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Abstract001

Low Rank Adaptation (LoRA) is a popular Pa-002
rameter Efficient Fine Tuning (PEFT) method003
that effectively adapts large pre-trained mod-004
els for downstream tasks. LoRA parameter-005
izes model updates using low-rank matrices006
at each layer, significantly reducing the num-007
ber of trainable parameters and, consequently,008
resource requirements during fine-tuning. How-009
ever, the lower bound on the number of train-010
able parameters remains high due to the use011
of the low-rank matrix model. Recent works012
have addressed this limitation by proposing low013
rank tensor parameterizations for model up-014
dates. However, they only exploit redundancy015
across layers, or tensorize individual matrices016
using ad-hoc schemes that introduce additional017
hyperparameters. In this work, we propose a018
higher-order Candecomp/Parafac (CP) decom-019
position, enabling a more compact and flexible020
representation compared to existing matrix and021
tensor based PEFT methods. The proposed low022
rank tensor model can reduce the number of023
trainable parameters, while also allowing for024
finer-grained control over adapter size. Our ex-025
periments on Natural Language Understanding,026
Instruction Tuning, Preference Optimization027
and Protein Folding benchmarks demonstrate028
that our method can achieve a reduction in the029
number of parameters while maintaining com-030
parable performance.031

1 Introduction032

The advent of Large Language Models (LLMs) – billion033
parameter scale models pre-trained on vast corpora of034
data – has enabled unprecedented capabilities across a035
wide range of tasks. However, as LLM sizes continue036
to grow exponentially, their computational and memory037
demands represent significant challenges, particularly038
for those lacking access to high-performance computing039
infrastructure (Varoquaux et al., 2024). This has spurred040
interest in parameter efficient fine tuning (PEFT) tech-041
niques (Ding et al., 2023), which facilitate the adap-042
tation of LLMs to specific applications, downstream043
tasks or user preferences, by using only a small fraction044
of trainable parameters. Most importantly, they reduce045

GPU memory requirements, primarily by shrinking opti- 046
mizer states (Liao et al., 2023). Moreover, they provide 047
greater efficiency in storage and deployment, enabling 048
the management of multiple fine-tuned LLMs with re- 049
duced storage footprints and faster load times (Sheng 050
et al., 2023; Wen and Chaudhuri, 2024), which is par- 051
ticularly relevant for applications requiring rapid model 052
switching across numerous task- or user-specific mod- 053
els. 054

Beyond computational benefits, PEFT techniques can 055
also mitigate overfitting risks associated with fine-tuning 056
high-capacity LLMs. By constraining model updates, 057
PEFT methods can act as an implicit regularization 058
mechanism, improving generalization (Fu et al., 2023; 059
Sun et al., 2023). Parameter sharing, a well-established 060
technique in deep learning architecture design, has been 061
shown to improve generalization across various tasks 062
such as protein folding (Jumper et al., 2021; Lin et al., 063
2023), image segmentation (Ronneberger et al., 2015), 064
and generative modeling (Rombach et al., 2022). Incor- 065
porating parameter sharing in PEFT methods has also 066
improved performance in specialized applications with 067
limited data, such as in medical domains (Dutt et al., 068
2023; Zhu et al., 2024). 069

Low Rank Adaptation (LoRA) is a popular PEFT ap- 070
proach that uses a low rank parameterization of weight 071
matrix updates (Hu et al., 2021). For instance, these 072
allow to fine tune a 175 billion parameter LLM using 073
only 5 million trainable parameters (Hu et al., 2021) 074
without performance degradation. Since the model up- 075
dates can be merged with the frozen weights, LoRA 076
incurs no additional inference cost when deployed, un- 077
like prompt (Li and Liang, 2021a; Liu et al., 2023) and 078
adapter-based (Houlsby et al., 2019; He et al., 2021; 079
Pfeiffer et al., 2020) PEFT methods. 080

However, the lower bound on trainable parameters 081
often remains substantial for large-scale models. Re- 082
cent works have aimed to further reduce the number 083
of parameters in LoRA by using shared pseudorandom 084
low rank projections (Zhang et al., 2023a; Kopiczko 085
et al., 2023), or parameterizing low rank matrices using 086
a pseudorandom basis (Koohpayegani et al., 2024). We 087
show that the parameter-sharing schemes in these meth- 088
ods can be interpreted as low-rank tensor models with 089
fixed random factors. 090

On the other hand, (Yang et al., 2024) leverage low 091
rank tensor adapters by treating each weight update as 092
a tensor with arbitrary dimensions. However, this ten- 093
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sorization scheme not only introduces additional hyper-094
parameters but also forfeits structural information and095
potential correlations among different weights. Other096
low-rank tensor adapter models recently proposed for097
vision transformers (Jie and Deng, 2023; Edalati et al.,098
2023) and LLMs (Bershatsky et al., 2024) treat model099
layers as an explicit mode, but do not exploit redundan-100
cies across attention matrices or heads. Moreover, they101
use tucker and tensor train models which are less param-102
eter efficient and parsimonious than CANDECOMP/-103
PARAFAC (CP) models (Kolda and Bader, 2009).104

Building on these insights, we propose LoRTA, a105
5th-order CP-based low-rank factorization that unifies106
parameter updates across layers, heads, and attention107
matrices. To the best of our knowledge this is the first108
tensor based method to (i) exploit redundancy in weight109
updates across layers, heads, and attention matrices by110
representing updates as a unified 5th-order low-rank111
tensor (ii) employ a CP model.112

We evaluate our method on diverse benchmarks in-113
cluding Natural Language Understanding, Instruction114
Tuning, Preference Optimization, and Protein Folding.115
Our experiments demonstrate that LoRTA can achieve116
up to an order of magnitude reduction in the number of117
trainable parameters compared to state-of-the-art PEFT118
methods, with minimal performance trade-offs.119

2 Preliminaries120

2.1 Transformer Architecture121

We focus on the transformer architecture, although it122
can be naturally extended to other architectures such123
as Convolutional Neural Networks and Long Short124
Term Memory networks. We adopt the problem set-125
ting presented in (Thickstun, 2021). In the transformer126
model, an initial embedding layer maps input tokens127
to d−dimensional vector representations. These em-128
beddings then pass through a series of layers, each per-129
forming multi-head attention, normalization and feed-130
forward operations. The input to the l−th layer of the131
transformer is a matrix X(l) ∈ RN×d, where N is the132
number of queries, represented in a d−dimensional fea-133
ture space. A vanilla transformer layer with H attention134
heads is then defined as follows:135

X(l+1) = LayerNorm
(
Y (l) + MLP

(
Y (l)

))
136

Y (l) = LayerNorm
(
X(l) + Attn

(
X(l)

))
137

Attn
(
X(l)

)
= X(l)138

+

H∑
h=1

softmax

(
X(l)Q

(l)
h K

(l)T

h X(l)T

√
d

)
X(l)V

(l)
h P

(l)T

h139

MLP
(
X(l)

)
= ReLU

(
X(l)GT

1 + 1NbT1

)
GT

2 + 1NbT2 ,140

where K
(l)
h ,Q

(l)
h ,V

(l)
h ,P

(l)
h ∈ Rd×dH are the key,141

query, value and projection matrices respectively, for142
head h and layer l.143

2.2 Low Rank (matrix) Adaptation 144

LoRA modifies the pre-trained weights by adding a 145
trainable update. Explicitly, at each layer and head h: 146

Kh = K0
h + dKh, Qh = Q0

h + dQh, 147

Vh = V 0
h + dVh, Ph = P 0

h + dPh, 148

where K0,Q0,V 0,P 0 denote the pre-trained weights 149
and dK, dQ, dV , dP the trainable adapters. 150

While each attention head’s MLP contains two train- 151
able matrices, G1 and G2, our focus is on fine-tuning 152
the attention matrices. This has been demonstrated to be 153
effective for LLM adaptation (Hu et al., 2021; Kopiczko 154
et al., 2023). Nevertheless, these methods can be eas- 155
ily extended to other parameters, including the MLP 156
weights. 157

Let Wh ∈ {Qh,Kh,Vh,Ph} for h = 1, . . . ,H de- 158
note the query, key, value and projection matrices, re- 159
spectively, for each attention head. After concatenating 160
updates across all attention heads, we get: 161

dW̃ = (dW1, . . . , dWH) ∈ Rd×d. 162

(Hu et al., 2021) proposed to parametrize the updates 163
using rank-r matrices, which can be expressed as 164

dW̃ =
α

r
ABT , A,B ∈ Rd×r, (1) 165

where α is a constant and r denotes the rank of the up- 166
date. The scaling factor simply aims to reduce the efforts 167
of re-tuning the learning rate when training adapters of 168
varying rank. It has been shown that while this scaling 169
heuristic works well for smaller ranks, it can be sub- 170
optimal for larger ranks (Kalajdzievski, 2023). (Hayou 171
et al., 2024) have also shown that setting the learning 172
rate for the A and B matrices appropriately can further 173
improve convergence and performance. 174

Although LoRA is an efficient fine-tuning technique, 175
the number of parameters required for each layer is 176
at least 8 · d · r. Thus, the total number of trainable 177
parameters is: 178

#parameters (LoRA) = 2 ·M · d · L · r, (2) 179

where L is the total number of layers and M the number 180
of finetuned attention/projection matrices. Even with 181
r = 1, this results in 4 · M · d · L parameters. In 182
practice, for LLMs with high dimensionality (d) and 183
many layers (L), this lower bound can still lead to a 184
significant number of trainable parameters. 185

LoRA has also been combined with model weight 186
quantization (Dettmers et al., 2024), further decreas- 187
ing resource requirements. Unlike adapter-based PEFT 188
methods (Houlsby et al., 2019; Pfeiffer et al., 2020; 189
Rücklé et al., 2020; He et al., 2021), LoRA does not 190
introduce additional inference time overhead during de- 191
ployment, as the trainable matrices can be integrated 192
with the fixed weights. 193

Building upon this foundation, AdaLoRA (Zhang 194
et al., 2023b) expands the LoRA technique by intro- 195
ducing dynamic rank adjustment for low-rank matrices 196
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during fine-tuning. The fundamental concept involves197
optimally allocating the parameter resources by selec-198
tively pruning less crucial components of the matrices199
based on an importance metric. LoRA-FA (Zhang et al.,200
2023a) reduces the number of trainable parameters by201
freezing the A matrix to its random initialisation, while202
achieving similar performance to LoRA.203

2.3 Tensor Algebra204

In the following sections we introduce our proposed205
LoRTA framework, which is a tensor adaptation model206
for PEFT. To facilitate the upcoming analysis, we briefly207
present some tensor algebra preliminaries and refer the208
reader to Appendix A and (Sidiropoulos et al., 2017;209
Kolda and Bader, 2009) for further details.210

A N -order tensor X ∈ RI1×I2×···×IN is an N -211
way array indexed by i1, i2, . . . , iN with elements212
X (i1, i2, . . . , iN ). It consists of N types of modes:213
X (:, i2, . . . , iN ), X (i1, :, . . . , iN ), . . . ,X (i1, i2, . . . , :).214
Any tensor can be decomposed as a sum of N -way215
outer products as: where An = [a1

n,a
2
n, . . . ,a

R
n ] ∈216

RIn×R, n = 1, . . . , N are called the low rank factors of217
the tensor. The above expression represents the canon-218
ical polyadic decomposition (CPD) or parallel factor219
analysis (PARAFAC) (Harshman and Lundy, 1994) of a220
tensor. A tensor can be fully characterized by its latent221
factors, so we can represent a tensor by its CPD model222
as:223

X = JA1,A2, . . . ,AN K . (3)224

Unlike other tensor models, such as Tucker and Block225
Term Decomposition (BTD), the CPD model is unique226
under certain conditions. As a result, the CPD model is227
often preferred when the goal is to minimize the number228
of parameters.229

A tensor can also be represented as a set of matrices,230
by fixing all the modes but two as:231

X [:, :, i3, . . . , iN ] = (4)232

A1 (Diag (A3 (i3, :))⊙ · · · ⊙ Diag (AN (iN , :)))AT
2 ,

(5)
233

where Diag (An (in, :)) is the diagonal matrix with di-234
agonal equal to AN (in, :).235

3 Low Rank Tensor adaptation236

3.1 Parameter sharing across layers237

To further increase the compression ratio in PEFT mod-238
els, recent works (Kopiczko et al., 2023; Koohpayegani239
et al., 2024) suggest sharing parameters across layers240
that operate as predefined projection matrices. As we241
see next, this leads to tensor factorization models with242
fixed parameters.243

Vector-based Random Matrix Adaptation (VeRA)244
(Kopiczko et al., 2023) have proposed to parameterize245
updates using two learnable vectors at each layer and246
fixed random matrices shared across all layers. The247
update at each layer can be expressed as248

dW̃ = ADiag (CD[l, :])BT Diag (CB [l, :]) , (6)249

where A,B ∈ Rd×r are the random projections, and 250
CD ∈ RL×r, CB ∈ RL×d are matrices that collect 251
trainable vectors across layers. The model in 6 is a 252
coupled matrix factorization model and is similar to 253
a tensor model. In particular, if we remove the CB 254
term VeRA can be interpreted as a low-rank tensor CPD 255
parameterization with fixed random factors. That is, 256
the weight update W̃ is a rank-r third order tensor 257
T ∈ Rd×d×L. Note that, omitting the CB term has 258
been shown to lead to a small performance degradation 259
unlike omitting CD (Kopiczko et al., 2023). 260

Random Matrix basis Adaptation (NOLA) In a 261
similar manner, (Koohpayegani et al., 2024) have pro- 262
posed to parameterize the weight update by expressing 263
the matrices A and B as linear combinations of fixed 264
random basis matrices, that are shared across all layers. 265
The weight update dW for layer l is then given by: 266

dW̃l =

k∑
i=1

k∑
j=1

α(i,l)β(j,l)AiB
T
j , (7) 267

where Ai,Bj ∈ Rd×r are fixed random matrices, 268

shared across all layers, and αl =
{
α(i,l)

}K
i=1

and 269

βl =
{
β(i,l)

}K
i=1

are the learned coefficients for each 270

layer. If we stack the random matrices Ai,Bj ∈ Rd×r 271
into tensors A, B such that: A[:, :, i] = Ai and 272
B[:, :, j] = Bj , then 7 can be cast as: 273

dW̃l =

k∑
i=1

k∑
j=1

α(i,l)β(j,l)

r∑
m=1

A[:,m, i]B[:,m, j]T 274

=

r∑
m=1

A[:,m, :]
(
αlβ

T
l

)
B[:,m, :]T 275

and dW̃l admits the following factorization. dW̃l = 276∑r
m=1 P

(m)
A

(
αlβ

T
l

)
P

(m)T
B , where P

(m)
A = A[:,m, : 277

], and P
(m)
B = B[:,m, :] are also random projection 278

matrices with different dimensions compared to Ai, Bj . 279
As a result, NOLA can be viewed as the following tensor 280
factorization model: 281

dW̃ =

r∑
m=1

r
P

(m)
A Ã,P

(m)
B B̃, I

z
, (8) 282

Ã[:, l] = αl, B̃[:, l] = βl. 283

The expression in 8 is a a summation of CPD models, 284
also known as Block Term Decomposition, which is an 285
expressive tensor model, but can lack parsimony (Kolda 286
and Bader, 2009). 287

3.2 LoRTA: A more efficient tensor model 288

In the previous section, we explored PEFT models that 289
share parameters across layers, highlighting their cor- 290
respondence to tensor factorization models. Namely, 291
VeRA and NOLA utilize fixed projection matrices 292
shared across layers. However, this strategy can re- 293
sult in models that are larger than necessary relative to 294
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Figure 1. Illustration of a rank 1 adapter for a single weight matrix with multiple heads. (Left) The LoRA update for head h is
computed as dWh = bh ◦ a. (Right) The update using a third order low rank tensor model is computed as dWh = b ◦ c[h] ◦ a.
Both models have the same tensor rank, but the latter has less parameters.

their degrees of freedom due to the inclusion of these295
random matrices. Although these matrices can be gen-296
erated on the fly by solely storing the pseudo-random297
number generator seed, this still incurs additional re-298
source demands during training, and increases loading299
time for inference.300

To address this issue, we propose modeling the train-301
able adapters using a low-rank CPD structure. This302
choice is motivated by the favorable properties of CPD:303
it is universal, capable of exactly factorizing any tensor,304
yet remains concise and parsimonious, typically requir-305
ing only a small number of parameters to achieve low ap-306
proximation error (Sidiropoulos et al., 2017). This con-307
trasts with tensor adapters used in vision (Jie and Deng,308
2023) and recently in LLM finetuning (Bershatsky et al.,309
2024), which rely on Tucker and Tensor-Train models.310
In fact, for small ranks, CPD is equivalent to Tucker311
when the core tensor in Tucker is the identity tensor.312
However Tucker is always parametrized with a dense313
tensor and therefore requires a larger number of param-314
eters for the same rank.315

LoRTA represents all weight updates as a 5th-order316
tensor dW̃ ∈ Rd× d

H ×H×L×M . By integrating updates317
of layers, heads and the Q, K, V , P matrices into a318
unified low-rank CPD tensor model, LoRTA exploits319
redundancy across different modes of the tensor. This320
approach can thus not only improve parameter efficiency321

but also facilitate learning by exploiting the shared infor- 322
mation among various components of the model. This 323
contrasts with existing PEFT approaches, which ten- 324
sorize each weight update independently (Yang et al., 325
2024) or only share parameters across layers (Jie and 326
Deng, 2023; Bershatsky et al., 2024). In order to illus- 327
trate how additional tensor modes can result in param- 328
eter efficiency gains, Figure 1 compares – for a single 329
weight update – LoRA with a rank one tensor model 330
that adds attention heads as a mode. 331

By utilizing a low-rank CPD model, we can express 332
this tensor as: 333

dW̃ = JA,B,CH ,CL,CM K, 334

where A ∈ Rd×r and B ∈ R d
H ×r are factor matrices 335

for the input and output dimensions, respectively, and 336
CH ∈ RH×r, CL ∈ RL×r, CM ∈ R4×r are factor 337
matrices for the attention heads, layers, and the four 338
matrices Q, K, V , P . Each weight matrix update can 339
then be retrieved as: 340

dW̃[:, :, k, l, i] = 341

A (Diag (CH [k, :])Diag (CL[l, :])Diag (CM [i, :]))B⊤, 342

where k indexes the attention heads, l indexes the layers, 343
and i indexes the matrices Q, K, V , P . Note that, 344
unlike previous implicit tensor models such as NOLA 345

Method Update Tensor shape Tensor Model Parameters r=4 r=64
LoRA ML× d× d Matrix-Batch 2MLdr 2.1M 33M
LoReTTA ML× d× d Custom 2MLr2

∑
i ki 92k 50M

LoTR ML× d× d Tucker2 M(Lr2 + 2dr) 33k 786k
FacT-TT ML× d× d Tensor-Train MLr2 + 2dr 33k 786k
FacT-TK ML× d× d Tucker3 (2d+ML)r + r3 33k 790k
Ours M × L× d× d/h× h CP (d+ d/h+ h+ L+M)r 17k 274k

Table 1: Number of parameters of different low rank PEFT methods as a function of the number of finetuned
attention/projection matrices M , the number of layers, L, the embedding dimension d, the number of heads h
and the tensor rank of the update, r. For LoreTTA, ki are hyperparameters that must satisfy

∏
i ki = dr and

ki ≥ r for all i. We also include the number of parameters for the Llama2-7b architecture when finetuning only
M=2 attention matrices (e.g. Q and V) for different ranks. For LoreTTa we use k1 = . . . = k6 = 5 for r = 4 and
k1 = k2 = k3 = 64 for r = 64.
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and VeRA, which rely on fixed random projections or346
parameters and learn only scaling coefficients, our pro-347
posed model is fully trainable. All factor matrices (A,348
B, CH , CL, CM ) are learned during training, provid-349
ing greater expressiveness and forgoing the dependency350
on pre-defined random bases or projections.351

Table 1 shows how the CP low rank tensor parame-352
terization leads to better scaling in the number of pa-353
rameters with respect to the tensor rank r. Moreover,354
our higher-order weight update tensorization improves355
scaling in terms of transformer architecture hyperparam-356
eters, namely the embedding dimension d, number of357
attention heads H , and number of fine-tuned attention358
matrices M .359

3.3 Other Low Rank Tensor models in PEFT360

As mentioned in the previous section, existing PEFT361
tensor-based models differ from our method both in their362
parameter-sharing schemes, which result from different363
weight update tensorization approaches, as well as in364
the low-rank tensor models they employ. Below, we365
provide a concise overview of these approaches which366
intends to highlight the differences with LoRTA; further367
details are available in Appendix C and the provided368
references.369

FaCT & LoTR In the context of vision transform-370
ers, (Jie and Deng, 2023) have proposed to repre-371
sent updates across all layers as a third order tensor372
dW̃ ∈ RL×d×d. They propose two parameterizations373
of dW̃ , namely, a Tensor Train and Tucker3 low rank374
tensor models. Recently, (Bershatsky et al., 2024) have375
proposed to apply the same tensorization across layers376
to fine-tune LLMs, but using a low rank Tucker2 tensor377
model to parameterize updates:378

dW̃ =; ;G×1 A×2 B (9)379

where A, B ∈ Rd×r and G ∈ RL×r×r.380
LoreTTA (Yang et al., 2024) propose two methods381

that employ low rank tensor models. However, these382
models do not share parameters across layers, they repa-383
rameterize low rank matrix adapters using low rank ten-384
sor models. In LoreTTA-rep a low rank matrix model is385
first applied to each weight update in the same manner386
as described for LoRA in Equation (17). Then each of387
the ML resulting LoRA factors A,B ∈ Rd×r are ex-388
pressed as a n-th order tensor with arbitrary dimensions,389
i.e. A,B ∈ Rk1×...×kN . Finally, each of these tensors390
is parametrized Tensor Train model, explicitly,391

A =
∏
i=1

Gi where Gi ∈ Rr×ki×r. (10)392

We highlight that the added dimensions ki are hyper-393
parameters that must satisfy

∏
i ki = dr and ki ≥394

r for all i; otherwise, it would induce a new tensor395
rank deficiency. Moreover, choosing appropriate values396
of ki might be challenging and necesitate further hy-397
perparameter tuning. (Yang et al., 2024) also proposed398
LoReTTA-adp, applying a tucker parameterization to an399

adapter method, which unlike our method and the rest 400
of the aforementioned methods adds new parameters to 401
the model and thus can not be merged into the original 402
weights, thereby incurring additional inference costs. 403

4 Experiments 404

4.1 Natural Language Understanding 405

We evaluate our approach by fine-tuning RoBERTa mod- 406
els on the General Language Understanding Evaluation 407
(GLUE) (Wang et al., 2018) benchmark. We conduct 408
experiments across three distinct settings previously 409
reported in the literature by (Bershatsky et al., 2024), 410
(Yang et al., 2024) and (Kopiczko et al., 2023). These 411
settings differ in hyperparameters, including the num- 412
ber of training epochs, different learning rates for the 413
classification head and encoder, the learning rate decay 414
strategy (linear vs fixed), the use of different scaling 415
parameters α, and the grid search ranges. Because the 416
best results on the validation set across a grid of hyper- 417
parameter values are reported, performance for the same 418
baseline method can vary considerably across settings 419
(see, for example, LoRA performance reported by (Hu 420
et al., 2021), (Yang et al., 2024) and (Bershatsky et al., 421
2024)). Therefore, we provide an evaluation of our 422
method in a variety of experimental conditions, while 423
also maintaining the original configurations in which 424
state-of-the-art methods were originally reported. De- 425
tailed settings can be found in Appendix E.1. 426

We also finetuned Llama2 models (Touvron et al., 427
2023) on question-answering (QA) tasks SQuAD (Ra- 428
jpurkar et al., 2016), DROP (Dua et al., 2019), 429
COPA (Roemmele et al., 2011), and ReCoRD (Zhang 430
et al., 2018), following the experimental setting outlined 431
by (Yang et al., 2024). For these tasks, we used a ran- 432
domly selected subset of 1,000 samples to simulate a 433
low-data regime and increase the task difficulty. All 434
classification tasks are tackled as language modeling 435
tasks following the prompt-based fine-tuning approach 436
described by (Malladi et al., 2023). 437

Baselines We benchmark our method against the fol- 438
lowing methods: 439

• Full finetuning: all parameters are trained. 440

• IA3 (Liu et al., 2022): rescales activations with 441
learned vectors 442

• Prefix (Li and Liang, 2021b): prepends learnable 443
continuous vectors (prefixes) to the input embed- 444
dings. 445

• LoRA (Hu et al., 2021), LoRA-FA (Zhang 446
et al., 2023a) and VeRA (Kopiczko et al., 2023), 447
LoTR (Bershatsky et al., 2024), LoReTTA- 448
rep (Yang et al., 2024): As previously described. 449

• We omit AdapterH (Houlsby et al., 2019), 450
AdapterP (Pfeiffer et al., 2020), Bitfit (Zaken 451
et al., 2021), AdapterDrop (Rücklé et al., 2020), 452
and other methods that are customarily reported 453
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Method # Trainable
Parameters

SST-2 MRPC CoLA QNLI RTE STS-B Avg.

L
oR

eT
TA LoRA (r=8) 630k 94.01 91.48 62.08 92.39 74.51 84.69 83.19

LoReTTA rep 70k 94.28 90.63 61.72 92.40 74.42 89.24 83.78
LoRTA (r=20) 48k 94.27 92.04 63.35 91.48 75.09 89.82 84.34
LoRTA (r=12) 29k 93.81 91.13 61.40 92.04 74.73 89.64 83.79

L
oT

R

LoRA (r=8) 300k 94.2 88.0 61.1 91.3 73.0 90.7 83.05
LoTR 74k 93.0 85.9 60.5 90.0 66.0 91.9 81.22

LoRTA (r=16) 15k 94.73 90.44 64.32 92.37 76.9 90.25 84.84
LoRTA (r=4) 3.4k 94.61 89.21 60.55 90.61 76.9 89.97 83.6

V
eR

A

LoRA 800k 96.2 90.2 68.2 94.8 85.2 92.3 87.8
LoRA-FA 3.7M 96.0 90.0 68.0 94.4 86.1 92.0 87.7

VeRA 61k 96.1 90.9 68.0 94.4 85.9 91.7 87.8
LoRTA (r=8) 9k 96.3 89.5 65.1 94.3 85.6 91.1 85.7

Table 2: Performance of RoBERTa Base and Large models on GLUE tasks under three different experimental
settings reported by LoReTTA (Yang et al., 2024), LoTR (Bershatsky et al., 2024), and VeRA (Kopiczko et al.,
2023). In LoReTTA, LoRTA is applied to the encoder and LoRA to the classifier with the same rank, while for
LoTR and VeRA, LoRTA is applied only to the encoder. Trainable parameters include the classifier for LoReTTA
but exclude it for LoTR and VeRA, where it is fully trained. VeRA results use RoBERTa Large, whereas LoTR and
LoReTTA use RoBERTa Base.

in PEFT literature but have been outperformed by454
more recent methods in these settings.455

The results in Table 2 show that LoRTA can achieve456
comparable or slightly superior performance with less457
trainable parameters compared to state of the art ten-458
sor based PEFT methods LoreTTA (Yang et al., 2024)459
and LoTR (Bershatsky et al., 2024) when finetun-460
ing RoBERTA base on GLUE tasks. Similarly, for461
RoBERTa large LoRTA can also achieve a 6x reduction462
in the number of trainable parameters with only small463
drop in average performance (2%) when compared to464
(Kopiczko et al., 2023). In this settings we did not tune465
the hyperparameters for our method as extensively as466
baselines, and thus this gap could be further reduced.467

In Llama QA experiments, shown in Table 3, full468
fine-tuning (FT) achieves the highest average score469
(77.3) with 7 billion trainable parameters, but among470
the PEFT methods LoRTA (r=8) achieves the highest471
average score (76.7) with just 0.03 million parameters,472
representing a 17x reduction in parameter count with473
respect to the most efficient method.474

4.2 Instruction Tuning475

We fine-tune the 7 billion parameter Llama2 (Touvron476
et al., 2023) models on the cleaned Alpaca instruction477
tuning dataset (Taori et al., 2023). While more recent478
models and tasks exist, we select this well-studied set-479
ting because it enables direct comparison with an exten-480
sive body of prior work, and maintains methodological481
consistency with our earlier experiments on NLU tasks.482
We train for one epoch, preceded by a warm-up learning483
rate sweep as in the standard setting. Other hyperparam-484
eters are detailed in Appendix E.2.485

As shown in Figure 2, LoRTA effectively reduces the486
number of parameters to a fraction of those required487

by the lowest rank in LoRA, with only a small perfor- 488
mance cost. In this setting the validation cross entropy 489
decreases monotonically with the number of parame- 490
ters used, both in training and testing, and LoRTA even 491
demonstrates superior performance with fewer parame- 492
ters for ranks 96 and 192. 493

Although cross entropy (and perplexity) has been 494
shown to be correlated with diverse downstream perfor- 495
mance metrics (Dubois et al., 2024), we provide addi- 496
tional evaluations using other standard LLM-as-a-judge 497
benchmarks in Appendix F, which also show LoRTA 498
attains comparable performance to LoRA at a fraction 499
of parameters. 500

4.3 Preference Optimization 501

Among the various existing techniques to align LLMs 502
with human preferences on specific tasks–see, for exam- 503
ple, (Kaufmann et al., 2023) and references therein– we 504
utilize Direct Preference Optimization (DPO) (Rafailov 505
et al., 2024) due to its widespread use. We set the reg- 506
ularization coefficient that penalizes deviations from 507
the pre-trained model’s outputs (β) to 0.1. We use the 508
cleaned version of the Intel Orca dpo pairs dataset1. We 509
use Huggingface Transformer Reinforcement Learning 510
(trl) library2. Consistent with our previous experiments, 511
we use Llama2-7b as our base model. For a complete 512
description of hyperparameters see Appendix E.3. 513

The results in Table 4 compare both methods using 514
rank 1 updates. LoRTA achieves comprable perfor- 515
mance to LoRA in terms of validation loss, while using 516
only 4k parameters—a 99% reduction from LoRA’s 517
524k parameters. In addition, LoRTA attained a slight 518

1https://huggingface.co/datasets/
argilla/distilabel-intel-orca-dpo-pairs

2https://github.com/huggingface/trl
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Method # Trainable
Parameters

COPA ReCoRD SQuAD DROP Avg.

Full 7B 86 81.1 90.71 51.38 77.3
LoRA (r=8) 4.19M 81 79.4 90.56 45.96 74.2
Prefix 1.31M 83 81.0 90.56 45.95 75.1
IA3 0.60M 80 81.5 89.41 39.37 72.6
LoRETTA rep 0.51M 86 80.3 88.47 42.71 74.4
LoRTA (r=4) 0.02M 87 81.1 87.4 44.04 74.9
LoRTA (r=8) 0.03M 87 81.6 88.5 49.7 76.7

Table 3: Llama2-7B performance on SuperGLUE and question-answering tasks (SQuAD, DROP). We follow the
experimental setup used by (Yang et al., 2024).

# Parameters Val. Loss MT-bench
Score

LoRA 524 k 0.44 4.08
LoRTA 4 k 0.43 4.14

Table 4: Llama2-7b fineuned using DPO on the orca
dataset. Both methods use rank 1. We report the DPO
loss for held-out data (lower is better) and the average
score across MT-bench tasks.

improvement in MT-Bench (Zheng et al., 2023) per-519
formance, showing differences in generalization across520
tasks. Additional results for different ranks can be found521
on Appendix F. Unlike instruction tuning, preference522
across ranks exhibits non-monotonic behaviour, and523
larger ranks do not lead to performance improvements.524

4.4 Protein Folding525

Protein folding, the process by which a protein’s amino526
acid sequence determines its three-dimensional struc-527
ture, is a fundamental problem in molecular biology.528
Accurate prediction of protein structures from their se-529
quences has significant implications for understanding530
protein function and designing new proteins for thera-531
peutic purposes. ESMFold (Lin et al., 2023) is a frontier532

model for this task trained in two stages. First, ESM-2, 533
a BERT-based (Devlin et al., 2019) protein language 534
model, is trained with the masked-language-modeling 535
objective on amino acid sequences. This unsupervised 536
pretraining allows the model to capture complex pat- 537
terns and relationships within protein sequences. Re- 538
markably, valuable structural information emerges in the 539
model’s features during this process (Rao et al., 2020). 540
In the second stage, ESM-2 is frozen, and a model 541
head predicting three-dimensional protein structures is 542
trained on top of language model features. 543

We re-train ESMFold in the second stage – fine- 544
tuning ESM-2 parameters (we use ESM-2 35M instead 545
of the ESM-2 3B model used in (Lin et al., 2023) due 546
to compute constraints) with LoRA and LoRTA instead 547
of freezing them. We evaluate performance with the 548
Local Distance Difference Test for Cα atoms (LDDT- 549
Cα) (Mariani et al., 2013) – that measures accuracy of 550
predicted protein structures by comparing the distance 551
between alpha carbons in predicted and true structures. 552
LDDT-Cα ranges from 0 (poor accuracy) to 1 (perfect 553
match). See Appendix E.4 for experiment details. 554

As shown in Table 14, LoRTA with ranks 1 and 8 555
achieves performance comparable to LoRA rank 1, de- 556
spite using an order of magnitude fewer parameters. In 557
Appendix F, we report training losses and results for 558
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Figure 2. Mean cross-entropy loss on training and testing data for Llama2-7b on the Alpaca dataset vs number of trainable
parameters for different adapter ranks. Lower is better. Numbers on top of markers denote the adapter rank.
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Rank
# Trainable
Parameters
(×104)

LDDT-Ca

LoRA 1 3.5 0.67

LoRTA 1 0.1 0.66
8 0.5 0.67

Table 5: Mean LDDT-Cα on held-out data. Higher is
better. LoRTA rank 1 is competitive with LoRA rank 1
on the test set despite having 64x fewer parameters.

larger ranks. Notably, larger ranks for LoRTA do not559
improve performance.560

4.5 Computational Advantages561

Reduced I/O times for concurrent adapters. During562
training, the GPU memory usage and training times of563
most low rank methods are comparable. Nonetheless,564
further reductions in adapter size are motivated by (i)565
lower storage requirements (ii) the need to improve task-566
switching efficiency and minimize storage requirements567
in scenarios involving a large number—potentially thou-568
sands—of adapters. Frequent CPU-GPU transfers for569
loading adapters in such settings can introduce signif-570
icant overhead. By further compressing parameters, it571
becomes feasible to load several customized models572
with a shared base LLM in GPU memory, substantially573
enhancing scalability and performance in multi-task en-574
vironments.575

r n Transfer time (ms)
Lora Lotr Lorta

4
1 10.0 (9.0) 0.4 (0.2) 0.12 (0.03)

10 12.64 (0.08) 3.25 (0.05) 1.06 (0.01)
100 144.0 (2.0) 17.1 (0.2) 5.5 (0.2)

64
1 23.0 (5.0) 3.4 (0.2) 1.08 (0.01)

10 216.0 (2.0) 41.02 (0.04) 8.811 (0.005)
100 2272 (31) 375.1 (0.2) 61.5 (0.1)

Table 6: CPU to GPU transfer time in milliseconds
(mean (std) across 20 repetitions) of N concurrent
adapters with rank r for Llama2-7b using an NVIDIA
A6000. Boldface indicates smallest value within one
standard deviation.

To illustrate the potential latency reduction obtained576
from more compact adapters, in Table 6 we present CPU577
to GPU transfer times for different adapter methods with578
the same rank. Additional hardware profiling results579
for memory usage and training time can be found on580
Appendix G.581

Tensor Decomposition of trained adapters is chal-582
lenging. We also explore obtaining similarly com-583
pact representations by decomposing pre-trained LoRA584
adapters. To empirically demonstrate the challenges585
of post-training tensor decomposition, we conducted586
experiments using trained LoRA adapters from our pref-587

erence optimization task (using Llama2-7b as a base 588
model, and rank 8 for the adapters). Using TensorLy’s3 589
implementation of CP decomposition via alternating 590
least squares (ALS), we attempted to decompose each 591
weight matrix W ∈ Rd×d into a rank-8 CP model by re- 592
shaping it into a 3rd-order tensor T ∈ Rd× d

h×h, where 593
h is the number of attention heads. This tensorization 594
scheme limits our proposed LoRTA model’s decom- 595
position to attention heads, i.e., without the additional 596
structure across layers and matrices. 597

Metric Mean Median Max Std

Relative Error 0.827 0.838 0.910 0.053
R2 0.312 0.297 0.506 0.086

Table 7: Approximation quality metrics for CP decom-
position of trained LoRA weights across all layers and
Q/V matrices. The high relative error and low R2 scores
indicate poor reconstruction quality.

The results in Table 7 reveal remarkably high approx- 598
imation errors that render the compressed adapters inef- 599
fective, even when targeting the same parameter count 600
achieved by direct tensor-based training. This suggests 601
incorporating low rank tensor structure during train- 602
ing can guide the optimization toward fundamentally 603
different, more compressible parameter updates. This 604
finding parallels similar observations in neural network 605
compression (Hoefler et al., 2021), where incorporating 606
structural constraints during training often yields better 607
results than post-hoc pruning. 608

5 Conclusion 609

We have introduced LoRTA, a novel approach that em- 610
ploys a low-rank tensor model for LLM updates. By 611
extending low-rank adaptation to higher-order tensors, 612
LoRTA overcomes the inherent lower bounds on the 613
number of trainable parameters while offering finer- 614
grained control over adapter size. Our experiments 615
across various benchmarks demonstrate that LoRTA 616
achieves comparable and sometimes superior perfor- 617
mance than baselines at a reduced parameter count. 618

6 Limitations and Future Work 619

While our experiments demonstrate the LoRTA can be 620
used to finetune models effiently across various set- 621
tings comprising different tasks and model architectures, 622
there are several important limitations and directions 623
for future empirical research on the proposed adaptation 624
method. 625

First, we have shown that previous works have implic- 626
itly utilized low-rank tensor models with random factors. 627
Nothing precludes our higher-order tensor model from 628
using randomized factors for increased efficiency—a 629
potential direction for future work that could further re- 630
duce computational overhead. Lastly, developing more 631

3https://tensorly.org
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efficient implementations of tensor operations that re-632
sult in greater memory efficiency also remains a relevant633
future work direction which could make LoRTA even634
more suitable for resource-constrained environments.635

Second, our evaluation was constrained to models636
up to 7B parameters due to computational limitations,637
with LLaMA 2 being the latest model tested. Further re-638
search is needed to assess LoRTA’s scalability and effec-639
tiveness on larger models (e.g., 70B+ parameters) and640
more recent architectures. Additionally, understanding641
how parameter efficiency gains evolve with increasing642
model size remains an open question. Expanding our643
evaluation beyond standard benchmarks to multimodal644
models, text-to-speech systems, and domain-specific645
adaptation scenarios could provide deeper insights into646
the method’s generalizability and robustness. Moreover,647
our study did not incorporate human evaluations, which648
could offer more nuanced assessments of LoRTA’s im-649
pact on model quality and usability.650

While our method shows promise for concurrent651
adapter scenarios, further research is needed to eval-652
uate its effectiveness in these settings, including adapter653
composition, cross-task transfer, and adapter merging.654
Additionally, exploring LoRTA in the context of Mixture655
of Experts (MoE) architectures—where experts could656
be parameterized as tensor factors—represents an in-657
teresting direction that could enhance both parameter658
and computational efficiency. The potential for sharing659
tensor factors across experts or dynamically adjusting660
tensor ranks based on task complexity remains unex-661
plored.662

The current tensorization scheme, while effective, rep-663
resents just one possible approach. Alternative schemes664
might offer different efficiency-performance trade-offs665
or be better suited for specific architectures or tasks.666
For instance, incorporating additional modes based on667
model-specific features (like relative position embed-668
dings or sliding window attention patterns) could po-669
tentially yield further improvements. Moreover, our670
method currently focuses on attention matrix adapta-671
tion, and extending it to other components like MLPs or672
embeddings warrants investigation.673

Further empirical investigation could provide valu-674
able insights through ablation studies on the impact of675
tensor rank across different settings, detailed analysis676
of the learned tensor factors, and examination of how677
different tensorization schemes affect various aspects of678
model behavior.679

Our work addresses only the parameter-efficient fine-680
tuning aspect of model adaptation. Future research681
could explore combining LoRTA with other efficiency682
techniques such as quantization, pruning, or activation683
compression. Additionally, while we demonstrated im-684
proved I/O efficiency for concurrent adapters, develop-685
ing more efficient implementations of tensor operations686
could further reduce memory usage and training time.687
This includes leveraging hardware-specific optimiza-688
tions and exploring methods to compress or efficiently689
compute intermediate activations.690

From a theoretical perspective, several questions re- 691
main open. Understanding why tensor-based adapters 692
provide an effective inductive bias for model adaptation, 693
and characterizing what different adapter architectures 694
learn, could provide insights for designing better adap- 695
tation methods. Additionally, while we focused on CP 696
decomposition due to its parameter efficiency, compar- 697
ative studies with other tensor decompositions (e.g., 698
Tucker, Tensor Train) could reveal interesting trade- 699
offs between expressivity and efficiency. Finally, while 700
our preliminary experiments suggest that incorporat- 701
ing low-rank structure during training leads to more 702
compressible updates than post-hoc decomposition, a 703
deeper understanding of this phenomenon could inform 704
the development of improved adaptation methods. 705
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A Tensor Algebra1086

To facilitate our analysis, we briefly present some tensor1087
algebra preliminaries and refer the reader to (Sidiropou-1088
los et al., 2017; Kolda and Bader, 2009) for further1089
details.1090

A N -order tensor X ∈ RI1×I2×···×IN is an N -1091
way array indexed by i1, i2, . . . , iN with elements1092
X (i1, i2, . . . , iN ). It consists of N types of modes: X (:1093
, i2, . . . , iN ), X (i1, :, . . . , iN ), . . . ,X (i1, i2, . . . , :).1094

A rank-one tensor Z ∈ RI1×I2×···×IN is the outer1095
product of N vectors defined as:1096

Z = a1 ◦ a2 ◦ · · · ◦ aN , (11)1097

where a1 ∈ RI1 , a2 ∈ RI2 , . . . , aN ∈ RIN and ◦1098
denotes the outer product. The elementwise formula of1099
the above expression is:1100

Z(i1, i2, . . . , iN ) = a1(i1)a2(i2) · · ·aN (iN ), for alli1, i2, . . . , iN ,
(12)1101

Any tensor can be realized as a sum of N -way outer1102
products (rank one tensors), i.e.1103

X =

R∑
r=1

af
1 ◦ af

2 ◦ · · · ◦ af
N . (13)1104

The above expression represents the canonical polyadic1105
decomposition (CPD) or parallel factor analysis1106
(PARAFAC) (Harshman and Lundy, 1994) of a tensor.1107
The CPD elementwise representation is:1108

X (i, j, k) =

R∑
r=1

A1(i1, f)A2(i2, f) · · ·AN (iN , f),

(14)1109
where An = [a1

n,a
2
n, . . . ,a

F
n ] ∈ RIn×F , n =1110

1, . . . , N are called the low rank factors of the tensor. A1111
tensor can be fully characterized by its latent factors, so1112
we can represent a tensor by its CPD model as:1113

X = JA1,A2, . . . ,AN K . (15)1114

A tensor can be also represented as a set of matrices,1115
by fixing all the modes but two as:1116

X [:, :, i3, . . . , iN ] =1117

A1 (Diag (A3 (i3, :))⊙ · · · ⊙ Diag (AN (iN , :)))AT
2 ,

(16)
1118

where Diag (An (in, :)) is the diagonal matrix with di-1119
agonal equal to AN (in, :).1120

B Additional related work1121

Efficient Architectures Another relevant direction in1122
reducing resource usage is using more efficient model1123
architectures. Mixture of Experts (MoE) technique, im-1124
plemented in models like Switch Transformers (Fedus1125
et al., 2022) and GLaM (Du et al., 2022), has shown1126
promise in scaling model capacity while maintaining1127

computational efficiency by activating only relevant sub- 1128
models for given inputs. Recent works (Buehler and 1129
Buehler, 2024; Zhang et al., 2024) have explored pa- 1130
rameterizing experts, which often amount to different 1131
feed forward module parameters within the transformer 1132
block, using low rank adapters. modules(Bershatsky 1133
et al., 2024) have proposed that experts in Mixture of 1134
Experts (MoE) models could be also modeled jointly as 1135
a fourth order tensor dW̃m ∈ Rd×d×L×E , where E is 1136
the number of experts, but no tensor based models were 1137
explored in practice. There is also relevant work on non- 1138
transformer architectures, such as RWKV (Peng et al., 1139
2023) and Mamba (Gu and Dao, 2023). PEFT methods 1140
for these architectures have also been explored (Kim 1141
et al., 2025; Ham et al., 2024). 1142

Model Compression While these techniques differ 1143
from PEFT in that they focus on reducing the require- 1144
ments of a trained model rather than efficient adapta- 1145
tion, they offer valuable insights for developing more 1146
efficient PEFT approaches. Pruning and quantization 1147
are key techniques for compressing neural networks, 1148
that have also been extensively applied to LLMs. Prun- 1149
ing removes less important weights, with some meth- 1150
ods achieving high compression rates, e.g. (Ma et al., 1151
2023). Quantization reduces weight precision, decreas- 1152
ing model size and also allowing more efficient opera- 1153
tions (Lin et al., 2024a). The combination application of 1154
PEFT methods with quantization or pruning techniques 1155
to further improve efficiency has been explored, for 1156
example in (Dettmers et al., 2024; Benedek and Wolf, 1157
2024). 1158

Data efficient fine tuning. An alternative approach 1159
to reducing fine-tuning costs is to reduce the amount of 1160
data. In this direction, Few-shot and continual learning 1161
approaches have been shown to be effective in LLM 1162
fine-tuning tasks (Lin et al., 2024b; Wang et al., 2024). 1163

Low Rank Training. Exploiting low rank structure 1164
to improve efficiency during both training and infer- 1165
ence in deep models has long been studied (Sainath 1166
et al., 2013), and also combined with sparsity (Sprech- 1167
mann et al., 2015). Recent advancements include Cut- 1168
tlefish (Wang et al., 2023) and ELRT (Sui et al., 2024). 1169

C Other Tensor Low Rank Models in 1170

PEFT 1171

C.1 Tensorizing individual weight updates. 1172

(Yang et al., 2024) propose to each low rank matrix 1173
in a LoRA adapter. Explicitly, if for a single weight 1174
update dW̃ ∈ Rd×d, is first expressed using the low 1175
rank matrix model 1176

dW̃ =
α

r
ABT , A,B ∈ Rd×r, (17) 1177

Then, both low rank matrix factors A and B are ex- 1178
pressed as order-D tensors A,B ∈ Rk1×...×kD , where 1179
the chosen dimensions must satisfy

∏D
i=1 ki = d2. The 1180

condition ki ≥ r for all i also imposes a limit on the 1181
order of this tensor: n ≤ logr(d). Since n > 2 is re- 1182
quired for LoreTTA to be potentially more efficient than 1183
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LoRA, r >
√
d, which This can be limiting in practice1184

since n > 2 is required for LoReTTA to be potentially1185
more efficient than LoRA. This implies that r >

√
d,1186

which can be limiting in practice. For example, r ≤ 641187
for a Llama-7B model.1188

These tensorized updates are then parameterized us-1189
ing a low rank Tensor-Train model with equal ranks1190
across all factors. Explicitly:1191

dÃ =

D∏
i=1

Gi, Gi ∈ Rr×ki×r.1192

C.2 Parameter sharing across layers1193

Both (Jie and Deng, 2023) in the context of vision trans-1194
formers and (Bershatsky et al., 2024) for LLMs have pro-1195
posed to represent the updates of each fine-tuned atten-1196
tion matrix (Q,K,V ,P ) across all layers as a tensor1197
dW̃m ∈ Rd×d×L. (Bershatsky et al., 2024) parametrize1198
it using a Tucker-2 model1199

dW̃m = G×1 A×2 B, (18)1200

where A, B ∈ Rd×r and G ∈ RL×r×r.1201

D Parameter efficiency gains breakdown.1202

We provide a breakdown of the parameter savings1203
achieved by our proposed method, LoRTA, compared1204
to LoRA, by parameterizing the weight updates using1205
low-rank tensor decompositions at different granular-1206
ities – i.e., shared modes–. Table 8 summarizes the1207
dimensions of the update tensors, the number of update1208
tensors used, and the corresponding parameter savings1209
when the tensor rank r matches the tensor rank of LoRA1210
rank r. The first row corresponds to LoRA.1211

To fairly compare the parameter efficiency of LoRTA1212
with LoRA, we adjust the tensor rank in LoRTA to1213
match the effective total tensor rank in LoRA, which is1214
r′ = r × 4L due to LoRA applying a rank r update to1215
each of the 4L matrices individually. For a given tensor1216
rank, LoRTA reduces the number of parameters from1217
scaling 8dLr in LoRA to 4L(d(1+1/h)+h+L+4)r1218
in LoRTA (usually d ≫ L and d ≫ h), achieving1219
substantial parameter savings without compromising1220
expressive power. For example, this amounts to a 47.6%1221
reduction in a LLaMA2 7B model.1222

E Experimental details1223

In this appendix, we provide further details on the ex-1224
periments presented in the main paper.1225

E.1 NLU1226

In our GLUE experiments we implemented our method1227
using Huggingface’s PEFT, VeRA (Kopiczko et al.,1228
2023) and LoreTTA (Yang et al., 2024) codebases. Hy-1229
perparameters for each of the three settings reported are1230
detailed below.1231

E.2 Instruction tuning 1232

For instruction tuning experiments we utilized Lightning 1233
AI’s LitGPT codebase and training recipe. Hyperparam- 1234
eters are detailed below. 1235

E.3 DPO 1236

For preference optimization experiments we utilized 1237
using Huggingface trl library’s dpo implementation and 1238
example script. Hyperparameters are detailed below. 1239

E.4 Protein Folding 1240

For protein folding experiments, we utilized OpenFold 1241
(Ahdritz et al., 2024) training code and datasets. The 1242
following modifications were made to the ESMFold 1243
model architecture due to limited compute resources: 1244
a) utilize 12 Evoformer layers instead of the 48 used in 1245
(Lin et al., 2023) b) utilize ESM-2 35M instead of ESM- 1246
2 3B c) maintain outer product mean implementation 1247
from (Jumper et al., 2021). Optimizer and learning 1248
rate scheduler were identical to (Jumper et al., 2021). 1249
Models were trained for 850,000 steps with batch size 1250
of 32. Validation metrics were computed using the 1251
validation set from (Ahdritz et al., 2024). 1252

Preliminary experiments revealed that higher values 1253
of α yield better results in this setting. α for LoRA 1254
and LoRTA experiments was then selected in multiple 1255
stages. Initially, models were trained with α values of 1256
256×r and 128×r, and the best-performing model was 1257
chosen. If both configurations diverged, α was halved, 1258
and models were retrained with the next lower pair (e.g., 1259
64×r and 32×r). This halving process continued until 1260
a convergent model was found. See Table 14 for the 1261
selected α values across experiments. 1262

F Additional results 1263

1264

F.1 Instruction Tuning 1265

To further evaluate the fine-tuned models, we use MT- 1266
Bench (Zheng et al., 2023), an LLM-as-a-judge bench- 1267
mark. MT-Bench assesses multi-turn conversational and 1268
instruction-following abilities on 80 open-ended ques- 1269
tions, covering diverse capabilities such as roleplaying, 1270
reasoning, coding and information retrieval. GPT-4 is 1271
used to score the outputs of the model on a scale of one 1272
to ten. 1273

As shown in Figure 3, LoRTA can almost match av- 1274
erage performance despite using just 1/5th of the pa- 1275
rameters (r=48). Unlike the loss observed in the Alpaca 1276
dataset, performance does not increase monotonically, 1277
potentially due to overfitting. Moreover, performance 1278
varies across tasks. For example, most LoRTA models 1279
surpass LoRA in reasoning but fall short in writing. 1280

F.2 Preference Optimization 1281

As shown in Figure 4 LoRTA exhibited non-monotonic 1282
performance across ranks. This suggests that further 1283
hyperparameter tuning may be necessary to stabilize its 1284
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Table 8: Breakdown of the parameter savings against LoRA by mode, i.e., parameter sharing dimension. This is the
number of parameters required to represent an update with thensor rank r.

Added Modes Update Tensor Dimensions Number of Update Tensors Parameter Savings

d× d 4L 0

Heads d× d
H ×H 4L 1− d(1+ 1

H )+H

2dr

Heads, QKVP d× d
H ×H × 4 L 1− d(1+ 1

H )+H+4

2dr

Heads, QKVP, Layers d× d
H ×H × 4× L 1 1− d(1+ 1

H )+H+4+L

2dr

Hyperparameter Value

α 16
Learning Rate [2E-3, 5E-4]
Scheduler Constant
Optimizer AdamW
Number of Epochs 20
Batch Size [16, 32]
Warmup Steps 500

Table 9: Hyperparameter configurations for RoBERTa
Base on the GLUE benchmark following the setup re-
ported by (Yang et al., 2024), where only the batch size
and learning rate are tuned for each task, selecting be-
tween two values based on validation performance. All
other hyperparameters match those reported by (Yang
et al., 2024).

Hyperparameter Value

α [0.5 1.0 2.0 8.0]
Learning Rate [5e-4, 1e-3, 5e-3, 1e-2]
Scheduler Linear
Optimizer AdamW
Number of Epochs 20
Batch Size 32
Warmup Ratio 0.06

Table 10: Hyperparameter configurations for RoBERTa
Base on the GLUE benchmark following (Bershatsky
et al., 2024). A grid-search to set the learning rate and
scale parameter for each task is conducted across the
specified values.

performance. Although we did not tune hyperparame-1285
ters, most ranks still outperformed LoRA with signifi-1286
cantly fewer parameters.1287

We further evaluated the fine-tuned models on the1288
LLM-as-a-judge MT-benchmark. In this setting, LoRTA1289
consistently outperformed LoRA across all ranks, in-1290
cluding at rank 2 where it had shown higher DPO loss1291
on the preference dataset. This improvement suggests1292
enhanced out-of-distribution generalization capabilities1293
for LoRTA adapters since MT-bench differs from the1294
training dataset.1295

Figure 6 shows that Validation gains were primarily1296
driven by reduced training error, though generalization1297
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Figure 3. Performance on MT-Bench (Zheng et al., 2023)
for Llama2-7b (Touvron et al., 2023) models fine-tuned with
LoRA and LoRTA. Higher is better. Left: Average score
across all questions vs number of trainable parameters. Num-
bers on top of markers denote the adapter rank. Right: Aver-
age score per task.

slightly worsened, particularly at rank 2. On the other 1298
hand, as already mentioned, MT-bench performance 1299
was comparable o superior for LoRTA across all ranks, 1300
as shown in Figure 5. 1301

F.3 Protein Folding 1302

In figure 7 we include higher ranks for LoRTA in the 1303
protein folding experiment. However, note that increas- 1304
ing the rank beyond 1 and even matching the number 1305
of parameters in LoRA does not result in performance 1306
improvements. We also include train error to show that 1307
although LoRA rank 1 shows a performance improve- 1308
ment (Mean LDDT-Cα) in the training set, it shows a 1309
larger generalization gap. 1310

G Training time and memory 1311

1312
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Hyperparameter SST-2 MRPC CoLA QNLI RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear
Epochs 10 40 40 20 40 20
Learning Rate (Head) 6E-3 3E-3 6E-3 2E-4 2E-3 2E-3
Learning Rate (Encoder) 1E-2 1E-2 1E-2 1E-2 2E-2 2E-2
Batch Size 32

Table 11: Hyperparameter configurations for RoBERTa large on the GLUE benchmark. All other hyperparameters
are taken from (Kopiczko et al., 2023).
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Figure 4. (Left) Mean DPO loss on held-out data from the orca dpo pairs dataset vs number of trainable parameters, lower is
better. (Right) MT-Bench average scores Scores vs number of trainable parameters, higher is better.

Parameter Value

α 16
Learning Rate 0.01
Scheduler Cosine
Optimizer AdamW
Weight Decay 0.01
Number of Epochs 1
Steps 51000
Batch Size 16
Warmup Steps 318

Table 12: Hyperparameter configurations for LLama2-
7B on the Alpaca dataset.

During training, the reduction in GPU memory usage1313
from shrinking optimizer states is marginal for param-1314
eter reductions beyond LoRA. Memory consumption1315
in these cases is dominated by activations and caches1316
stored during forward and backpropagation. Additional1317
memory savings could be achieved by compressing acti-1318
vations or gradients, leveraging the low-rank structure of1319
updates, or dynamically recomputing them. While our1320
model features fewer trainable parameters and could the-1321
oretically benefit from the efficient tensor CP structure,1322
such as faster training and lower memory usage, these1323
advantages are not yet realized due to the limitations of1324
our current implementation. We leave these optimiza-1325

Table 13: Hyperparameter configurations for LLama2-
7B on intel orca DPO pairs.

Parameter Value

α 16
Learning Rate 0.00005
Scheduler Cosine
Optimizer AdamW
Weight Decay 0
Number of Epochs 1
Batch Size 16
Warmup Steps 200

Table 14: Selected α and LDDT-CA for protein folding
models.

Model α Validation LDDT-Cα

LoRA (r = 1) 128 0.668
LoRTA (r = 64) 128 0.663
LoRTA (r = 8) 256 0.667
LoRTA (r = 1) 2 0.656

tions for future work. However, the reduced parameter 1326
count already provides lower storage requirements and 1327
faster I/O. 1328

We conducted hardware profiling to compare the per- 1329
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Figure 5. Performance on MT-Bench (Zheng et al., 2023)
for llama2-7b (Touvron et al., 2023) models fine-tuned with
LoRA and LoRTA using dpo on intel orca pairs. Average
score per task. Higher is better.

formance of our LoRTA implementation against LoRA1330
using HuggingFace PEFT. The results demonstrate neg-1331
ligible differences in resource consumption between the1332
two methods. The slight gap in training time for LoRTA1333
can be addressed through further optimizations, ranging1334
from leveraging tools like Torch Compile, to implement-1335
ing our CP tensor adapter model more efficiently.1336
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Figure 6. Mean DPO loss on the training (Left) and on held-out data (Right) from the orca dpo pairs dataset vs number of
trainable parameters, lower is better.
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Figure 7. Mean LDDT-Cα on held-out (left) and train sets. Higher is better. LoRTA rank 1 is competitive with LoRA rank 1 on
the test set despite having 64x fewer parameters. Numbers on top of markers denote the adapter rank.

Rank Method GPU Mem. (GB) FLOPs (avg) MACs (avg) Time (s/step)

4 LoRA 12.84 272 136 0.07
LoRTA 12.88 272 136 0.14

64 LoRA 13.08 276 138 0.09
LoRTA 12.98 273 136 0.14

Table 15: Maximum GPU memory usage (GB), average FLOPs(GB), MACs(GB), and training time (seconds per
step) for LoRA and LoRTA.
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