendix E.4 provides additional implementation de-
tails.

Method Training time (min) R-1 R-2 R-L BERTScore S-H recall

LoRA 16 0.644 0318 0.207 0.871 0.964
DoRA 40 0.715  0.357 0.228 0.877 0.926
QLoRA 12 0.654 0.309 0.208 0.868 0.930
PiSSA 30 0.661 0.298 0.216 0.872 0.931

Table 6: Performance comparison of variants of LoRA
methods on LLaMa3 1B.

The results in Table 6 show that DoRA achieves
the highest scores across ROUGE-1, ROUGE-2,
ROUGE-L, and BERTScore. It outperforms all
other methods in content-related metrics, indicating
strong performance in long-form text generation.
However, its S-H Recall score of 0.926 is lower
than that of LoRA and PiSSA. PiSSA is second
in the overall ranking. It achieves the highest S-
H Recall of 0.931 and performs competitively in
other metrics.

LoRA is the most time-efficient method, requir-
ing only 16 minutes of training. It performs well in
S-H Recall of 0.964 but shows a lower ROUGE-L
and BERTScore, suggesting a trade-off between
structural accuracy and textual quality. QLoRA of-
fers balanced results on all metrics. It ranks slightly
above LoRA in ROUGE-1, while using the least
training time and memory. These findings suggest
that DoRA provides the highest content quality,
though at a higher computational cost. PiSSA
offers strong structural consistency. LoRA and
QLoRA remain practical options when priori-
tizing efficiency in resource-constrained settings

(RQ3).

6.5 Open-source versus Closed-source LLMs

As proprietary LLMs such as GPT-4 (OpenAl,
2024) demonstrate their superiority in multiple
tasks, we compare the performance of our fine-
tuned baseline models with zero-shot prompting
in GPT-4 to investigate the gap between commer-
cialized LLMs and fine-tuned open-source LLMs.
We use GPT-40* version on 200 samples of our
GenSurvey test set in this experiments. The prompt
for GPT-4o0 is provided in the Appendix F.

4https://platform.openai.com/docs/models/
gpt-40

M LlaMa1B M Mistral 7B
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Figure 4: Performance of GPT-4 compared to our best
baselines.

Figure 4 shows that GPT-4 outperforms all base-
line models in all evaluation metrics. It demon-
strates stronger semantic alignment and better
structural consistency. However, the performance
gap between GPT-4 and Mistral 7B, one of our
strongest open-source baselines, remains relatively
small.

In the S-H Recall metric, which measures simi-
larity between the section structure of human and
generated outputs, all models achieve high scores.
DeepSeek R1 matches GPT-4 in this aspect, indicat-
ing that large open-source models can effectively
capture structural patterns. While GPT-4 leads
in semantic quality, the strong results of Mis-
tral 7B and DeepSeek R1 highlight the potential
of open-source models to generate high-quality
survey content (RQ4).

7 Conclusion

In this paper, we propose LongSciArxiv con-
taining two datasets, GenSurvey and GenSection,
designed for long-to-long scientific text genera-
tion. While GenSurvey is a fully human-written
dataset, GenSection provides an alternative ap-
proach for enabling shorter-context models to gen-
erate survey sections. We fine-tuned multiple open-
source LLMs of varying sizes and conducted com-
prehensive experiments to evaluate their perfor-
mance. Our results demonstrate that generating
high-quality, coherent survey papers remains a chal-
lenging task, even for the most advanced models.
These findings highlight the complexity of long-
to-long text generation and the need for further ad-
vancements in this area. We also show that methods
such as DPO can improve output quality depending
on model size. Furthermore, strong results from
models like Mistral 7B and DeepSeekR1 illustrate
the growing potential of open-source alternatives
to closed LLMs.


https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o

Limitations

While our study presents a comprehensive empir-
ical benchmark for long-to-long scientific genera-
tion, it has several limitations that offer directions
for future work:

* Computational constraints. Due to limited
GPU resources, we did not experiment with
extremely large-scale models (e.g., DeepSeek
R1 168B, LLaMa3 405B), which may offer
improved performance. Our focus remains on
accessible, mid-sized models (1B—8B) rele-
vant to resource-constrained settings.

* Evaluation scope. Our human evaluation
involved expert annotators in main experi-
ments due to cost. While inter-rater agree-
ment was maintained, broader annotator pools
or multi-aspect scoring (e.g. citation granular-
ity) would yield more robust conclusions.

¢ Synthetic supervision bias. GenSection re-
lies on GPT-4 for synthetic section generation,
which may introduce stylistic or structural bi-
ases. Despite human validation, future work
may incorporate more diverse annotator strate-
gies or adversarial filtering to avoid overfitting
to GPT-4 outputs.

* Domain specificity. Both GenSurvey and
GenSection are constructed from computer
science papers on arXiv. While this ensures
topic coherence, it limits generalizability to
domains like medicine, law, or humanities.
Expanding to other scientific disciplines is a
valuable next step.

Planning and discourse modeling. While
models are evaluated on structure (via S-H
Recall), we do not explicitly assess or train on
discourse coherence or plan-based organiza-
tion. As suggested by LongEval (Wu et al.,
2025), incorporating discourse planning ob-
jectives could enhance model structure adher-
ence.

* Long-context limitations. As highlighted in
recent work (Hosseini et al., 2025), LLMs
may appear to support long contexts but strug-
gle with retaining and reasoning over distant
dependencies. This limitation persists in our
setup but is not explicitly measured. Although
baseline models are able to handle most of the

long context input, as described in Appendix
D.1, in the case of extremely long context
input, we have to trim down to 32k tokens.

Ethics Statement

The surveys and abstracts are open accessed on
ArXiv. The copyright of the data (survey papers
and abstract from references) remains to the orig-
inal authors. Our datasets will be provided under
a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. All manual
annotation is performed by research team members
and students in the University. Annotators received
detailed annotation guidelines before starting their
tasks and received fair compensation after com-
pletion of the task. Personal information was not
collected from any annotators or any stage of data
collection. All the models we used in this paper
adhere to the copyrights and licenses.

References

Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia
Zhang, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase,
and Yuxiong He. 2022. Deepspeed inference: En-
abling efficient inference of transformer models at
unprecedented scale. Preprint, arXiv:2207.00032.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. LongBench: A bilingual, multi-
task benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3119-3137, Bangkok, Thailand.
Association for Computational Linguistics.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
Preprint, arXiv:2004.05150.

Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Pro-
dromos Malakasiotis, and Desmond Elliott. 2022.
An exploration of hierarchical attention transformers
for efficient long document classification. Preprint,
arXiv:2210.05529.

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun.
2024. Benchmarking large language models in
retrieval-augmented generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 17754-17762.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, David Benjamin Be-
langer, Lucy J Colwell, and Adrian Weller. 2021.


https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2210.05529
https://arxiv.org/abs/2210.05529
https://arxiv.org/abs/2210.05529

Rethinking attention with performers. In Interna-
tional Conference on Learning Representations.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978-2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Tri Dao. 2024. Flashattention-2: Faster attention with
better parallelism and work partitioning. In The
Twelfth International Conference on Learning Repre-
sentations.

DeepSeek-Al, Daya Guo, and et al. 2025. Deepseek-
rl: Incentivizing reasoning capability in llms via
reinforcement learning. Preprint, arXiv:2501.12948.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-
ing of quantized LLMs. In Thirty-seventh Confer-
ence on Neural Information Processing Systems.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Zican Dong, Tianyi Tang, Lunyi Li, and Wayne Xin
Zhao. 2023. A survey on long text modeling with
transformers. Preprint, arXiv:2302.14502.

Pasi Franti and Radu Mariescu-Istodor. 2023. Soft preci-

sion and recall. Pattern Recognition Letters, 167:115—
121.

Gemini Team Google, Petko Georgiev, and et al. 2024.
Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context. Preprint,
arXiv:2403.05530.

Aaron Grattafiori, Abhimanyu Dubey, and et al.
2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Peyman Hosseini, Ignacio Castro, Iacopo Ghinassi, and
Matthew Purver. 2025. Efficient solutions for an in-
triguing failure of LLMs: Long context window does
not mean LLMs can analyze long sequences flaw-
lessly. In Proceedings of the 31st International Con-
ference on Computational Linguistics, pages 1880—
1891, Abu Dhabi, UAE. Association for Computa-
tional Linguistics.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

10

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient attentions for long
document summarization. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1419—1436, Online.
Association for Computational Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, and et al. 2023.
Mistral 7b. Preprint, arXiv:2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, and
et al. 2024a. Mixtral of experts.  Preprint,
arXiv:2401.04088.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dong-
sheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu.
2024b. LongL.LMLingua: Accelerating and enhanc-
ing LLMs in long context scenarios via prompt com-
pression. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1658—1677, Bangkok,
Thailand. Association for Computational Linguistics.

Abdullatif Koksal, Timo Schick, Anna Korhonen, and
Hinrich Schiitze. 2024. Longform: Effective in-
struction tuning with reverse instructions. Preprint,
arXiv:2304.08460.

. Richard Landis and Gary G. Koch. 1977. The mea-
surement of observer agreement for categorical data.
Biometrics, 33(1):159-174.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in neu-
ral information processing systems, 33:9459-9474.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue,
and Wenhu Chen. 2024a.  Long-context Ilms
struggle with long in-context learning. Preprint,
arXiv:2404.02060.

Zhuowan Li, Cheng Li, Mingyang Zhang, Qiaozhu Mei,
and Michael Bendersky. 2024b. Retrieval augmented
generation or long-context LLMs? a comprehensive
study and hybrid approach. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pages 881—
893, Miami, Florida, US. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74-81, Barcelona, Spain.
Association for Computational Linguistics.

Ran Liu, Ming Liu, Min Yu, He Zhang, Jianguo Jiang,
Gang Li, and Weiqing Huang. 2024. SumSurvey:
An abstractive dataset of scientific survey papers for
long document summarization. In Findings of the As-
sociation for Computational Linguistics: ACL 2024,
pages 9632-9651, Bangkok, Thailand. Association
for Computational Linguistics.


https://openreview.net/forum?id=Ua6zuk0WRH
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2302.14502
https://arxiv.org/abs/2302.14502
https://arxiv.org/abs/2302.14502
https://doi.org/10.1016/j.patrec.2023.02.005
https://doi.org/10.1016/j.patrec.2023.02.005
https://doi.org/10.1016/j.patrec.2023.02.005
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2407.21783
https://aclanthology.org/2025.coling-main.128/
https://aclanthology.org/2025.coling-main.128/
https://aclanthology.org/2025.coling-main.128/
https://aclanthology.org/2025.coling-main.128/
https://aclanthology.org/2025.coling-main.128/
https://aclanthology.org/2025.coling-main.128/
https://aclanthology.org/2025.coling-main.128/
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2401.04088
https://doi.org/10.18653/v1/2024.acl-long.91
https://doi.org/10.18653/v1/2024.acl-long.91
https://doi.org/10.18653/v1/2024.acl-long.91
https://doi.org/10.18653/v1/2024.acl-long.91
https://doi.org/10.18653/v1/2024.acl-long.91
https://arxiv.org/abs/2304.08460
https://arxiv.org/abs/2304.08460
https://arxiv.org/abs/2304.08460
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://arxiv.org/abs/2404.02060
https://arxiv.org/abs/2404.02060
https://arxiv.org/abs/2404.02060
https://doi.org/10.18653/v1/2024.emnlp-industry.66
https://doi.org/10.18653/v1/2024.emnlp-industry.66
https://doi.org/10.18653/v1/2024.emnlp-industry.66
https://doi.org/10.18653/v1/2024.emnlp-industry.66
https://doi.org/10.18653/v1/2024.emnlp-industry.66
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://doi.org/10.18653/v1/2024.findings-acl.574
https://doi.org/10.18653/v1/2024.findings-acl.574
https://doi.org/10.18653/v1/2024.findings-acl.574
https://doi.org/10.18653/v1/2024.findings-acl.574
https://doi.org/10.18653/v1/2024.findings-acl.574

Yulong Mao, Kaiyu Huang, Changhao Guan, Ganglin
Bao, Fengran Mo, and Jinan Xu. 2024. DoRA: En-
hancing parameter-efficient fine-tuning with dynamic
rank distribution. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11662—
11675, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Mary McHugh. 2012. Interrater reliability: The kappa
statistic. Biochemia medica : casopis Hrvatskoga
drustva medicinskih biokemicara / HDMB, 22:276—
82.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.
PiSSA: Principal singular values and singular vectors
adaptation of large language models. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

OpenAl. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learning
Representations.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Bilgehan Sel, Ruoxi Jia, and Ming Jin. 2025. LLMs can
plan only if we tell them. In The Thirteenth Interna-
tional Conference on Learning Representations.

Zhen Tan, Dawei Li, Song Wang, Alimohammad
Beigi, Bohan Jiang, Amrita Bhattacharjee, Man-
sooreh Karami, Jundong Li, Lu Cheng, and Huan Liu.
2024. Large language models for data annotation and
synthesis: A survey. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 930-957, Miami, Florida, USA.
Association for Computational Linguistics.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and
Hannaneh Hajishirzi. 2020. Fact or fiction: Verifying
scientific claims. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7534-7550, Online. As-
sociation for Computational Linguistics.

11

Chonghua Wang, Haodong Duan, Songyang Zhang,
Dahua Lin, and Kai Chen. 2024a. Ada-LEval: Eval-
uating long-context LLMs with length-adaptable
benchmarks. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 3712-3724,
Mexico City, Mexico. Association for Computational
Linguistics.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. Preprint, arXiv:2006.04768.

Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang,
Xin Zhang, Zhen Wu, Meishan Zhang, Xinyu Dai,
Min zhang, Qingsong Wen, Wei Ye, Shikun Zhang,
and Yue Zhang. 2024b. Autosurvey: Large language
models can automatically write surveys. In The
Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems.

Siwei Wu, Yizhi Li, Xingwei Qu, Rishi Ravikumar,
Yucheng Li, Tyler Loakman, Shanghaoran Quan, Xi-
aoyong Wei, Riza Batista-Navarro, and Chenghua
Lin. 2025. Longeval: A comprehensive analysis of
long-text generation through a plan-based paradigm.
Preprint, arXiv:2502.19103.

Kaige Xie and Mark Riedl. 2024. Creating suspenseful
stories: Iterative planning with large language mod-
els. In Proceedings of the 18th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
2391-2407, St. Julian’s, Malta. Association for Com-
putational Linguistics.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023. Parameter-efficient
fine-tuning methods for pretrained language mod-
els: A critical review and assessment. Preprint,
arXiv:2312.12148.

An Yang, Baosong Yang, and et al. 2024. Qwen?2 tech-
nical report. Preprint, arXiv:2407.10671.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in Neural Information
Processing Systems, 33.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai,
Shuo Wang, Zhiyuan Liu, and Maosong Sun. 2024.
ooBench: Extending long context evaluation beyond
100K tokens. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 15262—
15277, Bangkok, Thailand. Association for Compu-
tational Linguistics.


https://doi.org/10.18653/v1/2024.acl-long.626
https://doi.org/10.18653/v1/2024.acl-long.626
https://doi.org/10.18653/v1/2024.acl-long.626
https://doi.org/10.18653/v1/2024.acl-long.626
https://doi.org/10.18653/v1/2024.acl-long.626
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.11613/BM.2012.031
https://openreview.net/forum?id=6ZBHIEtdP4
https://openreview.net/forum?id=6ZBHIEtdP4
https://openreview.net/forum?id=6ZBHIEtdP4
https://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=K3KrOsR6y9
https://openreview.net/forum?id=K3KrOsR6y9
https://openreview.net/forum?id=K3KrOsR6y9
https://doi.org/10.18653/v1/2024.emnlp-main.54
https://doi.org/10.18653/v1/2024.emnlp-main.54
https://doi.org/10.18653/v1/2024.emnlp-main.54
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2024.naacl-long.205
https://doi.org/10.18653/v1/2024.naacl-long.205
https://doi.org/10.18653/v1/2024.naacl-long.205
https://doi.org/10.18653/v1/2024.naacl-long.205
https://doi.org/10.18653/v1/2024.naacl-long.205
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
https://openreview.net/forum?id=FExX8pMrdT
https://openreview.net/forum?id=FExX8pMrdT
https://openreview.net/forum?id=FExX8pMrdT
https://arxiv.org/abs/2502.19103
https://arxiv.org/abs/2502.19103
https://arxiv.org/abs/2502.19103
https://aclanthology.org/2024.eacl-long.147/
https://aclanthology.org/2024.eacl-long.147/
https://aclanthology.org/2024.eacl-long.147/
https://aclanthology.org/2024.eacl-long.147/
https://aclanthology.org/2024.eacl-long.147/
https://arxiv.org/abs/2312.12148
https://arxiv.org/abs/2312.12148
https://arxiv.org/abs/2312.12148
https://arxiv.org/abs/2312.12148
https://arxiv.org/abs/2312.12148
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-judge with MT-bench and chatbot arena.
In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, and Zheyan Luo. 2024. LlamaFactory: Unified
efficient fine-tuning of 100+ language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 3:
System Demonstrations), pages 400—410, Bangkok,
Thailand. Association for Computational Linguistics.

12

A Related Work on Long-form Text
Generation

Long-form text is typically defined as documents
that span thousands of tokens, far exceeding the
length of short texts or passages that fit within stan-
dard model contexts (Dong et al., 2023). Such
lengths surpass the fixed input limits of typical
Transformer-based language models (e.g. BERT
is capped at 512 tokens (Devlin et al., 2019)), and
they exacerbate the O(n?) time and memory com-
plexity of self-attention, making naive processing
of long documents infeasible. To address these
challenges, researchers have explored multiple ar-
chitectural innovations. Hierarchical models de-
compose a document into smaller units (e.g. sen-
tences or paragraphs), which are encoded sepa-
rately and then aggregated by higher-level encoders
to capture long-range dependencies (Chalkidis
et al., 2022). Efficient Transformers with sparse
or structured attention patterns limit the attention
scope to a local window and select global tokens,
reducing complexity while preserving context (e.g.,
Longformer (Beltagy et al., 2020), BigBird (Za-
heer et al., 2020)). Other models extend Trans-
former memory via recurrence. Transformer-XL
introduces segment-level recurrence to carry for-
ward states across chunks, and Compressive Trans-
former further condenses past activations to retain
longer-term context (Dai et al., 2019; Rae et al.,
2020). Additionally, low-rank approximation and
kernel-based attention methods (such as Linformer
and Performer) achieve linear or near-linear scaling,
enabling processing of sequences with thousands
of tokens (Wang et al., 2020; Choromanski et al.,
2021). These advances substantially expand the
range of text lengths that can be modeled, though
fully capturing global coherence and long-range
dependencies in very lengthy documents remains
an open challenge (Dong et al., 2023).

B GenSurvey Details

B.1 Data Annotation Guidelines

Three annotators with an IT background are tasked
with reviewing and annotating survey papers ac-
cording to the following guidelines:

1. Data Filtering: Filter out survey papers that
has converting error and exclude papers that
are incomplete or fail to provide sufficient
content.


https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38

2. Basic Cleaning: Remove formatting issues
and irrelevant metadata

3. Topic Annotation: Carefully read through
the content of the survey papers and annotate
the primary topics for each paper. The anno-
tated topics should accurately reflect the cen-
tral themes of the survey. Annotators should
annotate at most 4 topics for each survey pa-
per.

Removal of Figures and Tables: Remove
all figures, tables, and non-text content from
the survey papers. Only the textual content
should remain for the annotation process.

These steps ensure the quality and consistency of
the annotated data. Annotators also need to collect
the abstracts of references extracted from the ref-
erence list in each survey paper. If the abstract is
not available or the reference paper is not accessi-
ble, the annotator will skip and move to the next
one. As a result, the process helps surface common
patterns and edge cases that ensures dataset quality
and downstream modeling.

B.2 Data Validation Guidelines

In this phase, the annotation team performs cross-
validation of the quality of the data annotated by
their peers. Each survey should be reviewed by
at least two annotators to ensure objectivity and
quality control. The following guidelines are to be
followed by annotators during the cross-validation
process:

1. Check for Consistency:

* Flag any inconsistencies where the same
type of content is annotated differently
(e.g., the same topic being annotated with
different labels).

* Ensure that the style and terminology
used in the annotations are consistent
across all documents.

2. Check for Completeness:

» Review each annotated survey to ensure
that all relevant sections have been well-
structured.

* Ensure that no important content has
been omitted. If any section seems to
lack an annotation, flag it for review.

3. Check for Accuracy:
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* Ensure that the annotated topics accu-
rately reflect the content of the survey
section..

* Identify and correct any annotations that
are not aligned with the content of the
original survey.

4. Flag Incomplete or Ambiguous Annota-
tions:

* If annotators come across any ambigu-
ous, incomplete, or unclear annotations,
highlight them and make a note for fur-
ther discussion with the annotator who
performed the original annotation.

* For sections that are difficult to inter-
pret or if the annotation seems incorrect,
request clarification or further feedback
from the original annotator.

5. Provide Feedback to Annotators:

* After reviewing the annotations, provide
feedback to the original annotator, point-
ing out any inconsistencies, missing con-
tent, or errors.

* Offer constructive suggestions for im-
proving the annotations, especially if you
find patterns in errors across multiple pa-
pers.

* Ensure that feedback is clear and action-
able, to help the original annotator make
the necessary revisions.

These steps ensure that the annotations are
consistent, complete, and accurate. The cross-
validation process is critical for maintaining the
quality and reliability of the data, which is essen-
tial for the subsequent training and evaluation of
models.

B.3 Data Statistic and Analysis

We also investigated the annotated topics in the
GenSurvey dataset as summarized in Figure 5. The
chart shows the frequency of different topics, with
"Machine Learning" being the most frequent, ap-
pearing 174 times, followed by "Cryptography and
Security" with 90 times, and "Computer Vision and
Pattern Recognition" with 89 times. Topics such
as "Distributed, Parallel, and Cluster Computing"
with 65 times, and "Artificial Intelligence" with
65 times also appear frequently. In contrast, more
specialized topics, such as "Physics and Society"



Key

Value

A formula for a quartic integral: a survey of old proofs and some new ones

We discuss several existing proofs of the value of a quar_x0002_tic integral and present a

1. Introduction The evaluation of definite integrals has attracted the scientific community,

title
article_id arXiv:0707.2118
subject ["Classical Analysis and ODEs"]
abstract

new proof that evolved from rational Landen ...
content

both professional and amateurs, for a long ...
reference

reference_content

[ [1] B. Berndt. Ramanujan’s Notebooks, Part I. Springer_x0002_Verlag, New York, 1985.,
[2] G. Boros and V. Moll. An integral hidden in Gradshteyn and Ryzhik. Jour. Comp.Applied
Math., 106:361-368, 1999., ... ]

[{ reference_num: [2], reference_title: An integral hid_x0002_den in Gradshteyn and
Ryzhik, reference_abstract: We provide a closed-form expression for the integral ... }, ...]

Table 7: An example of GenSurvey data.

Dataset Task Source Type Output Length  Human-written?
AutoSurvey (Wang et al., 2024b) Survey generation Titles + metadata ~10,000 words X
SciFact (Wadden et al., 2020) Factual verification Abstracts + claims ~300 words v
GovReport (Huang et al., 2021) Report summarization Gov. documents ~1,600 words v
LongBench (Bai et al., 2024) Multitask long-context eval QAs, code, etc. >6,700 words Mix
LongEval (Wu et al., 2025) Long-form generation (plan-based)  arXiv, Wiki, Blogs  2,500-5,000 words v
GenSurvey (Ours) Survey generation Abstracts abd Topics >10,000 words v
GenSection (Ours) Section-level survey writing Abstracts abd Topics ~4000 words Mix

Table 8: Comparison of GenSurvey and GenSection with prior long-form generation datasets.

and "Multimedia", appear less often, with only 11
instances each. This distribution suggests that the
dataset is heavily focused on topics related to com-
puter science and technology, particularly machine
learning, security, and computer vision, while other
scientific disciplines are less represented.

Comparison with Existing Datasets Table 8
presents a comparative analysis of our proposed
datasets with existing benchmarks used for long-
context or long-form generation. AutoSurvey
(Wang et al., 2024b) targets survey creation using
titles and metadata, generating outputs leveraging
multiple LLMs. SciFact (Wadden et al., 2020) and
GovReport (Huang et al., 2021) focus on compact
summaries derived from scientific or governmental
texts, but their outputs are relatively brief. Long-
Bench (Bai et al., 2024) offers a multitask evalua-
tion framework for long-context tasks such as QA,
summarization, and code interpretation, resulting
in mostly short outputs not tailored for complete
document generation. LongEval (Wu et al., 2025),
a new standard for evaluating long-text generation
on arXiv, Wikipedia, and blogs, employs direct and
plan-based models. It emphasizes structured gener-
ation and domain scoring (e.g., methodology, exper-
imental details), with moderate document lengths
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(2,500-5,000 words), aimed at general long-form
content rather than scientific text. In contrast, Gen-
Survey and GenSection uniquely address long-to-
long scientific text generation. GenSurvey offers
human-written, comprehensive scientific surveys
exceeding 10,000 words. GenSection supplements
this with over 4,000 section-level instances, provid-
ing a modular, instruction-tuned framework vali-
dated by human evaluation.

B.4 Annotator payment

Each annotator receives 2 USD for collecting one
survey paper and its corresponding references ab-
stracts. For topic annotation and cross-validation,
each annotator receives 0.2 USD per survey paper.

C GenSection Details

We employ two Master students to validate the
generated text based on two criteria: Relevance
and Structure, using the provided abstracts and
topics.

Relevance. Determine whether the content of the
generated section is meaningfully related to the
provided reference abstracts and topic. They need
to annotate one of the following labels:
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Figure 5: Topic Distribution of GenSurvey dataset.

1. Relevant: The section clearly and accurately
reflects the content of the input abstracts and
topic.

Not Relevant: The section is unrelated or
only marginally connected to the provided ab-
stracts and topic.

Not Enough Information (NEI): The input
abstracts and topic do not provide sufficient
detail to make a confident judgment.

Structure. Evaluate how well the section is orga-
nized and presented in terms of scientific writing.
The annotators select one of the following labels:

1. Good Structure: The section has a clear and
coherent flow, follows academic writing con-
ventions, and is logically structured.

Moderate Structure: The section is generally
well-formed but may contain some organiza-
tional issues or inconsistencies.

Bad Structure: The section lacks logical flow,
contains disorganized content, or does not re-
semble a well-written scientific section.
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We then calculate Cohen’s Kappa (x) (McHugh,
2012), which is commonly used to measure the
inter-rater agreement between two raters. Cohen’s
Kappa (k) is calculated as:

_ P o P e
1-P
In this formula, P, is the proportion of times the
two raters agree, and P, is the probability of agree-
ment by chance. The coefficients between the two
raters are Krelevant = 0.79 and Ksgucture = 0.96.
According to (Landis and Koch, 1977), 0.61 <
KRelevant < 0.80 indicates substantial agreement,
while 0.41 < Ksygucture < 0.60 indicates moder-
ate agreement. Additionally, we observe that for
the marking of Relevance and Structure, the two
raters have 70% agreement on Relevant and 59%
agreement on Good Structure, respectively.

Annotator payment Each rater receives 0.2
USD for each section rated.

D Experimental Settings

D.1 Implementation Details

Each training sample in the GenSurvey dataset is
formalized as a triplet (I, X,Y"), where:

200



e [ is a simple instruction guiding the model
to generate the full survey (e.g., “Write the
survey using the following abstracts™).

* X ={ai,ag,...,a,} is the set of abstracts
from n reference papers, where each a; is
a short text representing the abstract of one
reference paper.

* Y is the corresponding full survey text written
by a human, composed based on the informa-
tion synthesized from the abstracts in X.

The training objective is to learn a function fj :
X — Y, parameterized by 6, such that the model
generates a coherent and comprehensive survey
Y = fp(X) given the set of abstracts X, and ¥ ~
Y.

Meanwhile, each training instance in the Gen-
Section dataset is represented as a triplet (I, X, Y”),
where:

* [ is the instruction that specifies the goal of
the section to be generated (e.g., “Write the in-
troduction section for a survey on Graph Neu-
ral Networks using the following abstract”).

e X ={aj,as,...,a,} is the set of abstracts
corresponding to the reference papers for the
survey.

* Y’ is GPT-generated content for the section
described in 1.

The model is trained to learn a function fy :
(I,X) — Y/, where fy maps the instruction
and reference abstracts to the desired section
output. During evaluation, multiple predictions
y! 1 Y’g, ey Y',, are generated for sections be-
longing to the same survey (identified by a shared
file ID), and concatenated to form the full survey
prediction:

Y curvey = Concat()}’l, Yo, ... Yo
where Concat denotes the sequential concatena-
tion operation based on the order of the sections.

Handling Long Inputs. In generating full docu-
ments on GenSurvey, we input the entire set of ref-
erence abstracts. To remain within model context
limits, we choose models that handle lengthy inputs
without truncation. We use LLaMA 3.1 models
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(1B, 3B, 8B), which support up to 128K tokens?,
Qwen2 models (1B, 3B, 7B) with a capacity of
up to 131K tokens®, and Mistral 7B and Mixtral
8x7B, which handle 32K tokens’. Additionally,
we use the DeepSeek R1 Distilled LLaMA 70B,
accommodating up to 128K tokens®. In GenSec-
tion, section-level generation inputs are about to
4,000 tokens, suiting models of different capacities.
This framework permits evaluation within models’
supported architectures without input trimming or
heuristic adjustments.

D.2 Training Parameters

In our experiments, we utilize several advanced
techniques to optimize model performance and ef-
ficiency. We apply LoRA (Hu et al., 2022), specif-
ically using a rank of 256, to reduce the number
of trainable parameters while maintaining model
performance. This method allows us to fine-tune
large models with fewer computational resources.
We conduct our experiment using LL.aMa-Factory
(Zheng et al., 2024) library.

We use DeepSpeed (Aminabadi et al., 2022) with
ZeRO Stage 3 (z3) to optimize memory and com-
putational efficiency during training. Key settings
include automatic adjustments for train_batch_size
and train_micro_batch_size_per_gpu based on
available resources, and gradient accumula-
tion with gradient_accumulation_steps set to
"auto." Loss scaling is dynamically managed
with an initial scale of 0, a scale window
of 1000, and an initial scale power of 16.
Stage 3 enables efficient parameter manage-
ment with settings like contiguous_gradients and
stage3_max_live_parameters set to large values for
improved memory allocation. Additional config-
urations, such as overlap_comm set to false and
stage3_gather_16bit_weights_on_model_save, fur-
ther enhance training efficiency and model storage.
This setup ensures optimal performance while min-
imizing memory usage.

Furthermore, we use FlashAttention 2 (Dao,
2024) with bfloat16 (BF16) precision for efficient
memory utilization and optimized computation dur-
ing model training. By default, FlashAttention

Shttps://console.groq.com/docs/model/11lama-3.
1-8b-instant
6https://huggingface.co/docs/transformers/
main/en/model_doc/qwen2
7https://huggingface.co/mistralai/
Mistral-7B-Instruct-ve.2
8https://console.groq.com/docs/model/
deepseek-r1-distill-1lama-70b


https://console.groq.com/docs/model/llama-3.1-8b-instant
https://console.groq.com/docs/model/llama-3.1-8b-instant
https://huggingface.co/docs/transformers/main/en/model_doc/qwen2
https://huggingface.co/docs/transformers/main/en/model_doc/qwen2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://console.groq.com/docs/model/deepseek-r1-distill-llama-70b
https://console.groq.com/docs/model/deepseek-r1-distill-llama-70b

2 operates in flash mode with contiguous mem-
ory layouts, reducing fragmentation and improving
memory access. It automatically adapts to varying
batch sizes and sequence lengths, ensuring efficient
use of available GPU memory. The default set-
tings focus on mixed-precision training, maximiz-
ing throughput while maintaining computational
efficiency. FlashAttention 2 is designed to fully
leverage GPU capabilities, minimizing latency for
attention operations, and is particularly well suited
for processing long sequences without exceeding
memory limits.

D.3 Model List

Below is the pre-trained models used in our
experiments:
https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/meta-1lama/
Llama-3.2-1B-Instruct
https://huggingface.co/meta-1lama/
Llama-3.2-3B-Instruct
https://huggingface.co/meta-1lama/
Meta-Llama-3-8B-Instruct
https://huggingface.co/Qwen/Qwen2-1.
5B-Instruct
https://huggingface.co/Qwen/Qwen2.
5-3B-Instruct
https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.
5-72B-Instruct
https://huggingface.co/mistralai/
Mistral-7B-Instruct-v@.2
https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-ve.1

D.4 Metrics

ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) (Lin, 2004) score is a set of met-
rics used to evaluate the quality of summaries by
comparing n-gram overlaps between the generated
text and reference text. The most commonly used
ROUGE metric is ROUGE-N, which measures the
overlap of n-grams (typically unigrams or bigrams)
between the generated and reference text. The
ROUGEN-N score is computed as follows:

Zn—grameGenerated Countyaich (n-gram)
Count(n-gram)

(€3]

ROUGE-N =

Zn—grameReference
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Where Count,,,4¢c (n—gram) refers to the num-
ber of matching n-grams between the generated and
reference texts. Count(n—gram) refers to the total
number of n-grams in the reference text.

ROUGE scores are typically reported for mul-
tiple n-gram sizes (ROUGE-1 for unigrams,
ROUGE-2 for bigrams) and can be extended to
measure recall, precision, and Fl-score. In out
experiment, we use F1-score for ROUGE.

BERTScore (Zhang et al., 2020) is a metric used
to evaluate the quality of text generation by com-
paring the contextual similarity between the gener-
ated text and a reference text. It leverages BERT
embeddings to measure semantic similarity at the
token level, rather than relying on exact n-gram
matching like traditional metrics such as ROUGE.
The BERTScore is calculated by computing co-
sine similarity between token embeddings from
the generated and reference texts. The formula for
BERTScore is as follows:

1

BERTScore = max  cosine_sim(t, r)

7€ Treference

T generated!
\ generated‘ t€ Toenerated

@)
Where Tienerated and Treference are the token sets
from the generated and reference texts, respectively,
and cosine_sim(t,7) is the cosine similarity be-
tween token embeddings ¢ and . This approach
ensures that BERTScore captures contextual and
semantic relationships between words, making it
more suitable for tasks like document summariza-
tion and translation.

Soft Heading Recall is calculated based on the
Soft Recall (Frianti and Mariescu-Istodor, 2023).
Soft Heading Recall (S-H Recall) evaluates the
structural alignment between the generated and ref-
erence survey. It measures the similarity between
the generated and reference chapter titles while pe-
nalizing the similarity of titles within the generated
survey itself. The formula for S-H Recall is defined
as follows:

Sim(t;,t;) = cos(embed(t;), embed(t;))

Where ?; and ¢; represent section titles from the
generated and reference surveys, respectively, and
embed(t;) and embed(¢;) are their corresponding
embeddings.

The total number of chapters is denoted by |7,
and the formula for calculating S-H Recall is:


https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/Qwen/Qwen2-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

Model Learning Rate Epochs Batch Size LoRA Rank Dropout
Deepseek R1 Distilled 70B 1e-05 2 32k 256 0.0
LLaMa3 1B 5e-05 6 32k 256 0.0
LLaMa3 3B 3e-05 6 32k 256 0.1
LLaMa3 8B 3e-05 6 32k 256 0.1
Mistral 7B 3e-05 6 32k 256 0.1
Mixtral 8x7B 2e-05 6 32k 256 0.1
Qwen2 1.5B 5e-05 6 32k 256 0.0
Qwen2 3B 3e-05 6 32k 256 0.1
Qwen2 7B 3e-05 6 32k 256 0.1
Qwen2 72B le-05 6 32k 256 0.0
Table 9: Training hyperparameters for each LLM used in our experiments.
2. Minimal relation: The generated text shares
a(T) il 1 only a vague or indirect connection with the
card(T') =
T «: reference.
i=1 E‘j:l1 Sim(t;, ;)
3. Somewhat related: The generated text covers

card(RNG) = card(R) +card(G) — card(RUG)

_card(RNG)
~ card(R)

Where R and G represent the set of section titles
in the reference and generated survey, respectively,
and card(-) refers to the cardinality (or total number
of titles). This score encourages the alignment of
sections titles while punishing the generation of
redundant titles within the same survey.

S-H Recall

E Ablation Study Details

E.1 Human Evaluation Design

To perform human evaluation, we create a simple
rating application using Streamlit’ library. In this
application, we provide 100 survey files with both
generated text and human reference text. The raters
can upload the file to the application and read the
content as illustrated in Figure 6. After they read
the files, they can rate the generated text on three
designated aspects: Relatedness, Readability, and
Citation Capture as illustrated in Figure 7. The
questions for each aspect are described as follows:

How well the generated text match the reference
text?

1. No relation at all: The generated text is com-
pletely unrelated to the reference.

*https://streamlit.io/
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similar themes or general topics but differs
significantly in content or focus.

Sufficiently related: The generated text
closely follows the reference text in mean-
ing and key content. Captures most of the
important ideas

. Extremely related: The generated text is se-
mantically equivalent to the reference text.
Captures all key ideas accurately.

How well is the generated text in terms of flu-
ency and coherence?

1. Not fluent or coherent at all: The text is
grammatically incorrect, fragmented, or un-
readable.

Minimal fluency and coherence: Some parts
are readable, but major grammar issues exist.

. Moderately fluent and coherent: Sentences
are generally well-formed but may contain
minor grammar or structure issues. Under-
standable, but lacks smooth flow.

Mostly fluent and coherent: The text is clear
and mostly free of grammar or syntax errors.
Slight awkwardness may exist but does not
hinder comprehension.

. Perfectly fluent and coherent: The text
reads naturally, like it was written by a native
speaker or professional writer. Fully grammat-
ical, cohesive, and well-structured.


https://streamlit.io/

How well the generated text include citations?

1. No citation at all: The generated text includes
no citations.

Minimal citation: Contains only 1 or 2 ci-
tations, or the citations appear incomplete or
misplaced.

. Some citations present: Several key points
are supported by citations, but others are miss-
ing or inconsistently cited. Citation format-
ting may be inconsistent but recognizable.

Well-cited: Most major claims and sections
include relevant citations with only minor
omissions.

Fully and properly cited: All claims that
require support are backed by appropriate ci-
tations.

Annotator payment Each rater receives 1.5
USD for each survey rated.

E.2 Model cost-effectiveness

To evaluate the cost-effectiveness of different mod-
els, we compute the Effectiveness score E/, which
quantifies how much performance a model achieves
per unit of training time. It is calculated as the ra-
tio between the overall Performance score P and
the training time 7" (in hours). The performance
score P is defined as the average of M evaluation
metrics, such as ROUGE, BERTScore, and S-H
Recall. To calculate P correctly, all metric scores
must be normalized to the range [0, 1], where 1 is
the highest possible score.

LM

P = M;SCO%Z 3)
P

E=— 4

T 4)

Where score; denotes the i* metric score, M is
the total number of metrics, and 7 is the training
time in hours.

Our results in Table 10 show that while larger
models such as Qwen-72B and DeepSeek-Distilled-
70B achieve relatively high performance scores (P),
their long training times result in low effectiveness.
In contrast, LLaMa-1B yields the highest effective-
ness score of 2.253, making it the most efficient
model in terms of performance per unit training
time. Qwen-1.5B also shows a strong balance with
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the second-highest effectiveness. Interestingly, al-
though Mistral-7B achieves the best performance
score (0.665), its higher training cost reduces its
effectiveness to 0.189. This analysis highlights that
smaller models like LLaMa-1B can offer strong
trade-offs between quality and efficiency, which is
essential for resource-constrained settings.

E.3 DPO Implementation

To enable DPO (Rafailov et al., 2023) training, we
construct a preference dataset derived from our
original GenSurvey data. For each training in-
stance, we create a pair of responses: a chosen out-
put that represents a high-quality, human-aligned
survey generation, and a rejected output that repre-
sents a lower-quality or less-preferred alternative.
The instruction field contains the original genera-
tion prompt, and the input field optionally includes
the set of abstracts as supporting context. The cho-
sen response is typically either the original human-
written survey or a model output refined through
human preference. The rejected response is gener-
ated using zero-shot prompting on the Qwen2 1.5B
model which produces the worst generation.

Each entry in the dataset thus follows the format:

{

"instruction”: "<prompt>",
"input"”: "<abstracts>",
"chosen”: "<preferred survey text>",

"rejected”: "<less preferred survey text>"

b

This format aligns with the standard input re-
quired by DPO training frameworks, enabling the
model to learn direct preferences without explicit
reward modeling. Following best practices from
prior work (Rafailov et al., 2023; Zheng et al.,
2023), our preference pairs emphasize meaning-
ful semantic differences in relevance, fluency, and
structure to ensure effective preference-based learn-
ing. In our experiments, we only implement DPO
on LLaMa3 1B, Mistral 7B and DeepSeek 70B
and in two settings: (i) directly training models
with DPO from their pre-trained checkpoints, and
(i) further training LoR A-fine-tuned models with
DPO. For both cases, we set pref_beta to 0.1 and
use the sigmoid preference loss function.

E.4 Variants of LoORA Implementation

Quantized Low-Rank Adaptation (QLoRA)
(Dettmers et al., 2023) enhances the efficiency
of model fine-tuning by combining low-rank



Human Evaluation for LLM Outputs

Upload a JSON file

Drag and drop file here

200MB

LLaMalB_surveys.json 22.2

Generated Text:

Introduction

The field of financial time series forecasting has emerged as
a pivotal area of research in both academia and the finance
industry, driven by its broad implementation potential
across various domains. Despite the significant
advancements made in this field, a critical need remains to
comprehensively review the literature, focusing specifically
on the application of Deep Learning (DL) models in financial
time series forecasting. This survey aims to bridge the gap
by categorizing and examining the current state of research
in this area, with a particular emphasis on the role of DL

models in financial forecasting.

Financial time series forecasting has long been a

P U T P S —

Browse files

Reference Text:

1. Introduction Stock market forecasting, algorithmic
trading, credit risk assessment, portfolio allocation,
asset pricing and derivatives market are among the
areas where ML researchers focused on developing
models that can provide real-time working solutions for
the financial industry. Hence, a lot of publications and

implementations exist in the literature.

However, within the ML field, DL is an emerging area with a
rising interest every year. As a result, an increasing number
of DL models for finance started appearing in conferences
and journals. Our focus in this paper is to present different
implementations of the developed financial DL models in
such a way that the researchers and practitioners that are
interested in the topic can decide which path they should
take.

Figure 6: GUI displaying generated and human reference for evaluation.

adaptation with 4-bit quantization of the base
model weights. In this approach, the pre-
trained model remains frozen and quantized,
while gradients are propagated only through
lightweight low-rank adapter layers. In our ex-
periments, we set quantization_bit to 4 and
quantization_method to bitsandbytes.

Directional and Magnitude Decomposed LoRA
(DoRA) (Mao et al., 2024) reformulates LoRA
by separating the adaptation process into two or-
thogonal components: weight direction and mag-
nitude. Unlike standard LoRA, which applies low-
rank updates to the full weight matrix, DoRA mod-
ifies only the directional component while keeping
the original magnitude fixed. This decoupling en-
ables for more targeted updates, which improves
the generalization of the model and the stability of
the training.

Principal Singular Value and Vector Adapta-
tion (PiSSA) (Meng et al., 2024) improves LoRA
by initializing its low-rank adapters based on the
principal components of the pre-trained weights.
Specifically, PiSSA updates only the most infor-
mative subspaces, determined by singular value
decomposition, which better approximates full

fine-tuning behavior with fewer parameters. This
method achieves performance superior to that of
standard LoRA on several benchmarks. We set
pissa_iter to 16 in our experiments.
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1. How well the generated text match the reference text (Relatedness)?
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2. How well the generated text in terms of fluency and coherence (Readability)?
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3. How well the generated text include citations?
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Submit Rating

Figure 7: GUI displaying rating for each aspect.

Model Training time (T) Performance score (P) Effectiveness (E) = P/T
(in hour) | = avg. of scores 1 (P per hour) 1
DeepSeek R1 Distilled 70B 18.000 0.574 0.032
LLaMa3 1B 0.267 0.601 2.253
LLaMa3 3B 1.000 0.632 0.642
LLaMa3 8B 3717 0.644 0.173
Mistral 7B 3.517 0.665 0.189
Mixtral 8x7B 5.900 0.557 0.094
Qwen2 1.5B 0.733 0.502 0.684
Qwen2 3B 2.033 0.494 0.243
Qwen2 7B 3.367 0.620 0.184
Qwen2 72B 23.067 0.624 0.027

Table 10: Cost-effectiveness analysis of various models.
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Figure 8: Performance of models compared to their training time. The sizes of the bubble indicates their numbers of
parameters.
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F Prompt Template

Prompt for generating section titles You are tasked with generating section titles for a survey paper
based on the following abstracts and topics.

### Instructions:

. Read through all the abstracts provided.

. Provide a list of relevant section titles that could be used in the body part of the survey paper.
. Remember to exclude the Abstract, Introduction and Conclusion sections.

. Each section title should be a short, descriptive phrase (2-5 words).

. Use title case for section titles (capitalize the first letter of each major word).

. Do not use numbering for the titles.

. The output should be a list of 2 to 5 section titles excluding any content.

. Provide the section titles in the form of a string separated using commas.

### Topics: {Annotated topics}

### Abstracts: {List of abstracts}

### Now, generate relevant section titles for the body part of the survey paper.

BN Be NNV, I S N ST O el

Prompt for generating Introduction section You are tasked with writing the introduction section of a
survey paper using the following abstracts and topics..

### Instructions:

1. Read through all the abstracts provided.

2. Synthesize the information from the abstracts to create the Introduction section, ensuring it reflects the
context to the topic, the problem, and the purpose of the survey.

3. Ensure the section flows logically and cohesively, even if the number of abstracts varies.

4. Paraphrase and perspective shift the text to avoid direct copying from the abstracts.

5. Use placeholder citations to refer to specific abstracts where relevant.

6. The output can have many paragraph but it should only have one section.
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### Topics: {Annotated topics}
### Abstracts: {List of abstracts}
### Now, generate the Introduction section based on the provided instructions.

Prompt for generating Conclusion section You are tasked with writing the conclusion section of a
survey paper using the following abstracts and topics.

### Instructions:

1. Read through all the abstracts provided.

2. Synthesize the key insights and findings presented in the abstract to generate conclusion section for the
survey paper.

3. The conclusion should recap the main themes, challenges, and contributions from the abstracts.

4. Be concise, while reflecting the overall content of the survey paper.

5. Paraphrase and perspective shift the text to avoid direct copying from the abstracts.

6. The output should only have one paragraph.

### Topics: {Annotated topics}

### Abstracts: {List of abstracts}

### Now, generate the Conclusion section based on the provided instructions.

Prompt for generating other sections You are tasked with writing the {Section_titles} section of a
survey paper using the following abstracts and topics..

### Instructions:

1. Read through all the abstracts provided.

2. Synthesize the information related to the section theme, ensuring the content reflects relevant topics
discussed in the abstracts.

3. Maintain logical flow and coherence within the section.

4. Paraphrase and perspective shift the content from the abstracts.

5. Use placeholder citations where relevant.

### Topics: {Annotated topics}

### Abstracts: {List of abstracts}

### Now, generate the {Section_titles} section based on the provided instructions.

Prompt for generating survey in Section 6.5 You are tasked with writing survey paper using the
following abstracts and topics.

### Instructions:

1. Read through all the abstracts provided.

2. Synthesize the related information, ensuring the content reflects relevant topics discussed in the
abstracts.

3. Maintain logical flow and coherence within the paper.

4. Paraphrase and perspective shift the content from the abstracts.

5. Use placeholder citations where relevant.

### Topics: {Annotated topics}

### Abstracts: {List of abstracts}

### Now, generate the survey paper based on the provided instructions.
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