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ABSTRACT

Pretraining methods are typically compared by evaluating the accuracy of linear
classifiers, transfer learning performance, or visually inspecting the representation
manifold’s (RM) lower-dimensional projections. We show that the differences be-
tween methods can be understood more clearly by investigating the RM directly,
which allows for a more detailed comparison. To this end, we propose a frame-
work and new metric to measure and compare different RMs. We also investigate
and report on the RM characteristics for various pretraining methods. These char-
acteristics are measured by applying sequentially larger local alterations to the
input data, using white noise injections and Projected Gradient Descent (PGD)
adversarial attacks, and then tracking each datapoint. We calculate the total dis-
tance moved for each datapoint and the relative change in distance between suc-
cessive alterations. We show that self-supervised methods learn an RM where
alterations lead to large but constant size changes, indicating a smoother RM than
fully supervised methods. We then combine these measurements into one metric,
the Representation Manifold Quality Metric (RMQM), where larger values indi-
cate larger and less variable step sizes, and show that RMQM correlates positively
with performance on downstream tasks.

1 INTRODUCTION

Understanding why deep neural networks generalise so well remains a topic of intense research,
despite the practical successes that have been achieved with such networks. Less ambitiously than
aiming for a complete understanding, we can search for characteristics that indicate good generali-
sation. Knowledge of such characteristics can then be incorporated into training methods and open
more research avenues. These characteristics can also be used to evaluate and compare networks.

Arguably the most successful current theories of generalisation focus on the flatness of the loss
surface at the minima (Hochreiter & Schmidhuber, 1997; Dziugaite & Roy, 2017; Dherin et al.,
2021) (even though the most straightforward measures of flatness are known to be deficient Dinh
et al. (2017)). Petzka et al. (2021) expands on this argument and shows that these methods correlate
strongly with model performance, and reflect the assumption that the labels are locally constant in
feature space. A thorough survey by Jiang et al. (2020) shows that some recent methods are, in fact,
negatively correlated with generalisation.

To our knowledge, no theory looks at the structural characteristics of the learned Representation
Manifold (RM) as a predictor for generalisation. We investigate whether structural characteristics in
the RMs correlate with generalisation to task performance.

To illustrate the intuition behind our investigation, consider Figure 1, which represents two RMs, A
and B. Assume that each RM is produced by the same architecture, trained on the same dataset; both
have a flat minima but are trained with different methods. In the case of A, where the manifold is
smooth, the sample representations of the Green class are, on average, closer to other Green class’s
points. Likewise, presentations of the Red class will, on average, be closer to other Red class’s
samples. On the other hand, if we consider RM B, there are chasms in the manifold that lead to
some sample representations being closer to samples of the other class rather than samples of their
own class, as illustrated in the blue patch.
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Figure 1: An illustration to give an intuitive understanding of why the structural characteristics of a
RM should be considered a predictor of generalisation.

The purpose of this paper is to justify our claim that specific RM characteristics lead to general-
isation. However, to do this, we must first define appropriate RM characteristics that reflect this
intuition and show how to measure them.

Contribution This paper aims to show with enough empirical evidence that looking at the repre-
sentation manifold (RM) structure is a good research direction for explaining generalisation in deep
learning structures. Following these strong empirical results, future work will require a deeper the-
oretical investigation into our findings. Our contributions in this paper can then be summarised as
defining a model-agnostic and straightforward framework to measure RM characteristics. Using this
framework, we compare the RMs learned by encoders trained using supervised, self-supervised and
a mixture of both methods on the MNIST and CIFAR-10 datasets. We then present a new metric that
calculates the quality of a manifold for generalisation, the Representation Manifold Quality Metric
(RMQM). We show that this metric correlates strongly with downstream task performance. These
observations support our intuition on the characteristics of an RM that lead to generalisation.

2 RELATED WORK

Representation learning Some of the earliest work in representation learning focused on pre-
training networks by generating artificial labels from images and then training the network to pre-
dict these labels (Doersch et al., 2015; Zhang et al.; Gidaris et al., 2018). Other techniques involve
contrastive learning where representations from images are directly contrasted against one another
such that the network learns to encode similar images to similar representations (Schroff et al., 2015;
Oord et al., 2018; Chen et al., 2020; He et al., 2020; Le-Khac et al., 2020).

Comparing representations from trained neural networks Yamins et al. (2014); Cadena et al.
(2019) compares how similar representations are by linearly regressing over the one representation
to predict the other representation. The R2 coefficient is then used as a metric to quantify similarity.
This metric is not symmetric. Symmetrical methods compare representations from different neural
networks by creating a similarity matrix between the hidden representations of all layers as was done
in (Laakso & Cottrell, 2000; Kriegeskorte et al., 2008; Li et al., 2016; Wang et al., 2018; Kornblith
et al.).

Manifold Learning The Manifold Hypothesis states that practical high dimensional datasets lie
on a much lower dimensional manifold Carlsson et al. (2008); Fefferman et al. (2016); Goodfellow
et al. (2016). Manifold learning techniques aim to learn this lower-dimensional manifold by per-
forming non-linear dimensionality reduction. A typical application of these non-linear reductions is
visualising high dimensional data in two-dimensional or three-dimensional settings. Popular tech-
niques includeTenenbaum et al. (2000); Van der Maaten & Hinton (2008); McInnes et al. (2018).
These techniques have been used in various studies to compare different learned representation man-
ifolds (Chen et al., 2019; van der Merwe, 2020; Li et al., 2020; Liu et al., 2022).

Comparing manifolds To evaluate the performance of Generative Adversarial Networks, Baran-
nikov et al. (2021) introduces the Cross-Barcode tool that measures the differences in topologies
between two manifolds, which they approximate by the sampled data points from the underlying
data distributions. They then derive the Manifold Topology Divergence based on the sum of the
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lengths of segments in the Cross-Barcode. Zhou et al. (2021) also evaluates generative models by
quantifying representation disentanglement. They do this by measuring the topological similarity
of conditional submanifolds from the latent space. Shao et al. (2018) investigates the Riemannian
geometry of latent manifolds, specifically the curvature of the manifolds. They conclude that having
latent coordinates that approximate geodesics is a desirable property of latent manifolds. To our
knowledge, there has not been a study done on measuring the manifold’s structural characteristics
based on small local alterations to the input data, applied to non-generative encoders.

Predictors of generalisation Jiang et al. (2020) performed a large scale study of generalisation in
deep learning, and we refer the reader to this work for a well-documented review. To our knowledge,
there has been no work done on using the structure of the RM as a predictor of generalisation.

3 APPROACH

Describing all the details of a high-dimensional representation manifold (RM) is an impossible task;
we can at best strive to find characteristics that summarise salient properties of the RM. When mea-
suring these characteristics, one will therefore have a discrete view of the RM Barannikov et al.
(2021), made out of the predicted representations from the input data. We propose measuring indi-
vidual distance metrics for each representation of an input sample relative to representations of data
close to it.

By staying in the neighbourhood of each representation, we can measure the surface surrounding that
point using standard distance metrics, effectively walking on the local structure and measuring the
size of each step relative to the change in input. By inspecting all these locally measured structures
together, one describes the structure for the entire RM in terms of its local stability.

The caveat is that one requires representations in close proximity on the RM to do these measure-
ments. However, practical RMs have many dimensions, implying that data points tend to be well
separated, even if they originate from the same underlying class (Bárány & Füredi, 1988; Balestriero
et al., 2021). We thus need to create these proximate representations artificially.

We do this by applying sequentially larger local alterations to the input data and computing the
resulting representations. By increasing the size of the alteration, we step further on the RM surface
and thus measure characteristics further away but still local for the magnitude of changes that we
employ.

3.1 ALTERATION METHODS

Let an RM be represented by ϕ = f(X), where f is a feature extractor and X is a dataset (e.g.
input images). With A representing a function that applies small local alterations to pixels in the
image, each altered data point projected down to the RM is represented as ϕi = f(Aj(xi)), where
xi ∈ X and Aj the jth iteration of the alteration function.

The two alteration methods we use in our experiments are the same methods Hoffman et al. (2019)
used to evaluate the robustness of a Jacobian regulariser. We chose these methods because they
result in either random local alterations or guided alteration, thus giving us different paths on the
RM to evaluate.

White noise injection. Here we alter each input image xi by adding an alteration vector randomly,
a, with components independently drawn from a normal distribution with variance ϵ2, thus a ∼
N (0, ϵ2). In order to increase the alteration strength, we increase ϵ from zero to one in 100 in
equal steps, indexed by j. Thus, alteration j for datapoint xi is given by xij = [xi + aj ]clip, where
aj ∼ N (0, ϵ2j ) and [.]clip clips the image to be between zero and one.

PGD attack. Whereas white noise injections will allow us to walk on the surface of an RM in
random directions, altering the image in a way that deliberately aims to fool the trained function
fθ will allow us to walk in a direction influenced by decision boundaries on the RM. In this paper
we will implement an extension of fast gradient sign method (FGSM) Goodfellow et al. (2015),
namely projected gradient descent (PGD) (Madry et al., 2018). FGSM consists of adding a vector to
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the original image, where this vector consists of the sign of the gradient for the loss functions with
respect to the input image, scaled by a value ϵFGSM . PGD iterates this process for several iterations.
Calculating the jth alteration of xi, represented by xi,j can be defined as

xi,j = [xi,j−1 + ϵFSGM · (∇xi,j−1
L(θ, xi,j−1, y))]clip (1)

where L is the loss function for the relevant training method.

Given that the original target for these adversarial attacks was a network that classifies images. In
order to then apply PGD attack to the triplet variants, we calculate the loss precisely as usual and
then calculate the gradient with regards to the anchor image. When calculating the gradient for NT-
XENT methods, we compare a non-augmented image with an augmented version and then calculate
the gradient with respect to the unaugmented image. We apply the PGD attack for 30 iterations and
save each iteration, with ϵFGSM = 2/255.

3.2 MANIFOLD CHARACTERISTICS

Let Aj be the jth iteration of an alteration method, where each successive iteration employs a
stronger alteration. Also, let ϕi,j be the projected point on the RM produced by f(Aj(xi)), where
xi ∈ X .

Average distance moved. The first characteristic we measure is the total of the normalised Eu-
clidean distances between the original point, ϕi,0, and each altered point, ϕi,j , where ϕ is the nor-
malised vector. The average distance moved for image xi is represented as 1

J

∑
j∥ϕi,0 − ϕi,j∥2,

where we can then average over each point to find the average distance moved for a given RM and
alteration. Finally, the average over images is

D(ϕ,A) =
1

NJ

N∑
i

J∑
j

∥ϕi,0 − ϕi,j∥2 (2)

where N is the number of images considered and J is the number of alterations. D(ϕ,A) thus
indicates how robust the RM is to alterations A.

Average distance spikes. We also measure the relative change in distance between successive
alterations. These relative distance changes are measured both with respect to the original represen-
tation and relative to each previous alteration. We average the magnitudes of these changes as we
are not interested in the direction of the change to gauge how smooth an RM is. To understand how
relative changes relate to smoothness, recall that we only apply alterations that keep us close to the
given data points. Therefore, we can only have big spikes if the RM contains significant chasms
or bumps (small alterations in input data should result in constant distance increases if the RM is
smooth).

In order to calculate these relative changes for a single representation, refer to Equation (3) which
calculates the relative change according to the original representation, DRC and Equation (4) which
calculates the relative change according to the distance between the previous alterations PRC . In
both equations, d() is a distance function. In order to get the overall metrics, we average the values
over all data points.

D(ϕi, A)RC =
1

J

J∑
j=1

∣∣∣∣d(ϕi,0, ϕi,j)− d(ϕi,0, ϕi,j−1)

d(ϕi,0, ϕi,j)

∣∣∣∣ (3)

P (ϕi, A)RC =
1

J

J∑
j=2

∣∣∣∣d(ϕi,j−1, ϕi,j)− d(ϕi,j−1, ϕi,j−2)

d(ϕi,j−1, ϕi,j)

∣∣∣∣ (4)

4 COMPARING DIFFERENT TRAINING METHODS

We now measure the characteristics defined in Section 3 for five different training methods applied
to two different encoders and datasets. These five methods range from purely unsupervised to fully
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supervised. By comparing these five methods, we discover common properties for related methods,
thereby gaining a better understanding of the learned RMs. For further details on these training
methods, please refer to Appendix C.

To ensure that each learned RM can be compared fairly to each other, all image alterations are
exactly the same for each method when calculating the manifold characteristics. We report in the
rest of this section using the average results over both the Adam and SGD trained encoders, as the
results were similar for both.

Figure 2: The normalised Euclidean distance between the original MNIST digit and the same digit
altered by our white noise injection method. We perform this measurement for each embedding
dimension and digit in the test set. We then calculate the standard error shown with the mean
results.

4.1 MEASURING DISTANCES

Figure 2 shows the average normalised Euclidean distance to the original MNIST digits as we in-
crease the amount of alteration applied to each digit. Here, A is the white noise injection alteration.
As the embedding dimension increases, the self-supervised methods move further from the original
point than the supervised signal methods. We also notice that the Cross-Entropy encoder’s average
distance away from the original representation stays very low, with the Triplet-Entropy and Triplet-
Supervised encoders falling in between. We suspect this is because they contain both supervised and
unsupervised signals in the training process.

When A is the PGD attack, we see the same pattern emerging for the CIFAR-10 encoders, shown
in Figure 3. Here though, we can see a much more significant difference between self-supervised
methods and methods containing a supervised signal: the NT-XENT and Triplet-SS measurements
grow to have much larger values.

In Table 1 we summarise the D values, which is calculated using Equation (2), for the MNIST
encoders. We average over embedding dimensions and calculate the standard deviation for each
method. The common trend among both alteration methods is that NT-XENT and Triplet-SS alter-
ations always move farther away from the original representation than the other methods. We can
also see that the total distance moved decreases from self-supervised to pure supervised learning
methods.

These results indicate that the encoder is more robust to minor perturbations (as measured by the
distance moved from the original image) if the training method contains a strong supervised signal.
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Figure 3: The normalised Euclidean distance between the original CIFAR-10 image and the same
image altered by sequential PGD attack iterations.

Table 1: The average distance each points moves relative to the original point for both the white
noise injection and PGD Attack alterations for the MNIST encoders. The results are averaged over
both the embedding dimension of an encoder and the optimiser used.

METHOD NOISE PGD

CROSS-ENTROPY 0.33±0.15 0.21±0.08
TRIPLET-ENTROPY 0.73±0.11 0.33±0.08
TRIPLET-SUPERVISED 0.77±0.06 0.38±0.10
TRIPLET-SS 0.93±0.13 0.66±0.17
NT-XENT 1.01±0.04 0.68±0.10

4.2 MEASURING SPIKES

Following the same steps as in Section 4.1, we now study the relative change in distances measured.
The relative change in distance to the original representation, plotted against the amount of PGD
attack iterations, is shown in Figure 4.

We see a reversal of the graphs in Section 4.1: the self-supervised methods start with high relative
changes, which decrease rapidly. Methods containing a supervised signal have larger spikes and
error bands. All this indicates a less smooth journey in the RM between alterations for the supervised
methods.

The same trend is present for CIFAR-10 models when we inject white noise. Here though, the
Triplet-Supervised method is unstable for several values of the embedding dimension, whereas the
NT-XENT and Triplet-SS again have the smallest spikes.

Table 2 shows the overall average values for each spike metric for each method. NT-XENT and
Triplet-SS have the smallest spikes for both forms of alteration, whereas Triplet-Supervised results
in very non-smooth RMs.

Self-supervised methods therefore learn structures in which a step in most directions, at most loca-
tions, induces steps of similar size on the RM. That is, these self-supervised methods have smoother
RMs than the other methods.
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Figure 4: The relative change in distance to the original point plotted against the number of PGD
iterations for the encoders trained on the MNIST dataset.

Table 2: The average change in the distance each point moves relative to the original point, compared
against the previous alteration’s distance. Results are calculated for both the white noise injection
and PGD Attack alterations for the CIFAR-10 encoders. The results are averaged over both the
embedding dimension of an encoder and the optimiser used.

METHOD NOISE PGD

CROSS-ENTROPY 0.11±0.03 0.34±0.04
TRIPLET-ENTROPY 0.18±0.04 0.89±0.35
TRIPLET-SUPERVISED 0.86±0.85 2.97±1.61
TRIPLET-SS 0.06±0.01 0.06±0.04
NT-XENT 0.04±0.01 0.10±0.01

5 REPRESENTATION MANIFOLD QUALITY METRIC

In Section 4 we showed empirically that an RM learned by self-supervised methods has a structure
that has the following property: When moving in any direction on the surface of RM, it will result in
a relatively large displacement, but these displacements are on average the same size no matter where
or in what direction a step is taken. The opposite is true with methods containing a supervised signal:
moving in the surface results in smaller displacements, but those displacements are significantly
more variable in size.

In order to determine which of these two groups of characteristics are more desirable for downstream
tasks, we combine these characteristics into one metric, the Representation Manifold Quality Metric
(RMQM).

With this single metric describing an RM, we can perform various downstream tasks with our en-
coders and see how the performance correlates with the value of the RMQM. We define the RMQM
as

RMQM = ln
(
1 +D +D−1

PC + P−1
PC

)
(5)

Here D is the average distance moved measured relative to the original representation, DPC is the
relative change in distance between each subsequent alteration and the original representation and
PPC is the relative change of the distances between altered representations, as defined in Equa-
tions (2) to (4).

We apply the natural logarithm to scale the values, and we add one to ensure we do not have any
negative values.
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Figure 5: RMQM for white noise injections, over every embedding dimension for each encoder.

Thus, RMQM is designed to yield large values for relatively smooth RMs with relatively large
sensitivity to changes in the input. Below, we only interpret the RMQM score when A is the white
noise injection alteration, since the method dependence of the PGD alterations complicates our
ability to compare the various methods.

In Figure 5 we show the RMQM score for each of our encoders, with A being white noise injec-
tions. For the MNIST encoders trained using SGD and Nesterov momentum, as the embedding
size increases, the RMQM for Cross-Entropy overtakes Triplet-SS, indicating that the RM is more
similar in this setup to one produced by NT-XENT trained encoders. In the other cases, there is an
overall trend for the NT-XENT and Triplet-SS encoders to have the highest RMQM, followed by
Cross-Entropy and then lastly, Triplet-Entropy and Triplet-Supervised.

5.1 CORRELATION BETWEEN RMQM AND DOWNSTREAM TASKS.

In order to find what RM characteristics are desirable, we measure how RMQM correlates with
downstream task performance. If we find a strong positive correlation, an RM with a smooth struc-
ture and large displacements is desirable. If there is a strong negative correlation, then an RM that
contains chasms and bumps and small displacements is desirable.

We define the task performance as the normalised test accuracy of a K-Nearest Neighbour (KNN)
model, with only one nearest neighbour (K = 1), trained on the representations created by the
encoder, as well as the normalised test accuracy when doing a linear probe on the final layers of the
network. We believe these are appropriate measures of task performance as most use cases today
utilise representations. We also use these tasks, as these task do not change the learned RM structure,
as would be the case when fine-tuning the encoders on a new dataset with Cross-Entropy.

The MNIST encoders will be tested on the OMNIGLOT (Lake et al., 2015) and the KMNIST
(Clanuwat et al., 2018) datasets, with the CIFAR-10 encoders being tested on the Caltech-101 (Fei-
Fei et al., 2004) and CIFAR-100 (Krizhevsky et al., 2009) datasets. We believe these datasets provide
a large enough semantic gap towards the original datasets, as we do not measure for extreme gener-
alisation to any dataset. We exclude the Omniglot dataset results for the linear probe performs tasks
as they perform poorly across all model variations (we believe the task is too hard for probing),
which skews the results heavily.
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Figure 6: RMQM versus the normalised KNN task performance. The dots represent each encoder’s
performance and RMQM score, colour coded by the downstream dataset. As one can see, there is a
strong positive correlation between RMQM and downstream task performance

Figure 6 visualises RMQM versus the downstream KNN task performance, where each dot refers
to a differently trained model. We find that RMQM correlates positively to the KNN task with a
coefficient of 0.75. These results also stay true for larger values of K. We also find a positive
correlation to the linear probing results with a coefficient of 0.78. Combining both of the tasks, there
is a positive correlation of 0.72. This justifies our statement that RM characteristics are essential.
In other words, when vector search is the downstream task performance, an encoder that learned
an RM with a smooth structure and large displacements will tend to perform well on downstream
search tasks. To gain an intuition for why this can be, please refer to Appendix B, where we give
our intuitive explanation.

6 CONCLUSION

We propose a framework to measure the characteristics of learned representation manifolds (RM).
We measure the characteristics by applying sequentially stronger local alterations to the input data
and measuring how these altered representations move relative to the original representation and
the successive alterations. We show that self-supervised learning methods learn RMs in which
motion in any direction on the surface will result in relatively large displacements. However, these
displacements are relatively similar no matter where or in what direction a step is taken.

To identify RM characteristics related to good downstream task performance, we combine our mea-
surements into a single metric, the Representation Manifold Quality Metric (RMQM). RMQM is
designed to yield large values for relatively smooth RMs with relatively large sensitivity to changes
in the input. We then measure the downstream task performance for several tasks and find a strong
positive correlation with RMQM. This strong correlation indicates that the structure of a learned
manifold is another strong predictor for the generalisation of neural networks. This also shows that
self-supervised methods lead to state-of-the-art performance due to the underlying RM structure,
which is sensitive to alterations in the input, utilising a relatively smooth manifold.
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A RMQM ABLATION STUDY

To find which features of the RMQM formula contribute the most to predicting the overall down-
stream task performance, we performed an ablation study where we compared different combina-
tions of inputs to the RMQM formula described in eq. (5).

When the eq. (5) consists only of the average distance moved, D, there is a very low correlation
of only 0.27 to downstream task performance. We then looked at when only spikes are considered,
DRC and PRC , and found that the correlation was now 0.72, just below the reported 0.75 when
everything is combined. We also measured all the remaining combinations and found that the cor-
relation ranged between 0.71 and 0.74. This indicates that even though the spikes can be used to
measure performance, adding the average distance increases the performance of the RMQM score.

Finally, we optimised the weights associated with each variable we found that the following combi-
nation, shown in Equation (6), maximises the correlation at 0.784.

RMQM = ln
(
1 + 0.95D + 0.74D−1

PC + 0.11P−1
PC

)
(6)

These results show that one can not only look at distance moved on its own and that having small
spikes contribute significantly to generalisation. Nevertheless, spikes must be considered along with
distance for the best predictive capability.

These results indicate that previous work on model robustness still holds, as D contributes less than
spikes. However, robustness and RMQM complement each other in predicting the generalisation of
neural networks.

B INTUITIVE EXPLANATION OF RMQM CONCLUSIONS

To help better understand these perhaps unintuitive results, consider the case when we calculate the
RMQM using white noise alterations. Take the MNIST encoders as an example, and consider a
specific MNIST image (any digit). When applied to this digit, a random vector exists that will trans-
form it into one of the Omniglot characters, given a large enough alteration. In general, the variants
of this Omniglot character will differ from that digit image by similar noise vectors. Thus when
we encode this Omniglot character image and its variants using a self-supervised trained encoder,
the KNN models can accurately identify new images because, from the perspective of the RM, these
new characters correspond to the noise-altered version of our original MNIST digit. On the RM, this
new character and its variants are projected with a similar step size away from the original MNIST
digit. Due to the similar noise vector added, these projections are also in a similar direction. These
projected characters are also close because there are few chasms or bumps a projection can land on,
allowing a nearest neighbour search to perform well.

C DETAILS ON TRAINING METHODS

The first method we investigate employs encoders trained with vanilla supervised learning with
Cross-Entropy loss, where we then take the second to last layer output as the representations.
We also use the SimCLR method introduced in Chen et al. (2020). This method compares two
augmented versions of the same image and brings their representations closer together using the
Normalised Temperature-scaled Cross-Entropy (NT-XENT) Loss (Sohn, 2016). Along with this,
we trained encoders using two different implementations of Triplet-Loss (Weinberger et al., 2006;
Schroff et al., 2015). We believe these techniques represent the major families of training techniques
and provide enough information on how different techniques learn different RM structures. In a fu-
ture paper, we propose that a full-scale investigation be performed on most training techniques found
in current literature.

We mine the triplets in a supervised manner for the first implementation using the image labels. We
apply the SimCLR method for the second implementation, replacing NT-XENT with Triplet loss.
We refer to the former method as Triplet-Supervised going forward and the latter as Triplet-SS. We
do this to see the effect of the indirect supervised signal on the method. Lastly, to see the effect of
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directly combing a contrastive signal with a supervised signal, we combine Triplet-Loss with Cross-
Entropy loss, as was also done in van der Merwe (2020). Here the second to last layer’s outputs are
fed into the Triplet-Loss function, where the triplets are mined using the same labels used for the
Cross-Entropy loss, which takes as input the logits produced by the last layer.

We apply these methods to an altered version of the LeNet-5 architecture introduced in LeCun et al.
(1998), trained on the MNIST dataset (LeCun et al., 1998) and a Resnet-18 (He et al., 2016) trained
on the CIFAR-10 dataset (Krizhevsky et al., 2009). We train our encoders with six different embed-
ding sizes, ranging from 16 to 512 in powers of two. We also train with two different optimisers,
namely Stochastic Gradient Descent (SGD) with Nesterov Momentum (Sutskever et al., 2013) and
Adam (Kingma & Ba, 2015).

For SGD with Nesterov momentum, we set the learning rate to 0.001 and momentum to 0.9. Our
learning rate is also 0.001 with the default PyTorch hyperparameters for Adam. We train the CIFAR-
10 encoders for 100 epochs and the MNIST encoders for seven epochs.
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