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ABSTRACT

The design of environments plays a critical role in shaping the development and
evaluation of reinforcement learning (RL) algorithms. While existing benchmarks
have supported significant progress in both single-agent and multi-agent settings,
many real-world systems involve multi-stage structures with tightly coupled de-
cision points at each stage. These settings require agents not only to perform
well within each stage but also to coordinate effectively across them. We in-
troduce the Totally Accelerated Battle Simulator (TABS), a complex multi-stage
environment suite implemented in JAX to enable accelerated training and scal-
able experimentation. Each TABS task consists of sequential stages with in-
terdependencies, where only the output of one stage is forwarded to the next.
This multi-stage structure makes effective exploration challenging, often steer-
ing agents toward locally optimal behaviors that limit overall performance. Our
empirical analysis shows that standard RL baselines struggle to solve TABS
tasks, illustrating the difficulty of learning coherent strategies across interdepen-
dent stages. TABS provides a controlled and extensible framework for studying
multi-stage decision-making challenges, supporting future research on RL meth-
ods capable of operating effectively in structured domains. Our code is available
at: https://anonymous.4open.science/r/TABS-0E4B.

1 INTRODUCTION

Deep reinforcement learning (RL) provides a scalable framework for solving complex sequential
decision-making problems by leveraging reward functions to specify desired behaviors. While
prior work has achieved impressive results in single-agent settings (Mnih et al., 2013; Schulman
et al., 2017; Hessel et al., 2018; Hafner et al., 2025), subsequent research has increasingly focused
on multi-agent scenarios (Rashid et al., 2020; Yu et al., 2022; Gallici et al., 2024), reflecting the
prevalence of environments where multiple agents must interact, cooperate, or compete. To support
progress in this direction, multi-agent game environments have been developed (Samvelyan et al.,
2019; Carroll et al., 2019; Kurach et al., 2020; Bard et al., 2020; Ellis et al., 2023), introducing a
variety of challenges for RL agents, including partial observability, long-horizon decision-making,
high exploration requirements, and the need for effective coordination. These environments have
driven significant advancements in algorithmic research, and as a result, many of these challenges
have been extensively studied (Kuba et al., 2021; Yu et al., 2022).

Despite notable progress in addressing such challenges, existing environments typically address
these issues in isolation. Crucially, real-world systems are often highly complex and correlated
across multiple stages, emphasizing the need for methods capable of generalizing across this spec-
trum. For example, playing sports such as soccer, baseball, and hockey consists of several stages:
training, squad selection, strategy building, and gameplay. The objective is to progress through
these stages sequentially and ultimately secure victory in the game. The overall success of the pro-
cess depends not only on the quality of individual contributions but also on how effectively these
contributions are aligned and integrated.

This sequential interdependence introduces multi-stage decision-making challenges, requiring
agents to consider their long-term consequences across stages. Such multi-stage structures pose
challenges not only in designing agents that can operate across heterogeneous task domains, but
also in handling cross-stage dependencies that influence downstream performance and demand ef-
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ficient exploration strategies. These complexities highlight the need for environments and methods
that can effectively model and learn in settings with tightly coupled, stage-wise dynamics.

We introduce Totally Accelerated Battle Simulator (TABS), inspired by the popular strategic sim-
ulation game (Landfall Games, 2021), as a highly complex environment specifically designed to
present novel and challenging tasks for RL agents. TABS is structured into three sequential stages:
TABSUnitComb, where agents select unit compositions under a given budget; TABSUnitDeploy,
where the chosen units are spatially arranged on the battlefield; and TABSBattleSimulator, where
agents control units in real-time combat. TABS poses three key challenges: (1) Sequentially in-
terdependent processes, where decisions made in earlier stages directly constrain and shape the
strategic possibilities of subsequent stages; (2) Entangled credit assignment, where the environ-
ment is structured as a multi-stage process and the final return is determined only after all stages have
been completed. This makes it difficult to design training methods that accurately attribute feedback
to the decisions made at each individual stage. and (3) Exploration under multi-stage structure,
where exploration becomes less intuitive and more difficult as the agent must operate across stages
that are sequentially organized and interdependent. This poses substantial obstacles to the discovery
of globally effective strategies. Overall, TABS instigates not only the challenges present in previous
benchmarks but also those arising from interconnected multi-stage structures, further complicating
the design of agents. To analyze these challenges in practice, we consider two straightforward train-
ing methodologies: simultaneous training, in which all stages are updated jointly, and alternating
training, in which each stage is optimized sequentially while the others are held fixed.

Complex environments with long horizons and sequential interdependencies incur substantial com-
putational overhead, limiting the scalability of training and evaluation. In particular, multi-stage en-
vironments with tightly coupled stages and stage-specific transitions tend to slow down simulation,
as their structure often prevents efficient batching and parallelization. To address this, we implement
our environments in JAX (Bradbury et al., 2018), enabling efficient execution on GPUs. This end-
to-end JAX-based pipeline substantially accelerates experimentation while maintaining scalability
across diverse settings.

To summarize, this paper summarizes the following contributions:
• A Novel and Challenging Multi-Stage Environment: We introduce TABS, a complex

multi-stage environment that poses novel challenges by integrating strongly interdependent
stages, which result in entangled credit assignment and highly demanding exploration.

• Role-appropriate Heuristic Policy: We provide a heuristic policy for the multi-agent sim-
ulation stage that increases the strategic complexity of opponent behaviors, requiring agents
to adapt their tactics accordingly.

• Evaluation Across a Set of Baselines: We thoroughly benchmark the performance of a
representative selection of baselines on our environment, providing insights into learning
in highly interdependent multi-stage settings where both observation and action spaces vary
substantially between stages.

• High-Speed Computation via JAX Implementation: We implement our open-source
environment and baselines using the JAX framework, enabling efficient computation on
hardware accelerators such as GPUs.

2 BACKGROUND

Strategic Games A strategy game is a genre in which players’ uncoerced and autonomous
decision-making skills play a central role in determining outcomes. Success often depends on the
ability to balance short-term tactical actions with long-term strategic objectives, while simultane-
ously anticipating and responding to the behavior of opponents. In reinforcement learning (RL)
research, strategic games have become widely used environments for evaluating agents’ decision-
making capabilities in complex and uncertain environments. These games typically exhibit high-
dimensional state and action spaces, stochastic dynamics, imperfect information, and multi-agent
interactions, closely reflecting many of the challenges present in real-world systems.

JAX-based Environments JAX (Bradbury et al., 2018) is a Python library for high-performance
numerical computing and large-scale machine learning, providing accelerator-based array computa-
tion and program transformation. It compiles Python code into Accelerated Linear Algebra (XLA),

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Visualization of a unit’s field of view under different initial deployment locations. The
agent has only partial observability, restricted to units within its field of view. The fan-shaped region
illustrates how initial observations are constrained by deployment placement.

allowing efficient execution on hardware accelerators such as GPUs and TPUs. RL research, the
runtime of simulations and algorithms is critical, as it directly affects the efficiency, scale, and fea-
sibility of experiments. RL training typically requires extensive environment interactions, and long,
computationally intensive runs can impede research progress. JAX-based environments (Bonnet
et al.; Matthews et al., 2024; Rutherford et al., 2024) mitigate these challenges by enabling the
entire RL pipeline to run on GPUs, supporting massive parallelization of trajectory collection, elim-
inating GPU–CPU transfer bottlenecks, and leveraging just-in-time (JIT) compilation throughout
the training process. A detailed discussion of related work is provided in Appendix B.

3 TOTALLY ACCELERATED BATTLE SIMULATOR

Our proposed environment is composed of three sequentially connected stages, TABSUnitComb,
TABSUnitDeploy, and TABSBattleSimulator, which together embody the challenges discussed in
Section 1. Each stage is defined by its own observation space, action space, and transition dynamics;
however, the reward signal is provided only after the entire pipeline has been executed. These
environments are deliberately designed to be strongly interdependent, thereby creating tasks that
necessitate methods capable of modeling about interdependencies across stages. In Appendix A, we
formally describe the decision process.

3.1 UNIT COMBINATION AND DEPLOYMENT

TABSUnitComb

Current purchased 
unit composition

Enemy composition

Unit specification

Unpurchasable

Remaining budget

TABSUnitDeploy

Ally deployment

Enemy deployment

Next unit and 
Remaining units

Figure 2: Visualization of TABSUnitComb
and TABSUnitDeploy. The full size image
is in Appendix D.

The first stage, TABSUnitComb, requires the agent to
construct an allied composition by selecting units un-
der a given budget. At each decision step, the agent
chooses which unit to purchase based on the remain-
ing budget, the current list of selected units, the spec-
ifications of all units, and the fully observed enemy
composition. This process continues until the budget
is exhausted or no further purchases are possible. The
resulting unit composition serves as the initial config-
uration for all downstream stages.

The second stage, TABSUnitDeploy, tasks the agent
with strategically placing the selected units on the ally
battlefield. At each step, the agent determines a de-
ployment position for the next unit, conditioned on the
remaining units to place, the current positions of al-
ready deployed allies, the fully observed enemy lay-
out, and the specifications of all units. Deployment is
finalized once all units have been placed. A unique
aspect of this stage is spatial influence of deployment
position: each unit’s field of view in TABSBattleSimu-
lator is a directional, fan-shaped region, oriented along
its facing direction. As a consequence, the initial ob-
servations at the onset of the battle exhibit high sensitivity to the deployment configuration, as
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illustrated in Figure 1. Additional visualizations of initial observations under various deployment
configurations are provided in Appendix A.1.

3.2 MULTI-AGENT BATTLE SIMULATION

Figure 3: Visualization of TABS-
BattleSimulator. The full size im-
age is in Appendix D.

The final stage, TABSBattleSimulator, requires multiple
agents to engage in battle against enemy forces, initialized
with the unit composition and spatial deployment determined
in the preceding stages. During the battle, allied agents interact
with enemies in a decentralized manner. This stage is charac-
terized by high-dimensional shaped partial observations, dis-
crete–continuous hybrid action spaces, and complex interac-
tion systems. Each agent possesses a partial, fan-shaped ob-
servation field oriented along its facing direction, analogous
to a first-person perspective, illustrated as the gray region in
Figure 1. Within this field, agents observe the current status
(e.g., remaining health points) and specifications of all visible
allies and enemies. As a result, agents must actively rotate and
navigate the environment to detect and engage enemy units ef-
fectively.

TABSBattleSimulator defines a hybrid action space comprising six discrete actions (four directional
movements, attack or heal, and idle) coupled with a continuous rotation action. The movement prim-
itives correspond to fixed step displacements without acceleration dynamics, ensuring consistent
translational motion across actions. The rotation control is parameterized as a continuous variable
constrained within [−π/12, π/12], allowing incremental orientation adjustments at each timestep.
Discrete and continuous actions can be executed concurrently, with the discrete action applied first
followed by the rotation update. Such hybrid action spaces are prevalent in real-world domains (Li
et al., 2021), including applications in games (Masson et al., 2016; Xiong et al., 2018), as they en-
able agents to simultaneously perform discrete behaviors while fine-grained directional adjustments
in continuous space.

An interesting aspect of this stage is its interaction system among units, which incorporates a non-
targeted attack and healing mechanism, as well as a pushing mechanism based on each unit’s body
mass. While many existing battle simulation environments rely on explicit targeting systems (Berner
et al., 2019; Ellis et al., 2023; Rutherford et al., 2024), in TABS each unit attacks or heals a tar-
get only when provided the target is located within its rectangular attack or healing field and its
cooldown has elapsed. To successfully execute valid attacks, agents must coordinate their move-
ments, including rotations, with precise attack timing. Agents can exploit their embodied mass to
impede the movement of opponents, while incapacitated units remain within the arena as dynamic
obstacles that can be displaced through contact forces. Agents receive a shared reward proportional
to the difference between the total health ratios of allies and enemies, incentivizing successful attacks
or heals. At the end of an episode—when either all allies or all enemies are incapacitated—agents
receive an additional binary reward reflecting the win–loss outcome.

Figure 4: Unit portraits with names and abbreviations from left to right: Farmer (F), Assassin (S),
TheKing (K), Mammoth (M), Archer (A), Cannon (C), Deadeye (D), Healer (H), and Paladin (P).

Unit types TABS provides a total of nine distinct units, comprising four melee units, three ranged
units, and two supporter units. Each unit is characterized by multiple specification components,
encompassing physical attributes as well as attack or healing capabilities. We design unit specifica-
tions such that, broadly, melee units possess high health and speed to effectively close distance and
engage targets, whereas ranged units have lower health and speed but benefit from extended attack
range. Each unit is assigned a price proportional to its potential effectiveness. Agents must account
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Units pursue the nearest visible 
opponent within their field of 
view and rotate to align the 

target within their attack range 
before initiating an attack.

If no opponent is visible, units 
rotate counter-clockwise to 
search for potential targets.

(a) Standard behaviors

Ranged units attempt to 
maintain a separation from 
opponent of at least a fixed 

proportion of their attack range.

Assassin prioritize targeting the 
opponent with the lowest 

maximum health within their field 
of view, attempting to remain 
outside the target’s view field.

(b) Special behaviors for ranged units and Assassin

Figure 5: Operation of the TABS heuristic policy. Units of the same color belong to the same team.
The gray region indicates a unit’s field of view, and the orange region denotes its attack range.

for both unit attributes and prices when selecting compositions, balancing cost-effectiveness with
strategic potential. Detailed specifications of each unit are provided in Appendix A.2.

3.3 ROLE-APPROPRIATE HEURISTIC POLICY

In the TABSBattleSimulator, we provide a role-appropriate heuristic policy. This policy can be
applied in multiple ways: assigning it to the opposing side simplifies the problem into a cooper-
ative multi-agent setting, while assigning it to all units reduces TABS to a purely discrete-action
problem (TABSUnitComb and TABSUnitDeploy). To ensure diversity and sophistication in their
strategies, the policy is differentiated across unit types, with behaviors tailored to roles defined by
each unit’s specifications. The StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019),
which is similar to the TABSBattleSimulator, is a widely adopted benchmark for evaluating coop-
erative behaviors in multi-agent combat environments. However, Rutherford et al. (2024) (SMAX)
pointed out limitations of the original benchmark, including the failure of agents to actively pursue
enemy units, which led to unrealistic combat dynamics (Samvelyan et al., 2019), and the unrealis-
tic assumption of access to global observations, thereby encouraging more aggressive and realistic
behaviors (Ellis et al., 2023). Although SMAX mitigates these limitations, it still applies uniform
decision rules across all unit types, without accounting for their distinct roles or capabilities. As
a result, it fails to fully exploit the strategic potential of heterogeneous unit compositions, limiting
both the expressiveness and complexity of scenario design.

Our heuristic policy incorporates a heterogeneous set of units with distinct functional roles—such
as melee, ranged, and supporter units—each necessitating role-specific decision-making strategies.
The integration of expert-designed, role-aware heuristic policies in TABS enables the environment
to support richer and more strategically demanding scenarios. These heuristics induce opponent
behaviors that differ meaningfully across unit roles, thereby fostering task designs in which unit
selection, deployment, and battle decisions are interdependent and contingent on the configuration
of opposing forces. This functionality renders TABS a flexible and challenging testbed for evaluating
multi-stage decision-making and multi-agent coordination.

Figure 5 explains the operation of our role-appropriate strategic heuristic policy. Units are broadly
categorized into two types: melee and ranged. We categorize these two types based on whether their
attack or heal range exceeds a predefined threshold. Both types follow a set of standard behavioral
rules, as shown in Figure 5a: they pursue the nearest visible opponent (or injured ally in the case
of supporters) and rotate to align the target within their attack or heal range, thereby making it
attackable or healable. If no target is visible, they rotate counter-clockwise to search for potential
targets. Units always execute an attack action immediately once the cooldown period has elapsed,
provided the target is within attack or heal range; otherwise, they perform either a movement and
rotation action. Support units exclusively target allies, restoring their health upon a successful action.
If at least one ally is injured, supporters restrict their focus to those units, prioritizing the nearest
injured ally for healing. We provide both melee and ranged supporter types, each adhering to the
strategic behavioral rules of their respective unit category.
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Table 1: TABS scenarios and their corresponding unit compositions. The numbers denote the quan-
tity of each unit, while the letters represent unit types: Farmer (F), Assassin (S), The King (K),
Mammoth (M), Archer (A), Cannon (C), Deadeye (D), Healer (H), and Paladin (P).

Scenario Composition Design

2F1K2A1H Classic composition (tanker, dealer, supporter)
1K2S Long-range dealer attack composition

1M2C1P Frontline tank and rear high-attack ranged attackers
7F2D1H War of attrition

To enable units to exhibit advanced, strategy-driven behaviors, we introduce two specialized strate-
gies, as illustrated in Figure 5b. Ranged attackers retreat to maintain a distance from opponents of
at least a fixed proportion of their attack range. This “kiting” behavior forces opponents to execute
more complex movements to engage effectively. The Assassin, a melee unit, follows a distinctive
strategy consistent with its name: it targets the rear of the visible opponent with the lowest maxi-
mum health, leveraging its high movement speed to execute opportunistic attacks while attempting
to remain outside the target’s field of view. This behavior introduces additional challenges, requiring
careful and deliberate unit composition and deployment strategies. We inject controllable noise via
hyperparameters, thereby introducing stochasticity into the behavior and modulating the behavioral
optimality of the heuristic policy. Further implementation details of the heuristic policy are provided
in Appendix A.3.

3.4 SCENARIOS

We provide a set of predefined scenarios that take into account the attributes and strategic behaviors
of each unit type. These scenarios are categorized based on the available budget relative to the total
cost of the enemy composition. The enemy composition and deployment in each scenario are care-
fully crafted to achieve specific objectives. Table 1 presents the predefined scenarios along with the
underlying design intentions. Their designs are inspired by strategies that are commonly employed
in real strategic games. Each scenario is associated with three different budget levels reflecting vary-
ing levels of budget (abundant, medium, tight). The medium budget level is set equal to the total cost
of the enemy composition, enabling performance comparison under same conditions. The abundant
budget level provides additional resources, allowing the purchase of more expensive units if cheaper
enemy units are removed, while the tight budget level imposes the opposite constraint.

A higher budget allows the agent to recruit expensive units and field larger forces, thereby reducing
the difficulty of configuring an effective ally troop. Conversely, a lower budget constrains feasible
unit compositions, forcing the agent to carefully balance cost-effectiveness with strategic potential,
while also mastering deployment and combat against a numerically or qualitatively superior enemy
force. In TABS, the entire process is initialized according to the specified budget characteristics.
In Appendix A.4, we provide detailed descriptions of each scenario along with simulation results
obtained using manually crafted ally compositions and deployments, evaluated under varying budget
constraints.

4 EXPERIMENTS

We conduct a series of experiments to evaluate the performance of baseline algorithms in our pro-
posed environment. First, we discuss the challenges of agent design and training approaches in
the multi-stage environment. Second, we compare training results across scenarios under varying
budget levels. Third, we analyze the exploration challenges induced by our environment’s design.
Finally, we conduct a scalability study to demonstrate that the environment can efficiently leverage
parallel execution.

4.1 TRAINING METHODS

TABS, a multi-stage environment, presents several inherent challenges for training agents. The
initial observations of later environments depend on the outcomes of preceding stages, further com-
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Figure 6: Average episode win rates of baselines trained with alternating and simultaneous methods
across four scenarios and three budget levels. Results are averaged over five random seeds, with
shaded regions indicating the standard error.

pounding the training difficulty. Specifically, TABSUnitDeploy operates on the output of TAB-
SUnitComb (the selected ally unit composition), and TABSBattleSimulator operates on the output
of TABSUnitDeploy (the deployed ally units). Thus, the initial state of each stage varies according to
decisions made in preceding stages, which reduces training stability. Training a single policy across
all stages is challenging, because each stage in TABS is defined by distinct state and action spaces as
well as heterogeneous task settings (ranging from single-agent to multi-agent control). This stands
in contrast to prior benchmarks such as Cobbe et al. (2020), which focus on procedurally generated
game-like environments that maintain consistent state and action representations across tasks.

A straightforward approach to handle this is to employ a stage-conditioned mixture of heterogeneous
stage policies. We first collect trajectories by rolling out the entire pipeline and assign the win–lose
outcome to the last state–action pair of experiences in TABSUnitComb and TABSUnitDeploy, while
all other pairs receive a reward of 0. This design implies that feedback for early-stage decisions is
inherently delayed and aggregated, since the final outcome is determined only after the entire multi-
stage pipeline has been completed. Moreover, because each stage involves distinct policy structures
and decision spaces, devising efficient exploration strategies becomes particularly challenging.

In our experiments, we investigate two straightforward approaches for training the agent, formulated
as a stage-conditioned mixture of stage policies: simultaneous training and alternating training. In
simultaneous training, all policies are updated jointly using their respective trajectories from the
same episode. In alternating training, by contrast, each policy is updated exclusively for several
consecutive iterations while the others remain frozen; once updates for one policy are completed,
training shifts to the next in an alternating cycle. We further adopt controlled experimental settings
to facilitate a more precise analysis of the challenges posed by our environment. In particular, we
employ fixed scenarios and hold the opponent’s policy constant by using a heuristic controller.

Baselines We evaluate a suite of standard baselines across the stages. For TABSUnitComb and
TABSUnitDeploy, we employ PPO (Schulman et al., 2017) and PQN (Gallici et al., 2024), while for
TABSBattleSimulator we adopt MAPPO (Yu et al., 2022) and IPPO (De Witt et al., 2020). For end-
to-end training, we construct composite agents by combining the corresponding baselines across all
stages and train the resulting set of stage policies using both simultaneous and alternating training
methods. Since we employ the same algorithms for both TABSUnitComb and TABSUnitDeploy, we
obtain a total of eight baselines from the combination of four algorithms with two training methods.
We denote each baseline by its training method—ST (simultaneous training) or AT (alternating
training)—followed by the adopted policies (e.g., ST-PPO-MAPPO).
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Figure 7: Illustration of training outcomes across different random seeds in 1M2C1P scenario with
the abundant budget level. Each panel shows unit deployment (top), the corresponding win rate
(bottom), and average unit usage (right).

4.2 TRAINING IN MULTI-STAGE ENVIRONMENT

We evaluate the baselines across scenarios with varying budget levels, using two training methods.
As shown in Figure 6, ST-PPO-MAPPO achieves the strongest performance across most scenarios,
except in 2F1K2A1H and 7F2D1H with medium budget levels, where PQN-MAPPO performs bet-
ter. Overall, PPO generally outperforms PQN, although PQN occasionally succeeds in environments
where PPO fails. Comparing MAPPO and IPPO, MAPPO demonstrates superior performance. Re-
garding training approaches, simultaneous training typically leads to more efficient learning than
alternating training and exhibits lower performance variance. We further provide several interesting
metrics including not only episode return but also first-kill rate, total episode damage dealt, attack
success rate, and average unit counts for each unit. We illustrate these results in Appendix C.6.

Baselines achieve higher performance in 1K2S compared to other scenarios. The 1K2S consists of
three melee units without any support units, making it relatively easier to learn effective strategies
against them than against ranged attackers. As expected, performance improves with larger budgets,
and under abundant budget conditions, agents can easily defeat their opponents. In particular, ST-
PPO-MAPPO achieves over a 60% win rate in 7F2D1H-Abundant, where 7F2D1H represents a
large-scale troop scenario featuring the maximum number of enemy units among all settings.

Figure 6 presents that most baselines exhibit high variance across random seeds. We observe that
simple entropy regularization did not alleviate this phenomenon, implying the inherent difficulty in
exploration. We attribute this high variance to the multi-stage nature of the environment, where the
output of one stage becomes the constrained input for the next. This dependency forces agents to
specialize to the narrow distributions induced by earlier stages, thereby limiting generalization and
leading to convergence toward local optima. While such phenomena can also arise in non-staged
environments, the inherent pipeline structure of multi-stage settings makes effective exploration
particularly challenging.

4.3 EXPLORATION IN MULTI-STAGE ENVIRONMENT

To analyze the exploration difficulty in TABS, we conduct additional experiments under controlled
settings. Specifically, we train agents in TABSUnitComb and TABSUnitDeploy while employing
the heuristic policy with varying levels of stochasticity: constant low noise (Expert) and linearly
decreasing noise up to the Expert level by approximately 50% of training (Schedule). CD-PPO
denotes training PPO in the first two stages while employing the heuristic policy with varying levels
of stochasticity. Figure 7 presents unit deployment and average unit usage as a function of win rate
at specific environment steps across baselines in 1M2C1P under the abundant budget level. This
scenario features a balanced unit composition consisting of two melee units (a tanker and a support)
and two ranged attackers.

The results in TABSUnitComb significantly influence the configuration of subsequent stages and
constrain the available search space, highlighting the importance of exploration in this stage. Al-
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though the agent attempts to explore diverse unit combinations during early training, it tends in
TABS to repeatedly commit to combinations that yield higher initial returns due to increasingly sta-
ble initializations, thereby failing to acquire proficiency across a broader set of units. While CD-PPO
purchases a diverse set of unit types and, despite poor early performance, CD-PPO-Schedule suc-
cessfully converges to an optimal policy as the proficiency of the heuristic policy increases linearly,
ST-PPO-MAPPO increasingly relies on a limited subset of units as training progresses, resulting in
a lower win rate, as shown in Figure 7.

To analyze seed sensitivity, we select two seeds that exhibit large performance discrepancies and
compare their final average unit usage at three checkpoints. We observe that both seeds struggle to
explore diverse unit compositions and deployment strategies. Early-stage restrictions imposed by
the chosen seeds lead to limited initial compositions, resulting in significant performance discrep-
ancies. From the multi-stage perspective, early biases arising from the structural difficulty of explo-
ration are reinforced, preventing the agent from revisiting alternative strategies. Since the stages are
distinct and sequentially coupled, designing direct exploration strategies is inherently challenging,
highlighting the need for more efficient mechanisms specifically tailored to TABS.

4.4 ENVIRONMENT PARALLELIZATION EXPERIMENTS

27 29 211 213

Number of Parallel Environments
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Figure 8: Speed under environ-
ment parallelization on an RTX
4090.

To assess the scalability of our environment, we conduct ex-
periments measuring throughput as a function of the number of
parallel environments executed on a single GPU. Specifically,
we report the effective environment steps per second while
varying the degree of parallelization. Three stages are denoted
as Comb, Deploy, and Battle, respectively, and n represents the
maximum number of units in the final stage. The results, sum-
marized in Figure 8, show that throughput steadily increases
with the number of parallel environments, though the rate of
improvement diminishes once hardware constraints such as
GPU memory bandwidth become a limiting factor. These find-
ings confirm that our environment can fully leverage acceler-
ators, enabling efficient large-scale training of agents. Details
of the hardware configuration are provided in Appendix C.

5 CONCLUSION

We introduce TABS, a multi-stage reinforcement learning environment that explicitly captures se-
quential interdependencies across distinct stages, entangled credit assignment, and provides a role-
appropriate heuristic policy that serves as a competitive control mechanism. Our experiments
demonstrate that training in such settings entails inherent challenges, as agents can easily converge
to suboptimal strategies due to the difficulty of exploration in strongly interdependent multi-stage
environments. These results underscore the need for algorithms capable of both efficient exploration
and robust learning in multi-stage settings. In addition, we show that the environment scales effec-
tively under parallelization, enabling efficient and accelerated large-scale training on GPUs. We
hope that TABS will facilitate research in areas including end-to-end training, entangled credit as-
signment, handling heterogeneous action and observation spaces, and exploration. We believe that
an agent capable of tackling TABS would represent a significant advancement in the field, and we
look forward to seeing how the community leverages this benchmark for future developments.

Future Work While the current environment provides functional implementations, opportunities
remain for further enhancing the degree of interdependency across stages. As future work, we plan to
extend the deployment stage by introducing terrain obstacles, requiring agents to account for spatial
constraints during unit placement, and to enrich the battle stage by allowing agents to strategically
exploit these obstacles in combat. In addition, we aim to enhance the environment engine to more
closely align with Landfall Games (2021), for example by incorporating unit-specific skills beyond
static attributes and restricting agents to a first-person point of view. These extensions are expected
to amplify cross-stage dependencies, thereby intensifying the inherent challenges of multi-stage
decision-making.

9
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A DETAILS ON TABS

We focus on sequentially combined environments inspired by strategy-based games that naturally
incorporate interdependent substages. A prominent example is Landfall Games (2021), a popular
strategic simulation game released in 2021. Landfall Games (2021) consists of two primary stages:
first, players select their own army under a given budget and deploy their units, and second, the game
simulates a battle between the deployed units and enemy forces. Decisions made during the early
stage propagate forward, creating dependencies that significantly influence subsequent outcomes
and require players to balance immediate choices against long-term objectives. These games thus
provide natural testbeds for evaluating agents’ ability to strategically plan, reason, and generalize
across multiple interconnected stages, capturing the complexity and sequential interdependence.

We model the full decision-making process as a Decentralized Partially Observable Markov Deci-
sion Process (Dec-POMDP). We first define

Mcomb =
〈
Scomb,Acomb, Pcomb, Rcomb, γ

〉
, Mdeploy =

〈
Sdeploy,Adeploy, Pdeploy, Rdeploy, γ

〉
as single-agent MDPs for TABSUnitComb and TABSUnitDeploy, and

Mbattle =
〈
Sbattle, {A(i)

battle}
n
i=1, Obattle, Pbattle, Rbattle, γ

〉
as a cooperative multi-agent Dec-POMDP for TABSBattleSimulator. We then model the full
decision-making process as a Dec-POMDP

M =
〈
S,A,O, P,R, γ

〉
,

with the following components (stage unions and stage-gated transitions):

State space.
S = Scomb ∪ Sdeploy ∪ Sbattle,

Action space.
A = Acomb ∪ Adeploy ∪

(∏n
i=1 A

(i)
battle

)
.

Observation space.
O = Scomb ∪ Sdeploy ∪ Obattle,

i.e., observations equal states in Comb/Deploy (fully observed), and follow Obattle in Battle. For
s ∈ S,

O(o | s, a) =
{
s s ∈ Scomb ∪ Sdeploy

Obattle(obattle | s, a) s ∈ Sbattle

Reward function.

R(s, a) =


Rcomb(s, a) s ∈ Scomb

Rdeploy(s, a) s ∈ Sdeploy

Rbattle(s, a) s ∈ Sbattle

Transition Dynamics. For non-terminal states

P (s′ | s, a) =


Pcomb(s

′|s, a) s ∈ Scomb

Pdeploy(s
′|s, a) s ∈ Sdeploy

Pbattle(s
′|s, a) s ∈ Sbattle

For terminal states, we define a deterministic stage-transition function Φ : S ×A → S such that

P (s′ | s, a) =

{
δ
(
s′ = Φcomb→deploy(s, a)

)
, s ∈ Scomb, Donecomb(s),

δ
(
s′ = Φdeploy→battle(s, a)

)
, s ∈ Sdeploy, Donedeploy(s)

where δ(·) denotes an indicator distribution.

The objective of the policy π is to maximize the expected return E[
∑∞

i γirt+i]. The policy is
defined as a stage-conditioned mixture of sub-policies:

π(· | o) = 1SCombπC(· | o) + 1SDeployπD(· | o) + 1SBattleπB(· | o)
where πC, πD, πB denote the policies specialized for three stages, respectively.
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A.1 INITIAL OBSERVATION IN TABSBATTLESIMULATOR

(a) (b)

(c) (d)

Figure 9: Visualization of unit’s field of view under different initial deployment locations and unit
types. The fan-shaped region illustrates how initial observations are constrained by deployment
placement.

We visualize initial observations under different deployment configurations in Figure 9. Depending
on the deployment position, the large unit may or may not fall within the agent’s observable field.
For instance, the Mammoth is visible within the unit’s sight in Figure 9b, Figure 9c, and Figure 9d.

A.2 UNIT TYPES AND SPECIFICATIONS

Each unit is characterized by multiple specification components, including price, health, body ra-
dius, body weight, speed, attack damage, attack range, attack cooldown, sight angle, and occupied
space. We provide nine predefined units: Farmer (F), Assassin (S), TheKing (K), Mammoth (M),
Archer (A), Cannon (C), Deadeye (D), Healer (H), and Paladin (P). The Farmer is a basic unit,
serving as the weakest melee attacker but also the most cost-effective option. The Assassin is the
fastest unit and has the shortest attack cooldown. TheKing is slightly larger than most other units,
with high health and very high melee attack damage, though at a significant cost. The Mammoth is
the largest and heaviest unit—approximately four times larger and fifty times heavier than the oth-
ers—while also being slightly faster, making it well-suited for breaking through enemy formations.
The Archer, Cannon, and Deadeye are ranged attackers: the Archer has low health but moderate
attack power and long range; the Cannon has the highest attack damage and longest range but is the
slowest and most expensive; and the Deadeye has the shortest range but is the fastest among ranged
units. The Healer and Paladin are support units with a unique ability: when performing the “attack”
action, they restore health to allies instead of dealing damage. Detailed unit statistics are provided
in Table 2.

A.3 ROLE-APPROPRIATE HEURISTIC POLICY

In this section, we provide additional details of the heuristic policy that could not be fully covered
in the main text.
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Table 2: Unit statistics used in TABS. Negative attack damage values correspond to healing effects.

Name Price Health Body Radius Body Weight Speed Attack Damage Attack Range Attack Cooldown Space Occupied
Farmer (F) 120 60 1.0 1.0 1.1 14 2.5 2.5 1
Assassin (S) 430 70 1.0 1.0 1.4 22 2.5 1.5 1
TheKing (K) 1320 346 1.47 10.0 1.2 46 3.2 2.5 1
Mammoth (M) 980 685 4.25 50.0 1.2 20 3.0 6.5 4
Archer (A) 450 40 1.0 1.0 1.0 28 27.0 8.0 1
Cannon (C) 1080 100 1.0 5.2 0.5 80 40.0 10.0 1
Deadeye (D) 470 40 1.0 1.0 1.1 25 20.0 8.0 1
Healer (H) 190 25 1.0 1.0 1.0 -7 10.0 2.0 1
Paladin (P) 230 220 1.32 8.5 1.2 -6 7.5 2.0 1

Moving Algorithm All units navigate toward their designated target position. Movement is de-
termined by comparing the coordinate differences between the unit’s current position and the target
position. The axis with the largest absolute difference is prioritized, and the unit moves in the di-
rection that reduces this difference, thereby progressing toward the target location in a stepwise
manner.

Target Position. By default, each unit selects as its target position the location aligned with the
opponent’s facing direction, adjusted by the unit’s own radius. Two exceptions apply: (i) the As-
sassin unit instead selects the position behind the target, opposite to the opponent’s facing direction,
reflecting its opportunistic playstyle; and (ii) the Healer unit targets the center of its ally rather than
its front, ensuring that the healing effect is applied reliably.

Random Noise. The heuristic policy incorporates three forms of controllable stochasticity:

1. Random action noise. With probability ϵ, an agent executes one of the movement actions
chosen uniformly at random, regardless of the underlying policy. For rotation, an additional
perturbation is applied by sampling

δθ ∼ N
(
0, 1

π

2
)
,

where the sampled value is added to the rotation action at each timestep.
2. Ranged rotation noise. For ranged units, we introduce an additional Gaussian perturbation

with standard deviation ϵranger, applied on top of the intended rotation action:

δθranger ∼ N
(
0, ϵ2ranger

)
.

This noise is always combined with the executed rotation, ensuring variability in targeting
behavior.

3. Healer-specific rotation noise. For ranged healer units, we define a separate hyperparam-
eter ϵhealer to control the magnitude of rotation noise:

δθhealer ∼ N
(
0, ϵ2healer

)
.

This ensures that healing actions remain stochastic in a manner distinct from offensive
ranged units.

Together, these noise components prevent the heuristic policy from becoming overly deterministic
or optimal, while allowing fine-grained control of randomness via tunable hyperparameters ϵ, ϵranger,
and ϵhealer.

Kiting Algorithm Ranged units attempt to maintain a safe distance from opponents. Formally, let
d(u, v) denote the Euclidean distance between a ranged unit u and an opposing unit v, and let Ru

be the attack range of unit u.

For standard ranged attackers, if
d(u, v) ≤ αrangedRu,

the unit does not move toward its designated target position. Instead, it moves in the opposite
direction of the intended movement vector, thereby retreating to preserve distance while continuing
to threaten the opponent within range.
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For ranged healers, a separate threshold parameter αhealer is introduced. Specifically, if

d(u, v) ≤ αhealerRu,

the healer retreats in a similar manner, but with the additional objective of maintaining sufficient
spacing from allied units. This behavior ensures that the healer can continue to provide support
while reducing the risk of being caught in close combat or obstructing allied positioning.

Thresholds for Unit Roles Unit roles are determined based on predefined attribute thresholds.
Specifically, ranged units are defined as those with an attack range greater than or equal to 10, while
assassin units are defined as those with a movement speed greater than or equal to 1.4.

A.4 SCENARIOS

Figure 10: Illustrations of the initial deployments for the four benchmark scenarios. The red triangle
denotes the facing direction of the enemy forces.

Table 3: Budget levels (abundant, medium, tight) for each scenario.

Scenario Abundant Medium Tight
2F1K2A1H 2930 2650 2320
1K2S 2420 2180 1940
1M2C1P 3520 3370 2570
7F2D1H 2450 1970 1720

We provide a set of predefined scenarios that specify the initial unit compositions and deployment
layouts for the enemy side, which serve as fixed adversaries throughout our experiments. Each
scenario determines both the unit types and their spatial arrangement on a fixed grid. The red
triangle denotes the facing direction of the enemy forces. Illustrations of the deployments are shown
in Figure 10, and the corresponding budget levels for each scenario are summarized in Table 3.

B RELATED WORK

Multi-stage RL Environments Deep RL has recently achieved remarkable success across a wide
range of complex, long-horizon environments (Machado et al., 2018; Fan et al., 2022). To promote
stronger generalization, Cobbe et al. (2020) introduced a suite of procedurally generated game-like
environments organized into a sequential pipeline. However, the interconnections between suc-
cessive stages in their framework are weak, and all stages share a unified action and observation
space. In contrast, the stages in TABS exhibit strong interdependencies—where outcomes from ear-
lier stages directly shape later ones—and feature distinct action and observation spaces, posing a
significant challenge for agent design.

Game-based Multi-agent RL Environments Game-based environments have become a widely
adopted domain for evaluating multi-agent scalability, coordination, cooperation, and collaboration.
Prior work has introduced a diverse set of such environments, including StarCraft II (Vinyals et al.,
2019), which has inspired multiple environment suites (Samvelyan et al., 2019; Ellis et al., 2023;
Rutherford et al., 2024); Overcooked (Ghost Town Games, 2016), widely used for multi-agent co-
ordination research (Carroll et al., 2019; Rutherford et al., 2024); the Google Research Football
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environment (Kurach et al., 2020); and traditional card and board games (e.g., poker, tic-tac-toe)
(Lanctot et al., 2019). While these works primarily focus on single-stage environments, we target
sequentially combined environments, reflecting the interwoven stages characteristic of many real-
world problems. Although Xi et al. (2023) investigated a two-stage strategy card game, we extend
this setting to a n-player environment.

C EXPERIMENTAL DETAIL

C.1 ALTERNATING AND SIMULTANEOUS TRAINING

We present pseudocode for both alternating and simultaneous training strategies in Algorithms 1 and
2. In both cases, the policies πC(θC), πD(θD), and πB(θB)—corresponding to TABSUnitComb,
TABSUnitDeploy, and TABSBattleSimulator stages, respectively—are trained end-to-end through
full pipeline rollouts, with the key difference lying in the parameter update schedule.

Algorithm 1 Alternating Training for Multi-Stage Agents

Require: Agents πC(θC), πD(θD), πB(θB); total outer iterations T ; update steps per stage: KC ,
KD, KB .

1: Initialize parameters θC , θD, θB
2: for t = 1 to T do
3: // TABSUnitComb training phase
4: for k = 1 to KC do
5: Rollout full pipeline (πC , πD, πB)
6: Collect episode trajectories DC from TABSUnitComb stage
7: Set reward of the last episode action as the final TABSBattleSimulator return
8: Update θC with DC (freeze θD, θB)
9: end for

10: // TABSUnitDeploy training phase
11: for k = 1 to KD do
12: Rollout full pipeline (πC , πD, πB)
13: Collect episode trajectories DU from TABSUnitDeploy stage
14: Set reward of the last Deploy episode action as the final TABSBattleSimulator return
15: Update θU with DU (freeze θC , θB)
16: end for
17: // TABSBattleSimulator training phase
18: for k = 1 to KB do
19: Rollout full pipeline (πC , πD, πB)
20: Collect episode trajectories DB from TABSBattleSimulator stage
21: Update θB with DB (freeze θC , θD)
22: end for
23: end for
24: return trained parameters θ⋆C , θ

⋆
D, θ⋆B
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Algorithm 2 Simultaneous Training for Multi-Stage Agents

Require: Agents πC(θC), πD(θD), πB(θB); total iterations T ;.
1: Initialize parameters θC , θD, θB
2: for t = 1 to T do
3: Rollout full pipeline (πC , πD, πB)
4: Collect episode trajectories DC , DD, DB for each stage
5: Set reward of the last TABSUnitComb action as the final TABSBattleSimulator return
6: Set reward of the last TABSUnitDeploy action as the final TABSBattleSimulator return
7: Update θC with DC

8: Update θD with DD

9: Update θB with DB

10: end for
11: return trained parameters θ⋆C , θ

⋆
D, θ⋆B

Table 4: Alternating training common settings

Setting Value
# Parallel environments 64
# Max ally units 10
Total iterations T 100
KC 50
KD 50
KB 50
TABSUnitComb rollout steps 10
TABSUnitDeploy rollout steps 10
TABSBattleSimulator rollout steps 512
Heuristic random action probability ϵ 0.1
ϵranged 0.5
ϵhealer 0.1
αranged 0.3
αhealer 0.85

Table 5: Simultaneous training common settings

Setting Value
# Parallel environments 64
# Max ally units 10
Total iterations T 1500
TABSUnitComb rollout steps 10
TABSUnitDeploy rollout steps 10
TABSBattleSimulator rollout steps 512
Heuristic random action probability ϵ 0.1
ϵranged 0.5
ϵhealer 0.1
αranged 0.3
αhealer 0.85
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C.2 POLICY ARCHITECTURE

GRU Linear
Linear Discrete 

Distribution

Continuous

Distribution

Linear
Linear

ReLULayerNorm

Figure 11: Policy architecture used for training agents in the hybrid action space. The architecture
follows Fan et al. (2019), consisting of separate heads for the discrete policy πdis and the continuous
policy πcon, whose outputs are combined to form the joint policy.

We train agents to operate in the hybrid action space by adopting the model architecture proposed
by Fan et al. (2019). Given a discrete policy πdis and a continuous policy πcon, actions are sampled
independently from each policy. The joint policy is then expressed as

π(o, a) = πdis(o, adis) · πcon(o, acon),

and this factorized probability is used within the learning algorithm. The detailed policy architecture
is illustrated in Figure 11.

C.3 BASELINE HYPERPARAMETERS

Table 6: PPO common hyperparameters

Hyperparameter Value
Optimizer Adam (Kingma & Ba, 2014)
Anneal Learning Rate True
Batch size 32
Learning rate 10−4

Hidden dim 256
Hidden layers 2
Discount factor (γ) 0.99
GAE factor (λ) 0.95
Activation ReLU
Layer norm (Ba et al., 2016) True
Clip range 0.2
Update epochs 5
Max gradient norm 0.25
Entropy coefficient 0.1
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Table 7: PQN common hyperparameters

Hyperparameter Value
Optimizer RAdam (Liu et al., 2019)
Anneal Learning Rate True
Batch size 32
Learning rate 10−4

Hidden dim 256
Hidden layers 2
Discount factor (γ) 0.99
λ factor 0.95
Activation ReLU
Layer norm (Ba et al., 2016) True
ϵinit 1.0
ϵfinish 0.05
ϵdecay 0.2
Update epochs 4
Max gradient norm 50.0
Reward scale 100.0

Table 8: MAPPO common hyperparameters

Hyperparameter Value
Optimizer Adam (Kingma & Ba, 2014)
Anneal Learning Rate True
Batch size 64
Learning rate 10−4

Hidden dim 256
Hidden layers 2
Discount factor (γ) 0.99
GAE factor (λ) 0.95
Activation ReLU
Layer norm (Ba et al., 2016) True
Clip range 0.2
Update epochs 5
Max gradient norm 0.25
Entropy coefficient 0.0

Table 9: IPPO common hyperparameters

Hyperparameter Value
Optimizer Adam (Kingma & Ba, 2014)
Anneal Learning Rate True
Batch size 64
Learning rate 10−4

Hidden dim 256
Hidden layers 2
Discount factor (γ) 0.99
GAE factor (λ) 0.95
Activation ReLU
Layer norm (Ba et al., 2016) True
Clip range 0.2
Update epochs 5
Max gradient norm 0.25
Entropy coefficient 0.0
Critic coefficient 0.5
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C.4 COMPUTATION TIME

Each experiment was conducted on a single CPU (AMD EPYC 7763, 64 cores) with 512 GB of
RAM and a single GPU (NVIDIA RTX 4090, 24 GB memory). We implemented all reinforcement
learning algorithms using JAX v0.4.38 and executed them on Debian GNU/Linux 12 (Bookworm).

Table 10: Average wall-clock training time across training methods and algorithm combinations.

Scenario Training Method Algorithm Training Time

2F1K2A1H

ST

PPO–MAPPO 43m
PPO–IPPO 39m
PQN–MAPPO 43m
PQN–IPPO 39m

AT

PPO–MAPPO 28m
PPO–IPPO 26m
PQN–MAPPO 28m
PQN–IPPO 26m

1K2S

ST

PPO–MAPPO 40m
PPO–IPPO 35m
PQN–MAPPO 39m
PQN–IPPO 34m

AT

PPO–MAPPO 23m
PPO–IPPO 22m
PQN–MAPPO 22m
PQN–IPPO 21m

1M2C1P

ST

PPO–MAPPO 41m
PPO–IPPO 36m
PQN–MAPPO 39m
PQN–IPPO 36m

AT

PPO–MAPPO 24m
PPO–IPPO 23m
PQN–MAPPO 24m
PQN–IPPO 23m

7F2D1H

ST

PPO–MAPPO 49m
PPO–IPPO 44m
PQN–MAPPO 49m
PQN–IPPO 44m

AT

PPO–MAPPO 34m
PPO–IPPO 33m
PQN–MAPPO 34m
PQN–IPPO 33m

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.5 CD-PPO DETAIL

CD-PPO is a controlled training setting in which only the TABSUnitComb and TABSUnitDeploy
stages are trained with PPO, while the TABSBattleSimulator stage is fixed by a heuristic policy.
We define two variants: (i) CD-PPO-Expert, where the heuristic policy is fixed at expert strength
from the beginning of training, and (ii) CD-PPO-Schedule, where the heuristic strength is linearly
increased until it reaches expert level at the scheduling decay midpoint.

The hyperparameters used for CD-PPO are summarized in Table 11. Performance across all scenar-
ios is reported in Figure 12.

Table 11: Comb&Deploy training common settings

Setting Value
# Parallel environments 64
# Max ally units 10
Total iterations T 1500
TABSUnitComb rollout steps 10
TABSUnitDeploy rollout steps 10
TABSBattleSimulator rollout steps 512
Initial ϵ 0.5
Initial ϵranged 1.0
Initial ϵhealer 0.1
Initial αranged 0.5
Initial αhealer 0.0
Final ϵ 0.0
Final ϵranged 0.6
Final ϵhealer 0.0
Final αranged 0.0
Final αhealer 1.0
Enemy ϵ 0.1
Enemy ϵranged 0.5
Enemy ϵhealer 0.1
Enemy αranged 0.3
Enemy αhealer 0.85
Scheduling decay midpoint 0.5

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

Ab
un

da
nt

2F1K2A1H

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0
1K2S

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0
1M2C1P

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0
7F2D1H

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

iu
m

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Ti
gh

t

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

CD-PPO-Expert CD-PPO-Schedule

Figure 12: Win rates detail CD-PPO-Expert and CD-PPO-Schedule across varying budget levels.
Each point represents the mean episode win rate averaged over 5 random seeds, with shaded regions
indicating the standard error.
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C.6 ADDITIONAL RESULTS

We provide several interesting metrics: episode returns (Figure 13), first-kill rate (Figure 14), total
episode damage dealt (Figure 15), attack success rate (Figure 16), and average unit counts for each
unit (??). In all figures, results are averaged over five random seeds, with shaded regions indicating
the standard error.
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Figure 13: Episode return comparison between alternating training and simultaneous training across
varying budget levels.
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Figure 14: First kill rate comparison between alternating training and simultaneous training across
varying budget levels.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
1e7

200

300

400

500

600

Ab
un

da
nt

2F1K2A1H

0 1 2 3 4 5
1e7

100

200

300

400

500

1K2S

0 1 2 3 4 5
1e7

400

600

800

1000

1200
1M2C1P

0 1 2 3 4 5
1e7

200

400

600

800
7F2D1H

0 1 2 3 4 5
1e7

200

300

400

500

600

M
ed

iu
m

0 1 2 3 4 5
1e7

100

200

300

400

500

0 1 2 3 4 5
1e7

400

600

800

1000

0 1 2 3 4 5
1e7

200

400

600

0 1 2 3 4 5
Step 1e7

100

200

300

400

500

600

Ti
gh

t

0 1 2 3 4 5
Step 1e7

100

200

300

400

500

0 1 2 3 4 5
Step 1e7

400

600

800

1000

0 1 2 3 4 5
Step 1e7

100

200

300

400

500

ST-PPO-MAPPO
AT-PPO-MAPPO

ST-PPO-IPPO
AT-PPO-IPPO

ST-PQN-MAPPO
AT-PQN-MAPPO

ST-PQN-IPPO
AT-PQN-IPPO

Figure 15: Total episode damage dealt comparison between alternating training and simultaneous
training across varying budget levels.
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Figure 16: Attack success rate comparison between alternating training and simultaneous training
across varying budget levels.
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Figure 17: Average usage counts across all units in the 2F1K2A1H scenario
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Figure 18: Average usage counts across all units in the 1K2S scenario

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
1e7

0

2

4
Fa

rm
er

Abundant

0 1 2 3 4 5
1e7

0

2

4

6
Medium

0 1 2 3 4 5
1e7

1

2

3

4

Tight

0 1 2 3 4 5
1e7

0

1

2

3

As
sa

ss
in

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

0 1 2 3 4 5
1e7

0

1

2

3

0 1 2 3 4 5
1e7

0.5

1.0

1.5

2.0

Th
eK

in
g

0 1 2 3 4 5
1e7

0.5

1.0

1.5

2.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

M
am

m
ot

h

0 1 2 3 4 5
1e7

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

Ar
ch

er

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

Ca
nn

on

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5
1e7

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

De
ad

ey
e

0 1 2 3 4 5
1e7

0

1

2

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
1e7

0

1

2

3

He
al

er

0 1 2 3 4 5
1e7

0

1

2

3

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Step 1e7

0

1

2

3

4

Pa
la

di
n

0 1 2 3 4 5
Step 1e7

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

ST-PPO-MAPPO
AT-PPO-MAPPO

ST-PPO-IPPO
AT-PPO-IPPO

ST-PQN-MAPPO
AT-PQN-MAPPO

ST-PQN-IPPO
AT-PQN-IPPO

Figure 19: Average usage counts across all units in the 1M2C1P scenario
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Figure 20: Average usage counts across all units in the 7F2D1H scenario
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D FULL-SIZED VISUALIZATION

We provide full-sized visualizations of the substages in TABS.

(a) Visualization of TABSUnitComb

(b) Visualization of TABSUnitDeploy

(c) Visualization of TABSBattleSimulator

Figure 21: Full-size Visualization of TABS
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