
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TABS: STRATEGIC GAME-BASED MULTI-STAGE RE-
INFORCEMENT LEARNING CHALLENGE

Anonymous authors
Paper under double-blind review

ABSTRACT

The design of environments plays a critical role in shaping the development and
evaluation of reinforcement learning (RL) algorithms. While existing benchmarks
have supported significant progress in both single-agent and multi-agent settings,
many real-world systems involve multi-stage structures with tightly coupled de-
cision points at each stage. These settings require agents not only to perform
well within each stage but also to coordinate effectively across them. We in-
troduce the Totally Accelerated Battle Simulator (TABS), a complex multi-stage
environment suite implemented in JAX to enable accelerated training and scal-
able experimentation. Each TABS task consists of sequential stages with in-
terdependencies, where only the output of one stage is forwarded to the next.
This multi-stage structure makes effective exploration challenging, often steer-
ing agents toward locally optimal behaviors that limit overall performance. Our
empirical analysis shows that standard RL baselines struggle to solve TABS
tasks, illustrating the difficulty of learning coherent strategies across interdepen-
dent stages. TABS provides a controlled and extensible framework for studying
multi-stage decision-making challenges, supporting future research on RL meth-
ods capable of operating effectively in structured domains. Our code is available
at: https://anonymous.4open.science/r/TABS-0E4B.

1 INTRODUCTION

Deep reinforcement learning (RL) provides a scalable framework for solving complex sequential
decision-making problems by leveraging reward functions to specify desired behaviors. While
prior work has achieved impressive results in single-agent settings (Mnih et al., 2013; Schulman
et al., 2017; Hessel et al., 2018; Hafner et al., 2025), subsequent research has increasingly focused
on multi-agent scenarios (Rashid et al., 2020; Yu et al., 2022; Gallici et al., 2024), reflecting the
prevalence of environments where multiple agents must interact, cooperate, or compete. To support
progress in this direction, multi-agent game environments have been developed (Samvelyan et al.,
2019; Carroll et al., 2019; Kurach et al., 2020; Bard et al., 2020; Ellis et al., 2023), introducing a
variety of challenges for RL agents, including partial observability, long-horizon decision-making,
high exploration requirements, and the need for effective coordination. These environments have
driven significant advancements in algorithmic research, and as a result, many of these challenges
have been extensively studied (Kuba et al., 2021; Yu et al., 2022).

Despite notable progress in addressing such challenges, existing environments typically address
these issues in isolation. Crucially, real-world systems are often highly complex and correlated
across multiple stages, emphasizing the need for methods capable of generalizing across this spec-
trum. For example, playing sports such as soccer, baseball, and hockey consists of several stages:
training, squad selection, strategy building, and gameplay. The objective is to progress through
these stages sequentially and ultimately secure victory in the game. The overall success of the pro-
cess depends not only on the quality of individual contributions but also on how effectively these
contributions are aligned and integrated.

This sequential interdependence introduces multi-stage decision-making challenges, requiring
agents to consider their long-term consequences across stages. Such multi-stage structures pose
challenges not only in designing agents that can operate across heterogeneous task domains, but
also in handling cross-stage dependencies that influence downstream performance and demand ef-

1

https://anonymous.4open.science/r/TABS-0E4B

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ficient exploration strategies. These complexities highlight the need for environments and methods
that can effectively model and learn in settings with tightly coupled, stage-wise dynamics.

We introduce Totally Accelerated Battle Simulator (TABS), inspired by the popular strategic sim-
ulation game (Landfall Games, 2021), as a highly complex environment specifically designed to
present novel and challenging tasks for RL agents. TABS is structured into three sequential stages:
TABSUnitComb, where agents select unit compositions under a given budget; TABSUnitDeploy,
where the chosen units are spatially arranged on the battlefield; and TABSBattleSimulator, where
agents control units in real-time combat. TABS poses three key challenges: (1) Sequentially in-
terdependent processes, where decisions made in earlier stages directly constrain and shape the
strategic possibilities of subsequent stages; (2) Entangled credit assignment, where the environ-
ment is structured as a multi-stage process and the final return is determined only after all stages have
been completed. This makes it difficult to design training methods that accurately attribute feedback
to the decisions made at each individual stage. and (3) Exploration under multi-stage structure,
where exploration becomes less intuitive and more difficult as the agent must operate across stages
that are sequentially organized and interdependent. This poses substantial obstacles to the discovery
of globally effective strategies. Overall, TABS instigates not only the challenges present in previous
benchmarks but also those arising from interconnected multi-stage structures, further complicating
the design of agents. To analyze these challenges in practice, we consider two straightforward train-
ing methodologies: simultaneous training, in which all stages are updated jointly, and alternating
training, in which each stage is optimized sequentially while the others are held fixed.

Complex environments with long horizons and sequential interdependencies incur substantial com-
putational overhead, limiting the scalability of training and evaluation. In particular, multi-stage en-
vironments with tightly coupled stages and stage-specific transitions tend to slow down simulation,
as their structure often prevents efficient batching and parallelization. To address this, we implement
our environments in JAX (Bradbury et al., 2018), enabling efficient execution on GPUs. This end-
to-end JAX-based pipeline substantially accelerates experimentation while maintaining scalability
across diverse settings.

To summarize, this paper summarizes the following contributions:
• A Novel and Challenging Multi-Stage Environment: We introduce TABS, a complex

multi-stage environment that poses novel challenges by integrating strongly interdependent
stages, which result in entangled credit assignment and highly demanding exploration.

• Role-appropriate Heuristic Policy: We provide a heuristic policy for the multi-agent sim-
ulation stage that increases the strategic complexity of opponent behaviors, requiring agents
to adapt their tactics accordingly.

• Evaluation Across a Set of Baselines: We thoroughly benchmark the performance of a
representative selection of baselines on our environment, providing insights into learning
in highly interdependent multi-stage settings where both observation and action spaces vary
substantially between stages.

• High-Speed Computation via JAX Implementation: We implement our open-source
environment and baselines using the JAX framework, enabling efficient computation on
hardware accelerators such as GPUs.

2 BACKGROUND

Strategic Games A strategy game is a genre in which players’ uncoerced and autonomous
decision-making skills play a central role in determining outcomes. Success often depends on the
ability to balance short-term tactical actions with long-term strategic objectives, while simultane-
ously anticipating and responding to the behavior of opponents. In reinforcement learning (RL)
research, strategic games have become widely used environments for evaluating agents’ decision-
making capabilities in complex and uncertain environments. These games typically exhibit high-
dimensional state and action spaces, stochastic dynamics, imperfect information, and multi-agent
interactions, closely reflecting many of the challenges present in real-world systems.

JAX-based Environments JAX (Bradbury et al., 2018) is a Python library for high-performance
numerical computing and large-scale machine learning, providing accelerator-based array computa-
tion and program transformation. It compiles Python code into Accelerated Linear Algebra (XLA),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Visualization of a unit’s field of view under different initial deployment locations. The
agent has only partial observability, restricted to units within its field of view. The fan-shaped region
illustrates how initial observations are constrained by deployment placement.

allowing efficient execution on hardware accelerators such as GPUs and TPUs. RL research, the
runtime of simulations and algorithms is critical, as it directly affects the efficiency, scale, and fea-
sibility of experiments. RL training typically requires extensive environment interactions, and long,
computationally intensive runs can impede research progress. JAX-based environments (Bonnet
et al.; Matthews et al., 2024; Rutherford et al., 2024) mitigate these challenges by enabling the
entire RL pipeline to run on GPUs, supporting massive parallelization of trajectory collection, elim-
inating GPU–CPU transfer bottlenecks, and leveraging just-in-time (JIT) compilation throughout
the training process. A detailed discussion of related work is provided in Appendix B.

3 TOTALLY ACCELERATED BATTLE SIMULATOR

Our proposed environment is composed of three sequentially connected stages, TABSUnitComb,
TABSUnitDeploy, and TABSBattleSimulator, which together embody the challenges discussed in
Section 1. Each stage is defined by its own observation space, action space, and transition dynamics;
however, the reward signal is provided only after the entire pipeline has been executed. These
environments are deliberately designed to be strongly interdependent, thereby creating tasks that
necessitate methods capable of modeling about interdependencies across stages. In Appendix A, we
formally describe the decision process.

3.1 UNIT COMBINATION AND DEPLOYMENT

TABSUnitComb

Current purchased
unit composition

Enemy composition

Unit specification

Unpurchasable

Remaining budget

TABSUnitDeploy

Ally deployment

Enemy deployment

Next unit and
Remaining units

Figure 2: Visualization of TABSUnitComb
and TABSUnitDeploy. The full size image
is in Appendix D.

The first stage, TABSUnitComb, requires the agent to
construct an allied composition by selecting units un-
der a given budget. At each decision step, the agent
chooses which unit to purchase based on the remain-
ing budget, the current list of selected units, the spec-
ifications of all units, and the fully observed enemy
composition. This process continues until the budget
is exhausted or no further purchases are possible. The
resulting unit composition serves as the initial config-
uration for all downstream stages.

The second stage, TABSUnitDeploy, tasks the agent
with strategically placing the selected units on the ally
battlefield. At each step, the agent determines a de-
ployment position for the next unit, conditioned on the
remaining units to place, the current positions of al-
ready deployed allies, the fully observed enemy lay-
out, and the specifications of all units. Deployment is
finalized once all units have been placed. A unique
aspect of this stage is spatial influence of deployment
position: each unit’s field of view in TABSBattleSimu-
lator is a directional, fan-shaped region, oriented along
its facing direction. As a consequence, the initial ob-
servations at the onset of the battle exhibit high sensitivity to the deployment configuration, as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

illustrated in Figure 1. Additional visualizations of initial observations under various deployment
configurations are provided in Appendix A.1.

3.2 MULTI-AGENT BATTLE SIMULATION

Figure 3: Visualization of TABS-
BattleSimulator. The full size im-
age is in Appendix D.

The final stage, TABSBattleSimulator, requires multiple
agents to engage in battle against enemy forces, initialized
with the unit composition and spatial deployment determined
in the preceding stages. During the battle, allied agents interact
with enemies in a decentralized manner. This stage is charac-
terized by high-dimensional shaped partial observations, dis-
crete–continuous hybrid action spaces, and complex interac-
tion systems. Each agent possesses a partial, fan-shaped ob-
servation field oriented along its facing direction, analogous
to a first-person perspective, illustrated as the gray region in
Figure 1. Within this field, agents observe the current status
(e.g., remaining health points) and specifications of all visible
allies and enemies. As a result, agents must actively rotate and
navigate the environment to detect and engage enemy units ef-
fectively.

TABSBattleSimulator defines a hybrid action space comprising six discrete actions (four directional
movements, attack or heal, and idle) coupled with a continuous rotation action. The movement prim-
itives correspond to fixed step displacements without acceleration dynamics, ensuring consistent
translational motion across actions. The rotation control is parameterized as a continuous variable
constrained within [−π/12, π/12], allowing incremental orientation adjustments at each timestep.
Discrete and continuous actions can be executed concurrently, with the discrete action applied first
followed by the rotation update. Such hybrid action spaces are prevalent in real-world domains (Li
et al., 2021), including applications in games (Masson et al., 2016; Xiong et al., 2018), as they en-
able agents to simultaneously perform discrete behaviors while fine-grained directional adjustments
in continuous space.

An interesting aspect of this stage is its interaction system among units, which incorporates a non-
targeted attack and healing mechanism, as well as a pushing mechanism based on each unit’s body
mass. While many existing battle simulation environments rely on explicit targeting systems (Berner
et al., 2019; Ellis et al., 2023; Rutherford et al., 2024), in TABS each unit attacks or heals a tar-
get only when provided the target is located within its rectangular attack or healing field and its
cooldown has elapsed. To successfully execute valid attacks, agents must coordinate their move-
ments, including rotations, with precise attack timing. Agents can exploit their embodied mass to
impede the movement of opponents, while incapacitated units remain within the arena as dynamic
obstacles that can be displaced through contact forces. Agents receive a shared reward proportional
to the difference between the total health ratios of allies and enemies, incentivizing successful attacks
or heals. At the end of an episode—when either all allies or all enemies are incapacitated—agents
receive an additional binary reward reflecting the win–loss outcome.

Figure 4: Unit portraits with names and abbreviations from left to right: Farmer (F), Assassin (S),
TheKing (K), Mammoth (M), Archer (A), Cannon (C), Deadeye (D), Healer (H), and Paladin (P).

Unit types TABS provides a total of nine distinct units, comprising four melee units, three ranged
units, and two supporter units. Each unit is characterized by multiple specification components,
encompassing physical attributes as well as attack or healing capabilities. We design unit specifica-
tions such that, broadly, melee units possess high health and speed to effectively close distance and
engage targets, whereas ranged units have lower health and speed but benefit from extended attack
range. Each unit is assigned a price proportional to its potential effectiveness. Agents must account

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Units pursue the nearest visible
opponent within their field of
view and rotate to align the

target within their attack range
before initiating an attack.

If no opponent is visible, units
rotate counter-clockwise to
search for potential targets.

(a) Standard behaviors

Ranged units attempt to
maintain a separation from
opponent of at least a fixed

proportion of their attack range.

Assassin prioritize targeting the
opponent with the lowest

maximum health within their field
of view, attempting to remain
outside the target’s view field.

(b) Special behaviors for ranged units and Assassin

Figure 5: Operation of the TABS heuristic policy. Units of the same color belong to the same team.
The gray region indicates a unit’s field of view, and the orange region denotes its attack range.

for both unit attributes and prices when selecting compositions, balancing cost-effectiveness with
strategic potential. Detailed specifications of each unit are provided in Appendix A.2.

3.3 ROLE-APPROPRIATE HEURISTIC POLICY

In the TABSBattleSimulator, we provide a role-appropriate heuristic policy. This policy can be
applied in multiple ways: assigning it to the opposing side simplifies the problem into a cooper-
ative multi-agent setting, while assigning it to all units reduces TABS to a purely discrete-action
problem (TABSUnitComb and TABSUnitDeploy). To ensure diversity and sophistication in their
strategies, the policy is differentiated across unit types, with behaviors tailored to roles defined by
each unit’s specifications. The StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019),
which is similar to the TABSBattleSimulator, is a widely adopted benchmark for evaluating coop-
erative behaviors in multi-agent combat environments. However, Rutherford et al. (2024) (SMAX)
pointed out limitations of the original benchmark, including the failure of agents to actively pursue
enemy units, which led to unrealistic combat dynamics (Samvelyan et al., 2019), and the unrealis-
tic assumption of access to global observations, thereby encouraging more aggressive and realistic
behaviors (Ellis et al., 2023). Although SMAX mitigates these limitations, it still applies uniform
decision rules across all unit types, without accounting for their distinct roles or capabilities. As
a result, it fails to fully exploit the strategic potential of heterogeneous unit compositions, limiting
both the expressiveness and complexity of scenario design.

Our heuristic policy incorporates a heterogeneous set of units with distinct functional roles—such
as melee, ranged, and supporter units—each necessitating role-specific decision-making strategies.
The integration of expert-designed, role-aware heuristic policies in TABS enables the environment
to support richer and more strategically demanding scenarios. These heuristics induce opponent
behaviors that differ meaningfully across unit roles, thereby fostering task designs in which unit
selection, deployment, and battle decisions are interdependent and contingent on the configuration
of opposing forces. This functionality renders TABS a flexible and challenging testbed for evaluating
multi-stage decision-making and multi-agent coordination.

Figure 5 explains the operation of our role-appropriate strategic heuristic policy. Units are broadly
categorized into two types: melee and ranged. We categorize these two types based on whether their
attack or heal range exceeds a predefined threshold. Both types follow a set of standard behavioral
rules, as shown in Figure 5a: they pursue the nearest visible opponent (or injured ally in the case
of supporters) and rotate to align the target within their attack or heal range, thereby making it
attackable or healable. If no target is visible, they rotate counter-clockwise to search for potential
targets. Units always execute an attack action immediately once the cooldown period has elapsed,
provided the target is within attack or heal range; otherwise, they perform either a movement and
rotation action. Support units exclusively target allies, restoring their health upon a successful action.
If at least one ally is injured, supporters restrict their focus to those units, prioritizing the nearest
injured ally for healing. We provide both melee and ranged supporter types, each adhering to the
strategic behavioral rules of their respective unit category.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: TABS scenarios and their corresponding unit compositions. The numbers denote the quan-
tity of each unit, while the letters represent unit types: Farmer (F), Assassin (S), The King (K),
Mammoth (M), Archer (A), Cannon (C), Deadeye (D), Healer (H), and Paladin (P).

Scenario Composition Design

2F1K2A1H Classic composition (tanker, dealer, supporter)
1K2S Long-range dealer attack composition

1M2C1P Frontline tank and rear high-attack ranged attackers
7F2D1H War of attrition

To enable units to exhibit advanced, strategy-driven behaviors, we introduce two specialized strate-
gies, as illustrated in Figure 5b. Ranged attackers retreat to maintain a distance from opponents of
at least a fixed proportion of their attack range. This “kiting” behavior forces opponents to execute
more complex movements to engage effectively. The Assassin, a melee unit, follows a distinctive
strategy consistent with its name: it targets the rear of the visible opponent with the lowest maxi-
mum health, leveraging its high movement speed to execute opportunistic attacks while attempting
to remain outside the target’s field of view. This behavior introduces additional challenges, requiring
careful and deliberate unit composition and deployment strategies. We inject controllable noise via
hyperparameters, thereby introducing stochasticity into the behavior and modulating the behavioral
optimality of the heuristic policy. Further implementation details of the heuristic policy are provided
in Appendix A.3.

3.4 SCENARIOS

We provide a set of predefined scenarios that take into account the attributes and strategic behaviors
of each unit type. These scenarios are categorized based on the available budget relative to the total
cost of the enemy composition. The enemy composition and deployment in each scenario are care-
fully crafted to achieve specific objectives. Table 1 presents the predefined scenarios along with the
underlying design intentions. Their designs are inspired by strategies that are commonly employed
in real strategic games. Each scenario is associated with three different budget levels reflecting vary-
ing levels of budget (abundant, medium, tight). The medium budget level is set equal to the total cost
of the enemy composition, enabling performance comparison under same conditions. The abundant
budget level provides additional resources, allowing the purchase of more expensive units if cheaper
enemy units are removed, while the tight budget level imposes the opposite constraint.

A higher budget allows the agent to recruit expensive units and field larger forces, thereby reducing
the difficulty of configuring an effective ally troop. Conversely, a lower budget constrains feasible
unit compositions, forcing the agent to carefully balance cost-effectiveness with strategic potential,
while also mastering deployment and combat against a numerically or qualitatively superior enemy
force. In TABS, the entire process is initialized according to the specified budget characteristics.
In Appendix A.4, we provide detailed descriptions of each scenario along with simulation results
obtained using manually crafted ally compositions and deployments, evaluated under varying budget
constraints.

4 EXPERIMENTS

We conduct a series of experiments to evaluate the performance of baseline algorithms in our pro-
posed environment. First, we discuss the challenges of agent design and training approaches in
the multi-stage environment. Second, we compare training results across scenarios under varying
budget levels. Third, we analyze the exploration challenges induced by our environment’s design.
Finally, we conduct a scalability study to demonstrate that the environment can efficiently leverage
parallel execution.

4.1 TRAINING METHODS

TABS, a multi-stage environment, presents several inherent challenges for training agents. The
initial observations of later environments depend on the outcomes of preceding stages, further com-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

Ab
un

da
nt

2F1K2A1H

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0
1K2S

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0
1M2C1P

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0
7F2D1H

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

iu
m

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Ti
gh

t

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

ST-PPO-MAPPO
AT-PPO-MAPPO

ST-PPO-IPPO
AT-PPO-IPPO

ST-PQN-MAPPO
AT-PQN-MAPPO

ST-PQN-IPPO
AT-PQN-IPPO

Figure 6: Average episode win rates of baselines trained with alternating and simultaneous methods
across four scenarios and three budget levels. Results are averaged over five random seeds, with
shaded regions indicating the standard error.

pounding the training difficulty. Specifically, TABSUnitDeploy operates on the output of TAB-
SUnitComb (the selected ally unit composition), and TABSBattleSimulator operates on the output
of TABSUnitDeploy (the deployed ally units). Thus, the initial state of each stage varies according to
decisions made in preceding stages, which reduces training stability. Training a single policy across
all stages is challenging, because each stage in TABS is defined by distinct state and action spaces as
well as heterogeneous task settings (ranging from single-agent to multi-agent control). This stands
in contrast to prior benchmarks such as Cobbe et al. (2020), which focus on procedurally generated
game-like environments that maintain consistent state and action representations across tasks.

A straightforward approach to handle this is to employ a stage-conditioned mixture of heterogeneous
stage policies. We first collect trajectories by rolling out the entire pipeline and assign the win–lose
outcome to the last state–action pair of experiences in TABSUnitComb and TABSUnitDeploy, while
all other pairs receive a reward of 0. This design implies that feedback for early-stage decisions is
inherently delayed and aggregated, since the final outcome is determined only after the entire multi-
stage pipeline has been completed. Moreover, because each stage involves distinct policy structures
and decision spaces, devising efficient exploration strategies becomes particularly challenging.

In our experiments, we investigate two straightforward approaches for training the agent, formulated
as a stage-conditioned mixture of stage policies: simultaneous training and alternating training. In
simultaneous training, all policies are updated jointly using their respective trajectories from the
same episode. In alternating training, by contrast, each policy is updated exclusively for several
consecutive iterations while the others remain frozen; once updates for one policy are completed,
training shifts to the next in an alternating cycle. We further adopt controlled experimental settings
to facilitate a more precise analysis of the challenges posed by our environment. In particular, we
employ fixed scenarios and hold the opponent’s policy constant by using a heuristic controller.

Baselines We evaluate a suite of standard baselines across the stages. For TABSUnitComb and
TABSUnitDeploy, we employ PPO (Schulman et al., 2017) and PQN (Gallici et al., 2024), while for
TABSBattleSimulator we adopt MAPPO (Yu et al., 2022) and IPPO (De Witt et al., 2020). For end-
to-end training, we construct composite agents by combining the corresponding baselines across all
stages and train the resulting set of stage policies using both simultaneous and alternating training
methods. Since we employ the same algorithms for both TABSUnitComb and TABSUnitDeploy, we
obtain a total of eight baselines from the combination of four algorithms with two training methods.
We denote each baseline by its training method—ST (simultaneous training) or AT (alternating
training)—followed by the adopted policies (e.g., ST-PPO-MAPPO).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 7: Illustration of training outcomes across different random seeds in 1M2C1P scenario with
the abundant budget level. Each panel shows unit deployment (top), the corresponding win rate
(bottom), and average unit usage (right).

4.2 TRAINING IN MULTI-STAGE ENVIRONMENT

We evaluate the baselines across scenarios with varying budget levels, using two training methods.
As shown in Figure 6, ST-PPO-MAPPO achieves the strongest performance across most scenarios,
except in 2F1K2A1H and 7F2D1H with medium budget levels, where PQN-MAPPO performs bet-
ter. Overall, PPO generally outperforms PQN, although PQN occasionally succeeds in environments
where PPO fails. Comparing MAPPO and IPPO, MAPPO demonstrates superior performance. Re-
garding training approaches, simultaneous training typically leads to more efficient learning than
alternating training and exhibits lower performance variance. We further provide several interesting
metrics including not only episode return but also first-kill rate, total episode damage dealt, attack
success rate, and average unit counts for each unit. We illustrate these results in Appendix C.6.

Baselines achieve higher performance in 1K2S compared to other scenarios. The 1K2S consists of
three melee units without any support units, making it relatively easier to learn effective strategies
against them than against ranged attackers. As expected, performance improves with larger budgets,
and under abundant budget conditions, agents can easily defeat their opponents. In particular, ST-
PPO-MAPPO achieves over a 60% win rate in 7F2D1H-Abundant, where 7F2D1H represents a
large-scale troop scenario featuring the maximum number of enemy units among all settings.

Figure 6 presents that most baselines exhibit high variance across random seeds. We observe that
simple entropy regularization did not alleviate this phenomenon, implying the inherent difficulty in
exploration. We attribute this high variance to the multi-stage nature of the environment, where the
output of one stage becomes the constrained input for the next. This dependency forces agents to
specialize to the narrow distributions induced by earlier stages, thereby limiting generalization and
leading to convergence toward local optima. While such phenomena can also arise in non-staged
environments, the inherent pipeline structure of multi-stage settings makes effective exploration
particularly challenging.

4.3 EXPLORATION IN MULTI-STAGE ENVIRONMENT

To analyze the exploration difficulty in TABS, we conduct additional experiments under controlled
settings. Specifically, we train agents in TABSUnitComb and TABSUnitDeploy while employing
the heuristic policy with varying levels of stochasticity: constant low noise (Expert) and linearly
decreasing noise up to the Expert level by approximately 50% of training (Schedule). CD-PPO
denotes training PPO in the first two stages while employing the heuristic policy with varying levels
of stochasticity. Figure 7 presents unit deployment and average unit usage as a function of win rate
at specific environment steps across baselines in 1M2C1P under the abundant budget level. This
scenario features a balanced unit composition consisting of two melee units (a tanker and a support)
and two ranged attackers.

The results in TABSUnitComb significantly influence the configuration of subsequent stages and
constrain the available search space, highlighting the importance of exploration in this stage. Al-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

though the agent attempts to explore diverse unit combinations during early training, it tends in
TABS to repeatedly commit to combinations that yield higher initial returns due to increasingly sta-
ble initializations, thereby failing to acquire proficiency across a broader set of units. While CD-PPO
purchases a diverse set of unit types and, despite poor early performance, CD-PPO-Schedule suc-
cessfully converges to an optimal policy as the proficiency of the heuristic policy increases linearly,
ST-PPO-MAPPO increasingly relies on a limited subset of units as training progresses, resulting in
a lower win rate, as shown in Figure 7.

To analyze seed sensitivity, we select two seeds that exhibit large performance discrepancies and
compare their final average unit usage at three checkpoints. We observe that both seeds struggle to
explore diverse unit compositions and deployment strategies. Early-stage restrictions imposed by
the chosen seeds lead to limited initial compositions, resulting in significant performance discrep-
ancies. From the multi-stage perspective, early biases arising from the structural difficulty of explo-
ration are reinforced, preventing the agent from revisiting alternative strategies. Since the stages are
distinct and sequentially coupled, designing direct exploration strategies is inherently challenging,
highlighting the need for more efficient mechanisms specifically tailored to TABS.

4.4 ENVIRONMENT PARALLELIZATION EXPERIMENTS

27 29 211 213

Number of Parallel Environments

105

106

107

108

109

St
ep

s p
er

 S
ec

on
d Comb

Deploy
Battle
(n = 6)
Battle
(n = 10)
Battle
(n = 20)
Battle
(n = 30)

Figure 8: Speed under environ-
ment parallelization on an RTX
4090.

To assess the scalability of our environment, we conduct ex-
periments measuring throughput as a function of the number of
parallel environments executed on a single GPU. Specifically,
we report the effective environment steps per second while
varying the degree of parallelization. Three stages are denoted
as Comb, Deploy, and Battle, respectively, and n represents the
maximum number of units in the final stage. The results, sum-
marized in Figure 8, show that throughput steadily increases
with the number of parallel environments, though the rate of
improvement diminishes once hardware constraints such as
GPU memory bandwidth become a limiting factor. These find-
ings confirm that our environment can fully leverage acceler-
ators, enabling efficient large-scale training of agents. Details
of the hardware configuration are provided in Appendix C.

5 CONCLUSION

We introduce TABS, a multi-stage reinforcement learning environment that explicitly captures se-
quential interdependencies across distinct stages, entangled credit assignment, and provides a role-
appropriate heuristic policy that serves as a competitive control mechanism. Our experiments
demonstrate that training in such settings entails inherent challenges, as agents can easily converge
to suboptimal strategies due to the difficulty of exploration in strongly interdependent multi-stage
environments. These results underscore the need for algorithms capable of both efficient exploration
and robust learning in multi-stage settings. In addition, we show that the environment scales effec-
tively under parallelization, enabling efficient and accelerated large-scale training on GPUs. We
hope that TABS will facilitate research in areas including end-to-end training, entangled credit as-
signment, handling heterogeneous action and observation spaces, and exploration. We believe that
an agent capable of tackling TABS would represent a significant advancement in the field, and we
look forward to seeing how the community leverages this benchmark for future developments.

Future Work While the current environment provides functional implementations, opportunities
remain for further enhancing the degree of interdependency across stages. As future work, we plan to
extend the deployment stage by introducing terrain obstacles, requiring agents to account for spatial
constraints during unit placement, and to enrich the battle stage by allowing agents to strategically
exploit these obstacles in combat. In addition, we aim to enhance the environment engine to more
closely align with Landfall Games (2021), for example by incorporating unit-specific skills beyond
static attributes and restricting agents to a first-person point of view. These extensions are expected
to amplify cross-stage dependencies, thereby intensifying the inherent challenges of multi-stage
decision-making.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Clément Bonnet, Daniel Luo, Donal Byrne, Shikha Surana, Sasha Abramowitz, Paul Duckworth,
Vincent Coyette, Laurence I Midgley, Elshadai Tegegn, Tristan Kalloniatis, et al. Jumanji: a
diverse suite of scalable reinforcement learning environments in jax, 2024. URL https://arxiv.
org/abs/2306.09884.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In International conference on machine learning, pp. 2048–
2056. PMLR, 2020.

Christian Schroeder De Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Benjamin Ellis, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan, Jakob N Fo-
erster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-agent
reinforcement learning, 2022. URL https://arxiv. org/abs/2212.07489, 3, 2023.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Zhou Fan, Rui Su, Weinan Zhang, and Yong Yu. Hybrid actor-critic reinforcement learning in
parameterized action space. arXiv preprint arXiv:1903.01344, 2019.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
Foerster, and Mario Martin. Simplifying deep temporal difference learning. arXiv preprint
arXiv:2407.04811, 2024.

Ghost Town Games. Overcooked, 2016. https://store.steampowered.com/app/
448510/Overcooked/.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
through world models. Nature, pp. 1–7, 2025.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

10

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://store.steampowered.com/app/448510/Overcooked/
https://store.steampowered.com/app/448510/Overcooked/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. arXiv preprint
arXiv:2109.11251, 2021.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt, Car-
los Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research
football: A novel reinforcement learning environment. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 4501–4510, 2020.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel
Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár, Bart De
Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian
Schrittwieser, Thomas Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis. Open-
Spiel: A framework for reinforcement learning in games. CoRR, abs/1908.09453, 2019. URL
http://arxiv.org/abs/1908.09453.

Landfall Games. Totally accurate battle simulator, 2021. https://store.steampowered.
com/app/508440/Totally_Accurate_Battle_Simulator/.

Boyan Li, Hongyao Tang, Yan Zheng, Jianye Hao, Pengyi Li, Zhen Wang, Zhaopeng Meng, and
Li Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action
representation. arXiv preprint arXiv:2109.05490, 2021.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with param-
eterized actions. In Proceedings of the AAAI conference on artificial intelligence, volume 30,
2016.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended re-
inforcement learning. arXiv preprint arXiv:2402.16801, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Garðar In-
gvarsson Juto, Timon Willi, Ravi Hammond, Akbir Khan, Christian Schroeder de Witt, et al.
Jaxmarl: Multi-agent rl environments and algorithms in jax. Advances in Neural Information
Processing Systems, 37:50925–50951, 2024.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

11

http://arxiv.org/abs/1908.09453
https://store.steampowered.com/app/508440/Totally_Accurate_Battle_Simulator/
https://store.steampowered.com/app/508440/Totally_Accurate_Battle_Simulator/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wei Xi, Yongxin Zhang, Changnan Xiao, Xuefeng Huang, Shihong Deng, Haowei Liang, Jie Chen,
and Peng Sun. Mastering strategy card game (legends of code and magic) via end-to-end policy
and optimistic smooth fictitious play. arXiv preprint arXiv:2303.04096, 2023.

Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng, Haobo Fu, Tong
Zhang, Ji Liu, and Han Liu. Parametrized deep q-networks learning: Reinforcement learning
with discrete-continuous hybrid action space. arXiv preprint arXiv:1810.06394, 2018.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information
processing systems, 35:24611–24624, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DETAILS ON TABS

We focus on sequentially combined environments inspired by strategy-based games that naturally
incorporate interdependent substages. A prominent example is Landfall Games (2021), a popular
strategic simulation game released in 2021. Landfall Games (2021) consists of two primary stages:
first, players select their own army under a given budget and deploy their units, and second, the game
simulates a battle between the deployed units and enemy forces. Decisions made during the early
stage propagate forward, creating dependencies that significantly influence subsequent outcomes
and require players to balance immediate choices against long-term objectives. These games thus
provide natural testbeds for evaluating agents’ ability to strategically plan, reason, and generalize
across multiple interconnected stages, capturing the complexity and sequential interdependence.

We model the full decision-making process as a Decentralized Partially Observable Markov Deci-
sion Process (Dec-POMDP). We first define

Mcomb =
〈
Scomb,Acomb, Pcomb, Rcomb, γ

〉
, Mdeploy =

〈
Sdeploy,Adeploy, Pdeploy, Rdeploy, γ

〉
as single-agent MDPs for TABSUnitComb and TABSUnitDeploy, and

Mbattle =
〈
Sbattle, {A(i)

battle}
n
i=1, Obattle, Pbattle, Rbattle, γ

〉
as a cooperative multi-agent Dec-POMDP for TABSBattleSimulator. We then model the full
decision-making process as a Dec-POMDP

M =
〈
S,A,O, P,R, γ

〉
,

with the following components (stage unions and stage-gated transitions):

State space.
S = Scomb ∪ Sdeploy ∪ Sbattle,

Action space.
A = Acomb ∪ Adeploy ∪

(∏n
i=1 A

(i)
battle

)
.

Observation space.
O = Scomb ∪ Sdeploy ∪ Obattle,

i.e., observations equal states in Comb/Deploy (fully observed), and follow Obattle in Battle. For
s ∈ S,

O(o | s, a) =
{
s s ∈ Scomb ∪ Sdeploy

Obattle(obattle | s, a) s ∈ Sbattle

Reward function.

R(s, a) =


Rcomb(s, a) s ∈ Scomb

Rdeploy(s, a) s ∈ Sdeploy

Rbattle(s, a) s ∈ Sbattle

Transition Dynamics. For non-terminal states

P (s′ | s, a) =


Pcomb(s

′|s, a) s ∈ Scomb

Pdeploy(s
′|s, a) s ∈ Sdeploy

Pbattle(s
′|s, a) s ∈ Sbattle

For terminal states, we define a deterministic stage-transition function Φ : S ×A → S such that

P (s′ | s, a) =

{
δ
(
s′ = Φcomb→deploy(s, a)

)
, s ∈ Scomb, Donecomb(s),

δ
(
s′ = Φdeploy→battle(s, a)

)
, s ∈ Sdeploy, Donedeploy(s)

where δ(·) denotes an indicator distribution.

The objective of the policy π is to maximize the expected return E[
∑∞

i γirt+i]. The policy is
defined as a stage-conditioned mixture of sub-policies:

π(· | o) = 1SCombπC(· | o) + 1SDeployπD(· | o) + 1SBattleπB(· | o)
where πC, πD, πB denote the policies specialized for three stages, respectively.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.1 INITIAL OBSERVATION IN TABSBATTLESIMULATOR

(a) (b)

(c) (d)

Figure 9: Visualization of unit’s field of view under different initial deployment locations and unit
types. The fan-shaped region illustrates how initial observations are constrained by deployment
placement.

We visualize initial observations under different deployment configurations in Figure 9. Depending
on the deployment position, the large unit may or may not fall within the agent’s observable field.
For instance, the Mammoth is visible within the unit’s sight in Figure 9b, Figure 9c, and Figure 9d.

A.2 UNIT TYPES AND SPECIFICATIONS

Each unit is characterized by multiple specification components, including price, health, body ra-
dius, body weight, speed, attack damage, attack range, attack cooldown, sight angle, and occupied
space. We provide nine predefined units: Farmer (F), Assassin (S), TheKing (K), Mammoth (M),
Archer (A), Cannon (C), Deadeye (D), Healer (H), and Paladin (P). The Farmer is a basic unit,
serving as the weakest melee attacker but also the most cost-effective option. The Assassin is the
fastest unit and has the shortest attack cooldown. TheKing is slightly larger than most other units,
with high health and very high melee attack damage, though at a significant cost. The Mammoth is
the largest and heaviest unit—approximately four times larger and fifty times heavier than the oth-
ers—while also being slightly faster, making it well-suited for breaking through enemy formations.
The Archer, Cannon, and Deadeye are ranged attackers: the Archer has low health but moderate
attack power and long range; the Cannon has the highest attack damage and longest range but is the
slowest and most expensive; and the Deadeye has the shortest range but is the fastest among ranged
units. The Healer and Paladin are support units with a unique ability: when performing the “attack”
action, they restore health to allies instead of dealing damage. Detailed unit statistics are provided
in Table 2.

A.3 ROLE-APPROPRIATE HEURISTIC POLICY

In this section, we provide additional details of the heuristic policy that could not be fully covered
in the main text.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 2: Unit statistics used in TABS. Negative attack damage values correspond to healing effects.

Name Price Health Body Radius Body Weight Speed Attack Damage Attack Range Attack Cooldown Space Occupied
Farmer (F) 120 60 1.0 1.0 1.1 14 2.5 2.5 1
Assassin (S) 430 70 1.0 1.0 1.4 22 2.5 1.5 1
TheKing (K) 1320 346 1.47 10.0 1.2 46 3.2 2.5 1
Mammoth (M) 980 685 4.25 50.0 1.2 20 3.0 6.5 4
Archer (A) 450 40 1.0 1.0 1.0 28 27.0 8.0 1
Cannon (C) 1080 100 1.0 5.2 0.5 80 40.0 10.0 1
Deadeye (D) 470 40 1.0 1.0 1.1 25 20.0 8.0 1
Healer (H) 190 25 1.0 1.0 1.0 -7 10.0 2.0 1
Paladin (P) 230 220 1.32 8.5 1.2 -6 7.5 2.0 1

Moving Algorithm All units navigate toward their designated target position. Movement is de-
termined by comparing the coordinate differences between the unit’s current position and the target
position. The axis with the largest absolute difference is prioritized, and the unit moves in the di-
rection that reduces this difference, thereby progressing toward the target location in a stepwise
manner.

Target Position. By default, each unit selects as its target position the location aligned with the
opponent’s facing direction, adjusted by the unit’s own radius. Two exceptions apply: (i) the As-
sassin unit instead selects the position behind the target, opposite to the opponent’s facing direction,
reflecting its opportunistic playstyle; and (ii) the Healer unit targets the center of its ally rather than
its front, ensuring that the healing effect is applied reliably.

Random Noise. The heuristic policy incorporates three forms of controllable stochasticity:

1. Random action noise. With probability ϵ, an agent executes one of the movement actions
chosen uniformly at random, regardless of the underlying policy. For rotation, an additional
perturbation is applied by sampling

δθ ∼ N
(
0, 1

π

2
)
,

where the sampled value is added to the rotation action at each timestep.
2. Ranged rotation noise. For ranged units, we introduce an additional Gaussian perturbation

with standard deviation ϵranger, applied on top of the intended rotation action:

δθranger ∼ N
(
0, ϵ2ranger

)
.

This noise is always combined with the executed rotation, ensuring variability in targeting
behavior.

3. Healer-specific rotation noise. For ranged healer units, we define a separate hyperparam-
eter ϵhealer to control the magnitude of rotation noise:

δθhealer ∼ N
(
0, ϵ2healer

)
.

This ensures that healing actions remain stochastic in a manner distinct from offensive
ranged units.

Together, these noise components prevent the heuristic policy from becoming overly deterministic
or optimal, while allowing fine-grained control of randomness via tunable hyperparameters ϵ, ϵranger,
and ϵhealer.

Kiting Algorithm Ranged units attempt to maintain a safe distance from opponents. Formally, let
d(u, v) denote the Euclidean distance between a ranged unit u and an opposing unit v, and let Ru

be the attack range of unit u.

For standard ranged attackers, if
d(u, v) ≤ αrangedRu,

the unit does not move toward its designated target position. Instead, it moves in the opposite
direction of the intended movement vector, thereby retreating to preserve distance while continuing
to threaten the opponent within range.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

For ranged healers, a separate threshold parameter αhealer is introduced. Specifically, if

d(u, v) ≤ αhealerRu,

the healer retreats in a similar manner, but with the additional objective of maintaining sufficient
spacing from allied units. This behavior ensures that the healer can continue to provide support
while reducing the risk of being caught in close combat or obstructing allied positioning.

Thresholds for Unit Roles Unit roles are determined based on predefined attribute thresholds.
Specifically, ranged units are defined as those with an attack range greater than or equal to 10, while
assassin units are defined as those with a movement speed greater than or equal to 1.4.

A.4 SCENARIOS

Figure 10: Illustrations of the initial deployments for the four benchmark scenarios. The red triangle
denotes the facing direction of the enemy forces.

Table 3: Budget levels (abundant, medium, tight) for each scenario.

Scenario Abundant Medium Tight
2F1K2A1H 2930 2650 2320
1K2S 2420 2180 1940
1M2C1P 3520 3370 2570
7F2D1H 2450 1970 1720

We provide a set of predefined scenarios that specify the initial unit compositions and deployment
layouts for the enemy side, which serve as fixed adversaries throughout our experiments. Each
scenario determines both the unit types and their spatial arrangement on a fixed grid. The red
triangle denotes the facing direction of the enemy forces. Illustrations of the deployments are shown
in Figure 10, and the corresponding budget levels for each scenario are summarized in Table 3.

B RELATED WORK

Multi-stage RL Environments Deep RL has recently achieved remarkable success across a wide
range of complex, long-horizon environments (Machado et al., 2018; Fan et al., 2022). To promote
stronger generalization, Cobbe et al. (2020) introduced a suite of procedurally generated game-like
environments organized into a sequential pipeline. However, the interconnections between suc-
cessive stages in their framework are weak, and all stages share a unified action and observation
space. In contrast, the stages in TABS exhibit strong interdependencies—where outcomes from ear-
lier stages directly shape later ones—and feature distinct action and observation spaces, posing a
significant challenge for agent design.

Game-based Multi-agent RL Environments Game-based environments have become a widely
adopted domain for evaluating multi-agent scalability, coordination, cooperation, and collaboration.
Prior work has introduced a diverse set of such environments, including StarCraft II (Vinyals et al.,
2019), which has inspired multiple environment suites (Samvelyan et al., 2019; Ellis et al., 2023;
Rutherford et al., 2024); Overcooked (Ghost Town Games, 2016), widely used for multi-agent co-
ordination research (Carroll et al., 2019; Rutherford et al., 2024); the Google Research Football

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

environment (Kurach et al., 2020); and traditional card and board games (e.g., poker, tic-tac-toe)
(Lanctot et al., 2019). While these works primarily focus on single-stage environments, we target
sequentially combined environments, reflecting the interwoven stages characteristic of many real-
world problems. Although Xi et al. (2023) investigated a two-stage strategy card game, we extend
this setting to a n-player environment.

C EXPERIMENTAL DETAIL

C.1 ALTERNATING AND SIMULTANEOUS TRAINING

We present pseudocode for both alternating and simultaneous training strategies in Algorithms 1 and
2. In both cases, the policies πC(θC), πD(θD), and πB(θB)—corresponding to TABSUnitComb,
TABSUnitDeploy, and TABSBattleSimulator stages, respectively—are trained end-to-end through
full pipeline rollouts, with the key difference lying in the parameter update schedule.

Algorithm 1 Alternating Training for Multi-Stage Agents

Require: Agents πC(θC), πD(θD), πB(θB); total outer iterations T ; update steps per stage: KC ,
KD, KB .

1: Initialize parameters θC , θD, θB
2: for t = 1 to T do
3: // TABSUnitComb training phase
4: for k = 1 to KC do
5: Rollout full pipeline (πC , πD, πB)
6: Collect episode trajectories DC from TABSUnitComb stage
7: Set reward of the last episode action as the final TABSBattleSimulator return
8: Update θC with DC (freeze θD, θB)
9: end for

10: // TABSUnitDeploy training phase
11: for k = 1 to KD do
12: Rollout full pipeline (πC , πD, πB)
13: Collect episode trajectories DU from TABSUnitDeploy stage
14: Set reward of the last Deploy episode action as the final TABSBattleSimulator return
15: Update θU with DU (freeze θC , θB)
16: end for
17: // TABSBattleSimulator training phase
18: for k = 1 to KB do
19: Rollout full pipeline (πC , πD, πB)
20: Collect episode trajectories DB from TABSBattleSimulator stage
21: Update θB with DB (freeze θC , θD)
22: end for
23: end for
24: return trained parameters θ⋆C , θ

⋆
D, θ⋆B

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 Simultaneous Training for Multi-Stage Agents

Require: Agents πC(θC), πD(θD), πB(θB); total iterations T ;.
1: Initialize parameters θC , θD, θB
2: for t = 1 to T do
3: Rollout full pipeline (πC , πD, πB)
4: Collect episode trajectories DC , DD, DB for each stage
5: Set reward of the last TABSUnitComb action as the final TABSBattleSimulator return
6: Set reward of the last TABSUnitDeploy action as the final TABSBattleSimulator return
7: Update θC with DC

8: Update θD with DD

9: Update θB with DB

10: end for
11: return trained parameters θ⋆C , θ

⋆
D, θ⋆B

Table 4: Alternating training common settings

Setting Value
Parallel environments 64
Max ally units 10
Total iterations T 100
KC 50
KD 50
KB 50
TABSUnitComb rollout steps 10
TABSUnitDeploy rollout steps 10
TABSBattleSimulator rollout steps 512
Heuristic random action probability ϵ 0.1
ϵranged 0.5
ϵhealer 0.1
αranged 0.3
αhealer 0.85

Table 5: Simultaneous training common settings

Setting Value
Parallel environments 64
Max ally units 10
Total iterations T 1500
TABSUnitComb rollout steps 10
TABSUnitDeploy rollout steps 10
TABSBattleSimulator rollout steps 512
Heuristic random action probability ϵ 0.1
ϵranged 0.5
ϵhealer 0.1
αranged 0.3
αhealer 0.85

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.2 POLICY ARCHITECTURE

GRU Linear
Linear Discrete

Distribution

Continuous

Distribution

Linear
Linear

ReLULayerNorm

Figure 11: Policy architecture used for training agents in the hybrid action space. The architecture
follows Fan et al. (2019), consisting of separate heads for the discrete policy πdis and the continuous
policy πcon, whose outputs are combined to form the joint policy.

We train agents to operate in the hybrid action space by adopting the model architecture proposed
by Fan et al. (2019). Given a discrete policy πdis and a continuous policy πcon, actions are sampled
independently from each policy. The joint policy is then expressed as

π(o, a) = πdis(o, adis) · πcon(o, acon),

and this factorized probability is used within the learning algorithm. The detailed policy architecture
is illustrated in Figure 11.

C.3 BASELINE HYPERPARAMETERS

Table 6: PPO common hyperparameters

Hyperparameter Value
Optimizer Adam (Kingma & Ba, 2014)
Anneal Learning Rate True
Batch size 32
Learning rate 10−4

Hidden dim 256
Hidden layers 2
Discount factor (γ) 0.99
GAE factor (λ) 0.95
Activation ReLU
Layer norm (Ba et al., 2016) True
Clip range 0.2
Update epochs 5
Max gradient norm 0.25
Entropy coefficient 0.1

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: PQN common hyperparameters

Hyperparameter Value
Optimizer RAdam (Liu et al., 2019)
Anneal Learning Rate True
Batch size 32
Learning rate 10−4

Hidden dim 256
Hidden layers 2
Discount factor (γ) 0.99
λ factor 0.95
Activation ReLU
Layer norm (Ba et al., 2016) True
ϵinit 1.0
ϵfinish 0.05
ϵdecay 0.2
Update epochs 4
Max gradient norm 50.0
Reward scale 100.0

Table 8: MAPPO common hyperparameters

Hyperparameter Value
Optimizer Adam (Kingma & Ba, 2014)
Anneal Learning Rate True
Batch size 64
Learning rate 10−4

Hidden dim 256
Hidden layers 2
Discount factor (γ) 0.99
GAE factor (λ) 0.95
Activation ReLU
Layer norm (Ba et al., 2016) True
Clip range 0.2
Update epochs 5
Max gradient norm 0.25
Entropy coefficient 0.0

Table 9: IPPO common hyperparameters

Hyperparameter Value
Optimizer Adam (Kingma & Ba, 2014)
Anneal Learning Rate True
Batch size 64
Learning rate 10−4

Hidden dim 256
Hidden layers 2
Discount factor (γ) 0.99
GAE factor (λ) 0.95
Activation ReLU
Layer norm (Ba et al., 2016) True
Clip range 0.2
Update epochs 5
Max gradient norm 0.25
Entropy coefficient 0.0
Critic coefficient 0.5

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.4 COMPUTATION TIME

Each experiment was conducted on a single CPU (AMD EPYC 7763, 64 cores) with 512 GB of
RAM and a single GPU (NVIDIA RTX 4090, 24 GB memory). We implemented all reinforcement
learning algorithms using JAX v0.4.38 and executed them on Debian GNU/Linux 12 (Bookworm).

Table 10: Average wall-clock training time across training methods and algorithm combinations.

Scenario Training Method Algorithm Training Time

2F1K2A1H

ST

PPO–MAPPO 43m
PPO–IPPO 39m
PQN–MAPPO 43m
PQN–IPPO 39m

AT

PPO–MAPPO 28m
PPO–IPPO 26m
PQN–MAPPO 28m
PQN–IPPO 26m

1K2S

ST

PPO–MAPPO 40m
PPO–IPPO 35m
PQN–MAPPO 39m
PQN–IPPO 34m

AT

PPO–MAPPO 23m
PPO–IPPO 22m
PQN–MAPPO 22m
PQN–IPPO 21m

1M2C1P

ST

PPO–MAPPO 41m
PPO–IPPO 36m
PQN–MAPPO 39m
PQN–IPPO 36m

AT

PPO–MAPPO 24m
PPO–IPPO 23m
PQN–MAPPO 24m
PQN–IPPO 23m

7F2D1H

ST

PPO–MAPPO 49m
PPO–IPPO 44m
PQN–MAPPO 49m
PQN–IPPO 44m

AT

PPO–MAPPO 34m
PPO–IPPO 33m
PQN–MAPPO 34m
PQN–IPPO 33m

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.5 CD-PPO DETAIL

CD-PPO is a controlled training setting in which only the TABSUnitComb and TABSUnitDeploy
stages are trained with PPO, while the TABSBattleSimulator stage is fixed by a heuristic policy.
We define two variants: (i) CD-PPO-Expert, where the heuristic policy is fixed at expert strength
from the beginning of training, and (ii) CD-PPO-Schedule, where the heuristic strength is linearly
increased until it reaches expert level at the scheduling decay midpoint.

The hyperparameters used for CD-PPO are summarized in Table 11. Performance across all scenar-
ios is reported in Figure 12.

Table 11: Comb&Deploy training common settings

Setting Value
Parallel environments 64
Max ally units 10
Total iterations T 1500
TABSUnitComb rollout steps 10
TABSUnitDeploy rollout steps 10
TABSBattleSimulator rollout steps 512
Initial ϵ 0.5
Initial ϵranged 1.0
Initial ϵhealer 0.1
Initial αranged 0.5
Initial αhealer 0.0
Final ϵ 0.0
Final ϵranged 0.6
Final ϵhealer 0.0
Final αranged 0.0
Final αhealer 1.0
Enemy ϵ 0.1
Enemy ϵranged 0.5
Enemy ϵhealer 0.1
Enemy αranged 0.3
Enemy αhealer 0.85
Scheduling decay midpoint 0.5

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

Ab
un

da
nt

2F1K2A1H

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0
1K2S

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0
1M2C1P

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0
7F2D1H

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

iu
m

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Ti
gh

t

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

CD-PPO-Expert CD-PPO-Schedule

Figure 12: Win rates detail CD-PPO-Expert and CD-PPO-Schedule across varying budget levels.
Each point represents the mean episode win rate averaged over 5 random seeds, with shaded regions
indicating the standard error.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.6 ADDITIONAL RESULTS

We provide several interesting metrics: episode returns (Figure 13), first-kill rate (Figure 14), total
episode damage dealt (Figure 15), attack success rate (Figure 16), and average unit counts for each
unit (??). In all figures, results are averaged over five random seeds, with shaded regions indicating
the standard error.

0 1 2 3 4 5
1e7

0.75

0.50

0.25

0.00

0.25

Ab
un

da
nt

2F1K2A1H

0 1 2 3 4 5
1e7

0.5

0.0

0.5

1.0

1K2S

0 1 2 3 4 5
1e7

0.5

0.0

0.5

1M2C1P

0 1 2 3 4 5
1e7

0.5

0.0

0.5

1.0

7F2D1H

0 1 2 3 4 5
1e7

0.8

0.6

0.4

0.2

0.0

0.2

M
ed

iu
m

0 1 2 3 4 5
1e7

0.5

0.0

0.5

1.0

0 1 2 3 4 5
1e7

0.5

0.0

0.5

0 1 2 3 4 5
1e7

0.8

0.6

0.4

0.2

0.0

0 1 2 3 4 5
Step 1e7

0.8

0.6

0.4

0.2

Ti
gh

t

0 1 2 3 4 5
Step 1e7

0.5

0.0

0.5

0 1 2 3 4 5
Step 1e7

0.8

0.6

0.4

0.2

0.0

0 1 2 3 4 5
Step 1e7

0.8

0.6

0.4

0.2

ST-PPO-MAPPO
AT-PPO-MAPPO

ST-PPO-IPPO
AT-PPO-IPPO

ST-PQN-MAPPO
AT-PQN-MAPPO

ST-PQN-IPPO
AT-PQN-IPPO

Figure 13: Episode return comparison between alternating training and simultaneous training across
varying budget levels.

0 1 2 3 4 5
1e7

0.2

0.4

0.6

0.8

Ab
un

da
nt

2F1K2A1H

0 1 2 3 4 5
1e7

0.2

0.4

0.6

0.8

1.0
1K2S

0 1 2 3 4 5
1e7

0.4

0.6

0.8

1.0
1M2C1P

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0
7F2D1H

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

M
ed

iu
m

0 1 2 3 4 5
1e7

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
Step 1e7

0.2

0.4

0.6

0.8

1.0

Ti
gh

t

0 1 2 3 4 5
Step 1e7

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Step 1e7

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

ST-PPO-MAPPO
AT-PPO-MAPPO

ST-PPO-IPPO
AT-PPO-IPPO

ST-PQN-MAPPO
AT-PQN-MAPPO

ST-PQN-IPPO
AT-PQN-IPPO

Figure 14: First kill rate comparison between alternating training and simultaneous training across
varying budget levels.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
1e7

200

300

400

500

600

Ab
un

da
nt

2F1K2A1H

0 1 2 3 4 5
1e7

100

200

300

400

500

1K2S

0 1 2 3 4 5
1e7

400

600

800

1000

1200
1M2C1P

0 1 2 3 4 5
1e7

200

400

600

800
7F2D1H

0 1 2 3 4 5
1e7

200

300

400

500

600

M
ed

iu
m

0 1 2 3 4 5
1e7

100

200

300

400

500

0 1 2 3 4 5
1e7

400

600

800

1000

0 1 2 3 4 5
1e7

200

400

600

0 1 2 3 4 5
Step 1e7

100

200

300

400

500

600

Ti
gh

t

0 1 2 3 4 5
Step 1e7

100

200

300

400

500

0 1 2 3 4 5
Step 1e7

400

600

800

1000

0 1 2 3 4 5
Step 1e7

100

200

300

400

500

ST-PPO-MAPPO
AT-PPO-MAPPO

ST-PPO-IPPO
AT-PPO-IPPO

ST-PQN-MAPPO
AT-PQN-MAPPO

ST-PQN-IPPO
AT-PQN-IPPO

Figure 15: Total episode damage dealt comparison between alternating training and simultaneous
training across varying budget levels.

0 1 2 3 4 5
1e7

0.2

0.3

0.4

Ab
un

da
nt

2F1K2A1H

0 1 2 3 4 5
1e7

0.1

0.2

0.3

0.4

0.5

1K2S

0 1 2 3 4 5
1e7

0.2

0.3

0.4

1M2C1P

0 1 2 3 4 5
1e7

0.1

0.2

0.3

0.4

7F2D1H

0 1 2 3 4 5
1e7

0.2

0.3

0.4

0.5

M
ed

iu
m

0 1 2 3 4 5
1e7

0.1

0.2

0.3

0.4

0 1 2 3 4 5
1e7

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5
1e7

0.2

0.3

0.4

0.5

0 1 2 3 4 5
Step 1e7

0.1

0.2

0.3

0.4

0.5

Ti
gh

t

0 1 2 3 4 5
Step 1e7

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4 5
Step 1e7

0.20

0.25

0.30

0.35

0.40

0.45

0 1 2 3 4 5
Step 1e7

0.15
0.20
0.25
0.30
0.35
0.40

ST-PPO-MAPPO
AT-PPO-MAPPO

ST-PPO-IPPO
AT-PPO-IPPO

ST-PQN-MAPPO
AT-PQN-MAPPO

ST-PQN-IPPO
AT-PQN-IPPO

Figure 16: Attack success rate comparison between alternating training and simultaneous training
across varying budget levels.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
1e7

0

1

2

3

Fa
rm

er

Abundant

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5
Medium

0 1 2 3 4 5
1e7

0

2

4

6

8
Tight

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

As
sa

ss
in

0 1 2 3 4 5
1e7

0

1

2

0 1 2 3 4 5
1e7

0

1

2

3

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

Th
eK

in
g

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

M
am

m
ot

h

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

Ar
ch

er

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5
1e7

0.00

0.25

0.50

0.75

1.00

1.25

Ca
nn

on

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

0 1 2 3 4 5
1e7

0.00

0.25

0.50

0.75

1.00

1.25

0 1 2 3 4 5
1e7

0.0
0.5
1.0
1.5
2.0
2.5

De
ad

ey
e

0 1 2 3 4 5
1e7

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

2.5

He
al

er

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0

1

2

3

4

0 1 2 3 4 5
Step 1e7

0.0

0.5

1.0

Pa
la

di
n

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
Step 1e7

0

1

2

3

ST-PPO-MAPPO
AT-PPO-MAPPO

ST-PPO-IPPO
AT-PPO-IPPO

ST-PQN-MAPPO
AT-PQN-MAPPO

ST-PQN-IPPO
AT-PQN-IPPO

Figure 17: Average usage counts across all units in the 2F1K2A1H scenario

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
1e7

0

2

4

6

8

Fa
rm

er

Abundant

0 1 2 3 4 5
1e7

0

2

4

6

Medium

0 1 2 3 4 5
1e7

0

1

2

3

4

5
Tight

0 1 2 3 4 5
1e7

0.00
0.25
0.50
0.75
1.00
1.25

As
sa

ss
in

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.2

0.4

0.6

0.8

1.0

Th
eK

in
g

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.00

0.25

0.50

0.75

1.00

M
am

m
ot

h

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

Ar
ch

er

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

Ca
nn

on

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

De
ad

ey
e

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

0 1 2 3 4 5
1e7

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5
1e7

0.00

0.25

0.50

0.75

1.00

He
al

er

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

0 1 2 3 4 5
Step 1e7

0.0

0.5

1.0

1.5

Pa
la

di
n

0 1 2 3 4 5
Step 1e7

0.00

0.25

0.50

0.75

1.00

1.25

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

ST-PPO-MAPPO
AT-PPO-MAPPO

ST-PPO-IPPO
AT-PPO-IPPO

ST-PQN-MAPPO
AT-PQN-MAPPO

ST-PQN-IPPO
AT-PQN-IPPO

Figure 18: Average usage counts across all units in the 1K2S scenario

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
1e7

0

2

4
Fa

rm
er

Abundant

0 1 2 3 4 5
1e7

0

2

4

6
Medium

0 1 2 3 4 5
1e7

1

2

3

4

Tight

0 1 2 3 4 5
1e7

0

1

2

3

As
sa

ss
in

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

0 1 2 3 4 5
1e7

0

1

2

3

0 1 2 3 4 5
1e7

0.5

1.0

1.5

2.0

Th
eK

in
g

0 1 2 3 4 5
1e7

0.5

1.0

1.5

2.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

M
am

m
ot

h

0 1 2 3 4 5
1e7

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

Ar
ch

er

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

Ca
nn

on

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5
1e7

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

De
ad

ey
e

0 1 2 3 4 5
1e7

0

1

2

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
1e7

0

1

2

3

He
al

er

0 1 2 3 4 5
1e7

0

1

2

3

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Step 1e7

0

1

2

3

4

Pa
la

di
n

0 1 2 3 4 5
Step 1e7

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

ST-PPO-MAPPO
AT-PPO-MAPPO

ST-PPO-IPPO
AT-PPO-IPPO

ST-PQN-MAPPO
AT-PQN-MAPPO

ST-PQN-IPPO
AT-PQN-IPPO

Figure 19: Average usage counts across all units in the 1M2C1P scenario

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
1e7

0

2

4

6

8

Fa
rm

er

Abundant

0 1 2 3 4 5
1e7

0

1

2

3

4

5

Medium

0 1 2 3 4 5
1e7

0

2

4

Tight

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

As
sa

ss
in

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

Th
eK

in
g

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

M
am

m
ot

h

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0 1 2 3 4 5
1e7

0

1

2

Ar
ch

er

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

Ca
nn

on

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

De
ad

ey
e

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0 1 2 3 4 5
1e7

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5
1e7

0.0

0.2

0.4

0.6

0.8

He
al

er

0 1 2 3 4 5
1e7

0

1

2

3

4

0 1 2 3 4 5
1e7

0.00

0.25

0.50

0.75

1.00

1.25

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

Pa
la

di
n

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
Step 1e7

0.0

0.2

0.4

0.6

ST-PPO-MAPPO
AT-PPO-MAPPO

ST-PPO-IPPO
AT-PPO-IPPO

ST-PQN-MAPPO
AT-PQN-MAPPO

ST-PQN-IPPO
AT-PQN-IPPO

Figure 20: Average usage counts across all units in the 7F2D1H scenario

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

D FULL-SIZED VISUALIZATION

We provide full-sized visualizations of the substages in TABS.

(a) Visualization of TABSUnitComb

(b) Visualization of TABSUnitDeploy

(c) Visualization of TABSBattleSimulator

Figure 21: Full-size Visualization of TABS

30

	Introduction
	Background
	Totally Accelerated Battle Simulator
	Unit Combination and Deployment
	Multi-Agent Battle Simulation
	Role-appropriate Heuristic Policy
	Scenarios

	Experiments
	Training Methods
	Training in Multi-stage Environment
	Exploration in Multi-stage Environment
	Environment Parallelization Experiments

	Conclusion
	Details on TABS
	Initial Observation in TABSBattleSimulator
	Unit Types and Specifications
	Role-appropriate Heuristic Policy
	Scenarios

	Related Work
	Experimental Detail
	Alternating and Simultaneous Training
	Policy Architecture
	Baseline Hyperparameters
	Computation Time
	CD-PPO Detail
	Additional Results

	Full-sized Visualization

