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Abstract

Survey generation involves synthesizing com-001
prehensive scientific papers from large collec-002
tions of research literature. Despite recent003
advances, this task remains challenging for004
natural language processing (NLP), especially005
when both input and output are long. While006
current large language models (LLMs) support007
extended context lengths, their ability to pro-008
duce full-length surveys remains underexplored009
due to the lack of suitable datasets and bench-010
marks. We introduce GenSurvey, a dataset011
of 700 human-written surveys paired with ref-012
erence abstracts. We further create GenSec-013
tion, a synthetic dataset for section-level gener-014
ation created using chain-of-thought prompting015
with GPT-4 and refined through human verifi-016
cation. These datasets form LongSciArxiv, a017
dual benchmark designed for real-world tasks018
in education and research. These task requires019
models to integrate hundreds of abstracts into020
coherent surveys exceeding 10,000 words. In021
our experiments, we evaluate 10 open-source022
LLMs ranging from 1B to 70B parameters. Re-023
sults show that mid-sized models such as Mis-024
tral 7B and LLaMa3 8B offer the best trade-off025
between performance and cost. Our findings026
highlight the complexity of long-to-long gen-027
eration and the need for scale-aware model de-028
sign and benchmarking.029

1 Introduction030

Recent large language models (LLMs) such as GPT-031

4 (OpenAI, 2024) and Gemini-1.5 (Google et al.,032

2024) show strong performance in long-context033

understanding and generation tasks. For example,034

GPT-4 supports prompts up to 128,000 tokens. As035

a result, recent work has focused on benchmarking036

LLMs’ ability to handle long inputs and produce037

extended outputs (Zhang et al., 2024; Wang et al.,038

2024a; Li et al., 2024a; Köksal et al., 2024). Most039

studies target summarization (Liu et al., 2024) or040

story generation (Xie and Riedl, 2024), where mod-041

Figure 1: An example of long-to-long scientific text
generation.

els transform text into long and short forms. How- 042

ever, generating coherent and detailed long-form 043

output from large contexts remains a challenge (Wu 044

et al., 2025). Automatically generating scientific 045

surveys requires synthesizing many research ab- 046

stracts into a coherent, structured long-form docu- 047

ment (as illustrated in Figure 1). Despite advances 048

in LLMs, the task remains difficult due to its ex- 049

treme length, dense content, and structural com- 050

plexity. First, scientific surveys often exceed the 051

context window or output capacity of most models, 052

requiring incremental generation that risks context 053

loss and structural inconsistency (Hosseini et al., 054

2025). Second, encoding a large set of reference 055

abstracts demands substantial memory and reason- 056

ing, especially under resource constraints (Jiang 057

et al., 2024b). Third, effective survey writing goes 058

beyond fluency. The capability of current LLMs is 059

still insufficient, as they have difficulties in provid- 060
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ing precise topic coverage, coherent organization,061

and accurate citation usage (Sel et al., 2025). We062

further discuss challenges in long-form generation063

in Appendix A.064

Currently, Retrieval-Augmented Generation065

(RAG) offers a solution by integrating external066

knowledge to improve model accuracy (Lewis et al.,067

2020; Chen et al., 2024). Recent work also em-068

phasizes the efficiency benefits of RAG and the069

advantages of using long-context models (Li et al.,070

2024b). Despite these advances, the application071

of LLMs, whether with long-context capabilities072

or RAGs, to synthesize full survey articles from073

multiple scientific sources is still underexplored.074

Although few studies have taken initial steps in this075

direction (Wang et al., 2024b), there are no public076

benchmarks to evaluate this specific task.077

To study these challenges systematically, we in-078

troduce two new datasets. First, GenSurvey is a079

dataset of 700 scientific survey papers from Arxiv.080

All survey papers are written by humans, each081

longer than 10,000 words. Each paper is linked082

to about 100 reference abstracts. Then GenSec-083

tion is built upon GenSurvey. It contains more084

than 4,700 synthetic section-level scientific texts.085

This dataset is generated using GPT-4 and manu-086

ally verified by human annotators. Together, these087

two datasets form LongSciArxiv supporting both088

full-document and section-level evaluation. We089

fine-tune and evaluate 10 open-source LLMs of090

varying sizes to establish baseline performance.091

The contributions of our study are as follows:092

• We introduce LongSciArvix containing: Gen-093

Survey is the first benchmark for full-094

document scientific survey generation; and095

GenSection is a high-quality instruction-096

tuning dataset for modular scientific gener-097

ation. They support evaluation at both the098

document and section levels, with human and099

synthetic references.100

• We fine-tune and evaluate 10 open-source101

LLMs (1B to 70B), including LLaMA3, Mis-102

tral, DeepSeek and Qwen2, using multiple103

training strategies. This enables a compre-104

hensive analysis of model size, method, and105

efficiency trade-offs.106

• We conduct extensive automatic and human107

evaluations on fluency, structure, and cita-108

tion accuracy. Our findings show that mid-109

sized models like Mistral 7B and LLaMA3110

8B achieve the best quality-efficiency balance 111

and that larger LLMs benefit more from Re- 112

inforcement Learning with Human Feedback 113

optimization in long-form generation tasks. 114

2 GenSurvey Dataset 115

2.1 Data Construction 116

Figure 2 illustrates the construction process of the 117

GenSurvey dataset. The process includes four main 118

steps: data collection, annotation, validation, and 119

dataset splitting. 120

Data Collection We start by crawling ArXiv1 for 121

computer science papers with the keyword "survey" 122

in their titles. We use PyPDF22 to convert each 123

PDF into plain text. For every selected paper, we 124

extract the reference list. We then retrieve the titles 125

and abstracts of each cited reference using publicly 126

available metadata. 127

Data Annotation Annotators with IT back- 128

ground follow clear instructions for filtering and 129

cleaning data. They remove survey papers that do 130

not meet quality standards. For selected papers, 131

the annotators assign a topic and remove all figures 132

and tables. Appendix B.1 describes the annotation 133

requirements in detail. 134

Data Validation The annotation team members 135

cross-validate their work. Each survey goes 136

through multiple validation rounds to ensure con- 137

sistency, completeness, and accuracy. This process 138

helps maintain high-quality annotations for train- 139

ing and evaluation. Appendix B.2 provides the 140

complete validation guideline. The results of the 141

process are 700 survey papers. Each instance in- 142

cludes the full text of a survey and a corresponding 143

set of reference abstracts. These pairs form the 144

foundation of the GenSurvey dataset. 145

Dataset Splitting We store all the annotated con- 146

tent and metadata in JSON format. Each instance 147

includes seven key attributes, listed in Table 7 (Ap- 148

pendix B.3). We divide the dataset into training, 149

validation, and test sets using a 4:1:2 ratio. 150

2.2 Dataset Statistic and Analysis 151

2.3 Dataset Statistics 152

We summarize the statistics of the GenSurvey 153

dataset in Table 1. To our knowledge, GenSurvey 154

1https://arxiv.org/
2https://pypi.org/project/PyPDF2
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Figure 2: Data creation pipeline of GenSurvey Dataset.

is the first dataset designed for long-to-long gener-155

ation with both long inputs and long outputs. On156

average, each input contains 3,307 words. The cor-157

responding survey outputs average 10,942 words.158

In some cases, the inputs reach 31,639 words and159

the outputs extend to 42,628 words.160

Description Train Val Test Total

No. of survey articles 400 100 200 700
Avg no. of subject per survey 1.71 1.72 1.95 1.78
Avg no. of reference per survey 98.54 97.27 126.83 106.42
Avg no. of word per survey 11,995 10,264 12,677 10,942
Avg no. of word in input 2891 2844 4188 3307

Table 1: GenSurvey dataset statistic.

More detailed statistics and comparisons are pro-161

vided in the Appendix B.3. For each survey, the162

annotators identify 1 to 2 main topics and list ap-163

proximately 100 references. According to Figure 5164

in the Appendix, the most frequent topics are Ma-165

chine Learning and Networking and Internet Ar-166

chitecture.167

3 GenSection Dataset168

Although state-of-the-art LLMs perform well in169

many downstream tasks, their ability to write scien-170

tific surveys remains uncertain. We aim to explore171

whether LLMs can serve as automatic annotators172

for long-form generation. Previous work (Tan et al.,173

2024) shows that LLMs can label raw data using174

detailed instructions, even in domain-specific tasks.175

GenSurvey provides fully human-written survey pa-176

pers for benchmarking. However, training models177

directly on GenSurvey is difficult because of the ex-178

treme length of inputs and outputs. To address this,179

we construct GenSection, a synthetic dataset that180

breaks down survey generation into smaller instruc-181

tion–input–output triplets. Each triplet represents182

one section of a survey. This design enables effi-183

cient instruction tuning and supports section-level184

evaluation. In each triplet, instruction defines the ti- 185

tle of the section and the goal of writing. The input 186

includes relevant reference abstracts. The output 187

is the text of the section generated by GPT-4. All 188

outputs are reviewed by domain experts to ensure 189

quality. GenSection complements GenSurvey by 190

supporting scalable model training and providing a 191

synthetic baseline for comparison. 192

3.1 Data Construction 193

The construction of the GenSection dataset follows 194

a two-step process: survey structure generation and 195

survey content generation. Figure 3 illustrates the 196

full pipeline. We apply zero-shot chain-of-thought 197

(COT) prompting with GPT-4 (OpenAI, 2024) to 198

first generate a structured outline for a survey, then 199

produce the content for each section. All prompt 200

templates used in both steps are included in Ap- 201

pendix F. 202

Survey Structure Generation The input con- 203

sists of abstracts from reference papers and a list of 204

human-annotated topics. GPT-4 generates a struc- 205

ture for the survey, including sections such as In- 206

troduction, Body Sections, and Conclusion. 207

Survey Content Generation We design zero- 208

shot COT prompting again to generate the full text 209

for each section. The content is grounded in the 210

provided abstracts and topic list. 211

3.2 Data Annotation and Validation 212

Human annotators validate each generated survey 213

section for coherence, relevance, and alignment 214

with the input abstracts. The validation process 215

consists of two rounds. In the first round, two an- 216

notators with a background in IT independently re- 217

view the outputs generated by GPT-4. They follow 218

the detailed guidelines provided in the Appendix C. 219

In the second round, we evaluate all samples where 220
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Figure 3: GenSection Dataset Construction Pipeline. The pipeline generates survey structure and content using
zero-shot chain-of-thought (COT) prompting.

the annotators disagreed. The final decisions are221

made using the same set of guidelines. As a result,222

each instance includes an instruction prompt, a set223

of reference abstracts, and the validated output for224

one section of a survey paper.225

3.3 Dataset Description226

The GenSection dataset contains 4,792 instruction227

sets derived from 700 survey papers. Each entry228

corresponds to a single section within a survey. The229

dataset uses an instruction-following format, where230

the instruction guides the generation of a specific231

section using reference abstracts and annotated top-232

ics. This structure supports the training of models233

for section-level generation.234

Description Train Val Test Total

No. of sections 3072 340 1380 4792
Avg no. of section per survey 6 6 6 6
Avg no. of word in sections 5564 5130 4166 4951

Table 2: GenSection dataset statistic.

Table 2 shows the statistics of the GenSection235

dataset. On average, each survey contains around236

six sections. The average word count per section is237

highest in the training set with 5,564 words, slightly238

lower in the validation set with 5,130 words, and239

lowest in the test set with 4,166 words. Across the240

entire dataset, the average length of the section is241

4,951 words.242

4 Experiments243

In this study, we aim to evaluate the effectiveness244

of large language models (LLMs) on the task of245

long-to-long scientific text generation using our246

proposed GenSurvey and GenSection datasets. We247

organize our experiments around the following re- 248

search questions: 249

• RQ1: How do different-sized open-source 250

LLMs perform on long-to-long scientific text 251

generation across automatic and human evalu- 252

ation metrics? 253

• RQ2: What are the trade-offs between model 254

size, output quality, and computational effi- 255

ciency in handling long-context generation 256

tasks? 257

• RQ3: How effective are different fine-tuning 258

strategies (PEFT and RLHF) and LoRA vari- 259

ants in improving long-form generation per- 260

formance? 261

• RQ4: How does the performance of fine- 262

tuned open-source models compare to pro- 263

prietary models such as GPT-4 in terms of 264

fluency, structure, and citation handling? 265

4.1 Experimental Setup 266

As a baseline, we conduct the experiments to 267

evaluate the performance of 10 LLMs with vary- 268

ing model sizes on GenSurvey and GenSection 269

datasets. The models used are LLaMa3 (Grattafiori 270

et al., 2024) with sizes 1B, 3B, and 8B; Qwen2 271

(Yang et al., 2024) with sizes 1.5B, 3B, 7B, and 272

72B; Mistral 7B (Jiang et al., 2023) and Mixtral of 273

Expert (8x7B) (Jiang et al., 2024a); and Deepseek 274

R1 (DeepSeek-AI et al., 2025) with 70B distilled 275

version. 276

For the GenSurvey dataset, we use full human- 277

written survey papers as outputs and their corre- 278

sponding reference abstracts as inputs. Unlike Gen- 279

Section, we do not split the surveys into smaller 280
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sections. Instead, we preserve the original structure281

to evaluate document-level scientific generation.282

Each training instance includes a list of abstracts as283

input and a complete survey paper as output. This284

setting introduces a significant challenge for mod-285

els, particularly those with limited context capacity,286

since both inputs and outputs are extremely long.287

This setup allows us to evaluate whether language288

models can synthesize scientific literature across289

extended contexts.290

In contrast, the GenSection dataset is already291

structured for instruction-following. Each entry292

corresponds to a standalone section. We fine-tune293

models on this dataset directly without additional294

preprocessing. During evaluation, we concatenate295

generated sections using their file IDs to reconstruct296

the full survey paper. Additional implementation297

details are provided in Appendix D.1.298

We train all the models on 8x80GB NVIDIA299

A100 GPU. We include the details of our training300

parameter in Table 9 in the Appendix D.2. The301

baseline models are fine-tuned using LoRA (Hu302

et al., 2022), DeepSpeed (Aminabadi et al., 2022),303

and Flash Attention (Dao, 2024). These techniques304

allow us to train LLMs on 32k of input context, and305

we set the generation text length to the maximum306

of the capability of each model. The models are all307

available on Hugging Face3.308

4.2 Evaluation Metrics309

For evaluation, we employ a combination of quan-310

titative and qualitative metrics to assess model per-311

formance. We use ROUGE scores (Lin, 2004)312

(R-1, R-2, R-L) to measure the n-gram overlap313

between the generated and human reference text.314

BERTScore (Zhang et al., 2020) is used to assess315

the contextual similarity between the generated316

content and the reference texts. To evaluate how317

well the generated survey content follows the struc-318

tural organization of human-written surveys, we319

use Soft Heading Recall (S-H Recall) (Fränti and320

Mariescu-Istodor, 2023). This metric measures321

the alignment between the section headings in the322

generated output and those in the reference. In ad-323

dition, we conduct a human evaluation to assess the324

relevance, fluency, coherence, and citation captured325

in the generated survey content. This evaluation326

ensures a comprehensive evaluation of the mod-327

els’ abilities. Additional details are provided in328

Appendix D.4.329

3We include the list of models on the Appendix D.3.

5 Overall Results 330

We evaluate the fine-tuned models using the test set 331

from the GenSurvey dataset. Table 3 summarizes 332

the results based on automatic metrics. We use 333

only the GenSurvey test set to ensure that all mod- 334

els are assessed on real-world data. Results from 335

both GenSurvey and GenSection offer insights 336

into model behavior across different input-output 337

formats. 338

GenSurvey Dataset Mistral 7B achieves the 339

highest scores on all automatic metrics. It records a 340

ROUGE-1 of 0.778, ROUGE-2 of 0.418, ROUGE- 341

L of 0.265, and a BERTScore of 0.886. These 342

results show strong fluency and semantic align- 343

ment in long-form scientific generation. LLaMa3 344

8B and Qwen2 7B also perform well, confirming 345

the strength of mid-sized models in handling frag- 346

mented and context-rich input. DeepSeek R1 Dis- 347

tilled 70B obtains a extremely high S-H Recall of 348

0.997, demonstrating its ability to preserve docu- 349

ment structure despite lower lexical overlap. In 350

contrast, smaller Qwen2 models struggle with both 351

content quality and structural consistency. 352

GenSection Dataset On GenSection, perfor- 353

mance is more uniform across models. The overall 354

ROUGE scores are lower than those on GenSurvey, 355

but the gap between large and small models nar- 356

rows. LLaMa3 3B achieves the highest BERTScore 357

of 0.876, suggesting it can generate semantically 358

rich section content without full-document context. 359

Mistral 7B again performs consistently well across 360

all metrics. DeepSeek also leads in S-H Recall with 361

a score of 0.997. Meanwhile, Qwen2 1.5B and 3B 362

achieve relatively high BERTScores (0.855) but 363

much lower S-H Recall scores (0.517 and 0.527), 364

indicating poor structural alignment despite seman- 365

tic relevance. 366

Comparison Across both datasets, baseline 367

models generally achieve higher ROUGE and 368

BERTScore values on GenSurvey. However, S- 369

H Recall remains consistently high for DeepSeek 370

and Mistral 7B. This suggests that both models ef- 371

fectively capture structural and formatting patterns. 372

The largest gap in structure-aware performance ap- 373

pears in smaller Qwen2 models. These models 374

favor lexical overlap but fail to maintain coherent 375

section structure. Based on Table 3, we conclude 376

that Mistral 7B and DeepSeek R1 Distilled 70B 377

perform best in automatic evaluations (RQ1). 378

5



Model GenSurvey Dataset GenSection Dataset

R-1 ↑ R-2 ↑ R-L ↑ S-H Recall ↑ BERTScore ↑ R-1 ↑ R-2 ↑ R-L ↑ S-H Recall ↑ BERTScore ↑

DeepSeek R1 Distilled 70B 0.548 0.292 0.193 0.997 0.841 0.407 0.111 0.125 0.997 0.709
LLaMa3 1B 0.644 0.318 0.207 0.964 0.871 0.336 0.096 0.117 0.964 0.717
LLaMa3 3B 0.726 0.298 0.216 0.966 0.719 0.336 0.097 0.117 0.966 0.876
LLaMa3 8B 0.735 0.389 0.253 0.966 0.876 0.337 0.098 0.116 0.966 0.719
Mistral 7B 0.778 0.418 0.265 0.977 0.886 0.343 0.100 0.115 0.977 0.721
Mixtral 8x7B 0.625 0.324 0.219 0.966 0.870 0.314 0.089 0.114 0.754 0.717
Qwen2 1.5B 0.631 0.294 0.211 0.518 0.855 0.338 0.100 0.119 0.517 0.711
Qwen2 3B 0.600 0.279 0.210 0.527 0.855 0.354 0.104 0.126 0.527 0.855
Qwen2 7B 0.708 0.379 0.242 0.892 0.879 0.334 0.096 0.115 0.892 0.719
Qwen2 72B 0.695 0.363 0.247 0.936 0.878 0.357 0.104 0.121 0.936 0.721

Table 3: Model performance results on GenSurvey and GenSection datasets. Metrics include ROUGE scores (R-1,
R-2, R-L), S-H Recall, and BERTScore. The arrow indicates the higher values is the better. The bold text indicates
the highest scores while the underline text highlights the second best.

6 Discussion and Ablation Study379

6.1 Human Evaluation380

To further validate and analyze the generated text381

from our baseline models, we employ two experts382

in Computer Science to evaluate outputs from ten383

models. Due to cost constraints, we randomly se-384

lect 100 test samples from the test set. As a result,385

each expert is required to rate a total of 1,000 gener-386

ated texts across the ten models. The experts use a387

5-point Likert scale, where (1) represents the worst388

and (5) the best quality.389

We evaluate the generated text based on three390

key aspects: (i) Relatedness, which measures how391

well the generated text matches the human-written392

reference; (ii) Readability, which evaluates how393

structured and coherent the text is; and (iii) Cita-394

tion Capture, which quantifies how accurately the395

model identifies and includes relevant citations in396

the generated content. The details on implement-397

ing human evaluation are provided in the Appendix398

E.1.399

We calculate the average score from both ex-400

perts and summarize the results in Table 4. On401

the GenSurvey dataset, LLaMa3 8B achieves the402

highest score in Relatedness and the second high-403

est in Readability, while DeepSeek R1 Distilled404

70B achieves the best score in Citation Captured.405

LLaMa3 3B shows the strongest Readability, de-406

spite slightly lower scores in the other dimensions.407

The Qwen2 models show relatively low perfor-408

mance in all three evaluation aspects. This is espe-409

cially noticeable in the 1.5B and 3B variants.410

On the GenSection dataset, DeepSeek R1 leads411

in Citation Captured with a score of 3.500 on aver-412

age and remains strong in Readability. LLaMa3 8B413

stands out with the highest Readability of 3.600 and414

the best overall Relatedness score of 2.984. In con- 415

trast, Qwen2 1.5B and 3B again score the lowest 416

in nearly all dimensions. The human evaluation 417

results indicate that LLaMa3 8B and DeepSeek 418

R1 Distilled 70B consistently generate more rel- 419

evant, readable, and citation-sensitive scientific 420

text (RQ1). Mistral 7B also shows stable and com- 421

petitive performance across all criteria, though it 422

does not rank among the top in any single category. 423

However, human validation findings indicate that 424

even advanced LLMs such as DeepSeek Distilled 425

70B and Qwen2 72B are still unable to produce 426

scientific surveys that match the depth and coher- 427

ence of human-written texts. This underscores the 428

difficulty of our benchmarks and highlights the 429

ongoing challenges in long-to-long scientific text 430

generation. 431

6.2 Performance versus Model Sizes 432

In our experiments, we record the training time 433

for all baseline models. Figure 8 in Appendix E.2 434

shows the relationship between model performance 435

(P) and training time in hours (T). The performance 436

score (P) is calculated as the average of all evalua- 437

tion metrics. These include ROUGE, BERTScore, 438

and S-H Recall on the GenSurvey dataset. 439

We observe that models with smaller param- 440

eter sizes, such as Qwen2 1.5B and LLaMa3 441

1B, achieve moderate performance while requir- 442

ing much less training time. Larger models like 443

DeepSeek R1 70B and Qwen2 72B exceed 1,000 444

minutes of training time, but offer only marginal 445

improvements in performance compared to smaller 446

models. Mistral 7B and LLaMa3 8B achieve a fa- 447

vorable balance between performance and training 448

time. Both models attain high evaluation scores 449

while maintaining moderate computing demands. 450
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Model GenSurvey Dataset GenSection Dataset

Relatedness ↑ Readability ↑ Citation Captured ↑ Relatedness ↑ Readability ↑ Citation Captured ↑

DeepSeek R1 Distilled 70B 3.200 2.900 3.400 2.120 3.135 3.500
LLaMa3 1B 3.010 3.333 2.229 2.041 3.100 2.100
LLaMa3 3B 3.050 3.500 2.100 2.051 3.200 2.100
LLaMa3 8B 3.300 3.400 2.250 2.984 3.600 2.360
Mistral 7B 3.250 3.200 2.950 2.750 3.160 3.100
Mixtral 8x7B 3.000 2.619 2.190 2.870 2.870 2.230
Qwen2 1.5B 2.300 1.800 1.800 1.210 1.230 1.000
Qwen2 3B 2.050 1.700 1.600 1.540 1.460 1.500
Qwen2 7B 3.050 2.900 2.250 1.610 2.546 3.230
Qwen2 72B 3.281 2.952 3.190 2.901 2.541 3.360

Table 4: Human evaluation results on GenSurvey and GenSection datasets. The arrow indicates the higher values is
the better. The bold text indicates the highest scores while the underline text highlights the second best.

The size of each bubble in Figure 8 reflects the451

size of the model parameter. This visualization452

reinforces the finding that larger model scale does453

not lead to a linear gain in efficiency. These results454

suggest that small and medium-sized LLMs are455

practical choices when considering computa-456

tional cost (RQ2). LLaMa3 1B, in particular, of-457

fers a cost-effective option for resource-constrained458

environments. Additional analysis is available in459

Appendix E.2.460

6.3 Supervised fine-tuning (SFT) versus461

Reinforcement Learning from Human462

Feedback (RLHF)463

While supervised fine-tuning (SFT) enables large464

language models to replicate human-written re-465

sponses based on instruction–response pairs, its ef-466

fectiveness depends on the quality and diversity of467

labeled data. Reinforcement Learning from Human468

Feedback (RLHF) (Ouyang et al., 2022) extends469

this paradigm by using preference-based learning470

signals derived from human judgments. Instead471

of learning to reproduce specific outputs, RLHF472

trains models to align with human preferences by473

optimizing a reward model built from pairwise com-474

parisons. We apply Direct Preference Optimization475

(DPO) (Rafailov et al., 2023) to three representative476

models: LLaMa3 1B, Mistral 7B, and DeepSeek477

R1 Distill 70B. These models are selected based on478

their strong performance in our earlier analysis. We479

compare their performance to standard fine-tuning480

with LoRA. DPO reformulates reinforcement learn-481

ing as a binary classification problem. It directly482

optimizes a loss function that favors preferred re-483

sponses over rejected ones. This approach avoids484

the need for reward modeling, policy sampling, and485

extensive hyperparameter tuning.486

We implement two configurations. The first ap-487

plies DPO as a standalone training method. The 488

second uses LoRA for initial fine-tuning, followed 489

by DPO. We compare these results with the base- 490

line that uses LoRA only. Appendix E.3 describes 491

our detailed implementation.

Model Pipeline R-1 R-2 R-L BERTScore S-H recall

LLaMa 1B
(#1 on Efficiency)

LoRA 0.644 0.318 0.207 0.871 0.964
LoRA + DPO 0.717 0.337 0.212 0.870 0.957
DPO 0.501 0.198 0.178 0.885 0.937

Mistral 7B
(#1 on Performance)

LoRA 0.778 0.418 0.265 0.886 0.977
LoRA + DPO 0.758 0.386 0.254 0.885 0.989
DPO 0.716 0.340 0.221 0.882 0.990

DeepSeek
R1 Distilled 70B
(#1 on Human evaluation)

LoRA 0.548 0.292 0.193 0.841 0.997
LoRA + DPO 0.587 0.313 0.202 0.842 0.990
DPO 0.593 0.317 0.203 0.844 0.991

Table 5: Performance comparison of three selected mod-
els under different fine-tuning pipelines.

492
Table 5 presents the results. For LLaMa3 1B, 493

the LoRA+DPO pipeline achieves the highest per- 494

formance across all metrics. ROUGE scores show 495

significant improvements. For Mistral 7B, the best 496

results come from using LoRA alone, especially 497

in ROUGE and BERTScore. For DeepSeek 70B, 498

DPO without LoRA achieves the top performance. 499

These results show that DPO benefits larger mod- 500

els by providing a stronger optimization signal. It 501

helps the model generate more human-like scien- 502

tific output. Overall, fine-tuning effectiveness 503

depends on model size. LoRA+DPO performs 504

best for smaller models, while DPO alone scales 505

more effectively with larger models in long-form 506

generation (RQ3). 507

6.4 LoRA Variants 508

In recent years, Parameter-Efficient Fine-Tuning 509

(PEFT) methods (Xu et al., 2023) have gained pop- 510

ularity due to their ability to reduce trainable param- 511

eters while maintaining model performance. In our 512

main experiments, we use LoRA (Hu et al., 2022) 513

as the baseline fine-tuning approach for training 514

7



LLMs.515

In this analysis, we extend our investiga-516

tion to several LoRA variants. These include517

QLoRA (Dettmers et al., 2023), DoRA (Mao518

et al., 2024), and PiSSA (Meng et al., 2024). Ap-519

pendix E.4 provides additional implementation de-520

tails.521

Method Training time (min) R-1 R-2 R-L BERTScore S-H recall

LoRA 16 0.644 0.318 0.207 0.871 0.964
DoRA 40 0.715 0.357 0.228 0.877 0.926
QLoRA 12 0.654 0.309 0.208 0.868 0.930
PiSSA 30 0.661 0.298 0.216 0.872 0.931

Table 6: Performance comparison of variants of LoRA
methods on LLaMa3 1B.

The results in Table 6 show that DoRA achieves522

the highest scores across ROUGE-1, ROUGE-2,523

ROUGE-L, and BERTScore. It outperforms all524

other methods in content-related metrics, indicating525

strong performance in long-form text generation.526

However, its S-H Recall score of 0.926 is lower527

than that of LoRA and PiSSA. PiSSA is second528

in the overall ranking. It achieves the highest S-529

H Recall of 0.931 and performs competitively in530

other metrics.531

LoRA is the most time-efficient method, requir-532

ing only 16 minutes of training. It performs well in533

S-H Recall of 0.964 but shows a lower ROUGE-L534

and BERTScore, suggesting a trade-off between535

structural accuracy and textual quality. QLoRA of-536

fers balanced results on all metrics. It ranks slightly537

above LoRA in ROUGE-1, while using the least538

training time and memory. These findings suggest539

that DoRA provides the highest content quality,540

though at a higher computational cost. PiSSA541

offers strong structural consistency. LoRA and542

QLoRA remain practical options when priori-543

tizing efficiency in resource-constrained settings544

(RQ3).545

6.5 Open-source versus Closed-source LLMs546

As proprietary LLMs such as GPT-4 (OpenAI,547

2024) demonstrate their superiority in multiple548

tasks, we compare the performance of our fine-549

tuned baseline models with zero-shot prompting550

in GPT-4 to investigate the gap between commer-551

cialized LLMs and fine-tuned open-source LLMs.552

We use GPT-4o4 version on 200 samples of our553

GenSurvey test set in this experiments. The prompt554

for GPT-4o is provided in the Appendix F.555

4https://platform.openai.com/docs/models/
gpt-4o

Metrics

0.00

0.25

0.50

0.75

1.00

R-1 R-2 R-L BERTScore S-H recall

LLaMa 1B Mistral 7B DeepSeek 70B GPT-4o (zs)

Figure 4: Performance of GPT-4 compared to our best
baselines.

Figure 4 shows that GPT-4 outperforms all base- 556

line models in all evaluation metrics. It demon- 557

strates stronger semantic alignment and better 558

structural consistency. However, the performance 559

gap between GPT-4 and Mistral 7B, one of our 560

strongest open-source baselines, remains relatively 561

small. 562

In the S-H Recall metric, which measures simi- 563

larity between the section structure of human and 564

generated outputs, all models achieve high scores. 565

DeepSeek R1 matches GPT-4 in this aspect, indicat- 566

ing that large open-source models can effectively 567

capture structural patterns. While GPT-4 leads 568

in semantic quality, the strong results of Mis- 569

tral 7B and DeepSeek R1 highlight the potential 570

of open-source models to generate high-quality 571

survey content (RQ4). 572

7 Conclusion 573

In this paper, we propose LongSciArxiv con- 574

taining two datasets, GenSurvey and GenSection, 575

designed for long-to-long scientific text genera- 576

tion. While GenSurvey is a fully human-written 577

dataset, GenSection provides an alternative ap- 578

proach for enabling shorter-context models to gen- 579

erate survey sections. We fine-tuned multiple open- 580

source LLMs of varying sizes and conducted com- 581

prehensive experiments to evaluate their perfor- 582

mance. Our results demonstrate that generating 583

high-quality, coherent survey papers remains a chal- 584

lenging task, even for the most advanced models. 585

These findings highlight the complexity of long- 586

to-long text generation and the need for further ad- 587

vancements in this area. We also show that methods 588

such as DPO can improve output quality depending 589

on model size. Furthermore, strong results from 590

models like Mistral 7B and DeepSeekR1 illustrate 591

the growing potential of open-source alternatives 592

to closed LLMs. 593
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Limitations594

While our study presents a comprehensive empir-595

ical benchmark for long-to-long scientific genera-596

tion, it has several limitations that offer directions597

for future work:598

• Computational constraints. Due to limited599

GPU resources, we did not experiment with600

extremely large-scale models (e.g., DeepSeek601

R1 168B, LLaMa3 405B), which may offer602

improved performance. Our focus remains on603

accessible, mid-sized models (1B–8B) rele-604

vant to resource-constrained settings.605

• Evaluation scope. Our human evaluation606

involved expert annotators in main experi-607

ments due to cost. While inter-rater agree-608

ment was maintained, broader annotator pools609

or multi-aspect scoring (e.g. citation granular-610

ity) would yield more robust conclusions.611

• Synthetic supervision bias. GenSection re-612

lies on GPT-4 for synthetic section generation,613

which may introduce stylistic or structural bi-614

ases. Despite human validation, future work615

may incorporate more diverse annotator strate-616

gies or adversarial filtering to avoid overfitting617

to GPT-4 outputs.618

• Domain specificity. Both GenSurvey and619

GenSection are constructed from computer620

science papers on arXiv. While this ensures621

topic coherence, it limits generalizability to622

domains like medicine, law, or humanities.623

Expanding to other scientific disciplines is a624

valuable next step.625

• Planning and discourse modeling. While626

models are evaluated on structure (via S-H627

Recall), we do not explicitly assess or train on628

discourse coherence or plan-based organiza-629

tion. As suggested by LongEval (Wu et al.,630

2025), incorporating discourse planning ob-631

jectives could enhance model structure adher-632

ence.633

• Long-context limitations. As highlighted in634

recent work (Hosseini et al., 2025), LLMs635

may appear to support long contexts but strug-636

gle with retaining and reasoning over distant637

dependencies. This limitation persists in our638

setup but is not explicitly measured. Although639

baseline models are able to handle most of the640

long context input, as described in Appendix 641

D.1, in the case of extremely long context 642

input, we have to trim down to 32k tokens. 643

Ethics Statement 644

The surveys and abstracts are open accessed on 645

ArXiv. The copyright of the data (survey papers 646

and abstract from references) remains to the orig- 647

inal authors. Our datasets will be provided under 648

a Creative Commons Attribution-NonCommercial- 649

ShareAlike 4.0 International License. All manual 650

annotation is performed by research team members 651

and students in the University. Annotators received 652

detailed annotation guidelines before starting their 653

tasks and received fair compensation after com- 654

pletion of the task. Personal information was not 655

collected from any annotators or any stage of data 656

collection. All the models we used in this paper 657

adhere to the copyrights and licenses. 658
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A Related Work on Long-form Text 934

Generation 935

Long-form text is typically defined as documents 936

that span thousands of tokens, far exceeding the 937

length of short texts or passages that fit within stan- 938

dard model contexts (Dong et al., 2023). Such 939

lengths surpass the fixed input limits of typical 940

Transformer-based language models (e.g. BERT 941

is capped at 512 tokens (Devlin et al., 2019)), and 942

they exacerbate the O(n2) time and memory com- 943

plexity of self-attention, making naive processing 944

of long documents infeasible. To address these 945

challenges, researchers have explored multiple ar- 946

chitectural innovations. Hierarchical models de- 947

compose a document into smaller units (e.g. sen- 948

tences or paragraphs), which are encoded sepa- 949

rately and then aggregated by higher-level encoders 950

to capture long-range dependencies (Chalkidis 951

et al., 2022). Efficient Transformers with sparse 952

or structured attention patterns limit the attention 953

scope to a local window and select global tokens, 954

reducing complexity while preserving context (e.g., 955

Longformer (Beltagy et al., 2020), BigBird (Za- 956

heer et al., 2020)). Other models extend Trans- 957

former memory via recurrence. Transformer-XL 958

introduces segment-level recurrence to carry for- 959

ward states across chunks, and Compressive Trans- 960

former further condenses past activations to retain 961

longer-term context (Dai et al., 2019; Rae et al., 962

2020). Additionally, low-rank approximation and 963

kernel-based attention methods (such as Linformer 964

and Performer) achieve linear or near-linear scaling, 965

enabling processing of sequences with thousands 966

of tokens (Wang et al., 2020; Choromanski et al., 967

2021). These advances substantially expand the 968

range of text lengths that can be modeled, though 969

fully capturing global coherence and long-range 970

dependencies in very lengthy documents remains 971

an open challenge (Dong et al., 2023). 972

B GenSurvey Details 973

B.1 Data Annotation Guidelines 974

Three annotators with an IT background are tasked 975

with reviewing and annotating survey papers ac- 976

cording to the following guidelines: 977

1. Data Filtering: Filter out survey papers that 978

has converting error and exclude papers that 979

are incomplete or fail to provide sufficient 980

content. 981

12

https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38


2. Basic Cleaning: Remove formatting issues982

and irrelevant metadata983

3. Topic Annotation: Carefully read through984

the content of the survey papers and annotate985

the primary topics for each paper. The anno-986

tated topics should accurately reflect the cen-987

tral themes of the survey. Annotators should988

annotate at most 4 topics for each survey pa-989

per.990

4. Removal of Figures and Tables: Remove991

all figures, tables, and non-text content from992

the survey papers. Only the textual content993

should remain for the annotation process.994

These steps ensure the quality and consistency of995

the annotated data. Annotators also need to collect996

the abstracts of references extracted from the ref-997

erence list in each survey paper. If the abstract is998

not available or the reference paper is not accessi-999

ble, the annotator will skip and move to the next1000

one. As a result, the process helps surface common1001

patterns and edge cases that ensures dataset quality1002

and downstream modeling.1003

B.2 Data Validation Guidelines1004

In this phase, the annotation team performs cross-1005

validation of the quality of the data annotated by1006

their peers. Each survey should be reviewed by1007

at least two annotators to ensure objectivity and1008

quality control. The following guidelines are to be1009

followed by annotators during the cross-validation1010

process:1011

1. Check for Consistency:1012

• Flag any inconsistencies where the same1013

type of content is annotated differently1014

(e.g., the same topic being annotated with1015

different labels).1016

• Ensure that the style and terminology1017

used in the annotations are consistent1018

across all documents.1019

2. Check for Completeness:1020

• Review each annotated survey to ensure1021

that all relevant sections have been well-1022

structured.1023

• Ensure that no important content has1024

been omitted. If any section seems to1025

lack an annotation, flag it for review.1026

3. Check for Accuracy:1027

• Ensure that the annotated topics accu- 1028

rately reflect the content of the survey 1029

section.. 1030

• Identify and correct any annotations that 1031

are not aligned with the content of the 1032

original survey. 1033

4. Flag Incomplete or Ambiguous Annota- 1034

tions: 1035

• If annotators come across any ambigu- 1036

ous, incomplete, or unclear annotations, 1037

highlight them and make a note for fur- 1038

ther discussion with the annotator who 1039

performed the original annotation. 1040

• For sections that are difficult to inter- 1041

pret or if the annotation seems incorrect, 1042

request clarification or further feedback 1043

from the original annotator. 1044

5. Provide Feedback to Annotators: 1045

• After reviewing the annotations, provide 1046

feedback to the original annotator, point- 1047

ing out any inconsistencies, missing con- 1048

tent, or errors. 1049

• Offer constructive suggestions for im- 1050

proving the annotations, especially if you 1051

find patterns in errors across multiple pa- 1052

pers. 1053

• Ensure that feedback is clear and action- 1054

able, to help the original annotator make 1055

the necessary revisions. 1056

These steps ensure that the annotations are 1057

consistent, complete, and accurate. The cross- 1058

validation process is critical for maintaining the 1059

quality and reliability of the data, which is essen- 1060

tial for the subsequent training and evaluation of 1061

models. 1062

B.3 Data Statistic and Analysis 1063

We also investigated the annotated topics in the 1064

GenSurvey dataset as summarized in Figure 5. The 1065

chart shows the frequency of different topics, with 1066

"Machine Learning" being the most frequent, ap- 1067

pearing 174 times, followed by "Cryptography and 1068

Security" with 90 times, and "Computer Vision and 1069

Pattern Recognition" with 89 times. Topics such 1070

as "Distributed, Parallel, and Cluster Computing" 1071

with 65 times, and "Artificial Intelligence" with 1072

65 times also appear frequently. In contrast, more 1073

specialized topics, such as "Physics and Society" 1074
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Key Value

title A formula for a quartic integral: a survey of old proofs and some new ones
article_id arXiv:0707.2118
subject ["Classical Analysis and ODEs"]
abstract We discuss several existing proofs of the value of a quar_x0002_tic integral and present a

new proof that evolved from rational Landen ...
content 1. Introduction The evaluation of definite integrals has attracted the scientific community,

both professional and amateurs, for a long ...
reference [ [1] B. Berndt. Ramanujan’s Notebooks, Part I. Springer_x0002_Verlag, New York, 1985.,

[2] G. Boros and V. Moll. An integral hidden in Gradshteyn and Ryzhik. Jour. Comp.Applied
Math., 106:361–368, 1999., ... ]

reference_content [{ reference_num: [2], reference_title: An integral hid_x0002_den in Gradshteyn and
Ryzhik, reference_abstract: We provide a closed-form expression for the integral ... }, ...]

Table 7: An example of GenSurvey data.

Dataset Task Source Type Output Length Human-written?

AutoSurvey (Wang et al., 2024b) Survey generation Titles + metadata ∼10,000 words ✗

SciFact (Wadden et al., 2020) Factual verification Abstracts + claims ∼300 words ✓
GovReport (Huang et al., 2021) Report summarization Gov. documents ∼1,600 words ✓
LongBench (Bai et al., 2024) Multitask long-context eval QAs, code, etc. >6,700 words Mix
LongEval (Wu et al., 2025) Long-form generation (plan-based) arXiv, Wiki, Blogs 2,500–5,000 words ✓
GenSurvey (Ours) Survey generation Abstracts abd Topics >10,000 words ✓
GenSection (Ours) Section-level survey writing Abstracts abd Topics ∼4000 words Mix

Table 8: Comparison of GenSurvey and GenSection with prior long-form generation datasets.

and "Multimedia", appear less often, with only 111075

instances each. This distribution suggests that the1076

dataset is heavily focused on topics related to com-1077

puter science and technology, particularly machine1078

learning, security, and computer vision, while other1079

scientific disciplines are less represented.1080

Comparison with Existing Datasets Table 81081

presents a comparative analysis of our proposed1082

datasets with existing benchmarks used for long-1083

context or long-form generation. AutoSurvey1084

(Wang et al., 2024b) targets survey creation using1085

titles and metadata, generating outputs leveraging1086

multiple LLMs. SciFact (Wadden et al., 2020) and1087

GovReport (Huang et al., 2021) focus on compact1088

summaries derived from scientific or governmental1089

texts, but their outputs are relatively brief. Long-1090

Bench (Bai et al., 2024) offers a multitask evalua-1091

tion framework for long-context tasks such as QA,1092

summarization, and code interpretation, resulting1093

in mostly short outputs not tailored for complete1094

document generation. LongEval (Wu et al., 2025),1095

a new standard for evaluating long-text generation1096

on arXiv, Wikipedia, and blogs, employs direct and1097

plan-based models. It emphasizes structured gener-1098

ation and domain scoring (e.g., methodology, exper-1099

imental details), with moderate document lengths1100

(2,500–5,000 words), aimed at general long-form 1101

content rather than scientific text. In contrast, Gen- 1102

Survey and GenSection uniquely address long-to- 1103

long scientific text generation. GenSurvey offers 1104

human-written, comprehensive scientific surveys 1105

exceeding 10,000 words. GenSection supplements 1106

this with over 4,000 section-level instances, provid- 1107

ing a modular, instruction-tuned framework vali- 1108

dated by human evaluation. 1109

B.4 Annotator payment 1110

Each annotator receives 2 USD for collecting one 1111

survey paper and its corresponding references ab- 1112

stracts. For topic annotation and cross-validation, 1113

each annotator receives 0.2 USD per survey paper. 1114

C GenSection Details 1115

We employ two Master students to validate the 1116

generated text based on two criteria: Relevance 1117

and Structure, using the provided abstracts and 1118

topics. 1119

Relevance. Determine whether the content of the 1120

generated section is meaningfully related to the 1121

provided reference abstracts and topic. They need 1122

to annotate one of the following labels: 1123
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Figure 5: Topic Distribution of GenSurvey dataset.

1. Relevant: The section clearly and accurately1124

reflects the content of the input abstracts and1125

topic.1126

2. Not Relevant: The section is unrelated or1127

only marginally connected to the provided ab-1128

stracts and topic.1129

3. Not Enough Information (NEI): The input1130

abstracts and topic do not provide sufficient1131

detail to make a confident judgment.1132

Structure. Evaluate how well the section is orga-1133

nized and presented in terms of scientific writing.1134

The annotators select one of the following labels:1135

1. Good Structure: The section has a clear and1136

coherent flow, follows academic writing con-1137

ventions, and is logically structured.1138

2. Moderate Structure: The section is generally1139

well-formed but may contain some organiza-1140

tional issues or inconsistencies.1141

3. Bad Structure: The section lacks logical flow,1142

contains disorganized content, or does not re-1143

semble a well-written scientific section.1144

We then calculate Cohen’s Kappa (κ) (McHugh, 1145

2012), which is commonly used to measure the 1146

inter-rater agreement between two raters. Cohen’s 1147

Kappa (κ) is calculated as: 1148

κ =
Po − Pe

1− Pe
1149

In this formula, Po is the proportion of times the 1150

two raters agree, and Pe is the probability of agree- 1151

ment by chance. The coefficients between the two 1152

raters are κRelevant = 0.79 and κStructure = 0.56. 1153

According to (Landis and Koch, 1977), 0.61 < 1154

κRelevant < 0.80 indicates substantial agreement, 1155

while 0.41 < κStructure < 0.60 indicates moder- 1156

ate agreement. Additionally, we observe that for 1157

the marking of Relevance and Structure, the two 1158

raters have 70% agreement on Relevant and 59% 1159

agreement on Good Structure, respectively. 1160

Annotator payment Each rater receives 0.2 1161

USD for each section rated. 1162

D Experimental Settings 1163

D.1 Implementation Details 1164

Each training sample in the GenSurvey dataset is 1165

formalized as a triplet (I,X, Y ), where: 1166

15



• I is a simple instruction guiding the model1167

to generate the full survey (e.g., “Write the1168

survey using the following abstracts”).1169

• X = {a1, a2, . . . , an} is the set of abstracts1170

from n reference papers, where each ai is1171

a short text representing the abstract of one1172

reference paper.1173

• Y is the corresponding full survey text written1174

by a human, composed based on the informa-1175

tion synthesized from the abstracts in X .1176

The training objective is to learn a function fθ :1177

X → Y , parameterized by θ, such that the model1178

generates a coherent and comprehensive survey1179

Ŷ = fθ(X) given the set of abstracts X , and Ŷ ≈1180

Y .1181

Meanwhile, each training instance in the Gen-1182

Section dataset is represented as a triplet (I,X, Y ′),1183

where:1184

• I is the instruction that specifies the goal of1185

the section to be generated (e.g., “Write the in-1186

troduction section for a survey on Graph Neu-1187

ral Networks using the following abstract”).1188

• X = {a1, a2, . . . , an} is the set of abstracts1189

corresponding to the reference papers for the1190

survey.1191

• Y ′ is GPT-generated content for the section1192

described in I .1193

The model is trained to learn a function fθ :1194

(I,X) → Y ′, where fθ maps the instruction1195

and reference abstracts to the desired section1196

output. During evaluation, multiple predictions1197

Ŷ ′
1, Ŷ ′

2, . . . , Ŷ ′
m are generated for sections be-1198

longing to the same survey (identified by a shared1199

file ID), and concatenated to form the full survey1200

prediction:1201

Ŷ ′survey = Concat(Ŷ ′
1, Ŷ ′

2, . . . , Ŷ ′
m)1202

where Concat denotes the sequential concatena-1203

tion operation based on the order of the sections.1204

Handling Long Inputs. In generating full docu-1205

ments on GenSurvey, we input the entire set of ref-1206

erence abstracts. To remain within model context1207

limits, we choose models that handle lengthy inputs1208

without truncation. We use LLaMA 3.1 models1209

(1B, 3B, 8B), which support up to 128K tokens5, 1210

Qwen2 models (1B, 3B, 7B) with a capacity of 1211

up to 131K tokens6, and Mistral 7B and Mixtral 1212

8x7B, which handle 32K tokens7. Additionally, 1213

we use the DeepSeek R1 Distilled LLaMA 70B, 1214

accommodating up to 128K tokens8. In GenSec- 1215

tion, section-level generation inputs are about to 1216

4,000 tokens, suiting models of different capacities. 1217

This framework permits evaluation within models’ 1218

supported architectures without input trimming or 1219

heuristic adjustments. 1220

D.2 Training Parameters 1221

In our experiments, we utilize several advanced 1222

techniques to optimize model performance and ef- 1223

ficiency. We apply LoRA (Hu et al., 2022), specif- 1224

ically using a rank of 256, to reduce the number 1225

of trainable parameters while maintaining model 1226

performance. This method allows us to fine-tune 1227

large models with fewer computational resources. 1228

We conduct our experiment using LLaMa-Factory 1229

(Zheng et al., 2024) library. 1230

We use DeepSpeed (Aminabadi et al., 2022) with 1231

ZeRO Stage 3 (z3) to optimize memory and com- 1232

putational efficiency during training. Key settings 1233

include automatic adjustments for train_batch_size 1234

and train_micro_batch_size_per_gpu based on 1235

available resources, and gradient accumula- 1236

tion with gradient_accumulation_steps set to 1237

"auto." Loss scaling is dynamically managed 1238

with an initial scale of 0, a scale window 1239

of 1000, and an initial scale power of 16. 1240

Stage 3 enables efficient parameter manage- 1241

ment with settings like contiguous_gradients and 1242

stage3_max_live_parameters set to large values for 1243

improved memory allocation. Additional config- 1244

urations, such as overlap_comm set to false and 1245

stage3_gather_16bit_weights_on_model_save, fur- 1246

ther enhance training efficiency and model storage. 1247

This setup ensures optimal performance while min- 1248

imizing memory usage. 1249

Furthermore, we use FlashAttention 2 (Dao, 1250

2024) with bfloat16 (BF16) precision for efficient 1251

memory utilization and optimized computation dur- 1252

ing model training. By default, FlashAttention 1253

5https://console.groq.com/docs/model/llama-3.
1-8b-instant

6https://huggingface.co/docs/transformers/
main/en/model_doc/qwen2

7https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

8https://console.groq.com/docs/model/
deepseek-r1-distill-llama-70b
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2 operates in flash mode with contiguous mem-1254

ory layouts, reducing fragmentation and improving1255

memory access. It automatically adapts to varying1256

batch sizes and sequence lengths, ensuring efficient1257

use of available GPU memory. The default set-1258

tings focus on mixed-precision training, maximiz-1259

ing throughput while maintaining computational1260

efficiency. FlashAttention 2 is designed to fully1261

leverage GPU capabilities, minimizing latency for1262

attention operations, and is particularly well suited1263

for processing long sequences without exceeding1264

memory limits.1265

D.3 Model List1266

Below is the pre-trained models used in our1267

experiments:1268

https://huggingface.co/deepseek-ai/1269

DeepSeek-R1-Distill-Llama-70B1270

https://huggingface.co/meta-llama/1271

Llama-3.2-1B-Instruct1272

https://huggingface.co/meta-llama/1273

Llama-3.2-3B-Instruct1274

https://huggingface.co/meta-llama/1275

Meta-Llama-3-8B-Instruct1276

https://huggingface.co/Qwen/Qwen2-1.1277

5B-Instruct1278

https://huggingface.co/Qwen/Qwen2.1279

5-3B-Instruct1280

https://huggingface.co/Qwen/Qwen2.1281

5-7B-Instruct1282

https://huggingface.co/Qwen/Qwen2.1283

5-72B-Instruct1284

https://huggingface.co/mistralai/1285

Mistral-7B-Instruct-v0.21286

https://huggingface.co/mistralai/1287

Mixtral-8x7B-Instruct-v0.11288

1289

D.4 Metrics1290

ROUGE (Recall-Oriented Understudy for Gist-1291

ing Evaluation) (Lin, 2004) score is a set of met-1292

rics used to evaluate the quality of summaries by1293

comparing n-gram overlaps between the generated1294

text and reference text. The most commonly used1295

ROUGE metric is ROUGE-N, which measures the1296

overlap of n-grams (typically unigrams or bigrams)1297

between the generated and reference text. The1298

ROUGE-N score is computed as follows:1299

ROUGE-N =

∑
n-gram∈Generated Countmatch(n-gram)∑

n-gram∈Reference Count(n-gram)

(1)1300

Where Countmatch(n−gram) refers to the num- 1301

ber of matching n-grams between the generated and 1302

reference texts. Count(n−gram) refers to the total 1303

number of n-grams in the reference text. 1304

ROUGE scores are typically reported for mul- 1305

tiple n-gram sizes (ROUGE-1 for unigrams, 1306

ROUGE-2 for bigrams) and can be extended to 1307

measure recall, precision, and F1-score. In out 1308

experiment, we use F1-score for ROUGE. 1309

BERTScore (Zhang et al., 2020) is a metric used 1310

to evaluate the quality of text generation by com- 1311

paring the contextual similarity between the gener- 1312

ated text and a reference text. It leverages BERT 1313

embeddings to measure semantic similarity at the 1314

token level, rather than relying on exact n-gram 1315

matching like traditional metrics such as ROUGE. 1316

The BERTScore is calculated by computing co- 1317

sine similarity between token embeddings from 1318

the generated and reference texts. The formula for 1319

BERTScore is as follows: 1320

BERTScore =
1

|Tgenerated|
∑

t∈Tgenerated

max
r∈Treference

cosine_sim(t, r)

(2) 1321

Where Tgenerated and Treference are the token sets 1322

from the generated and reference texts, respectively, 1323

and cosine_sim(t, r) is the cosine similarity be- 1324

tween token embeddings t and r. This approach 1325

ensures that BERTScore captures contextual and 1326

semantic relationships between words, making it 1327

more suitable for tasks like document summariza- 1328

tion and translation. 1329

Soft Heading Recall is calculated based on the 1330

Soft Recall (Fränti and Mariescu-Istodor, 2023). 1331

Soft Heading Recall (S-H Recall) evaluates the 1332

structural alignment between the generated and ref- 1333

erence survey. It measures the similarity between 1334

the generated and reference chapter titles while pe- 1335

nalizing the similarity of titles within the generated 1336

survey itself. The formula for S-H Recall is defined 1337

as follows: 1338

Sim(ti, tj) = cos(embed(ti), embed(tj)) 1339

Where ti and tj represent section titles from the 1340

generated and reference surveys, respectively, and 1341

embed(ti) and embed(tj) are their corresponding 1342

embeddings. 1343

The total number of chapters is denoted by |T |, 1344

and the formula for calculating S-H Recall is: 1345
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Model Learning Rate Epochs Batch Size LoRA Rank Dropout

Deepseek R1 Distilled 70B 1e-05 2 32k 256 0.0
LLaMa3 1B 5e-05 6 32k 256 0.0
LLaMa3 3B 3e-05 6 32k 256 0.1
LLaMa3 8B 3e-05 6 32k 256 0.1
Mistral 7B 3e-05 6 32k 256 0.1
Mixtral 8x7B 2e-05 6 32k 256 0.1
Qwen2 1.5B 5e-05 6 32k 256 0.0
Qwen2 3B 3e-05 6 32k 256 0.1
Qwen2 7B 3e-05 6 32k 256 0.1
Qwen2 72B 1e-05 6 32k 256 0.0

Table 9: Training hyperparameters for each LLM used in our experiments.

card(T ) =
|T |∑
i=1

1∑|T |
j=1 Sim(ti, tj)

1346

card(R∩G) = card(R)+ card(G)− card(R∪G)1347

S-H Recall =
card(R ∩G)

card(R)
1348

Where R and G represent the set of section titles1349

in the reference and generated survey, respectively,1350

and card(·) refers to the cardinality (or total number1351

of titles). This score encourages the alignment of1352

sections titles while punishing the generation of1353

redundant titles within the same survey.1354

E Ablation Study Details1355

E.1 Human Evaluation Design1356

To perform human evaluation, we create a simple1357

rating application using Streamlit9 library. In this1358

application, we provide 100 survey files with both1359

generated text and human reference text. The raters1360

can upload the file to the application and read the1361

content as illustrated in Figure 6. After they read1362

the files, they can rate the generated text on three1363

designated aspects: Relatedness, Readability, and1364

Citation Capture as illustrated in Figure 7. The1365

questions for each aspect are described as follows:1366

How well the generated text match the reference1367

text?1368

1. No relation at all: The generated text is com-1369

pletely unrelated to the reference.1370

9https://streamlit.io/

2. Minimal relation: The generated text shares 1371

only a vague or indirect connection with the 1372

reference. 1373

3. Somewhat related: The generated text covers 1374

similar themes or general topics but differs 1375

significantly in content or focus. 1376

4. Sufficiently related: The generated text 1377

closely follows the reference text in mean- 1378

ing and key content. Captures most of the 1379

important ideas 1380

5. Extremely related: The generated text is se- 1381

mantically equivalent to the reference text. 1382

Captures all key ideas accurately. 1383

How well is the generated text in terms of flu- 1384

ency and coherence? 1385

1. Not fluent or coherent at all: The text is 1386

grammatically incorrect, fragmented, or un- 1387

readable. 1388

2. Minimal fluency and coherence: Some parts 1389

are readable, but major grammar issues exist. 1390

3. Moderately fluent and coherent: Sentences 1391

are generally well-formed but may contain 1392

minor grammar or structure issues. Under- 1393

standable, but lacks smooth flow. 1394

4. Mostly fluent and coherent: The text is clear 1395

and mostly free of grammar or syntax errors. 1396

Slight awkwardness may exist but does not 1397

hinder comprehension. 1398

5. Perfectly fluent and coherent: The text 1399

reads naturally, like it was written by a native 1400

speaker or professional writer. Fully grammat- 1401

ical, cohesive, and well-structured. 1402
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How well the generated text include citations?1403

1. No citation at all: The generated text includes1404

no citations.1405

2. Minimal citation: Contains only 1 or 2 ci-1406

tations, or the citations appear incomplete or1407

misplaced.1408

3. Some citations present: Several key points1409

are supported by citations, but others are miss-1410

ing or inconsistently cited. Citation format-1411

ting may be inconsistent but recognizable.1412

4. Well-cited: Most major claims and sections1413

include relevant citations with only minor1414

omissions.1415

5. Fully and properly cited: All claims that1416

require support are backed by appropriate ci-1417

tations.1418

Annotator payment Each rater receives 1.51419

USD for each survey rated.1420

E.2 Model cost-effectiveness1421

To evaluate the cost-effectiveness of different mod-1422

els, we compute the Effectiveness score E, which1423

quantifies how much performance a model achieves1424

per unit of training time. It is calculated as the ra-1425

tio between the overall Performance score P and1426

the training time T (in hours). The performance1427

score P is defined as the average of M evaluation1428

metrics, such as ROUGE, BERTScore, and S-H1429

Recall. To calculate P correctly, all metric scores1430

must be normalized to the range [0, 1], where 1 is1431

the highest possible score.1432

P =
1

M

M∑
i=1

scorei (3)1433

E =
P

T
(4)1434

Where scorei denotes the ith metric score, M is1435

the total number of metrics, and T is the training1436

time in hours.1437

Our results in Table 10 show that while larger1438

models such as Qwen-72B and DeepSeek-Distilled-1439

70B achieve relatively high performance scores (P),1440

their long training times result in low effectiveness.1441

In contrast, LLaMa-1B yields the highest effective-1442

ness score of 2.253, making it the most efficient1443

model in terms of performance per unit training1444

time. Qwen-1.5B also shows a strong balance with1445

the second-highest effectiveness. Interestingly, al- 1446

though Mistral-7B achieves the best performance 1447

score (0.665), its higher training cost reduces its 1448

effectiveness to 0.189. This analysis highlights that 1449

smaller models like LLaMa-1B can offer strong 1450

trade-offs between quality and efficiency, which is 1451

essential for resource-constrained settings. 1452

E.3 DPO Implementation 1453

To enable DPO (Rafailov et al., 2023) training, we 1454

construct a preference dataset derived from our 1455

original GenSurvey data. For each training in- 1456

stance, we create a pair of responses: a chosen out- 1457

put that represents a high-quality, human-aligned 1458

survey generation, and a rejected output that repre- 1459

sents a lower-quality or less-preferred alternative. 1460

The instruction field contains the original genera- 1461

tion prompt, and the input field optionally includes 1462

the set of abstracts as supporting context. The cho- 1463

sen response is typically either the original human- 1464

written survey or a model output refined through 1465

human preference. The rejected response is gener- 1466

ated using zero-shot prompting on the Qwen2 1.5B 1467

model which produces the worst generation. 1468

Each entry in the dataset thus follows the format: 1469

{ 1470

"instruction": "<prompt>", 1471

"input": "<abstracts>", 1472

"chosen": "<preferred survey text>", 1473

"rejected": "<less preferred survey text>" 1474

} 1475

This format aligns with the standard input re- 1476

quired by DPO training frameworks, enabling the 1477

model to learn direct preferences without explicit 1478

reward modeling. Following best practices from 1479

prior work (Rafailov et al., 2023; Zheng et al., 1480

2023), our preference pairs emphasize meaning- 1481

ful semantic differences in relevance, fluency, and 1482

structure to ensure effective preference-based learn- 1483

ing. In our experiments, we only implement DPO 1484

on LLaMa3 1B, Mistral 7B and DeepSeek 70B 1485

and in two settings: (i) directly training models 1486

with DPO from their pre-trained checkpoints, and 1487

(ii) further training LoRA-fine-tuned models with 1488

DPO. For both cases, we set pref_beta to 0.1 and 1489

use the sigmoid preference loss function. 1490

E.4 Variants of LoRA Implementation 1491

Quantized Low-Rank Adaptation (QLoRA) 1492

(Dettmers et al., 2023) enhances the efficiency 1493

of model fine-tuning by combining low-rank 1494
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Figure 6: GUI displaying generated and human reference for evaluation.

adaptation with 4-bit quantization of the base1495

model weights. In this approach, the pre-1496

trained model remains frozen and quantized,1497

while gradients are propagated only through1498

lightweight low-rank adapter layers. In our ex-1499

periments, we set quantization_bit to 4 and1500

quantization_method to bitsandbytes.1501

Directional and Magnitude Decomposed LoRA1502

(DoRA) (Mao et al., 2024) reformulates LoRA1503

by separating the adaptation process into two or-1504

thogonal components: weight direction and mag-1505

nitude. Unlike standard LoRA, which applies low-1506

rank updates to the full weight matrix, DoRA mod-1507

ifies only the directional component while keeping1508

the original magnitude fixed. This decoupling en-1509

ables for more targeted updates, which improves1510

the generalization of the model and the stability of1511

the training.1512

Principal Singular Value and Vector Adapta-1513

tion (PiSSA) (Meng et al., 2024) improves LoRA1514

by initializing its low-rank adapters based on the1515

principal components of the pre-trained weights.1516

Specifically, PiSSA updates only the most infor-1517

mative subspaces, determined by singular value1518

decomposition, which better approximates full1519

fine-tuning behavior with fewer parameters. This 1520

method achieves performance superior to that of 1521

standard LoRA on several benchmarks. We set 1522

pissa_iter to 16 in our experiments. 1523
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Figure 7: GUI displaying rating for each aspect.

Model Training time (T) Performance score (P) Effectiveness (E) = P/T
(in hour) ↓ = avg. of scores ↑ (P per hour) ↑

DeepSeek R1 Distilled 70B 18.000 0.574 0.032
LLaMa3 1B 0.267 0.601 2.253
LLaMa3 3B 1.000 0.632 0.642
LLaMa3 8B 3.717 0.644 0.173
Mistral 7B 3.517 0.665 0.189
Mixtral 8x7B 5.900 0.557 0.094
Qwen2 1.5B 0.733 0.502 0.684
Qwen2 3B 2.033 0.494 0.243
Qwen2 7B 3.367 0.620 0.184
Qwen2 72B 23.067 0.624 0.027

Table 10: Cost-effectiveness analysis of various models.
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Figure 8: Performance of models compared to their training time. The sizes of the bubble indicates their numbers of
parameters.
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F Prompt Template 1524

Prompt for generating section titles You are tasked with generating section titles for a survey paper 1525

based on the following abstracts and topics. 1526

### Instructions: 1527

1. Read through all the abstracts provided. 1528

2. Provide a list of relevant section titles that could be used in the body part of the survey paper. 1529

3. Remember to exclude the Abstract, Introduction and Conclusion sections. 1530

4. Each section title should be a short, descriptive phrase (2–5 words). 1531

5. Use title case for section titles (capitalize the first letter of each major word). 1532

6. Do not use numbering for the titles. 1533

7. The output should be a list of 2 to 5 section titles excluding any content. 1534

8. Provide the section titles in the form of a string separated using commas. 1535

### Topics: {Annotated topics} 1536

### Abstracts: {List of abstracts} 1537

### Now, generate relevant section titles for the body part of the survey paper. 1538

Prompt for generating Introduction section You are tasked with writing the introduction section of a 1539

survey paper using the following abstracts and topics.. 1540

### Instructions: 1541

1. Read through all the abstracts provided. 1542

2. Synthesize the information from the abstracts to create the Introduction section, ensuring it reflects the 1543

context to the topic, the problem, and the purpose of the survey. 1544

3. Ensure the section flows logically and cohesively, even if the number of abstracts varies. 1545

4. Paraphrase and perspective shift the text to avoid direct copying from the abstracts. 1546

5. Use placeholder citations to refer to specific abstracts where relevant. 1547

6. The output can have many paragraph but it should only have one section. 1548
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### Topics: {Annotated topics}1549

### Abstracts: {List of abstracts}1550

### Now, generate the Introduction section based on the provided instructions.1551

Prompt for generating Conclusion section You are tasked with writing the conclusion section of a1552

survey paper using the following abstracts and topics.1553

### Instructions:1554

1. Read through all the abstracts provided.1555

2. Synthesize the key insights and findings presented in the abstract to generate conclusion section for the1556

survey paper.1557

3. The conclusion should recap the main themes, challenges, and contributions from the abstracts.1558

4. Be concise, while reflecting the overall content of the survey paper.1559

5. Paraphrase and perspective shift the text to avoid direct copying from the abstracts.1560

6. The output should only have one paragraph.1561

### Topics: {Annotated topics}1562

### Abstracts: {List of abstracts}1563

### Now, generate the Conclusion section based on the provided instructions.1564

Prompt for generating other sections You are tasked with writing the {Section_titles} section of a1565

survey paper using the following abstracts and topics..1566

### Instructions:1567

1. Read through all the abstracts provided.1568

2. Synthesize the information related to the section theme, ensuring the content reflects relevant topics1569

discussed in the abstracts.1570

3. Maintain logical flow and coherence within the section.1571

4. Paraphrase and perspective shift the content from the abstracts.1572

5. Use placeholder citations where relevant.1573

### Topics: {Annotated topics}1574

### Abstracts: {List of abstracts}1575

### Now, generate the {Section_titles} section based on the provided instructions.1576

Prompt for generating survey in Section 6.5 You are tasked with writing survey paper using the1577

following abstracts and topics.1578

### Instructions:1579

1. Read through all the abstracts provided.1580

2. Synthesize the related information, ensuring the content reflects relevant topics discussed in the1581

abstracts.1582

3. Maintain logical flow and coherence within the paper.1583

4. Paraphrase and perspective shift the content from the abstracts.1584

5. Use placeholder citations where relevant.1585

### Topics: {Annotated topics}1586

### Abstracts: {List of abstracts}1587

### Now, generate the survey paper based on the provided instructions.1588
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