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Abstract

As the use of interactive machines grow, the001
task of Emotion Recognition in Conversa-002
tion (ERC) became more important. If the003
machine-generated sentences reflect emotion,004
more human-like sympathetic conversations005
are possible. Since emotion recognition in con-006
versation is inaccurate if the previous utterances007
are not taken into account, many studies re-008
flect the dialogue context to improve the per-009
formances. Many recent approaches show per-010
formance improvement by combining knowl-011
edge into modules learned from external struc-012
tured data. However, structured data is difficult013
to access in non-English languages, making it014
difficult to extend to other languages. There-015
fore, we extract the pre-trained memory using016
the pre-trained language model as an extractor017
of external knowledge. We introduce CoMPM,018
which combines the speaker’s pre-trained mem-019
ory with the context model, and find that the020
pre-trained memory significantly improves the021
performance of the context model. CoMPM022
achieves the first or second performance on all023
data and is state-of-the-art among systems that024
do not leverage structured data. In addition, our025
method shows that it can be extended to other026
languages because structured knowledge is not027
required, unlike previous methods.028

1 Introduction029

As the number of applications such as interactive030

chatbots or social media that are used by many031

users has recently increased dramatically, Emotion032

Recognition in Conversation (ERC) plays a more033

important role in natural language processing, and034

as a proof, a lot of research (Poria et al., 2019;035

Zhang et al., 2019; Ghosal et al., 2020; Jiao et al.,036

2020) has been conducted on the task.037

The ERC module increases the quality of em-038

pathetic conversations with the users and can be039

utilized when sending tailored push messages to the040

users (Shin et al., 2019; Zandie and Mahoor, 2020;041

Lin et al., 2020). In addition, emotion recognition042

Figure 1: An example of MELD dataset

can be effectively used for opinion mining, rec- 043

ommender systems, and healthcare systems where 044

it can improve the service qualities by providing 045

personalized results. As these interactive machines 046

increase, the ERC module plays an increasingly 047

important role. 048

Figure 1 is an example of a conversation in which 049

two speakers are angry at each other. The emotion 050

of speaker B’s utterance ("How’d you get to that?") 051

is angry. If the system does not take into account 052

previous utterances, it is difficult to properly recog- 053

nize emotions. Like the previous studies (Ghosal 054

et al., 2020), we show that the utterance-level emo- 055

tion recognition, which does not consider the pre- 056

vious utterance, have limitations and experiments 057

result in poor performances. 058

Therefore, recent studies are attempting to 059

recognize emotions while taking into account 060

the previous utterances. Representatively, Dia- 061

logueRNN (Majumder et al., 2019) recognizes 062

the present emotion by tracking context from the 063

previous utterances and the speaker’s emotion. 064

AGHMN (Jiao et al., 2020) considers the previ- 065

ous utterances through memory summarizing using 066

GRU with attention. 067

Many recent studies use external knowledge to 068

improve the ERC performance. However, this exter- 069

nal knowledge is often only available in English. In 070

order to utilize the previous methods in languages 071

of other countries, it is expensive and difficult to 072
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utilize because external knowledge data must be073

newly constructed. In recent NLP studies, due to074

the effectiveness of the pre-trained language model,075

it has already been developed in many countries.076

Since pre-trained language models are trained by077

unsupervised learning, these models are relatively078

usable approaches regardless of language types.079

Petroni et al. (2019) introduces that these language080

models can be used as knowledge bases and have081

many advantages over the structured knowledge082

bases. Based on these studies, we eliminate the083

dependence on structured external data used in084

cutting-edge systems and use a pre-trained lan-085

guage model as a feature extractor of knowledge.086

CoMPM, introduced in this paper, is composed087

of two modules that take into account previous088

utterances in dialogue. (1) The first is a context089

embedding module (CoM) that reflects all previous090

utterances as context. CoM is an auto-regressive091

model that predicts the current emotion through092

attention between the previous utterances of the093

conversation and the current utterance. (2) The sec-094

ond is a pre-trained memory module (PM) that ex-095

tracts memory from utterances. We use the output096

of the pre-trained language model as the memory097

embedding where the utterances are passed into the098

language model. We use the PM to help predict the099

emotion of the speaker by taking into account the100

speaker’s linguistic preferences and characteristics.101

We experiment on 4 different English ERC102

datasets. Multi-party datasets are MELD (Poria103

et al., 2019) and EmoryNLP (Zahiri and Choi,104

2018), and dyadic datasets are IEMOCAP (Busso105

et al., 2008) and DailyDialog (Li et al., 2017).106

CoMPM achieves the first or second performance107

according to the evaluation metric compared to all108

previous systems. We perform an ablation study on109

each module to show that the proposed approach is110

effective. Further experiments also show that our111

approach can be used in other languages and show112

the performance of CoMPM when the number of113

data is limited.114

2 Related Work115

Many recent studies use external knowledge to im-116

prove the ERC performance. KET (Zhong et al.,117

2019) is used as external knowledge based on118

ConceptNet (Speer et al., 2017) and emotion lex-119

icon NRC_VAD (Mohammad, 2018) as the com-120

monsense knowledge. ConceptNet is a knowledge121

graph that connects words and phrases in natural122

language using labeled edges. NRC_VAD Lexi- 123

con has human ratings of valence, arousal, and 124

dominance for more than 20,000 English words. 125

COSMIC (Ghosal et al., 2020) and Psychologi- 126

cal (Li et al., 2021) improve the performance of 127

emotion recognition by extracting commonsense 128

knowledge of the previous utterances. Common- 129

sense knowledge feature is extracted and lever- 130

aged with COMET (Bosselut et al., 2019) trained 131

with ATOMIC (The Atlas of Machine Common- 132

sense) (Sap et al., 2019). ATOMIC has 9 sentence 133

relation types with inferential if-then commonsense 134

knowledge expressed in text. ToDKAT (Zhu et al., 135

2021) improves performance by combining com- 136

monsense knowledge using COMET and topic dis- 137

covery using VHRED (Serban et al., 2017) to the 138

model. 139

Ekman (Ekman, 1992) constructs taxonomy of 140

six common emotions (Joy, Sadness, Fear, Anger, 141

Surprise, and Disgust) from human facial expres- 142

sions. In addition, Ekman explains that a multi- 143

modal view is important for multiple emotions 144

recognition. The multi-modal data such as MELD 145

and IEMOCAP are some of the available standard 146

datasets for emotion recognition and they are com- 147

posed of text, speech and vision-based data. Datcu 148

and Rothkrantz (2014) uses speech and visual in- 149

formation to recognize emotions, and (Alm et al., 150

2005) attempts to recognize emotions based on text 151

information. MELD and ICON (Hazarika et al., 152

2018a) show that the more multi-modal informa- 153

tion is used, the better the performance and the text 154

information plays the most important role. Multi- 155

modal information is not always given in most so- 156

cial media, especially in chatbot systems where 157

they are mainly composed of text-based systems. 158

In this work, we design and introduce a text-based 159

emotion recognition system using neural networks. 160

In the previous studies, such as Hazarika et al. 161

(2018b); Zadeh et al. (2017); Majumder et al. 162

(2019), most works focused on dyadic-party con- 163

versation. However, as the multi-party conversa- 164

tion datasets including MELD and EmoryNLP 165

have become available, a lot of recent research 166

is being conducted on multi-party dialogues such 167

as Zhang et al. (2019); Jiao et al. (2020); Ghosal 168

et al. (2020). In general, the multi-party conver- 169

sations have higher speaker dependency than the 170

dyadic-party dialogues, therefore have more condi- 171

tions to consider and result in poor performance. 172

Zhou et al. (2018); Zhang et al. (2018a) shows 173
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that commonsense knowledge is important for un-174

derstanding conversations and generating appropri-175

ate responses. Liu et al. (2020) reports that the lack176

of external knowledge makes it difficult to classify177

implicit emotions from the conversation history.178

EDA (Bothe et al., 2020) expands the multi-modal179

emotion datasets by extracting dialog acts from180

MELD and IEMOCAP and finds out that there is181

a correlation between dialogue acts and emotion182

labels.183

3 Approach184

3.1 Problem Statement185

In a conversation, M sequential utterances are186

given as [(u1, pu1), (u2, pu2), ..., (uM , puM )]. ui is187

the utterance which the speaker pui uttered, where188

pui is one of the conversation participants. While189

pui and puj (i ̸= j) can be the same speaker,190

the minimum number of the unique conversation191

participants should be 2 or more. The ERC is a192

task of predicting the emotion et of ut, the utter-193

ance of the t-th turn, given the previous utterances194

ht = {u1, ..., ut−1}. Emotions are labeled as one195

of the predefined classes depending on the dataset,196

and the emotions we experimented with are either197

6 or 7. We also experimented with a sentiment clas-198

sification dataset which provides sentiment labels199

consisting of positive, negative and neutral.200

3.2 Model Overview201

Figure 2 shows an overview of our model. Our202

ERC neural network model is composed of two203

modules. The first is CoM which catches the un-204

derlying effect of all previous utterances on the205

current speaker’s emotions. Therefore, we propose206

a context model to handle the relationship between207

the current and the previous utterances. The second208

one is PM that leverages only the speaker’s previ-209

ous utterances, through which we want to reflect210

the speaker’s knowledge.211

If the CoM and PM are based on different back-212

bones, we consider them to be unaligned with re-213

spect to each other’s output representations. There-214

fore, we design the PM to follow CoM so that215

the output representations of CoM and PM can216

mutually understand each other. If CoM and PM217

are based on different architectures, CoMPM is218

trained to understand each other’s representations219

by matching dimensions using Wp in Equation 4.220

The combination of CoM and PM is described in221

Section 4.5.222

3.3 CoM: Context Embedding Module 223

The context embedding module predicts et by con- 224

sidering all of the utterances before the t-th turn 225

as the dialogue context. The example in Figure 2 226

shows how the model predicts the emotion of u6 227

uttered by sA, given a conversation of three par- 228

ticipants (sA, sB , sC). The previous utterances are 229

h6 = {u1, · · ·u5} and e6 is predicted while consid- 230

ering the relationship between u6 and h6. 231

We consider multi-party conversations where 2 232

or more speakers are involved. A special token 233

<sP> is introduced to distinguish participants in 234

the conversation and to handle the speaker’s depen- 235

dency where P is the set of participants. In other 236

words, the same special token appears before the 237

utterances of the same speaker. 238

We use an Transformer encoder as a context 239

model. In many natural language processing tasks, 240

the effectiveness of the pre-trained language model 241

has been proven, and we also set the initial state of 242

the model to RoBERTa (Liu et al., 2019). RoBERTa 243

is an unsupervised pre-trained model with large- 244

scale open-domain corpora of unlabeled text. 245

We use the embedding of the special token 246

<cls> to predict emotion. The <cls> token is con- 247

catenated at the end of the input and the output of 248

the context model is as follows: 249

ct = CoM(< cls >,P:t−1, ht, ut) (1) 250

where P:t−1 is the set of speakers in the previous 251

turns. ct ∈ R1×hc and hc is the dimension of CoM. 252

3.4 PM: Pre-trained Memory Module 253

External knowledge is known to play an important 254

role in understanding conversation. Pre-trained lan- 255

guage models can be trained on numerous corpora 256

and be used as an external knowledge base. In- 257

spired by previous studies that the speaker’s knowl- 258

edge helps to judge emotions, we extract and track 259

pre-trained memory from the speaker’s previous 260

utterances to utilize the emotions of the current 261

utterance ut. If the speaker has never appeared be- 262

fore the current turn, the result of the pre-trained 263

memory is considered a zero vector. 264

Since <cls> is mostly used for the task of clas- 265

sifying sentences, we use the embedding output 266

of the <cls> token as a vector representing the 267

utterance as follows: 268

ki = PM(< cls >, ui) (2) 269
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Figure 2: Our model consists of two modules: a context embedding module and a pre-trained memory module.
The figure shows an example of predicting emotion of u6, from a 6-turn dialogue context. A, B, and C refer to
the participants in the conversation, where sA = pu1 = pu3 = pu6 , sB = pu2 = pu5 , sC = pu3 . Wo and Wp are
linear matrices.

where pui = pS , S is the speaker of the current270

utterance. ki ∈ R1×hk and hk is the dimension of271

PM.272

3.5 CoMPM: Combination of CoM and PM273

We combine CoM and PM to predict the speaker’s274

emotion. In many dialogue systems (Zhang et al.,275

2018b; Ma et al., 2019), it is known that utterances276

close to the current turn are important for response.277

Therefore, we assume that utterances close to the278

current utterance will be important in emotional279

recognition.280

3.5.1 Tracking Method281

We use ki tracking method using GRU. The track-282

ing method assumes that the importance of all pre-283

vious speaker utterances to the current emotion is284

not equal and varies with the distance of the cur-285

rent utterance. In other words, since the flow of286

conversation changes as it progresses, the effect287

on emotion may differ depending on the distance288

from the current utterance. We track and capture289

the sequential position information of ki using a290

unidirectional GRU:291

ktt = GRU(ki1 ,ki2 , ...,kin) (3)292

where t is the turn index of the current utterance,293

n is the number of previous utterances of the294

speaker, and is (s = 1, 2, ..., n) is each turn ut-295

tered. ktt ∈ R1×hc is the output of kin and as a296

result, the knowledge of distant utterance is diluted297

and the effect on the current utterance is reduced.298

GRU is composed of 2-layers, the dimension of 299

the output vector is hc, and the dropout is set to 300

0.3 during training. Finally, the output vector ot is 301

obtained by adding ktt and ct in Equation 4. 302

ot = ct +Wp(ktt) (4) 303

where, Wp is a matrix that projects the pre- 304

trained memory to the dimension of the context 305

output, and is used only when PM and CoM are 306

different pre-trained language models. 307

3.5.2 Emotion Prediction 308

Softmax is applied to the vector multiplied by ot 309

and the linear matrix Wo ∈ Rhe×hc to obtain the 310

probability distribution of emotion classes, where 311

he is the number of emotion classes. et is the pre- 312

dicted emotion class that corresponds to the index 313

of the largest probability from the emotion class 314

distribution. 315

P (e) = softmax(Wo(ot)) (5) 316

The objective is to minimize the cross entropy loss 317

so that et is the same as the ground truth emotional 318

label. 319

4 Experiments 320

4.1 Dataset 321

We experiment on four benchmark datasets. 322

MELD (Poria et al., 2019) and EmoryNLP (Za- 323

hiri and Choi, 2018) are multi-party datasets, while 324
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Dataset
dialogues utterance

classes Evaluation Metrics
train dev test train dev test

IEMOCAP 108 12 31 5163 647 1623 6 weighted avg F1
DailyDialog 11118 1000 1000 87170 8069 7740 7(6) Macro F1 & Micro F1

MELD 1038 114 280 9989 1109 2610 3, 7 weighted avg F1
EmoryNLP 713 99 85 9934 1344 1328 3, 7 weighted avg F1

Table 1: Statistics and descriptions for the four datasets. DailyDialog uses 7 classes for training, but we measure
Macro-F1 for only 6 classes excluding neutral. MELD and EmoryNLP are used to measure weighted avg F1 for
both emotion (7) and sentiment (3) classes.

IEMOCAP (Busso et al., 2008) and DailyDia-325

log (Li et al., 2017) are dyadic-party datasets. The326

statistics of the dataset are shown in Table 1.327

IEMOCAP is a dataset involving 10 speakers,328

and each conversation involves 2 speakers and the329

emotion-inventory is given as "happy, sad, angry,330

excited, frustrated and neutral". The train and de-331

velopment dataset is a conversation involving the332

previous eight speakers, and the train and develop-333

ment are divided into random splits at a ratio of334

9:1. The test dataset is a conversation involving two335

later speakers.336

DailyDialog is a dataset of daily conversations337

between two speakers and the emotion-inventory is338

given as "anger, disgust, fear, joy, surprise, sadness339

and neutral". Since more than 82% of the data are340

tagged as neutral, neutral emotions are excluded341

when evaluating systems with Micro-F1 as did in342

the previous studies.343

MELD is a dataset based on Friends TV show344

and provides two taxonomy: emotion and sen-345

timent. MELD’s emotion-inventory is given as346

"anger, disgust, sadness, joy, surprise, fear and347

neutrality" following Ekman (Ekman, 1992) and348

sentiment-inventory is given as "positive, negative349

and neutral".350

EmoryNLP, like MELD, is also a dataset based351

on Friends TV show, but the emotion-inventory is352

given as "joyful, peaceful, powerful, scared, mad,353

sad and neutral". Sentiment labels are not provided,354

but sentiment classes can be grouped as follows:355

positive: {joyful, peaceful, powerful}, negative:356

{scared, mad, sad}, neutral: {neutral}357

4.2 Training Setup358

We use the pre-trained model from the hugging-359

face library 1. The optimizer is AdamW and360

the learning rate is 1e-5 as an initial value.361

The learning rate scheduler used for training is362

1https://github.com/huggingface/transformers

get_linear_schedule_with_warmup, and the maxi- 363

mum value of 10 is used for the gradient clipping. 364

We select the model with the best performance on 365

the validation set. All experiments are conducted 366

on one V100 GPU with 32GB memory. 367

4.3 Previous Method 368

We show that the proposed approach is effective by 369

comparing it with various baselines and the state- 370

of-the-art methods. 371

KET (Zhong et al., 2019) is a Knowledge En- 372

riched Transformer that reflects contextual utter- 373

ances with a hierarchical self-attention and lever- 374

ages external commonsense knowledge by using 375

a context-aware affective graph attention mecha- 376

nism. 377

DialogueRNN (Majumder et al., 2019) uses a 378

GRU network to keep track of the individual party 379

states in the conversation to predict emotions. This 380

model assumes that there are three factors in emo- 381

tion prediction: the speaker, the context from the 382

preceding utterances and the emotion of the preced- 383

ing utterances. Also, Ghosal et al. (2020) shows the 384

performance of RoBERTa+DialogueRNN when 385

the vectors of the tokens are extracted with a pre- 386

trained RoBERTa. 387

RGAT+P (Ishiwatari et al., 2020) (relational 388

graph attention networks) proposes relational posi- 389

tion encodings with sequential information reflect- 390

ing the relational graph structure, which shows that 391

both the speaker dependency and the sequential 392

information can be captured. 393

HiTrans (Li et al., 2020) proposes a transformer- 394

based context- and speaker-sensitive model. Hi- 395

Trans utilize BERT as the low-level transformer to 396

generate local utterance representations, and feed 397

them into another high-level transformer. 398

COSMIC (Ghosal et al., 2020) incorporates dif- 399

ferent elements of commonsense such as mental 400

states, events and causal relations, and learns the 401

relations between participants in the conversation. 402
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Models
IEMOCAP DailyDialog MELD EmoryNLP
W-Avg F1 Macro F1 Micro F1 W-Avg F1 (3-cls) W-Avg F1 (7-cls) W-Avg F1 (3-cls) W-Avg F1 (7-cls)

KET* 59.56 - 53.37 - 58.18 - 34.39
RoBERTa DialougeRNN 64.76 49.65 57.32 72.14 63.61 55.36 37.44

RGAT+P 65.22 - 54.31 - 60.91 - 34.42
HiTrans 64.5 - - - 61.94 - 36.75

COSMIC* 65.28 51.05 58.48 73.2 65.21 56.51 38.11
ERMC-DisGCN - - - - 64.22 - 36.38
Psychological* 66.96 51.95 59.75 - 65.18 - 38.8
DialogueCRN 66.05 - - - 58.39 - -

ToDKAT* 61.33 52.56 58.47 - 68.23 - 43.12
CoMPM 66.33 53.15 60.34 73.08 66.52 57.14 37.37

CoM 65.05 51.17 58.63 71.67 64.9 56.27 36.34
PM 52.56 49.08 56.23 69.21 63.4 53.87 35.48

CoMPM(f) 69.46 51.67 59.02 73.04 65.77 55.44 38.93
CoMPM(s) 64.68 48.86 55.81 71.97 65.12 53.66 34.72

Table 2: Comparison of our models with various previous models and the results on 4 datasets. Our models are
trained 3 times for each experiment and the average of the scores is evaluated (same in other tables). Test performance
is measured by the model with the best score in the validation dataset. Bold text indicates the best performance in
each part (comparative models or ours). * indicates models that leverages structured external data.

This model uses pre-trained RoBERTa as a fea-403

ture extractor and leverages COMET trained with404

ATOMIC as the commonsense knowledge.405

ERMC-DisGCN (Sun et al., 2021) proposes406

a discourse-aware graph neural network that uti-407

lizes self-speaker dependency of interlocutors as408

a relational convolution and informative cues of409

dependent utterances as a gated convolution.410

Psychological (Li et al., 2021) uses common-411

sense knowledge as enrich edges and processes412

it with graph transformer. Psychological performs413

emotion recognition by utilizing intention of utter-414

ances from not only past contexts but also future415

context.416

DialogueCRN (Hu et al., 2021) introduces an417

intuitive retrieving process, the reasoning module,418

which understands both situation-level and speaker-419

level contexts.420

ToDKAT (Zhu et al., 2021) proposes a language421

model with topic detection added, and improves422

performance by combining it with commonsense423

knowledge.424

4.4 Result and Analysis425

Table 2 shows the performance of the previous426

methods and our models. CoM used alone does not427

leverage PM and predicts emotions by considering428

only the dialogue context. PM, if used alone, does429

not consider the context and predicts emotions only430

with the utterance of the current turn. CoMPM is a431

model in which both CoM and PM parameters are432

updated in the initial state of the pre-trained LM.433

CoMPM(f) is a model in which PM parameters are434

frozen in the initial state (pre-trained LM) and is435

not trained further, and CoMPM(s) is a model in436

which PM is trained from scratch. 437

The effect of PM can be confirmed through 438

the performance comparison between CoM and 439

CoMPM, and the effect of CoM can be confirmed 440

by comparing the results of CoM and PM. Since 441

PM does not consider context, it showed worse 442

performance than CoM, and the performance gap 443

is larger in the IEMOCAP dataset with a higher 444

average number of conversation turns. As a result, 445

we show that the combination of CoM and PM is 446

effective in achieving better performance. 447

We confirm the effect of PM structure in the 448

model through the performance of CoMPM(s). 449

If PM parameters are not frozen and are in- 450

stead randomly initialized (i.e. PM(s)), the perfor- 451

mance deteriorates. CoMPM(s) performs worse 452

than CoMPM, and even performs worse than CoM 453

on the other datasets except for MELD. That is, 454

PM(s) cannot be regarded as a pre-trained mem- 455

ory because the parameters are randomly initial- 456

ized, and simply increasing the model complex- 457

ity does not help to improve the performance. 458

CoMPM(f) shows similar performance to CoMPM 459

and achieves better performance depending on the 460

data. PM(f) is not fine-tuned on the data, but it 461

extracts general pre-trained memory from a pre- 462

trained language model. The comparison between 463

PM and PM(f) will be further described in Sec- 464

tion 4.6. We regard pre-trained memory as com- 465

pressed knowledge, which can play a role similar to 466

external knowledge used in cutting-edge systems. 467

The best performance of our approaches is 468

CoMPM or CoMPM(f), both of which combine 469

pre-trained memory. We achieve state-of-the-art 470

performance among all systems that do not lever- 471
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age structured external data and achieve the first or472

second performance even including systems that473

leverage external data. Therefore, our approach can474

be extended to other languages without structured475

external data as well, which is described in Sec-476

tion 4.7.477

4.5 Combinations of CoM and PM478

We experiment with the effect of pre-trained mem-479

ory of different language models. To eliminate480

the influence of the PM structure, we freeze the481

parameters of PM and use it as a feature extrac-482

tor. Table 3 shows the performance of the pre-483

trained memory extracted by the different language484

models. If PM and CoM are based on different485

backbones, the pre-trained memory is projected486

through Wp as the dimension of the context output.487

RoBERTa+BERT and RoBERTa+GPT2 (combina-488

tion of CoM and PM(f)) have lower performance489

than RoBERTa+RoBERTa, which is inferred be-490

cause pre-trained memory of RoBERTa contains491

richer information than BERT and GPT2. Since492

there is a lot of training data in the diallydialog493

and Wp is fine-tuned to the data to mutually under-494

stand the pre-trained memory and context represen-495

tation. Therefore, we infer that performance does496

not decrease even if the PM changes from the dai-497

lydialog. However, even if other PMs are used, the498

performance is improved compared to using only499

CoM, so the pre-trained memory of other language500

models is also effective for emotion recognition.501

BERT+RoBERTa has a larger performance de-502

crease than RoBERTa+BERT. In particular, in503

IEMOCAP data with a long average number of504

turns in the context, the performance deterio-505

rates significantly. In addition, the performance of506

BERT+RoBERTa is lower than CoM (RoBERTa),507

which supports that the performance of CoM is a508

more important factor than the use of pre-trained509

memory. In other words, we confirm that CoM is510

more important than PM in our system for per-511

formance, and it is effective to focus on context512

modeling rather than external knowledge in the513

study of emotion recognition in conversation.514

4.6 Training with Less Data515

CoMPM is an approach that eliminates dependence516

on external sources and is easily extensible to any517

language. However, the insufficient number of emo-518

tional data available in other countries (or actual519

service) remains a problem. Therefore, we conduct520

additional experiments according to the use ratio521

Figure 3: Performance according to the size of training
data of CoMPM and EmoryNLP

of training data in MELD and EmoryNLP, where 522

there is neither too much nor too little data. Fig- 523

ure 3 shows the performance of the model accord- 524

ing to the ratio of the training data. In MELD and 525

EmoryNLP, even if only 60% and 80% are used, 526

respectively, the performance decreases by only 3 527

points. 528

Table 2 shows that CoMPM(f) achieves better 529

performance than CoMPM in the emotion classi- 530

fication of IMEOCAP and EmoryNLP, which has 531

fewer training data than other settings. On the other 532

hand, if there is a lot of training data, CoMPM 533

shows better performance. Figure 3 shows that as 534

the number of data decreases, CoMPM(f) shows 535

better results than CoMPM, which indicates that it 536

is better to freeze the parameters of PM when the 537

number of training data is insufficient. Therefore, 538

if there is a lot of training data in the real-world 539

application, CoMPM is expected to achieve good 540

performance, otherwise it is CoMPM(f). 541

4.7 ERC in other languages 542

Previous studies mostly utilize external knowledge 543

to improve performance, but these approaches re- 544

quire additional publicly available data, which are 545

mainly available for English. Indeed, structured 546

knowledge and ERC data are lacking in other lan- 547

guages. Our approach can be extended to other lan- 548

guages without building additional external knowl- 549

edge and achieves better performance than simply 550

using a pre-trained model. 551

4.7.1 Korean Dataset 552

We constructed data composed of two speakers in 553

Korean, and emotion-inventory is given as "sur- 554

prise, fear, ambiguous, sad, disgust, joy, bored, em- 555

barrassed, neutral". The total number of sessions 556

is 1000, and the average number of utterance turns 557
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CoM PM(f)
IEMOCAP DailyDialog MELD EmoryNLP
W-Avg F1 Macro F1 Micro F1 W-Avg F1 (7-cls) W-Avg F1 (7-cls)

RoBERTa BERT
65.93
(-3.53)

52.74
(+1.07)

59.97
(+0.95)

65.41
(-0.36)

37.25
(-1.68)

RoBERTa GPT2
68.54
(-0.92)

50.68
(-0.99)

59.61
(+0.59)

65.58
(-0.19)

36.39
(-2.54)

BERT RoBERTa
62.69
(-6.77)

48.99
(-2.68)

57.34
(-1.68)

63.79
(-1.98)

35.47
(-3.46)

Table 3: Emotion recognition performance according to the combination of different backbones of CoM and PM.
The value in parentheses is the performance difference from the original CoMPM(f) (RoBERTa + RoBERTa). We
use the bert-large-uncased and GPT2-medium versions.

is 13.4. We use the data randomly divided into558

train:dev:test in a ratio of 8:1:1. This dataset is for559

actual service and is not released to the public.560

4.7.2 Results in the Korean Dataset561

Models
Korean

W-Avg F1
PM 31.86

CoM 57.46
CoMPM 60.66

Table 4: Results of our approaches in Korean.

In Korean, our results are shown in Table 4. The562

backbone of CoM and PM is Korean-BERT owned563

by the company, respectively. In the Korean dataset,564

like the English dataset, the performance is good in565

the order of CoMPM, CoM, and PM. Our approach566

simply shows a significant performance improve-567

ment on baselines that are fine-tuned to the lan-568

guage model and works well for other languages569

as well as for English data.570

5 Conclusion571

We propose CoMPM that leverages pre-trained572

memory using a pre-trained language model.573

CoMPM consists of a context embedding mod-574

ule (CoM) and a pre-trained memory module (PM),575

and the experimental results show that each module576

is effective in improving the performance. CoMPM577

outperforms baselines on both dyadic-party and578

multi-party datasets and achieves state-of-the-art579

among systems that do not use external knowledge.580

In addition, CoMPM achieves performance com-581

parable to cutting-edge systems that leverage struc-582

tured external knowledge, which is the effect of583

pre-trained memory of the language model.584

By combining other pre-trained memories, we585

find that the pre-trained memory extracted with586

RoBERTa is richer and more effective than the587

pre-trained memory extracted with BERT or GPT2.588

Since we believe that pre-trained memory is pro- 589

portional to the performance of a language model, 590

a language model with a large training corpus and 591

many parameters is considered to be more effective. 592

However, we find that context modeling is more 593

important than pre-trained memory for emotion 594

recognition in conversation, and future research 595

will focus on context modeling. 596

Additionally, our approach achieves competitive 597

performance and does not require externally struc- 598

tured data. Therefore, we show that it can be easily 599

extended to Korean as well as English, and it is 600

expected to be effective in other countries. 601
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