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Abstract

Current vision models typically maintain a fixed correspondence between their
representation structure and image space. Each layer comprises a set of tokens
arranged “on-the-grid,” which biases patches or tokens to encode information at
a specific spatio(-temporal) location. In this work we present Moving Off-the-Grid
(MooG), a self-supervised video representation model that offers an alternative
approach, allowing tokens to move “off-the-grid” to better enable them to represent
scene elements consistently, even as they move across the image plane through
time. By using a combination of cross-attention and positional embeddings we
disentangle the representation structure and image structure. We find that a simple
self-supervised objective—next frame prediction—trained on video data, results
in a set of latent tokens which bind to specific scene structures and track them as
they move. We demonstrate the usefulness of MooG’s learned representation both
qualitatively and quantitatively by training readouts on top of the learned represen-
tation on a variety of downstream tasks. We show that MooG can provide a strong
foundation for different vision tasks when compared to “on-the-grid” baselines1.

1 Introduction

Learning visual representations of the physical world is at the core of computer vision. Recent years
have seen a surge of vision models that address this problem via self-supervised learning [5, 8, 23, 40].
By leveraging objectives such as contrastive learning [5, 8] and masked image modelling [23], great
strides have been made towards learning useful representations from image data. The vast majority
of these methods use convolutional networks [35], vision transformers [14, 54] or a combination
thereof [4]. This choice of architecture comes to no surprise, as it inherently reflects the structure of the
underlying datasets: images are (typically) represented as grids of pixels, which are conveniently and
efficiently processed using 2D convolutions and patch-based heuristics. This grid-based processing,
however, leads to an inherent entanglement between the representation structure and image structure.
In other words, specific tokens or feature vectors of the representation are encouraged to capture the
contents of a specific image location, instead of binding to the underlying content of the physical scene.

This issue is particularly apparent when processing video: when there is motion in the scene, either
by ego-motion or object motion, the contents of the scene will move across the image plane and as
such the representation (i.e. in terms of what is encoded where) will change accordingly. However,

1Project page: https://moog-paper.github.io/.
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many down-stream scene understanding tasks require observing how individual objects (or object
parts) change their configuration over time, even when other factors like camera motion translate the
objects around the image plane. In this case, a representation that preserves correspondences between
meaningful scene elements and representational elements is likely preferred.

As a consequence, many works targeting object-centric tasks such as object detection [4, 36],
tracking [25, 33, 38], or segmentation [34], have adopted specialized architectural components that
learn object-based representations: representations that are lifted from the image grid to bind to
individual objects. These representations, however, are specialized to object-centric tasks and either
need to be learned with detailed supervision [4, 34, 38] or have difficulty scaling to diverse real-world
raw video data [19, 33].

In this paper we propose a transformer-based video model that learns representations that are “off-the-
grid” (OTG) in a self-supervised manner, providing consistent features that bind to underlying scene
elements, and tracking them as they move through time. Our method, Moving Off-the-Grid (MooG),
makes extensive use of cross-attention to learn a latent set of tokens that is decoupled from the image
grid: tokens are updated via cross-attention when a new input frame arrives, and decoded back into
images via cross-attention. MooG can process videos of arbitrary length by iteratively updating the
representation as new frames are observed.

In summary, our contributions are as follows:

• We introduce Moving Off-the-Grid (MooG), a novel transformer-based recurrent video representa-
tion model that is capable of learning OTG representations via a simple next-frame prediction loss.

• We qualitatively demonstrate that the OTG representation of MooG binds to different parts of
the scene and tracks its content under motion, whereas a grid-based representation fails to do so.

• Finally, we demonstrate how this representation facilitates a variety of downstream vision tasks,
including point tracking, monocular depth estimation, and object tracking. Our approach outper-
forms self-supervised grid-based baselines, such as DINO [5, 40], and performs competitively
with domain-specific approaches, such as TAP-Net [12] and TAPIR [13] for point tracking.

2 Related Work

Transformer architectures [54] for visual tasks have gained substantial traction in the machine learning
community in recent years. Starting with methods such as the self-attention architecture applied to
CNN feature maps by Zambaldi et al. [62], the Image Transformer [41] and later popular approaches
such as the Vision Transformer (ViT) [14], the vast majority of this class of methods operates on a
grid of image features (e.g. patches or CNN feature maps), all the way from pixels to the final output
of the transformer. This choice of representation, while extremely successful on a wide range of
tasks, naturally couples representations to spatial 2D locations in image space.

The predominant approach for decoupling internal model representations from the image grid
is by using cross-attention, where one set of tokens is updated based on the value of another set
of tokens. In particular, object-centric tasks such as detection [4, 64], tracking [33, 38, 63], and
instance segmentation [9, 34] have found widespread adoption of this architectural principle to learn
individual object tokens that are detached from the image grid, both in supervised methods such
as the Detection Transformer (DETR) [4] or GroupViT [59], and unsupervised methods such as Slot
Attention [36, 57] or CLIPpy [46]. Especially when extended to multi-view observations [27, 48] and
video [19, 33, 38, 65], this one-token-per-object representation allows for consistent representation
of individual objects across views and frames in a video. In contrast to these approaches, our method
does not assume a one-to-one mapping between OTG tokens and objects, but instead assigns a large
set of latent tokens that can flexibly bind to any part of a scene, such as small surface elements,
without committing to any particular notion of an object.

The Perceiver [28] is closely related to our work: it uses a large set of latent tokens, updated via
cross-attention from visual inputs, to support a range of downstream tasks. While the original
Perceiver model primarily focuses on end-to-end classification tasks, PerceiverIO [29] extends this
framework to use pixel-based objectives or predict other modalities (such as audio). A single time
step of our model can be seen as a variant thereof: we similarly use cross-attention to map to a latent
set of tokens, and decode targets (such as pixels, point tracks, etc.) similarly using cross-attention.
This type of cross-attention decoder is also used in Scene Representation Transformers [49], which
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Figure 1: MooG is a recurrent, transformer-based, video representation model that can be unrolled
through time. MooG learns a set of “off-the-grid” latent representation. The model first predicts a
predicted state based on the previous model state and observation. The current observation is then
encoded and cross-attended to using the predicted state as queries to produce a correction to the
prediction. When training, the predicted state is decoded with cross-attention using pixel coordinates
as queries in order to reconstruct the current frame. The corrected state is used as input to the
predictor to produce the next time step prediction, and so on. The model is trained to minimize the
pixel prediction error. By decoupling the latent structure from the image grid structure the model is
able to learn tokens that track scene content through time.

have recently been applied to video modeling [50, 51]. Different from these works, our approach
processes video in a recurrent fashion, encouraging tokens to stay consistently attached to the same
scene element independently of how the camera or the content of the scene moves.

Several recent works use a separate set of tokens with either back-and-forth cross-attention, such as
RIN [26] and FIT [7], or pure self-attention, with extra tokens simply appended to the original set
of grid-based tokens. The latter category includes approaches such as AdaTape [61] and Register
Tokens [10]. In our work, we solely update tokens by cross-attending into grid-based representations,
without “writing back” into the grid-based representations.

A related line of work explores autoregressive prediction of visual tokens for self-supervised represen-
tation learning [2, 18]. Different form this line of work, MooG uses a recurrent architecture to enable
consistent binding of latent tokens to scene elements (as opposed to using fixed image patches).

Naturally, most explicit 3D approaches for vision are “off-the-grid”, such as architectures operating on
top of point clouds [44, 45], and methods for 3D rendering such as 3D Gaussian Splatting [30, 37] and
particle-based neural radiance fields [56, 60]. In contrast, our method does not associate explicit 3D
coordinates with individual OTG tokens but instead learns high-dimensional vector representations.
Outside of the field of computer vision, off-the-grid representations are the predominant representation
used to model the physical world at various scales, e.g. in terms of particle-based representations for
atomistic systems (one vector per atom) [20, 32, 52] or mesh-based representations for macroscopic
physical systems [42], where representations are anchored to surface elements.

3 Method

Moving Off-the-Grid (MooG) is a self-supervised transformer model for representation learning from
video. In Section 3.1 we describe its model architecture, which enables learning of scene-grounded
video representations. To obtain predictions for various vision tasks, we connect readout modules to
MooG’s OTG representation, which we describe in Section 3.2.

3.1 Learning self-supervised OTG video representations

We design MooG as a recurrent model that can process an arbitrary number of video frames, while
keeping a consistent scene-grounded OTG representation of the video. MooG takes as input a
sequence of observed frames {Xt}Tt=1, Xt ∈ RH×W×3 and iteratively encodes them into a set
of latent tokens. We separate the latent state into corrected states {zct}Tt=1, z

c
t ∈ RK×D, which

are obtained by encoding input frames, and predicted states {zpt }Tt=1, z
p
t ∈ RK×D, which are the
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model’s internal prediction for what will be observed at the next time step. This recurrent processing
is an important part of MooG as it allows individual tokens to consistently track elements of the scene
through videos of arbitrary length and “anticipate” where a scene element will be observed next.
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Figure 2: For comparison
to MooG we here depict a
classic “on-the-grid” model
where tokens in the latent
state are inherently tied to
specific pixel locations.

MooG’s training objective is next frame prediction given the previous
frame and model state. The model is comprised of three main networks:
a predictor P which predicts the current predicted state from the
previous corrected state, a decoder D which decodes the predicted
state to reconstruct the current frame and a corrector C which encodes
the current frame and attempts to correct prediction errors made by the
predictor2. We now describe, in order of operation, each component
role and inner workings. We refer to Figure 1 for an overview of the
model’s structure and to Appendix C for details. For comparison, we
depict a typical “on-the-grid” baseline model in Figure 2.

Predictor The predictor takes the previous corrected state zct−1 and
produces the predicted state for the current time step zpt :

zpt = zct−1 + P(kqv = zct−1). (1)

The role of the predictor is to predict the current state based on previous
observations, before the current time step’s inputs are observed. The
predictor network itself P is a simple self-attention transformer net-
work [54]. Note that the initial corrected state zc0 is initialized to random
Gaussian noise (with zero mean and σ = 10−4) and is not learned. This choice of initialization comes
from the need to break the symmetry among the state’s tokens, as well as preventing “specialization”
of tokens and maintaining permutation symmetry.

Corrector The role of the corrector is to convey information from the current observation Xt and
use it to update the predicted state zpt to form the corrected state zct for the current time-step. The
resulting corrected state should contain the new information obtained from the observation. The
image is first encoded using a convolutional neural network E with an added Fourier positional
embedding to its output and linearly projecting the result to produce a feature grid Ft ∈ RH′×W ′×D.
Here H ′ and W ′ are the resulting spatial dimensions after accounting for striding. This feature grid
is then attended to with a cross-attention transformer C using the current predicted state zpt as initial
queries to obtain the state update:

zct = zpt + C(kv = Ft, q = zpt ), where Ft = E(Xt). (2)

It is important to note that the corrected state does not receive its own individual loss and is only used to
provide a better estimate for the predictor in order to predict the next step. In this sense, the separation
between the corrector transformer and predictor is somewhat artificial. It is, however, crucial that
the image is decoded only from the predicted state—decoding the current frame from the corrected
state reduces the problem to simple auto-encoding and hurts representation quality considerably.

Decoder The decoder takes the current predicted state zpt and decodes it into an RGB image of
arbitrary resolution. Decoding is done using cross-attention where queries are embedded pixel
coordinates P and keys and values come from the predicted state ztp. We utilize the same architecture
for arbitrary pixel-based readouts (described in Section 3.2); see Figure 3 for a schematic depiction.
Note that the states that are learned are comprised of tokens that are OTG and offer no direct
correspondence to the spatial image grid, which necessitates this design of our decoder. At training
time we decode X̃t, a sub-sampled version of the target image for efficiency:

X̃t = D(kv = ztp, q = P ). (3)

To allow for efficient training, we decode only a randomly selected subset of pixels at each training
iteration, which reduces computational demands significantly. For details see Appendix C.

Of special note are the attention weights of the decoder network D as they allow us to understand
the relationship between a specific spatial position in the image and specific tokens in the latent
representation. We analyze this relationship in Section 4.1.

2This is reminiscent of a Kalman Filter, albeit with implicitly learned dynamics and variance estimations.
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Figure 3: Readout decoders overview: for grid-based readouts (e.g. pixels), we use a simple per-frame
cross-attention architecture with spatial coordinates as queries, whereas for set-based readouts (points,
boxes), we adopt a recurrent readout architecture.

Loss and training We use a simple L2 training loss on image pixels. For each frame we decode
the predicted state zpt into a sub-sampled output image X̃t, sub-sample the input image Xt at the
same pixel locations and calculate the per-frame loss Lt:

Lt = L2(X̃t, Xt). (4)

Note that this is a next-frame prediction loss as the predicted state depends only on the previous
frame and model state. During training we unroll the model over 8 frames, initializing the state with
random Gaussian noise (as described above) and equally weighting all frames for the loss. The final
self-supervised prediction training loss averages the L2 loss across frames and pixels.

3.2 Readout decoders for downstream tasks

We qualitatively assess properties of the learned representation in Section 4.1. To make a quantitative
assessment, we propose general readout decoders that support a variety of downstream tasks. We
distinguish between two types of readouts: grid-based readouts (e.g. RGB or depth pixels) and
tracking-based readouts (e.g. 2D points or object tracking). To produce the desired output, all
readouts read from the OTG tokens contained in the predicted and corrected states for a given
timestep. See Figure 3 for a schematic overview.

Grid-based readouts For dense grid-based readouts, we reuse the same decoder architecture as
we use for the pixel decoder: individual spatial locations are queried using their (x, y) location
in a transformer that solely uses cross-attention. For computational efficiency, we query using a
subsampled spatial grid with a random offset to avoid overfitting on a particular subset of pixels.

Recurrent, query-based readouts For tracking-based readouts that require keeping track of con-
tent in the video after starting from an initial location, we adopt a more sophisticated design similar
to the corrector-predictor component of MooG. Given a set of N queries q1 ∈ RN×Dq (e.g. points or
boxes) and a sequence of observed frames {Xt}Tt=1, the task is to predict all future readout targets
{qt} for t = 2...T . We associate a latent encoding yt ∈ RN×Dy with every target at time step t.
We first encode the queries q1 using positional encoding followed by an MLP to obtain the readout
latents yt. Latents are processed by a corrector, followed by a predictor. Different from MooG, the
corrector is implemented as a transformer which solely cross-attends into the inputs (here: MooG
states [zct , z

p
t ]) without self-attention between readout latents, to avoid interaction between them.

Likewise, the predictor is implemented solely by an MLP, i.e. without any self-attention between
readout latents. To read out target values, we apply a learnable MLP head to the (corrected) target
latents yt for each output type, eg. coords, visibility, etc.
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Figure 4: Qualitative analysis of MooG trained on natural videos, shown here are every 4 frames of
the original 36 frame long sequence. From top to bottom: Ground truth frames, predicted frames,
example MooG token attention map super-imposed on the ground truth frames, example token
attention from the recurrent grid-based baseline (see text for details). As can be seen the model is
able to predict the next frame well, blurring when there is fast motion or unknown elements enter
the scene. The MooG attention map indicates that the visualized token tracks the scene element it
binds to across the full range of motion. In contrast, the grid-based token attention map demonstrates
how these tokens end up being associated with a specific image location that does not track the scene
content. Please see the supplementary material (and website) for other representative examples.

4 Experiments

4.1 Self-supervised Training and Qualitative Results

We begin by qualitatively investigating properties of the learned OTG representation. We trained
MooG with 1024 512-dimensional OTG tokens on natural videos from the Ego4D dataset [21] and
Kinetics700 dataset [6] using only the self-supervised prediction loss in (4). The model is trained
on randomly sampled sub-sequences of 8 frames, and we observe how it learns to predict next
frames very well, achieving a PSNR of 25.64 (on the evaluation set) after 500K steps of training.
For evaluation we unroll the model on sequences of 36 frames from a validation set — these are
sequences the model has not been trained on and are much longer in duration. We first observe that
the model has no trouble unrolling for much longer sequences than it was trained on, and that the
predictions made are inline with the actual ground truth frames (see Figure 4). When motion is fast
or erratic the model produces blurry outputs, as would be expected from a deterministic model.

Cross-attention maps To understand the role of each token we focus on the cross-attention weights
of the decoder, which works by having x, y coordinates as queries that cross-attend into the repre-
sentation in order to produce the pixel output (Section 3.1). Using the attention weights for each
image location we can visualize how much each token is “responsible” for predicting a specific image
location at any given time. We observe that tokens bind to the same image structure consistently
through time: the attention maps of specific tokens track the image content at a particular location as
it moves across the scene. A representative example of this behavior is shown in Figure 4, which we
observe consistently for different tokens and on different sequences. Note that an alternative strategy
for the model could have been to ”tile” the image across space and make each token responsible for
a specific spatial position, which is indeed is what we find the grid-based baseline tokens end up
capturing (see Figure 4). For additional examples (and a better viewing experience), we refer to the
videos in the supplementary material3.

A more comprehensive way of visualizing the role of individual tokens is by taking the argmax over
attention weights at each image location and visualizing the result by colour coding according to the
token index. We observe the model learns to assign different parts of the scene to different tokens,
tiling the image while aligning well with image structure, not unlike super-pixels. This is visualized

3Also available at https://moog-paper.github.io/.
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Figure 5: PCA of MooG tokens unrolled over a batch of short sequences. The model was unrolled
over a batch of 24 sequences, 12 frames each. Predicted states from all time steps and batch samples
were concatenated and PCA analysis was performed on the entire set jointly. We then reshape the
projected set back to its original shape and use the arg-max token to visualize the result in image
space (see text and Appendix for full details). Depicted are 3 of the leading PCA components in
RGB. Note the salient high-level scene structure (e.g hands) learned by the model.

in Figure 7 in Appendix D, supplementary material and website. If there is good binding between
specific tokens and specific image structures we should expect the colour coded image to reflect
the motion present in the underlying scene. Indeed, MooG does exactly that — the model learns to
devote specific tokens to specific scene structures and bind them consistently across time.

Principal Component Analysis To make sense of the content of the representation at a slightly
higher level we can use PCA analysis and visualize the results. We unrolled MooG on a batch of 24
sequences, 12 frames each and ran PCA on the concatenated set (across batch and time) of all tokens
from the predicted state. We then project all tokens on the 64 leading PCA components and use the
decoder attention weights to output 3 of the leading PCA components to image space. We observe
that many of the leading components capture the positional embedding and do not relate to sequence
content. However, several others end up capturing interesting (semantic) scene structure. Figure 5
shows the 3rd, 20th and 21st components in RGB space, from which it can be seen how tokens end
up capturing scene content with similar projections for hands, for example, across several scenes.
See website and appendix for more examples.

4.2 End-to-End Training and Quantitative Analysis

In the previous subsection we observed qualitatively how learned off-the-grid representations end up
capturing meaningful elements of the scene. Here we study the quality of the learned representation
quantitatively, focusing on three down-stream tasks: point tracking, depth prediction and object
tracking. For each down-stream task we consider two different approaches for training a readout
head that reflect common use cases: (1) training on top of the representations obtained from a frozen
pre-trained MooG model and (2) training the readout decoder alongside MooG in an end-to-end
manner, i.e. by back-propagating gradients into the model. MooG learned representations are quite
local in nature due to the simplicity of the loss and the short prediction horizon. As such we do not
expect it to learn abstract representations suitable for more high level tasks such as action recognition
etc. We focus here on low and mid level downstream tasks. Details are available in Appendix C.

We focus on two classes of baselines in our comparison: (1) on-the-grid baselines derived from MooG,
DINO [5, 40] or VideoMAE v2 [55], and (2) expert baselines that are more domain specific. The
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Table 1: Down-stream readout performance from frozen representations. For DINO and VideoMAE
v2 baselines we highlight what ViT configuration their encoder is based on: (S) ∼20M parameters,
(B) ∼80M parameters, (G) ∼1000M parameters. MooG uses fewer than 35M parameters for
encoder, corrector and predictor combined, which suggests a comparison to B-sized models.

MOVi-E DAVIS Waymo

Name Points (↑AJ) Depth (↓AbsRel) Boxes (↑IoU) Points (↑AJ) Boxes (↑IoU)

MooG 0.839 0.0359 0.793 0.687 0.730
Grid 0.769 0.0451 0.730 0.518 0.625
Grid Rec. 0.778 0.0443 0.734 0.559 0.629

DINOv1 (B) 0.518 0.0371 0.724 0.409 0.566
DINOv2 (B) 0.544 0.0370 0.738 0.402 0.559

VMAEv2 (S) 0.595 0.0567 0.700 0.365 0.567
VMAEv2 (B) 0.681 0.0458 0.736 0.434 0.611
VMAEv2 (G) 0.822 0.0311 0.793 0.720 0.708

former grid-based baselines have the same capacity as MooG which makes them directly comparable.
We consider two variations: a simple auto-encoder with high capacity, where we have removed
the corrector and predictor (named Grid); and a recurrent on-the-grid baseline where the corrector
implements a cross-attention between the output of the encoder (i.e. on-the-grid latents) and the
corrected latents from the previous step. In both cases we account for the absence of the predictor
(and corrector) by adding self-attention transformer layers to the encoder. For DINO, we compute
representations for each frame using the official pre-trained ViT-B/16 and ViT-B/14 checkpoints that
are available for v1 [5] and v2 [40] respectively. Similarly we use the publicly available checkpoints
for VideoMAE v2 [55] for three different model sizes: S/B/G. Note that the available VideoMAE v2
model size S and B are distilled from G, i.e. not trained from scratch (unlike MooG). The on-the-grid
baselines (including DINO and VideoMAE v2) make use of the same readout decoders as for MooG.
We discuss expert baselines in the relevant paragraphs below.

Point tracking The task of point tracking requires tracking of individual 2D points (x, y) in a
video. This can be viewed as a generalization of optical flow prediction, which similarly requires
understanding of movement of physical surfaces in a scene relative to the observer. Intuitively, an
OTG scene-grounded latent representation should align well with this task and support generalization.

We train MooG on Kubric MOVi-E [22] using point annotations computed in a similar manner as
in Doersch et al. [12]. For each video, we randomly sample a clip of 8 frames to train on. We sample
64 points per frame and use the location of each point in the first frame as the query. To evaluate each
model we report the average Jaccard (AJ) as in Doersch et al. [13], which evaluates both occlusion and
position accuracy. Tables 1 and 2 report results for MooG and on-the-grid baselines. It can be seen
how MooG learns representations that are better suited for this down-stream task as is evident from
the considerable improvements over many of the baselines, especially in the frozen setting (Table 1).

In addition to results on MOVI-E, Tables 1 and 2 also report results for a zero-shot transfer setting to
the real-world DAVIS dataset [43] using point tracks from Doersch et al. [12]. Interestingly, it can
be seen how in the end-to-end setting (Table 2) the gap between the grid-based models and MooG
decreases considerably, suggesting that while off-the-grid representations generalize better in the pre-
training scenario, when optimized for a specific downstream task on-the-grid representations can still
be competetive. We also compare to two expert baselines—TAP-Net [12] and TAPIR [13]—which
are designed specifically for point tracking and achieved state-of-the-art performance when published.
Both models use explicit cost volumes, i.e., exhaustive comparisons of a query point’s features with
features on every other frame, and have steps which detect peaks in the similarity maps. Our model is
more general and does not have explicit mechanisms such as these at the representation level. The
readout mechanism is also quite general. All of these steps exploit the nature of point tracking as a
one-to-one feature matching problem, making it difficult to adapt the architecture to other problems.
In Table 3 we directly compare MooG (trained end-to-end using a slightly larger encoder backbone)
to these methods and report results for 8 frames as well as for the full sequence length. It can be seen
how on 8 frames, MooG rivals TAPIR’s performance, despite being a less specialized approach.

8



Table 2: Down-stream readout performance trained in an end-to-end manner.
MOVi-E Davis Waymo

Name Points (↑AJ) Depth (↓AbsRel) Boxes (↑IoU) Points (↑AJ) Boxes (↑IoU)

MooG 0.886 0.0263 0.803 0.778 0.719
Grid 0.860 0.0264 0.775 0.644 0.615
Grid Rec. 0.902 0.0233 0.806 0.779 0.675

DINOv1 0.698 0.0381 0.728 0.578 0.557
DINOv2 0.732 0.0439 0.734 0.656 0.607

Monocular depth estimation Monocular depth estimation is a well-studied computer vision task
that requires estimating the distance of surface elements in the scene from the camera. To test whether
a scene-grounded representation, i.e. a representation that consistently tracks surface elements in the
scene, facilitates the task of depth estimation, we train a depth readout module.

We train MooG using the depth annotations available in Kubric MOVi-E [22] normalized using
log(1 + x). Similar to before, we randomly sample a clip of 8 frames to train on for each video.
As our evaluation metric we report the mean of the absolute relative error (AbsRel), which is a
standard metric in the literature [17]. Tables 1 and 2 report results for MooG and the grid-based
baselines. Though we observe considerable improvements from the representations learned by MooG
in the frozen setting, the Grid baseline performs comparable in the end-to-end case. This isn’t
surprising given that monocular depth estimation is a dense prediction task that can be learned well
with on-the-grid representations. However, the results in Table 1 highlight how, when learning general
representations that are not specific for a single task, the representations learned by MooG are still
favorable — similar to DINO and VideoMAE v2 representations for this task when considering
similar model sizes (VideoMAE G, having 1B parameters and having been pre-trained on large scale
data, performs slightly better than our much smaller model on some tasks).

As an alternative baseline, we compare to DPT [47] trained on the Waymo Open dataset [53], starting
from pre-trained ViT models as in Dehghani et al. [11]. All models are trained end-to-end. Table 4
demonstrates how MooG is able to outperform these on-the-grid baselines in this setup.

Object tracking Tracking individual objects in a video not only requires spatio-temporal tracking
of surface elements (as in point tracking), but also a broader semantic understanding of “objectness”
to disambiguate object boundaries from surrounding scene elements.

We train MooG using the box annotations available in Kubric MOVi-E [22]. For each video, we
randomly sample a clip of 8 frames to train on and we make use of all available boxes. As queries
we use the location of each box in the first frame, and we report the average IoU (excluding the first
frame in the sequence for which GT is provided) as in prior work [19, 33]. Tables 1 and 2 report
results for MooG and the grid-based baselines. Similar to the point tracking results, it can be seen how
overall MooG performs considerably better for object tracking compared to the on-the-grid baselines.
Notice how, unlike for points, the box annotations focus specifically on objects (excl. background).

As an ‘out-of-distribution’ evaluation we also reports results on the Waymo Open [53] dataset, where
we evaluate the model (and readout decoder) without additional training. Here we observe that
the representations learned by MooG are better suited for this task in both settings. We relate the
performance of MooG to a fully end-to-end supervised SAVi++ [19] model, by training and evaluating
MooG on Waymo directly in the same set-up for 250K steps. In this set-up MooG achieves 0.667
IoU compared to a fully-supervised end-to-end trained SAVi++ variant that is reported to achieve
0.676 IoU in Elsayed et al. [19], despite only the readout decoder being supervised in MooG.

4.3 Analysis

Number of readout layers The default hyperparameters for our readout decoders are designed
to be sufficiently expressive to learn a general mapping between latent representations and targets
(e.g. point tracks). In particular, we purposely use multiple transformer layers, as is common in
the literature [29, 49]. To determine to what extent the readout decoder capacity affects our results,
we repeat our end-to-end point tracking experiment, but using a single layer point readout decoder.
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Table 3: Points comparison. End to end.
Name Davis-8 (↑AJ) Davis-full (↑AJ)

MooG 0.824 0.510

TAP-Net 0.687 0.392
TAPIR 0.823 0.580

Table 4: Depth comparison. End to end.
Name Waymo (↓AbsRel)

MooG 0.094
DPT (ViT-L/16) 0.161
DPT (ViT-E/14) 0.158
DPT (ViT-22b) 0.154

Figure 6 shows how using only a single layer yields a marginal improvement on MOVi-E, while on
DAVIS-8 a slight drop in performance can be observed.

Number of tokens An advantage of having an "off-the-grid" representation is that the number of
tokens is independent of input frame resolution. Furthermore, because we initialize the representation
randomly, and because none of our model parameters depend on the number of tokens in the
representation, we can instantiate the model with a different number of tokens at test time. Indeed,
in Figure 7 we qualitatively show how MooG adapts to this change elegantly and is is still able to
predict future frames well even with half or quarter of the number of tokens used in training. The
model makes tokens cover larger areas of the scene to adapt for this change (these results are best
view in video format). Quantitatively in Figure 6 it can be seen how increasing the number of tokens
during training to 2048 or decreasing to 512 doesn’t significantly affect MooG’s performance.

5 Conclusion

While the vast majority of computer vision advances in the past decade can be attributed to successful
“on-the-grid” architectures such as CNNs and Vision Transformers, the physical world ultimately
does not live on a pixel grid. Instead of coupling the visual processing architecture to the architecture
of the camera sensor (a pixel grid), we here propose to move visual representations off the image
grid. Our MooG architecture allows representations to flexibly bind to scene surface elements and
track the content of the scene as it is subject to motion. We demonstrated that this representation
can serve as an effective alternative to the established grid-based counterpart, facilitating tasks that
require understanding of motion and scene geometry. The proposed model in this paper is still quite
simple - it is deterministic and ignores uncertainty inherent to the prediction task, and uses a very
simple L2 pixel loss as the objective. A possible next step is to introduce stochasticity into the model
to account for this inherent uncertainty, improving the representations and allowing for longer term
prediction. The latter may help the model learn richer, higher-level features of the scene. We have
observed that MooG struggles when applied to more semantic downstream tasks and this can likely
be explained by the simple deterministic nature of the prediction task and the short-term prediction
horizon of the model.
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Suhani Vora, Mario Lučić, Daniel Duckworth, Alexey Dosovitskiy, et al. Scene representation
transformer: Geometry-free novel view synthesis through set-latent scene representations. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6229–6238, 2022. 2, 9, 18

[50] Mehdi SM Sajjadi, Aravindh Mahendran, Thomas Kipf, Etienne Pot, Daniel Duckworth, Mario
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A Limitations

Despite MooG’s simple and scalable design and our quantitative improvements over the on-the-grid
baselines, there are a number of limitations and open problems worth mentioning here.

The evaluations we have used focused primarily on readout tasks that require tracking scene content
(like objects or points) or capturing its geometry (like depth prediction). In contrast, there are
many other possible downstream tasks we might want a video representation model to support,
including semantic segmentation, classification, or generation. Though in Figure 5 we have seen
some preliminary evidence that MooG learns about structure in the scene that captures semantics,
it is unclear to what degree these kinds of readouts are well-supported by OTG representations and
compare to on-the-grid alternatives.

Another potential limitation of OTG representations is the behavior of the tokens when scene content
disappears or (re)appears. Indeed, it is reasonable to assume that a grid-based representation changes
more gradually along the boundaries and provides a clearer expectation to the decoder in terms of
what content is encoded where. In contrast, an OTG representation may latch onto entirely new scene
elements as they (re)appear. This is a general limitation of OTG representations, including prior
approaches for learning slot-based object-representations [19, 33].

Finally, we have not investigated the scaling behavior of MooG in-depth, both in terms of scaling the
size of the model as well as the amount of pretraining data.

B Broader Impact Statement

The focus of our work is on training more capable video models for representation learning. These
representations can be used for improving on down-stream tasks, as we have done for point tracking,
depth estimation, and object tracking. There are many applications that could benefit from such
improved capabilities, including in the domain of robotics and classic computer vision applications.
As for many computer vision systems, these improvements may also transfer to applications with
negative societal impact such as surveillance.

C Experiment Details

C.1 Datasets

MOVi-E The MOVi-E dataset is part of the MOVi benchmark that was introduced with the release
of Kubric [22], which is available under an Apache 2.0 license4. The MOVi-E dataset makes use of
380 high-resolution HDR photos as backgrounds and 1028 3D-scanned everyday objects [15]. Each
scene consists of 10–20 static objects and between 1–3 dynamic objects that are tossed into the scene.

4https://github.com/google-research/kubric/blob/main/LICENSE
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The camera moves on a straight line with random constant velocity, whose starting point is sampled
randomly in a half-sphere shell around the scene. The camera is always pointed towards the origin of
the scene. The training set contains 97500 videos and the validation sets 250 videos, each of length 24.

Waymo Open Dataset The Waymo Open dataset [53] contains high-resolution videos (1280×1920
resolution). We follow the approach the same approach as in prior work [19] for processing the
data, where we only use the video recorded from the front of the car, down-sampled to 128× 192
resolution. The original dataset we use contains 798 training and 202 validation scenes that span 20
seconds each, sampled at 10fps. The Waymo Open dataset is licensed under the Waymo Dataset
License Agreement for Non-Commercial Use (August 2019)5.

Kinetics700 v2020 The Kinetics dataset contains about 545,000 video clips of 250 frames at 25fps
each. The videos depict people performing a large variety of actions in diverse environments. We
temporally sub-sample the clips randomly to the desired sequence length in training (8 frames in
all experiments here). The videos are randomly cropped spatially and scaled to 128 × 128 pixels.
Evaluation is done on the validation set which contains about 34,000 clips. The dataset was released
under the Creative Commons license.

Ego4D Ego4D is a dataset of ego-centric videos. It has 24,000 long videos at 24fps which were
sub-sampled into 2.4M 128 frames long clips. Of which further sub-sample 8 frames long clips
during training. The videos are randomly cropped and down-sampled to 128× 128 pixels. No other
augmentation is performed. The Ego4D dataset is used in accordance to the original dataset license6.

C.2 Training & Evaluation

Training For our quantitative evaluation we primarily train MooG and grid-based baselines on
videos from Kubric MOVi-E [22]. During training, we replicate each video 3 times to reduce
bandwidth when data loading. For each video, we randomly sample a clip of 8 frames to train on,
and apply random crop and color augmentations. For random crops, we ensure that crops span an
area inbetween 0.3 and 2.0 times the starting image resolution, and have and aspect ratio that lies
inbetween 0.5 and 2.0 times the starting resolution. After applying random crop augmentations to
videos of 256 × 256 resolution, we resize the resulting crops to 128 × 128 resolution. For color
augmentations, we randomly decide to adjust the video brightness (up to a maximum of 32/255
relative change), saturation (between 0.6 and 1.4), contrast (between 0.6 and 1.4 times) and hue (up
to a maximum relative change of 0.2) of the video with p = 0.8, followed by a p = 0.2 chance of
converting the video to grayscale.

On Waymo Open, we train on subsampled sequences of 16 frames using Inception-style random crop
augmentations, where we ensure that at least 75% of the original frame is covered, before resizing
back to 192× 128, followed by a central crop to 128× 128.

Point Tracking On MOVi-E, we use point annotations computed in a similar manner as in Doersch
et al. [12]. We sample 64 points per frame from a random grid having stride 4, while ensuring that at
most 10% of the points cover a single object. We use the location of each point in the first frame as
the query, and mask out points that are occluded throughout the entire sequence or occluded in the
first frame (such that no query can be provided to the decoder). To evaluate each model we report the
average Jaccard (AJ) as in Doersch et al. [13], which evaluates both occlusion and position accuracy.

For evaluation on DAVIS [43] we use “TAP-Vid-Davis” labeled in Doersch et al. [12] for the DAVIS
Validation set, consisting of 30 videos. We downsample to 128 × 128 resolution. Since MooG
is an auto-regressive architecture we adjust the query points to correspond to the location of the
target points in the first frame. We evaluate TAP-Net and TAPIR on the same set of points for a fair
comparison.

Monocular Depth Estimation On MOVi-E, we use the depth annotations that are readily available
for Kubric MOVi-E [22]. Following prior work [19], we transform depth values using log(1 + d),
where d is the distance of a pixel to the camera. As our evaluation metric we report the mean of

5https://waymo.com/open/terms.
6https://ego4d-data.org/pdfs/Ego4D-Licenses-Draft.pdf
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the absolute relative error (AbsRel), which is a standard metric in the monocular depth estimation
literature [17]. We subsample the targets by a factor of 4 for evaluation.

On Waymo Open, we follow the procedure outline in Elsayed et al. [19] to obtain sparse depth values
from LiDAR. Points in image space for which no depth signal is available are masked out in the
metric and loss. For the DPT baselines, we sample random frames from the available training and
evaluation videos for train and eval respectively. For evaluation we directly central crop to 128× 128,
and evaluate on 10 frames at the original resolution.

Object Tracking On MOVi-E we train MooG using the box annotations available in Kubric
MOVi-E [22]. As queries we use the location of each box in the first frame (represented as
ymin, xmin, ymax, xmax), and we report the average IoU across the sequence (excluding the first
frame in the sequence for which ground-truth is provided) as in prior work [19, 33].

On the Waymo Open dataset [53] we evaluate on sequences of 8 frames in the zero-shot transfer setting
to compare to grid-based baselines. To compare to SAVI++, we train on Waymo open at resolution
192 × 128 following the procedure outlined in Elsayed et al. [19] with random augmentations for
sequences of 16 frames, and evaluate on sequences 10 frames. In both settings, we discard bounding
boxes that cover an area of 0.5% during training an evaluation, and keep a maximum of 10 boxes
during training and for evaluation.

C.3 Model Details

C.3.1 MooG

Network Architecture The architecture of MooG for self-supervised training on video is divided
into four components: encoder, corrector, predictor, and decoder, totalling approximately 35M
parameters. To encode each frame, we use a convolution encoder as outlined in Table 5, followed by
a Fourier positional encoding using 20 Fourier bases, which we add to the encoder output features
using a single dense layer as a projection. For comparing to domain-specific baselines (TAPIR, DPT,
SAVi++, etc.) we also explore a slightly stronger backbone, where we omit the striding in the last
layer of the CNN and concatenate the positional encoding (as opposed to first projecting and then
adding).

At timestep 0, we initialize the latent representation having 1024 tokens of size 512 by drawing
from a standard normal multivariate Gaussian distribution scaled by a factor of 1e-4. The predictor
predicts the state of the tokens for the next time step, which uses a 3 layer self-attention transformer
as outlined in Table 7. The corrector updates the prediction based on the encoded observation, which
is implemented as a 2 layer transformer that uses both self-attention and cross-attention (Table 7),
where queries are computed from the predicted tokens, and the key and values are computed from
the encoded observation (32× 32 patches). We apply Layer Normalization [1] to the output of the
corrector, which we found to be important for long-sequence rollouts. To decode the back to pixel
space, we use a 6 layer cross-attention transformer as outlined in Table 7. Queries are computed from
the coordinate grid (after concatenating a Fourier positional encoding with 16 bases), and keys and
values from the predicted tokens.

For the down-stream readouts we make use of the same cross-attention Transformer backbone for
each readout as seen in Table 6. For spatial readouts (like depth), we follow the design of the pixel
decoder where queries are computed from the coordinate grid (after concatenating a Fourier positional
encoding with 16 bases), and keys and values from the tokens (here using both the predicted and
the corrected tokens). For tracking based tasks (like points and boxes prediction), we associate a
512-dimensional latent state with each track that is initialized from the first-frame queries using
a Fourier positional encoding as before, followed by a two-layer MLP to project to the desired
dimensionality. The transformer backbone in Table 6 is used to update these latent states at each
step by cross-attending into the predicted and corrected tokens, using the latent states as queries. A
per-latent predictor (implemented by a 2-layer MLP) acts as a predictor to initialize the tokens for
subsequent steps.

For our transformer implementation, we mostly follow the standard design in Vaswani et al. [54],
but using the pre-LN configuration as described in Xiong et al. [58]. We also include a few recent
improvements based on Dehghani et al. [11]. In particular, we apply RMS norm to the queries
and keys before computing the attention weights, and execute the cross- and self-attentions paths
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Table 5: Encoder CNN.
Features Kernel stride

64 3× 3 1× 1
128 3× 3 1× 1
128 3× 3 1× 1
256 3× 3 2× 2
256 3× 3 1× 1
512 3× 3 2× 2

Table 6: Readout Transformer Backbone. XA: Cross-attention.
SA: Self-Attention.

Type Type Layers QKV size Heads MLP size

Points XA 3 64× 8 8 2048

Depth XA 3 64× 8 8 2048

Boxes XA 3 64× 8 8 2048

Table 7: Transformer Layers. XA: Cross-attention. SA: Self-Attention.
Component Type Layers QKV size Heads MLP size

Corrector XA & SA 2 64× 8 8 2048

Predictor SA 3 64× 4 4 2048

Decoder XA 6 64× 2 2 2048

in parallel (where applicable), but not the mlp path. Finally we apply another layer of Layer
Normalization [1] to the output of the transformer.

Subsampled decoding Instead of decoding the full image at each time-step during training we
sub-sample the coordinate grid and embed the result. We first generate a sub-sampled grid of pixel
coordinates G ∈ Nh×w×2 where h = H/S,w =W/S and S is the sub-sampling factor. In order to
prevent over-fitting to specific coordinate grids we randomly offset G by a random integer between 0
and S. We use a Fourier positional embedding to embed G into a flattend embedding P ∈ R(hw)×C

and use the result as the initial queries in the multi-layer cross-attention transformer D, the output
of which is projected to 3 dimensions and reshaped back to image size to form the decoded frame
X̃t ∈ Rh×w×3: Using a sub-sampling factor S > 1 allows the model to decode only a subset of the
pixels in each frame reducing computational demands significantly.

Training We train MooG on raw video data (see below for datasets used) for 1M steps using Adam
with Nesterov momentum [16, 31] using a cosine decay schedule that includes a linear warm-up for
1000 steps, a peak value of 1e-4 and an end value of 1e-7. Updates are clipped using a maximum
global norm of 1.0, and we use β1 = 0.9, β2 = 0.95 inside Adam. We use a batch size of 128 for
most of our experiments, and a batch size of 256 for the comparison to domain-specific baselines in
Tables 3 & 4. On the Waymo Open dataset we train for 500K steps for end-to-end depth prediction
and for 250K steps for end-to-end box prediction to compare to SAVi++. Our MooG runs make use
of 64 TPUv3 [39] chips having 32GiB memory, which each take about 48 hours for 1M steps. We
implemented MooG in JAX [3] using Flax [24].

Our main training loss is a simple L2 reconstruction loss, which we compute for a subset of the pixels
inspired by Sajjadi et al. [49]. Down-sampling is implemented via striding using a factor of 8 and
having random offset during training. For depth readouts we use a masked L2 loss (based on the
availability of the depth signal at a given location) using the same down-sampling approach. Similarly,
for box readouts we use an L2 loss between the prediction and the normalized box coordinates. Finally,
for point readouts, in addition to predicting their values (normalized image coordinates), we also
predict whether they are visible and a measure of certainty of the prediction; for the purposes of
evaluation, we only output a point as visible if the model predicts (having confidence over 50%) that
it is both visible and certain of the position. This set-up is identical to the one used in Doersch et al.
[13] and we adopt the same combination of Huber and Sigmoid Binary Cross Entropy losses for
these terms. We amplify the Huber loss that measures the prediction accuracy by a factor of 1000
(note coordinates are normalized to between 0 and 1) relative to the visibility and uncertainty losses.
For points that have left the scene we only use the visibility part of the loss.
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C.3.2 Grid-based baselines

Grid (Rec.) We use the same approach to training and evaluating the grid-based baselines, which
only differ in their network configuration. In particular, the Grid baseline uses the same encoder
described in Table 5 and decoder and readouts described in Tables 6 & 7. The key difference is that it
does not include the corrector or predictor from Table 7, but treats the output of the encoder as the
representation. To make up for the lost parameter count, we augment the encoder with a self-attention
Transformer having 3 layers, QKV size of 64× 8, 8 heads, an MLP size of 2018 and a hidden size of
dimensionality 512.

The grid-based baseline with recurrence (Grid Recur.) also uses the same encoder described in
Table 5 and decoder and readouts described in Tables 6 & 7. It does not make use of the predictor, but
re-purposes the corrector as such. In particular, tokens for time-step t are initialized from the output
of the encoder (yielding a similar amount of 1024 tokens of dimensionality 512) in an on-the-grid
manner. The corrector uses these tokens as queries to cross-attend into the corrected tokens from the
previous timestep, which implements the recurrence. To make up for the lost parameter count, we
augment the encoder with a self-attention Transformer having 3 layers, QKV size of 64× 8, 8 heads,
an MLP size of 2018 and a hidden size of dimensionality 512. The decoder reads from the output of
the encoder (the tokens initialized on-the-grid) as is the case for the Grid baseline, while the other
readout modules have access to the corrected tokes as well (similar to in MooG).

DINO To evaluate on DINO [5, 40] representations we make use of the official pretrained check-
points available online7. We use the base ViT size, which exceeds MooG in the number of parameters.
To evaluate on videos, we compute DINO features for each frame (after resizing to 224× 224 and
normalizing pixels the ImageNet value range) that are fed into the same readout decoders outlined
in Table 6. We do not backpropgate the task-loss into the encoder in the frozen setting, while in the
end-to-end setting we do.

VideoMAE v2 To evaluate on VideoMAE v2 representations we consider 3 pub-
licly available checkpoints8: the ViT-Small (vit_s_k710_dl_from_giant) and ViT-base
(vit_b_k710_dl_from_giant) variants, which contain 22M and 83M parameters respectively,
as well as a ViT-giant variant (vit_g_hybrid_pt_1200e_k710_ft) containing 1B params. The
smaller variants were obtained by distilling the predictions of the ViT-giant model. We note that
MooG contains approximately 35M parameters, which includes the pixel decoder. Another important
difference to highlight is that the ViT-giant teacher network was finetuned for action recognition,
while the ViT-small and ViT-base models were initialized from finetuned networks as well. To evalu-
ate on videos, we first resize the video spatially to 224×224, after which we apply the VideoMAE v2
encoder to obtain a feature representation. Next, we upsample the feature representation temporally
by a factor of two to recover the original sequence length. The resulting representations are fed into
the same readout decoders outlined in Table 6. We do not backpropgate the task-loss into the encoder.

C.3.3 Domain-specific Baselines

TAP-net For TAP-Net, we use the default released model from TAP-Vid paper [12], which encodes
every frame (including query frame) at 256x256 resolution, runs through a TSM-ResNet backbone
(with time shifting) and produces a 32× 32 feature map. The feature map then is used to compute
the correlation volume and output predict location and occlusion flag. No uncertainty estimation is
used here. The TAP-Net is trained on the Kubric MOVI-E dataset using 24 frames and 256 points per
frame. There is no temporal processing in the model. Every frame is treated independently and only
correlation volume is used for prediction.

TAPIR For TAPIR, we mainly use the online model variant for comparison due to the autoregressive
nature of MooG and using query points that are always sampled from the first frame, again using the
publicly-released model. The online TAPIR model use causal convolutions that only receive context
feature from history for updating the current frame prediction during iterative refinement. For the

7Checkpoints can be downloaded from https://github.com/facebookresearch/dino and https:
//github.com/facebookresearch/dinov2 respectively.

8Checkpoints can be downloaded by following the instructions at https://github.com/OpenGVLab/
VideoMAEv2/blob/master/docs/MODEL_ZOO.md
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backbone, it uses 18-layer ResNet (with strides 1, 2, 2, 1 and instance normalization) instead of TSM-
ResNet, which is why it is frame independent but yields comparable performance. The backbone
encodes 256× 256 resolution and output two feature maps at 32× 32 and 64× 64 resolutions. The
32× 32 feature map is used for global correlation volume same as TAP-Net, then the 64× 64 is used
with 32× 32 together for iterative refinement. It runs 4 iterations for the refinement. The model is
trained on the TAP-Vid Panning MOVI-E dataset from the paper, using 24 frames, 256 points per
frame, and including the same color augmentations.

For completeness we have also computed the offline default TAPIR results. Indeed, we find that
online TAPIR works reasonably close to the offline variant (obtaining 0.825 AJ on Davis-8 and 0.584
AJ on Davis-full), likely because all query points are all from first frame.

DPT To provide a reference point to standard architectures employed for monocular depth predic-
tion we make use of the Dense Prediction Transformer (DPT) [47] architecture. We follow a similar
set-up as in Ranftl et al. [47], where we configure DPT with four reassemble and fusion blocks.
Each block processes a 16× 16 feature map from a pre-trained ViT at multiple spatial resolutions
4 × 4, 8 × 8, 16 × 16 and 32 × 32. We use a feature dimensionality of 256 for each block and
128 dimensionality for the depth estimation head. Similar to in Dehghani et al. [11] we reuse the
same ViT feature map at each stage. ViT features maps are obtained by upsampling the input frame
to 224 × 224 for ViT-E and ViT-22b, which use a patch size of 14, and to 256 × 256 for ViT-L,
which uses a patch size of 16. We use ReLU normalization on the output of DPT to ensure that it is
non-negative, and adjust the value range by inverting the model prediction. The output resolution
of DPT is at 224 × 224 and we upsample the depth targets and mask accordingly. DPT is trained
and evaluated on randomly sampled video frames of Waymo using the same crop augmentations as
mentioned in the previous section.

C.4 Qualitative Experiments

For the qualitative experiments in Section 4 we trained a MooG model on a dataset mixture from
Ego4D [21] and Kinetics700 [6]. The architecture used is identical to other models specified here.
The model was train on 8 frame long sequences randomly subsampled from the longer sequences in
the data. The model was trained with batch size of 256 from 1M steps and takes about 3 days on
8× 8 TPU cores to train, though results are already quite good after a few hours of training.

To generate the attention maps in Figures 4 and 7 and the supplementary material, we first unroll
the model on a test sequence to produce next frame predictions - this can be done on sequence
lengths much longer than the training sequence length. For each frame, we take each decoded pixel
coordinate (remember these are the queries that are used as input in the decoder) and average the
attention for each token across all decoder layers. This tells us how much attention a specific token
contributes when decoding a specific image location at a specific time step. We can visualize specific
token attention maps through time as in Figure 4 or we can take the arg-max across all token for a
specific location and colour code the tokens to get a more complete view of which token is most
responsible for every image location across time 7 and videos in the supplementary material. Here
the “grid-tokens” are obtained from the Grid Rec. baseline, trained in the same manner as MooG.

PCA visualizations (Figure 5 were generated by unrolling the model on a batch of 24 sequences,
each 12 frames long. We take the set of predicted tokens and concatenate all of them across the
first dimension, resulting in a 294, 912× 512 matrix. We then perform PCA analysis with this data.
taking the leading 64 components, resulting in a 294, 912× 64 matrix which we reshape back to the
original unrolled size up to the channel dimension to size 24× 12× 1024× 64. In order to visualize
these in image space we use the argmax token for each image location. We observe (manually) that
the first 20 or so components correspond to the positional encoding and contain no or very little scene
relevant content. Many of the components are informative, however — corresponding to different
elements in the scene, or properties such as colour, motion etc. In order produce the visualization in
Figure 5 we chose 3 of the “interesting” components and place them in RGB channels, visualizing
the result as a video.
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Figure 6: We vary several key hyper-parameters of MooG and report results for the end-to-end point
tracking setup.

D Additional Results

Analysis We report the results for our hyper-parameter study of MooG in Figure 6. Here MooG
was trained end-to-end on MOVi-E together with the point tracking objective, identical to the setup
for Table 2. We observe a marginal improvement using a single transformer layer in the point readout
(Table 6) on MOVi-E, but a decrease on DAVIS-8. When changing the total number of tokens, we
see a very slight improvement having additional tokens. We report qualitative results for changing
the number of tokens at inference time in Figure 7.

We evaluated the effect of using different number of frames during training. We trained MooG
end-to-end on MOVI with 2, 4 and 8 frames and evaluated on the point tracking and depth estimation
downstream tasks as in Table 2. Here we observed that training on 8 frames is significantly better
than training on 4 frames, which is in turn much better than training on 2 frames in the case of point
tracking. In particular, on the DAVIS-full evaluation we obtain 0.51, 0.36, 0.16 AJ respectively.
The differences between the three become more pronounced the longer the evaluation sequence is
— presumably the model learns longer term dynamics when training on longer sequences, which
improves its generalization ability to different sequence lengths. For depth evaluation we do not
observe a major difference between 8 and 4 frames (but both are much better than 2 frames), obtaining
AbsRel error of 0.03, 0.03 and 0.19 respectively on MOVi depth.

Variance Many of the results reported for MooG are for a single seed. To provide some indication
of variance, we evaluated 3 seeds for the MooG variant reported in Table 3. We observe a standard
error of the mean (SEM) of approx. 1% (absolute) for all reported metrics.
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Figure 7: MooG can be instantiated with a different number of tokens at test time without retraining.
Because the model architecture is independent of number of tokens and image resolution, we are free
to choose the number of tokens used at evaluation time. The model depicted here was trained with
1024 tokens. We instantiate the model with 256, 512 and 1024 tokens. As can be seen the model has
no problem in adapting to a different number of tokens, producing good predictions while tokens
cover more area in the image as needed.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We extensively evaluate our approach in Section 4, both qualitatively and
quantitatively and compare to relevant approaches in the literature.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: Limitations are discussed in Section A.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not provide any theoretical results.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: A detailed overview of all relevant implementation details concerning network
architectures, optimization, datasets, and evaluation are described in Appendix C.
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data we use is publicly accessible and we intent to release the main model
code upon acceptance of the paper.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: An overview of all relevant details needed to understand the results are provided
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material.
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information about the statistical significance of the experiments?
Answer: [No]
Justification: Because of computational constraints we were not able to provide multiple
seeds for all results. Where possible, such as for the DPT baselines and DINO baselines we
have reported results for 3 seeds. Further, we have given an indication of the variance of
MooG in Appendix D, which is small.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, details are provided in Appendix C.
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• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: a brief discussion is provided in Appendix B.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Discussed in Appendix C.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects was conducted.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28


