
Under review as a conference paper at ICLR 2024

A SIMILARITY-AGNOSTIC REINFORCEMENT LEARN-
ING APPROACH FOR LEAD OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Lead optimization in drug discovery is a pivotal phase in identifying promising
drug candidates for further development. Traditionally, lead optimization in the
machine learning community has been treated as a constraint optimization prob-
lem where methods like generative models and reinforcement learning (RL) have
been widely employed. However, these methods often rely on molecular simi-
larity metrics to define constraints, which poses significant challenges due to the
inherently ambiguous nature of molecular similarity. In this work, we present
a similarity-agnostic approach to lead optimization, which we term ”Lead Opti-
mization using Goal-conditioned Reinforcement Learning” or LOGRL. Contrary
to conventional methods, LOGRL is uniquely trained on a distinct task: source-
to-target path prediction. This allows LOGRL to produce molecules with signif-
icantly higher Tanimoto similarity to target molecules, even without direct expo-
sure to this metric during training. Furthermore, we incorporate a beam search
strategy during the molecule generation process. This strategy empowers us to
generate a substantial number of candidate molecules, facilitating further curation
to meet desired properties. Notably, our unique approach permits us to leverage
the Euclidean distance between learned action representations as a surrogate for
molecular similarity during beam search.

1 INTRODUCTION

Lead optimization is the final step of the drug discovery process where the goal is to maintain
favourable properties of the lead candidate while improving on the deficiencies Hughes et al. (2011).
In this work, we target the first stage of lead optimization which involves generating a number
of molecules as alternatives to the lead candidate with similar structure but better properties. We
henceforth refer to it as ’lead optimization’ for brevity.

With recent advances in deep learning, a number of approaches have been introduced to solve the
challenge of lead optimization. Recent approaches involve formulating lead opimization as a con-
straint optimization problem commonly using generative models (Yu et al., 2022; Bresson & Lau-
rent, 2019; Kong et al., 2021; Ma & Zhang, 2021; Maziarka et al., 2020; Huang et al., 2022), etc. or
reinforcement learning (You et al., 2018; Zhou et al., 2019; Işık & Tan, 2021; Ahn et al., 2020; Ståhl
et al., 2019), etc.. In reinforcement learning (RL) methods, similarity is the metric often used for
defining constraints. However, similarity in molecules is not a well-defined concept or, as Bender &
Glen (2004) say, similarity has a context. Consequently, using any similarity metric as a constraint
introduces bias into the system towards the intricacies of that similarity metric. Further, in RL meth-
ods for lead optimization, the similarity constraint is integrated as a part of the reward function.
This introduces additional hyperparameters that are not only costly to tune, but also hard to opti-
mize empirically (Hayes et al., 2022). Additionally, this induces several challenges well known in
the multi-objective RL literature, such as Pareto dominance, conflicting objectives, questions on the
linearity of reward design, etc. (Hayes et al., 2022). These problems become worse as the number
of properties used in the reward function increases.

To overcome these challenges, we propose a similarity-agnostic method for lead optimization based
on goal-conditioned RL that is trained on the related task of source-to-target path prediction. Fur-
ther, we offload the task of property optimization from the training phase and suggest post-hoc
curating the generated molecules. Towards this end, we also propose a generation strategy based on

1



Under review as a conference paper at ICLR 2024

beam-search that uses the Euclidean distance of the learned action representations for generating a
diverse range of candidate molecules. An additional advantage of using this method is that it can
be significantly cheaper (in time and compute resources) to generate a large number of molecules
using the same model and then search for required properties than to train different models for each
combination of the required properties.

To ensure the validity of molecules, we follow fragment replacement methods similar to Tan et al.
(2022) but instead of replacing fragments on the lead candidate, we operate ”reaction rules” on
smaller starting molecules, mimicking a step-by-step drug creation process. These reaction rules,
mined from USPTO-MIT (Jin et al., 2017) induce synthesisability into the design of the molecules
and also provide a possible path of synthesis as part of the generation process.

We therefore separate the synthesisability, generation, and optimisation into different aspects of
design and improve the individual capabilities of each part, thereby improving the whole process.

We summarise our contributions as follows:

1. We propose a novel strategy using goal-conditioned reinforcement learning to generate
molecules similar to a given target molecule.

2. We propose a search strategy that separates the property optimization from the training and
offloads it as a post-curation process, thereby simplifying the task of learning.

3. We mine ”reaction rules” from USPTO-MIT (Jin et al., 2017) that increase the synthesis-
ability of the proposed candidates as well as suggest a possible route of synthesis.

2 RELATED WORKS

We review related works that target lead optimization with an emphasis on reinforcement learning
methods for a closer comparison.

You et al. (2018) use reinforcement learning to generate molecular graphs. To affix the distribution
of their generated molecules similar to a set of target molecules, they utilize an adversarial reward
along with the rewards for property optimization. However, this method requires a large number
of target molecules to generate a reliable adversarial reward which is a hard expectation in real-
world lead optimization scenarios. Zhou et al. (2019) train a DQN to generate molecule graphs and
give rewards as a weighted combination of similarity and a property for optimisation. Işık & Tan
(2021) build upon Zhou et al. (2019) and use graph networks for molecular representations while
giving similar rewards as them. Ahn et al. (2020) also give similar rewards but they define their RL
framework over the genetic algorithm operators mutation and crossover. Ståhl et al. (2019) utilize
BiLSTM-based actor-critic architectures to learn which fragments to replace, and give rewards as
a combination of indicator function that denotes property satisfaction and distribution of generated
molecules that satisfy the property. They ensure the similarity of their generated molecules to the
targets by replacing fragments with high similarity. Olivecrona et al. (2017) use RL to fine-tune an
RNN by giving rewards for similarity to generate molecules similar to Celecoxib. Tan et al. (2022)
train a transformer over SMILES and give rewards for a combination of SC score and a threshold-ed
tanimoto similarity. All these methods use similarity-based rewards which introduces bias into their
methodologies. Jeon & Kim (2020) also builds upon Zhou et al. (2019) but they give rewards for
docking score along with property score. Though they do not use similarity-based rewards, their
work still suffers from the challenges of multi-objective RL. Moreover, giving rewards for docking
scores can be very expensive and infeasible for larger molecular spaces like ours. Another limitation
of most of these methods is that synthesisability is not integrated into the generation process. It is
sometimes induced by adding SA score (Ertl & Schuffenhauer, 2009) as another term in the reward
function which only further exasperates the reward design problem.

Other works include sampling-based methods (Fu et al., 2021), search-based methods (Hartenfeller
et al., 2012; Kawai et al., 2014; Sun et al., 2022), auto encoders and VAEs (Yu et al., 2022; Bresson
& Laurent, 2019; Kong et al., 2021; Ma & Zhang, 2021), flow models (Luo et al., 2021; Kuznetsov
& Polykovskiy, 2021; Shi et al., 2020; Zang & Wang, 2020; Ma & Zhang, 2021), GANs Maziarka
et al. (2020), transformers (Piao et al., 2023), diffusion (Huang et al. (2023) and genetic algorithms
(Lee et al., 2021).

2



Under review as a conference paper at ICLR 2024

3 BACKGROUND

3.1 REINFORCEMENT LEARNING

Reinforcement learning tasks are modelled as Markov Decision Processes (MDPs). An MDP is
defined as a tuple of ⟨S,A, T ,R, γ, ρ0⟩ where S is the set of states, A is the set of actions, R :
S × A × S → R is the reward function, T : S × A × S → [0, 1] is the transition probability
distribution, γ is the discount factor and ρ0 : S → [0, 1] is the probability distribution over initial
states.

The learning objective of RL is to learn a policy π : S × A → [0, 1] that maximizes the expected
discounted return given by:

J(π) = E at∼π(·|st),
st+1∼T (·|st,at)

[∑
t

γtR(st, at, st+1)
]

3.2 GOAL CONDITIONED REINFORCEMENT LEARNING

GCRL tasks are modelled as goal-augmented MDPs (GA-MDP). In GA-MDP, an additional tuple is
defined ⟨G, ρg⟩. G denotes the set of goals and ρg is the distribution of goals. The objective changes
to learning a policy π that maximizes the expected discounted return given by:

J(π) = Eat∼π(·|st),g∼ρg,
st+1∼T (·|st,at)

[∑
t

γtR(st, at, st+1, g)
]

In our case, goals are from the same space as the set of states. So we have G ⊆ S.
There are two ways to give rewards in GCRL:

1. Binary rewards, in which a reward is given only if the algorithm has reached the goal state:

R =

{
1, if st+1 = g

0, otherwise.

This type of reward is the easiest to give without requiring to do any reward shaping but
can lead to high sparsity in the reward space, resulting in challenges with learning (Tang &
Kucukelbir, 2021).

2. Distance-based rewards, which reward the algorithm if it has gotten closer to the goal state:

R = −d(st+1, g),

where d is some distance measure between states and goals. This leads to dense rewards
but changes the loss landscape of the objective leading to local optimas (Trott et al., 2019).

3.3 OFFLINE REINFORCEMENT LEARNING

In offline RL, the algorithm only has access to a static dataset DO = ⟨s, a, s′, r⟩ collected using
some behaviour policy. In this setting, the algorithm is not allowed to interact with the environment
to collect more samples.

We use offline RL to overcome the sparse reward problem in GCRL and improve sample efficiency.
Hence, we do not address the challenges faced by offline RL in this work and leave that for future
work.

4 METHODS

4.1 PROBLEM SETUP

We model the lead optimization task as source-to-target path prediction using the goal-conditioned
reinforcement learning paradigm. States and goals are molecules, and actions are reaction rules in

3



Under review as a conference paper at ICLR 2024

the form of reaction signatures as described in section 4.2. A reaction rule applied on a reactant
state results in a deterministic product. The agent is given rewards for reaching the goal. Thus, the
GCRL agent is given different source-target molecule pairs and is tasked to learn to take actions that
convert the source into the target molecule.

Due to the sparse reward problem when solving the task in an online GCRL setup, we opt to use
an offline RL dataset with high reward trajectories to promote learning. Details on the offline data
generation are provided in section 4.4.

4.2 REACTION RULES AS ACTIONS

For this study, 84,968 reaction rules were used that we mined from the USPTO-MIT dataset (Jin
et al., 2017) according to Sankar et al. (2017). Each rule is a tuple of two subgraphs - the reactant’s
signature rsig and the product’s signature psig . rsig and psig correspond to the functional groups
removed and added during a chemical reaction, along with neighbours up to 2 atoms away to denote
the structures on which the rule is applicable. To determine the site of the reaction, the mining
process also includes information about reaction centres, which are the atoms in the signatures
where the subgraph addition or removal occurs. An example is shown in Figure 1.

Signature

C C

mt mt+1

rtsig ptsig

Figure 1: Reaction signatures: The illustration depicts reaction signatures involved in the reaction
transformation of mt to mt+1. rsigt is the reactant signature and psigt is the product signature.
Centres are marked in yellow. The signatures are calculated as the changed subgraphs + neighbors
up to 2 atoms away.

The applicability of an action is determined by the reactant’s signature. Thereafter, given a reactant
molecule, all those rules that have their reactant signature present in the molecule are considered to
be applicable on it.

4.3 STATE AND ACTION REPRESENTATIONS

The state consists of two molecules: the source and the target. The action consists of two signa-
tures: reactant signature and product signature. All of these are graph objects, so we use a Graph
Isomorphism Network (GIN) (Xu et al., 2018) to encode each and create learnable representations.

4.4 OFFLINE RL DATASET

We generate an offline RL dataset using trajectories with high returns to overcome the sparse reward
problem in GCRL. Details on the dataset generation process can be found in the supplementary
material.

4.5 NEGATIVE ACTION SELECTION STRATEGY

The offline dataset only contains trajectories with high returns. Learning from only successful ac-
tions leads to policies that cannot discriminate between good and bad actions. Hence for each
sample in the training batch, batch we uniformly randomly sample l actions during runtime to con-
stitute negative samples. These l actions are selected from the list of all actions except the one in the
high-return sample. Dynamically allowing the agent to see samples with low returns enhances the
agent’s distinguishing capabilities and improves performance.

4



Under review as a conference paper at ICLR 2024

Algorithm 1 Pseudocode for training actor-critic
Inputs: offline dataset, action dataset, GIN, actor, critic, KNN
Output:

1: repeat
2: Sample positive batch B = ⟨s, a, s′, r⟩ from the offline dataset.
3: Use actor to predict a′ on s.
4: Collect negative batch B̄ = ⟨s, ā, s′, r̄⟩ using the negative action selection strategy from

section 4.5.
5: Update critic with eq equation 2 using B ∪ B̄.
6: Update actor using PG loss from eq equation 1 using B ∪ B̄.
7: until convergence

4.6 REWARDS AND LOSS

Here we discuss the actor and critic’s rewards, returns and loss functions.

As mentioned previously, training with an offline RL dataset addresses the sparse reward problem
inherent in GCRL. This enabled us to use binary rewards in our design. However, according to
our formulation, the PG loss is zero when the return is zero, hence we add an additional penalty to
stimulate the actor’s learning.
The reward function R is defined as:

R =


1, if st+1 = g

− 1
2l , if st+1 ̸= g at the end of episode

0, otherwise.

Due to our small episode length, we consider the undiscounted case. Using the reward function
defined above, we can compute the return G as follows:

G =

{
1, if at leads to g

− 1
2l , otherwise.

We use the standard policy gradient (PG) loss for actor πθ and MSE for the critic Qϕ:

∇θL(θ) = Eτ∼πθ

[
G(τ)∇θlogπθ(τ)

]
(1)

L(ϕ) = 1

2

(
Qϕ(τ)−G(τ)

)2
(2)

Our choice of R when st+1 ̸= g at the end of episode is experimental. We found that under the
condition G(at leads to g) ≤ l ∗ G(otherwise), the actor’s performance starts to deteriorate. On
investigation, we found that this is due to the cumulative magnitude of gradients from the negative
return trajectories per positive trajectory being greater than that of the positive return trajectory. This
would lead to a learning behaviour that directs the policy away from areas of negative returns even
at the cost of moving away from areas with positive returns.

4.7 TRAINING AND GENERATION ALGORITHMS

Algorithm 1 describes the pseudocode for the training algorithm. Figures 2(a), (b), (c) show pictorial
descriptions of the training algorithm.

Algorithm 2 describes the pseudocode for generating molecules similar to the target molecule. Fig-
ure 2(d) shows the generation procedure.

Brief descriptions of the algorithms are provided in the supplementary material.

5 EXPERIMENTS

In this section, we discuss our experimental setup and evaluation test-bed, including datasets, mod-
els, evaluation settings and metrics.

5



Under review as a conference paper at ICLR 2024

S

A

GIN

State Action
M G R P

Critic Critic Loss

Actor Loss

Search

Random l

Actor
Sorted
by L2

Critic Sorted by
Q-values

1
2
3
.
.
.
.
.

BA

SORT Top BA 
actions

Offline RL
Dataset

(a) Collect Positive Batch

(b) Collect Negative Batch

(c) Model Update

(d) Evaluation

re-evaluatation

1
2
.
.

Zs

Zs

Zs

Za
+

Za
-

Za
+

Za
+

Top B
actions

Za
-

SORT

Action
Dataset

- Za
+

B

Figure 2: Training and evaluation procedure for actor-critic: (a) shows sampling of positive
samples from the offline RL dataset. Each sample contains current molecule mt, target molecule
mn, reactant signature rsigt and product signature psigt . The sample is passed through the embedding
module to create Zs and Z+

a , the state and positive action representations. (b) shows the creation of
negative samples by randomly sampling action embeddings other than Z−

a (c) shows the inputs to
the actor and critic losses - the actor loss is calculated over the action embeddings Z+

a and Z−
a , and

the critic loss is calculated over the Q value. The gradients are then used to update the two models.
(d) shows the evaluation procedure. First, the actor’s prediction is used to order the action dataset
according to the Euclidean distance from the prediction to create to select the top BA actions. These
are sent for re-evaluation to the critic. These are sorted by the critic’s Q values and the top B actions
are returned.

Algorithm 2 Pseudocode for generating molecules similar to target molecule
Inputs: list of source-target pairs M0, steps N , GIN, actor, critic, action dataset, branching factor
B, actor’s branching factor BA

Output:
1: Get action embeddings Da using GIN.
2: for (i = 0; i < N ; i++) do
3: Init Mi+1 as an empty list
4: for each molecule pair m in Mi do
5: Predict action embeddings Z on m using actor.
6: Get top BA actions from action dataset by closest Euclidean distance between Z and Da.
7: Get Q values for m and the BA actions using critic.
8: Get top B actions from these BA according to the highest Q values
9: Get products by applying above B actions on m’s source molecule and add it to Mi+1

along with m’s target.
10: end for
11: end for
12: Return MN

5.1 DATASETS

We generate an offline RL dataset with trajectories of length 5 as described in section 4.4 containing
100,000 samples, which we further subdivide into 80,000 and 20,000 for training and validation.
The test dataset contains 20,000 samples for evaluation.

6



Under review as a conference paper at ICLR 2024

5.2 TRAINING SETUP

We use a Graph Isomorphism Network(GIN) (Xu et al., 2018) for molecular embeddings and an
actor-critic model for learning the policy. We refer the reader to the supplementary document for
details on the architecture of the models and hyperparameters used.

5.3 BASELINES

We compare our method with similarity-based optimization methods. Towards that effect, we train
two baseline models in an online RL fashion using PPO (Schulman et al., 2017). The first baseline
model is only given rewards for similarity, and the second is given rewards as a combination of sim-
ilarity and QED. For computing molecular similarity, we use Tanimoto similarity between Morgan
Fingerprints with radius 2 as Zhou et al. (2019). We refer to it simply as ’similarity’ henceforth.

1. S model refers to the model trained to optimize similarity. Reward is given as:

rt = sim(mt,mn)

Where mt is the molecule at time t and mn is the target molecule.
2. Q+S model refers to the model trained to optimize similarity and QED. We define the

reward according to Zhou et al. (2019):

rt = w × sim(mt,mn) + (1− ω)×QED(mt)

We choose ω = 0.4 in our experiments as it is the highest ω in their work such that the
relative improvement of QED is not centered close to zero.

Following Gottipati et al. (2020), we also train a Random Search baseline. In this baseline, initially,
a random molecule is chosen m0 from the set of start molecules and a random action is applied on
it to produce m1. This is repeated until a termination condition of the trajectory is met; either the
maximum length of trajectory is achieved or no actions are applicable on the molecule.

Details on hyperparameters used for training are provided in the supplementary material.

5.4 EVALUATION

We evaluate each model on their generated molecules with targets as five trypsin inhibitors from
Hartenfeller et al. (2012). Starting molecules were selected from Enamine Building Block cata-
logue 1 Global Stock. They were filtered using highest similarity between the starting molecules
and targets, highest similarity between the scaffolds (using rdkit’s GetScaffoldForMol function) of
starting molecules and targets, and the maximum common subsequence (using rdkit’s FindMCS
function) between starting molecules and targets to select 200 unique starting molecules per target.

Then the generation procedure was run on all 1000 pairs as described in 4.7.

We compare the mean similarity and min, max and mean QED over 5 sets containing the top 1, 10,
102, 103 and 104 of generated molecules by similarity. We also evaluate the set of molecules on
validity, uniqueness and novelty from Brown et al. (2019).

Following Hartenfeller et al. (2012), we run the generation procedure for N = 4 timesteps and
branching factor B = 10. We choose the actor’s branching factor BA = 50.

The Random Search baseline involves no training component and is directly used for the generation
procedure. It is run 200 times for each target for a fair comparison with the other models.

6 RESULTS AND DISCUSSION

Table 1 shows the results for the three models: S model, Q+S model and LOGRL. Figure 3 shows
the distributions of similarity and QED for all the models for the set of 104 molecules with the
highest similarity.

1https://enamine.net/building-blocks

7

https://enamine.net/building-blocks


Under review as a conference paper at ICLR 2024

Method Mols Mean
sim

QED
Min

QED
Mean

QED
Max

Val Uniq Nov

Random
Search

1 0.477 0.483 0.483 0.483 1 1 1
10 0.45 0.353 0.448 0.559 1 1 1
102 0.417 0.109 0.418 0.841 1 1 1
103 0.377 0.041 0.385 0.841 1 1 1
104 0.333 0.022 0.316 0.929 1 1 1

S model

1 0.694 0.289 0.289 0.289 1 1 1
10 0.618 0.12 0.201 0.289 1 1 1
102 0.554 0.049 0.206 0.712 1 0.99 1
103 0.499 0.024 0.262 0.923 1 0.999 1
104 0.439 0.013 0.302 0.946 1 0.9988 1

Q+S
model

1 0.703 0.294 0.294 0.294 1 1 1
10 0.652 0.264 0.401 0.681 1 1 1
102 0.59 0.102 0.299 0.681 1 1 1
103 0.523 0.029 0.226 0.845 1 0.999 1
104 0.45 0.013 0.261 0.942 1 0.9997 1

LOGRL

1 0.791 0.262 0.262 0.262 1 1 1
10 0.761 0.127 0.244 0.321 1 1 1
102 0.704 0.088 0.294 0.624 1 1 1
103 0.634 0.032 0.3 0.791 1 1 1
104 0.56 0.018 0.291 0.889 1 0.9999 1

Table 1: Table of results. The Three baseline models: Random Search, S model and Q+S model, and
our proposed LOGRL model are evaluated for the generated molecules on the top 10n molecules
based on the highest similarity (’Mols’ column). The ’Mean sim’ column represents the mean
similarity among the chosen molecules according to the ’Mols’ column. ’QED Min’, ’QED Mean’,
and ’QED Max’ represent the min, mean, and max QED values from the same set of molecules.
’Val’, ’Uniq’, and ’Nov’ represent validity, uniqueness, and novelty according to Brown et al. (2019)
from these set of molecules. The metrics of Random Search are not highlighted as its purpose is
to provide a base of comparison for other models and its generated molecules would not be lead
optimization candidates.

Similarity comparison: Random Search vs optimization methods - The Random Search baseline
results in molecules with low similarity values. This is natural since the baseline is not given any
information about the target molecules. The significantly higher values of mean similarity of the
other models indicate that the training of these models was successful and the generated molecules
from these models can be further evaluated for lead optimization.

Similarity comparison: LOGRL vs online RL baselines - LOGRL outperforms both online RL
baselines for mean similarity on all of the molecule sets. This shows that the similarity-agnostic
model trained on the task of source-to-target path prediction better learns how to generate molecules
similar to the target.

Similarity comparison: Q+S model vs S model - The two baseline models perform very similar
to each other for mean similarity, with Q+S model slightly outperforming S model for all molecule
sets. This was surprising as the Q+S model is given very less weight for similarity as compared to
QED. But we found that Işık & Tan (2021)’s experiments sometimes show similar trends in their
Table 3 where they show results for different values of ω. We attribute it to some correlation between
similarity and QED, particular to the source and target molecules.

For lead optimization, high similarity is a more restrictive constraint than a high QED. To test the
utility of the generated molecules, we performed one more analysis. From the set of 104 molecules,
we tested the stats for all the molecules with QED ≥ 0.7. LOGRL generated 73 such molecules with
a mean similarity of 0.54 and a maximum similarity of 0.65. Q+S model, on the other hand, gener-

8



Under review as a conference paper at ICLR 2024

Figure 3: Distributions of Similarity and QED for the top 10000 molecules (by similarity) generated
by the three models: S model, Q+S model and LOGRL.

ated 204 molecules with a mean similarity of 0.44 and max similarity of 0.53, which is lower than
even the mean similarity of the molecules generated by LOGRL. This shows that though LOGRL
generated less molecules with high QED, the molecules are more likely to be lead candidates than
the Q+S molecules due to their much higher similarity. In fact, the low QED for LOGRL could also
be caused by a correlation between similarity and QED due to the target molecules. This is due to
the five trypsin molecules having low QED values (0.277, 0.356, 0.145, 0.159, 0.224) which might
result in molecules with higher similarity having lower QED.

We acknowledge that the low performance of Q+S model can be attributed to it being a multi-
objective optimization task. By addressing the challenges in multi-objective RL, it would be possible
to improve the results. This also compels us to point out the simplicity of the LOGRL model which
is able to outperform the Q+S model which is the commonly explored method in prior works (Zhou
et al., 2019; Işık & Tan, 2021).

We attain perfect validity and novelty across all our models. This is a consequence of our problem’s
unique design; the perfect validity is due to the utilization of reaction rules, ensuring that each
generated product represents a chemically valid molecule. The perfect novelty stems from having a
single target for comparison against the generated set of molecules. None of the generated molecules
successfully reaches the target, likely attributed to the absence of the target within the search space
defined by our problem, given the initial molecules and set of mined actions. The near-perfect
uniqueness is a result of our design, which incorporates an extensive search space. Despite the
vastness of possibilities, there exist multiple paths to reaching a molecule, owing to the independent
nature of actions when applied to different functional groups of the starting molecule. Consequently,
our model excels by seldom generating identical molecules.

We refer the reader to the supplementary material for examples of generated molecules.

7 CONCLUSION

We develop a framework for lead optimization as forward synthesis, thereby inducing synthesis-
ability as part of the design. We propose LOGRL, an algorithm for this framework using goal-
conditioned reinforcement learning that does not use similarity during its training procedure. LO-
GRL, trained on a different task of source-to-target path prediction is able to generate molecules
with significantly higher similarity than RL methods that optimize for similarity. We also suggest
a unique generation procedure that allows generating a large number of molecules such that the
property optimization task can be performed post-generation as a search.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Sungsoo Ahn, Junsu Kim, Hankook Lee, and Jinwoo Shin. Guiding deep molecular optimization
with genetic exploration. Advances in neural information processing systems, 33:12008–12021,
2020.

Andreas Bender and Robert C Glen. Molecular similarity: a key technique in molecular informatics.
Organic & biomolecular chemistry, 2(22):3204–3218, 2004.

Xavier Bresson and Thomas Laurent. A two-step graph convolutional decoder for molecule gener-
ation. arXiv preprint arXiv:1906.03412, 2019.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
models for de novo molecular design. Journal of chemical information and modeling, 59(3):
1096–1108, 2019.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of cheminfor-
matics, 1:1–11, 2009.

Tianfan Fu, Cao Xiao, Xinhao Li, Lucas M Glass, and Jimeng Sun. Mimosa: Multi-constraint
molecule sampling for molecule optimization. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 35, pp. 125–133, 2021.

Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu,
Simon Blackburn, Karam Thomas, Connor Coley, Jian Tang, et al. Learning to navigate the
synthetically accessible chemical space using reinforcement learning. In International conference
on machine learning, pp. 3668–3679. PMLR, 2020.

Markus Hartenfeller, Heiko Zettl, Miriam Walter, Matthias Rupp, Felix Reisen, Ewgenij Proschak,
Sascha Weggen, Holger Stark, and Gisbert Schneider. Dogs: reaction-driven de novo design of
bioactive compounds. PLoS computational biology, 8(2):e1002380, 2012.

Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane,
Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley, Fredrik Heintz,
et al. A practical guide to multi-objective reinforcement learning and planning. Autonomous
Agents and Multi-Agent Systems, 36(1):26, 2022.

Han Huang, Leilei Sun, Bowen Du, and Weifeng Lv. Conditional diffusion based on discrete graph
structures for molecular graph generation. arXiv preprint arXiv:2301.00427, 2023.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.
URL http://jmlr.org/papers/v23/21-1342.html.

James P Hughes, Stephen Rees, S Barrett Kalindjian, and Karen L Philpott. Principles of early drug
discovery. British journal of pharmacology, 162(6):1239–1249, 2011.

Rıza Işık and Mehmet Tan. Automated molecule generation using deep q-learning and graph neural
networks. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
pp. 2237–2244. IEEE, 2021.

Woosung Jeon and Dongsup Kim. Autonomous molecule generation using reinforcement learning
and docking to develop potential novel inhibitors. Scientific reports, 10(1):22104, 2020.

Wengong Jin, Connor Coley, Regina Barzilay, and Tommi Jaakkola. Predicting organic reaction
outcomes with weisfeiler-lehman network. Advances in neural information processing systems,
30, 2017.

Kentaro Kawai, Naoya Nagata, and Yoshimasa Takahashi. De novo design of drug-like molecules
by a fragment-based molecular evolutionary approach. Journal of chemical information and mod-
eling, 54(1):49–56, 2014.

10

http://jmlr.org/papers/v23/21-1342.html


Under review as a conference paper at ICLR 2024

Xiangzhe Kong, Zhixing Tan, and Yang Liu. Graph piece: Efficiently generating high-quality molec-
ular graphs with substructures. 2021.

Maksim Kuznetsov and Daniil Polykovskiy. Molgrow: A graph normalizing flow for hierarchical
molecular generation. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pp. 8226–8234, 2021.

Yurim Lee, Gydam Choi, Minsung Yoon, and Cheongwon Kim. Genetic algorithm for constrained
molecular inverse design. arXiv preprint arXiv:2112.03518, 2021.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International Conference on Machine Learning, pp. 7192–7203. PMLR, 2021.

Changsheng Ma and Xiangliang Zhang. Gf-vae: a flow-based variational autoencoder for molecule
generation. In Proceedings of the 30th ACM international conference on information & knowl-
edge management, pp. 1181–1190, 2021.

Łukasz Maziarka, Agnieszka Pocha, Jan Kaczmarczyk, Krzysztof Rataj, Tomasz Danel, and Michał
Warchoł. Mol-cyclegan: a generative model for molecular optimization. Journal of Cheminfor-
matics, 12(1):1–18, 2020.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of cheminformatics, 9(1):1–14, 2017.

Shengmin Piao, Jonghwan Choi, Sangmin Seo, and Sanghyun Park. Self-edit: Structure-constrained
molecular optimisation using selfies editing transformer. Applied Intelligence, pp. 1–13, 2023.

Aravind Sankar, Sayan Ranu, and Karthik Raman. Predicting novel metabolic pathways through
subgraph mining. Bioinformatics, 33(24):3955–3963, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang.
Graphaf: a flow-based autoregressive model for molecular graph generation. arXiv preprint
arXiv:2001.09382, 2020.

Niclas Ståhl, Goran Falkman, Alexander Karlsson, Gunnar Mathiason, and Jonas Bostrom. Deep re-
inforcement learning for multiparameter optimization in de novo drug design. Journal of chemical
information and modeling, 59(7):3166–3176, 2019.

Mengying Sun, Jing Xing, Han Meng, Huijun Wang, Bin Chen, and Jiayu Zhou. Molsearch: search-
based multi-objective molecular generation and property optimization. In Proceedings of the 28th
ACM SIGKDD conference on knowledge discovery and data mining, pp. 4724–4732, 2022.

Youhai Tan, Lingxue Dai, Weifeng Huang, Yinfeng Guo, Shuangjia Zheng, Jinping Lei, Hongming
Chen, and Yuedong Yang. Drlinker: Deep reinforcement learning for optimization in fragment
linking design. Journal of Chemical Information and Modeling, 62(23):5907–5917, 2022.

Yunhao Tang and Alp Kucukelbir. Hindsight expectation maximization for goal-conditioned re-
inforcement learning. In International Conference on Artificial Intelligence and Statistics, pp.
2863–2871. PMLR, 2021.

Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your distance:
Solving sparse reward tasks using self-balancing shaped rewards. Advances in Neural Information
Processing Systems, 32, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. Advances in neural information processing
systems, 31, 2018.

11



Under review as a conference paper at ICLR 2024

Junchi Yu, Tingyang Xu, Yu Rong, Junzhou Huang, and Ran He. Structure-aware conditional vari-
ational auto-encoder for constrained molecule optimization. Pattern Recognition, 126:108581,
2022.

Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 617–626, 2020.

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of
molecules via deep reinforcement learning. Scientific reports, 9(1):10752, 2019.

12


	Introduction
	Related Works
	Background
	Reinforcement Learning
	Goal Conditioned Reinforcement Learning
	Offline Reinforcement Learning

	Methods
	Problem Setup
	Reaction Rules as Actions
	State and Action Representations
	Offline RL dataset
	Negative Action Selection Strategy
	Rewards and Loss
	Training and Generation Algorithms

	Experiments
	Datasets
	Training Setup
	Baselines
	Evaluation

	Results and Discussion
	Conclusion

