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Abstract

Empirical risk minimization (ERM) is known to be non-robust in practice to1

distributional shift where the training and the test distributions are different. A suite2

of approaches, such as importance weighting, and variants of distributionally robust3

optimization (DRO), have been proposed to solve this problem. But a line of recent4

work has empirically shown that these approaches do not significantly improve5

over ERM in real applications with distribution shift. The goal of this work is to6

obtain a comprehensive theoretical understanding of this intriguing phenomenon.7

We first posit the class of Generalized Reweighting (GRW) algorithms, as a broad8

category of approaches that iteratively update model parameters based on iterative9

reweighting of the training samples. We show that when overparameterized models10

are trained under GRW, the resulting models are close to that obtained by ERM.11

We also show that adding small regularization which does not greatly affect the12

empirical training accuracy does not help. Together, our results show that a broad13

category of what we term GRW approaches are not able to achieve distributionally14

robust generalization. Our work thus has the following sobering takeaway: to15

make progress towards distributionally robust generalization, we either have to16

develop non-GRW approaches, or perhaps devise novel classification/regression17

loss functions that are adapted to the class of GRW approaches.18

1 Introduction19

It has now been well established that empirical risk minimization (ERM) can empirically achieve high20

test performance on a variety of tasks, particularly with modern overparameterized models where the21

number of parameters is much larger than the number of training samples. This strong performance22

of ERM however has been shown to degrade under distributional shift, where the training and test23

distributions are different [HS15, BGO16, Tat17]. There are two broad categories of distribution24

shift: domain generalization where the test distribution contains new environments not in the training25

distribution like in domain adaptation, and subpopulation shift where the two distributions have the26

same set of subpopulations but their mixture weights differ like in algorithmic fairness applications.27

People have proposed various approaches to learn models that are robust to distributional shift. The28

most classical approach is importance weighting (IW) [Shi00], which reweights training samples; in29

the context of subpopulation shift these weights are typically set so that each subpopulation/group30

has the same overall weight in the training objective. The approach most widely used today is31

Distributional Robust Optimization (DRO) [DN18, HSNL18], in which we assume that the test32

distribution belongs to a certain set of distributions that are close to the training distribution (called33

the uncertainty set), and train the model on the worst distribution in that set. Many variants of DRO34

have been proposed and are used in practice [HNSS18, SKHL20, XDKR20, ZDKR21, ZDS+21].35
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While these approaches have been developed for the express purpose of improving ERM for distri-36

bution shift, a line of recent work has empirically shown the negative result that when used to train37

overparameterized models, these methods do not improve over ERM. For IW, [BL19] observed that38

its effect under stochastic gradient descent (SGD) diminishes over training epochs, and finally does39

not improve over ERM. For variants of DRO, [SKHL20] found that these methods overfit very easily,40

i.e. their test performances will drop to the same low level as ERM after sufficiently many epochs if41

no regularization is applied. [GLP21, KSM+21] compared these methods with ERM on a number of42

real-world applications, and found that in most cases none of these methods improves over ERM.43

This line of empirical results has also been bolstered by some recent theoretical results. [SRKL20]44

constructed a synthetic dataset where a linear model trained with IW is provably not robust to45

subpopulation shift. [XYR21] further proved that under gradient descent (GD) with a sufficiently46

small learning rate, a linear classifier trained with either IW or ERM converges to the same max-47

margin classifier, and thus upon convergence, are no different. These previous theoretical results are48

limited to linear models and specific approaches such as IW where sample weights are fixed during49

training. They are not applicable to more complex models, and more general approaches where the50

sample weights could iteratively change, including most DRO variants.51

Towards placing the empirical results on a stronger theoretical footing, we define the class of52

generalized reweighting (GRW), which dynamically assigns weights to the training samples, and53

iteratively minimizes the weighted average of the sample losses. By allowing the weights to vary54

with iterations, we cover not just static importance weighting, but also DRO approaches outlined55

earlier; though of course, the GRW class is much broader than just these instances.56

In this work, we prove the comprehensive result that in both regression and classification, and for57

both overparameterized linear models and wide neural networks, the models learnt via any GRW58

approach and ERM are similar, in the sense that their implicit biases are (almost) equivalent. We note59

that extending the analysis from linear models to wide neural networks is non-trivial since it requires60

the result that wide neural networks can be approximated by their linearized counterparts to hold61

uniformly throughout the iterative process of GRW algorithms. Our results extend the analysis in62

[LXS+19], but as we show, the proof in the original paper had some flaws, and due to which we have63

to fix the proof by changing the network initialization (Eqn. (9), see Appendix E).64

Overall, the important takeaway is that distributionally robust generalization cannot be directly65

achieved by the broad class of GRW algorithms (which includes popular approaches such as impor-66

tance weighting and most DRO variants). Progress towards this important goal thus requires either67

going beyond GRW algorithms, or devising novel loss functions that are adapted to GRW approaches.68

In Section 6 we will discuss some promising future directions as well as the limitations of this work.69

2 Preliminaries70

Let the input space be X ⊆ Rd and the output space be Y ⊆ R.1 We assume that X is a subset of the71

unit L2 ball of Rd, so that any x ∈ X satisfies ‖x‖2 ≤ 1. We have a training set {zi = (xi, yi)}ni=172

i.i.d. sampled from an underlying distribution P over X × Y . Denote X = (x1, · · · ,xn) ∈ Rd×n,73

and Y = (y1, · · · , yn) ∈ Rn. For any function g : X 7→ Rm, we overload notation and use74

g(X) = (g(x1), · · · , g(xn)) ∈ Rm×n (except when m = 1, g(X) is defined as a column vector).75

Let the loss function be ` : Y × Y → [0, 1]. ERM trains a model by minimizing its expected risk76

R(f ;P ) = Ez∼P [`(f(x), y)] via minimizing the empirical risk R̂(f) = 1
n

∑n
i=1 `(f(xi), yi).77

In distributional shift, the model is evaluated not on the training distribution P , but a different test78

distribution Ptest, so that we care about the expected risk R(f ;Ptest). A large family of methods79

designed for such distributional shift is distributionally robust optimization (DRO), which minimizes80

the expected risk over the worst-case distribution Q� P 2 in a ball w.r.t. divergence D around the81

training distribution P . Specifically, DRO minimizes the expected DRO risk defined as:82

RD,ρ(f ;P ) = sup
Q�P

{EQ[`(f(x), y)] : D(Q ‖ P ) ≤ ρ} (1)

for ρ > 0. Examples include CVaR, χ2-DRO [HSNL18], and DORO [ZDKR21], among others.83

1Our results can be easily extended to the multi-class scenario (see Appendix B).
2For distributions P and Q, Q is absolute continuous to P , or Q � P , means that for any event A,

P (A) = 0 implies Q(A) = 0.
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A common category of distribution shift is known as subpopulation shift. Let the data domain contain84

K groups D1, · · · ,DK . The training distribution P is the distribution over all groups, and the test85

distribution Ptest is the distribution over one of the groups. Let Pk(z) = P (z | z ∈ Dk) be the86

conditional distribution over group k, then Ptest can be any one of P1, · · · , Pk. The goal is to train a87

model f that performs well over every group. There are two common ways to achieve this goal: one88

is minimizing the balanced empirical risk which is an unweighted average of the empirical risk over89

each group, and the other is minimizing the worst-group risk defined as90

Rmax(f ;P ) = max
k=1,··· ,K

R(f ;Pk) = max
k=1,··· ,K

Ez∼P [`(f(x), y)|z ∈ Dk] (2)

3 Generalized Reweighting (GRW)91

Various methods have been proposed towards learning models that are robust to distributional shift.92

In contrast to analyzing each of these individually, we instead consider a large class of what we call93

Generalized Reweighting (GRW) algorithms that includes the ones mentioned earlier, but potentially94

many others more. Loosely, GRW algorithms iteratively assign each sample a weight during training95

(that could vary with the iteration) and iteratively minimize the weighted average risk. Specifically, at96

iteration t, GRW assigns a weight q(t)i to sample zi, and minimizes the weighted empirical risk:97

R̂q(t)(f) =

n∑
i=1

q
(t)
i `(f(xi), yi) (3)

where q(t) = (q
(t)
1 , · · · , q(t)n ) and q(t)1 + · · ·+ q

(t)
n = 1.98

Static GRW assigns to each zi = (xi, yi) a fixed weight qi that does not change during training, i.e.99

q
(t)
i ≡ qi. A classical method is importance weighting [Shi00], where if zi ∈ Dk and the size of Dk100

is nk, then qi = (Knk)−1. Under importance weighting, (3) becomes the balanced empirical risk in101

which each group has the same weight. Note that ERM is also a special case of static GRW.102

On the other hand, in dynamic GRW, q(t) changes with t. For instance, any approach that iteratively103

upweights samples with high losses in order to help the model learn “hard” samples, such as DRO,104

is an instance of GRW. When estimating the population DRO risk RD,ρ(f ;P ) in Eqn. (1), if P105

is set to the empirical distribution over the training samples, then Q � P implies that Q is also106

a distribution over the training samples. Thus, DRO methods belong to the broad class of GRW107

algorithms. There are two common ways to implement DRO. One uses Danskin’s theorem and108

chooses Q as the maximizer of EQ[`(f(x), y)] in each epoch. The other one formulates DRO as a109

bi-level optimization problem, where the lower level updates the model to minimize the expected risk110

over Q, and the upper level updates Q to maximize it. Both can be seen as instances of GRW. As one111

popular instance of the latter, Group DRO was proposed by [SKHL20] to minimize (2). Denote the112

empirical risk over group k by R̂k(f), and the model at time t by f (t). Group DRO iteratively sets113

q
(t)
i = g

(t)
k /nk for all zi ∈ Dk where g(t)k is the group weight that is updated as114

g
(t)
k ∝ g

(t−1)
k exp

(
νR̂k(f (t−1))

)
(∀k = 1, · · · ,K) (4)

for some ν > 0, and then normalized so that q(t)1 + · · · + q
(t)
n = 1. [SKHL20] then showed (in115

their Proposition 2) that for convex settings, the Group DRO risk of iterates converges to the global116

minimum with the rate O(t−1/2) if ν is sufficiently small.117

4 Theoretical Results for Regression118

In this section, we will study GRW for regression tasks that use the squared loss119

`(ŷ, y) =
1

2
(ŷ − y)2. (5)

We will prove that for both linear models and sufficiently wide fully-connected neural networks, the120

implicit bias of GRW is equivalent to ERM, so that starting from the same initial point, GRW and121

ERM will converge to the same point when trained for an infinitely long time, which explains why122

GRW does not improve over ERM without regularization and early stopping. We will further show123

that while regularization can affect this implicit bias, it must be large enough to significantly lower124

the training performance, or the final model will still be similar to the unregularized ERM model.125
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Figure 1: Experimental results of ERM, importance weighting (IW) and Group DRO (GDRO) with
the squared loss on six MNIST images with a linear model. All norms are L2 norms.

4.1 Linear Models126

We first demonstrate our result on simple linear models to provide our readers with a key intuition;127

later, we will apply this same intuition to neural networks. This key intuition draws from results128

of [GLSS18]. Let the linear model be denoted by f(x) = 〈θ,x〉, where θ ∈ Rd. We consider the129

overparameterized setting where d > n. The weight update rule of GRW under GD is the following:130

θ(t+1) = θ(t) − η
n∑
i=1

q
(t)
i ∇θ`(f

(t)(xi), yi) (6)

where η > 0 is the learning rate. For a linear model with the squared loss, the update rule is131

θ(t+1) = θ(t) − η
n∑
i=1

q
(t)
i xi(f

(t)(xi)− yi) (7)

For this training scheme, we can prove that if the training error converges to zero, then the model132

converges to an interpolator θ∗ (s.t. ∀i, 〈θ∗,xi〉 = yi) independent of q(t)i (proofs in Appendix D):133

Theorem 1. If x1, · · · ,xn are linearly independent, then under the squared loss, for any GRW such134

that the empirical training risk R̂(f (t))→ 0 as t→∞, it holds that θ(t) converges to an interpolator135

θ∗ that only depends on θ(0) and x1, · · · ,xn, but does not depend on q(t)i .136

The proof is based on the following key intuition regarding the update rule (7): θ(t+1) − θ(t) is137

a linear combination of x1, · · · ,xn for all t, so θ(t) − θ(0) always lies in the linear subspace138

span{x1, · · · ,xn}, which is an n-dimensional linear subspace if x1, · · · ,xn are linearly independent.139

By Cramer’s rule, there is exactly one θ̃ in this subspace such that we get interpolation of all the140

data 〈θ̃ + θ(0),xi〉 = yi for all i ∈ {1, . . . , n}. In other words, the parameter θ∗ = θ̃ + θ(0) in this141

subspace that interpolates all the data is unique. Thus the proof would follow if we were to show that142

θ(t) − θ(0), which lies in the subspace, also converges to interpolating the data.143

We have essentially proved the following sobering result: the implicit bias of any GRW that achieves144

zero training error is equivalent to ERM, so GRW does not improve over ERM. While the various145

distributional shift methods discussed in the introduction have been shown to satisfy the precondition146

of convergence to zero training error with overparameterized models and linearly independent147

inputs [SKHL20], we provide the following theorem that shows this for the broad class of GRW148

methods. Specifically, we show this result for any GRW satisfying the following assumption with a149

sufficiently small learning rate:150

Assumption 1. There are constants q1, · · · , qn s.t. ∀i, q(t)i → qi as t→∞. And mini qi = q∗ > 0.151

Theorem 2. If x1, · · · ,xn are linearly independent, then there exists η0 > 0 such that for any152

GRW satisfying Assumption 1 with the squared loss, and any η ≤ η0, the empirical training risk153

R̂(f (t))→ 0 as t→∞.154

Finally, we use a simple experiment to demonstrate the correctness of this result. The experiment is155

conducted on a training set of six MNIST images, five of which are digit 0 and one is digit 1. We use156

a 784-dimensional linear model and run ERM, importance weighting and group DRO. The results are157

presented in Figure 1, and they show that the training loss of each method converges to 0, and the gap158

between the model weights of importance weighting, Group DRO and ERM converges to 0, meaning159

that all three model weights converge to the same point, whose L2 norm is about 0.63. Figure 1d also160

shows that the group weights in Group DRO empirically satisfy Assumption 1.161
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4.2 Wide Neural Networks (Wide NNs)162

Now we study sufficiently wide fully-connected neural networks. We extend the analysis in [LXS+19]163

in the neural tangent kernel (NTK) regime [JGH18]. In particular we study the following network:164

hl+1 =
W l

√
dl
xl + βbl and xl+1 = σ(hl+1) (l = 0, · · · , L) (8)

where σ is a non-linear activation function, W l ∈ Rdl+1×dl and WL ∈ R1×dL . Here d0 = d. The165

parameter vector θ consists of W 0, · · · ,WL and b0, · · · , bL (θ is the concatenation of all flattened166

weights and biases). The final output is f(x) = hL+1. And let the neural network be initialized as167 {
W

l(0)
i,j ∼ N (0, 1)

b
l(0)
j ∼ N (0, 1)

(l = 0, · · · , L− 1) and

{
W

L(0)
i,j = 0

b
L(0)
j ∼ N (0, 1)

(9)

We also need the following assumption on the wide neural network:168

Assumption 2. σ is differentiable everywhere. Both σ and its first-order derivative σ̇ are Lipschitz.3169

Difference from [JGH18]. Our initialization (9) differs from the original one in [JGH18] in the last170

(output) layer, where we use the zero initialization WL(0)
i,j = 0 instead of the Gaussian initialization171

W
L(0)
i,j ∼ N (0, 1). This modification permits us to accurately approximate the neural network with172

its linearized counterpart (11), as we notice that the proofs in [LXS+19] (particularly the proofs of173

their Theorem 2.1 and their Lemma 1 in Appendix G) are flawed. In Appendix E we will explain174

what goes wrong in their proofs and how we manage to fix the proofs with our modification.175

Denote the neural network at time t by f (t)(x) = f(x; θ(t)) which is parameterized by θ(t) ∈ Rp176

where p is the number of parameters. We use the shorthand ∇θf (0)(x) := ∇θf(x; θ)
∣∣
θ=θ0

. The177

neural tangent kernel (NTK) of this model is Θ(0)(x,x′) = ∇θf (0)(x)>∇θf (0)(x′), and the Gram178

matrix is Θ(0) = Θ(0)(X,X) ∈ Rn×n. For this wide NN, we still have the following NTK theorem:179

Lemma 3. If σ is Lipschitz and dl →∞ for l = 1, · · · , L sequentially, then Θ(0)(x,x′) converges180

in probability to a non-degenerate4 deterministic limiting kernel Θ(x,x′).181

The kernel Gram matrix Θ = Θ(X,X) ∈ Rn×n is a positive semi-definite symmetric matrix.182

Denote its largest and smallest eigenvalues by λmax and λmin. Note that Θ is non-degenerate, so we183

can assume that λmin > 0 (which is almost surely true when dL � n). Then we have:184

Theorem 4. Let f (t) be a wide fully-connected neural network that satisfies Assumption 2 and is185

trained by any GRW satisfying Assumption 1 with the squared loss. Let f (t)ERM be the same model186

trained by ERM from the same initial point. If d1 = · · · = dL = d̃, ∇θf (0)(x1), · · · ,∇θf (0)(xn)187

are linearly independent, and λmin > 0, then there exists a constant η1 > 0 such that: if η ≤ η1
5,188

then for any δ > 0, there exists D̃ > 0 such that as long as d̃ ≥ D̃, with probability at least (1− δ)189

over random initialization we have: for any test point x ∈ Rd such that ‖x‖2 ≤ 1, as d̃→∞,190

lim sup
t→∞

∣∣∣f (t)(x)− f (t)ERM(x)
∣∣∣ = O(d̃−1/4)→ 0 (10)

Note that for simplicity, in the theorem we only consider the case where d1 = · · · = dL = d̃→∞,191

but in fact the result can be very easily extended to the case where dl/d1 → αl for l = 2, · · · , L for192

some constants α2, · · · , αL, and d1 →∞. Here we provide a proof sketch for this theorem. The key193

is to consider the linearized neural network of f (t)(x):194

f
(t)
lin (x) = f (0)(x) + 〈θ(t) − θ(0),∇θf (0)(x)〉 (11)

which is a linear model with features ∇θf (0)(x). Thus if ∇θf (0)(x1), · · · ,∇θf (0)(xn) are linearly195

independent, then the linearized NN converges to the unique interpolator. Then we show that the196

3f is Lipschitz if there exists a constant L > 0 such that for any x1,x2, |f(x1)− f(x2)| ≤ L ‖x1 − x2‖2.
4Non-degenerate means that Θ(x,x′) depends on x and x′ and is not a constant.
5For ease of understanding, later we will write this condition as “with a sufficiently small learning rate”.
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wide neural network can be approximated by its linearized counterpart uniformly throughout training,197

which is considerably more subtle in our case due to the GRW dynamics. Here we prove that the gap198

is bounded by O(d̃−1/4), but in fact we can prove that it is bounded by O(d̃−1/2+ε) for any ε > 0:199

Lemma 5 (Approximation Theorem). For a wide fully-connected neural network f (t) satisfying200

Assumption 2 and is trained by any GRW satisfying Assumption 1 with the squared loss, let f (t)lin be its201

linearized neural network trained by the same GRW (i.e. q(t)i are the same for both networks for any202

i and t). Under the conditions of Theorem 4, with a sufficiently small learning rate, for any δ > 0,203

there exist constants D̃ > 0 and C > 0 such that as long as d̃ ≥ D̃, with probability at least (1− δ)204

over random initialization we have: for any test point x ∈ Rd such that ‖x‖2 ≤ 1,205

sup
t≥0

∣∣∣f (t)lin (x)− f (t)(x)
∣∣∣ ≤ Cd̃−1/4 (12)

Theorem 4 shows that at any test point x within the unit ball, the gap between the outputs of wide206

NNs trained by GRW and ERM from the same initial point is arbitrarily close to 0. So we have shown207

that for regression, with both linear and wide NNs, GRW does not improve over ERM.208

4.3 Wide Neural Networks, with L2 Regularization209

Previous work such as [SKHL20] proposed to improve DRO algorithms by adding L2 penalty to the210

objective function. In this section, we thus study adding L2 regularization to GRW algorithms:211

R̂µ
q(t)(f) =

n∑
i=1

q
(t)
i `(f(xi), yi) +

µ

2

∥∥∥θ − θ(0)∥∥∥2
2

(13)

From the outset, it is easy to see that under L2 regularization, GRW methods have different implicit212

biases than ERM. For example, when f is a linear model, ` is convex and smooth, then R̂µ
q(t)(f) with213

static GRW is a convex smooth objective function, so under GD with a sufficiently small learning rate,214

the model will converge to the global minimizer (see Appendix D.1). Moreover, the global optimum215

θ∗ satisfies∇θR̂µq(t)(f(x; θ∗)) = 0, solving which yields θ∗ = θ(0) + (XQX>+µI)−1XQ(Y −216

f (0)(X)), which depends on Q = diag(q1, · · · , qn), so adding L2 regularization at least seems to217

yield different results from ERM (whether it improves over ERM might depend on q1, · · · , qn).218

However, the following result shows that this regularization must be large enough to significantly219

lower the training performance, or the resulting model would still be close to the unregularized ERM220

model. We still denote the largest and smallest eigenvalues of the kernel Gram matrix Θ by λmax and221

λmin. We use the subscript “reg” to refer to a regularized model (trained by minimizing (13)).222

Theorem 6. Suppose there exists M0 > 0 s.t.
∥∥∇θf (0)(x)

∥∥
2
≤M0 for all ‖x‖2 ≤ 1. If λmin > 0223

and µ > 0, then for a wide NN satisfying Assumption 2, and any GRW minimizing the squared loss224

with a sufficiently small learning rate η, if d1 = d2 = · · · = dL = d̃, ∇θf (0)(x1), · · · ,∇θf (0)(xn)225

are linearly independent, and the empirical training risk of f (t)reg satisfies226

lim sup
t→∞

R̂(f (t)reg ) < ε (14)

for some ε > 0, then with a sufficiently small learning rate, as d̃→∞, with probability close to 1227

over random initialization, for any x such that ‖x‖2 ≤ 1 we have228

lim sup
t→∞

∣∣∣f (t)reg (x)− f (t)ERM(x)
∣∣∣ = O(d̃−1/4 +

√
ε)→ O(

√
ε) (15)

where f (t)reg is trained by regularized GRW and f (t)ERM by unregularized ERM from same initial points.229

The proof again starts from analyzing linearized neural networks, and showing that regularization230

does not help there (Appendix D.4.2). Then, we need to prove a new approximation theorem for L2231

regularized GRW connecting wide NNs to their linearized counterparts uniformly through the GRW232

training process (Appendix D.4.1). Note that with regularization, we no longer need Assumption233

1 to prove the new approximation theorem, because previously Assumption 1 is used to prove the234

convergence of GRW, but with regularization GRW naturally converges.235
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Figure 2: Experimental results of ERM, importance weighting (IW) and Group DRO (GDRO) with
L2 regularization with the squared loss. Left two: µ = 0.1; Right two: µ = 10.

Theorem 6 shows that if the training error can go below ε, then the gap between the outputs of the236

two models on any test point x within the unit ball will be at most O(
√
ε). Thus, if ε is very small,237

regularized GRW yields a very similar model to unregularized ERM, and thus makes improvement.238

To empirically demonstrate this result, we run the same experiment as in Section 4.1 but with L2239

regularization. The results are presented in Figure 2. We can see that when the regularization is small,240

the training losses still converge to 0, and the three model weights still converge to the same point.241

On the contrary, with a large regularization, the training loss does not converge to 0, and the three242

model weights no longer converge to the same point. This shows that the regularization must be large243

enough to lower the training performance in order to make a significant difference to the implicit bias.244

5 Theoretical Results for Classification245

Now we consider classification where Y = {+1,−1}. The big difference is that classification losses246

don’t have finite minimizers. A classification loss converging to zero means that the model weight247

“explodes” to infinity instead of converging to a finite point. We focus on the canonical logistic loss:248

`(ŷ, y) = log(1 + exp(−ŷy)) (16)

5.1 Linear Models249

We first consider training the linear model f(x) = 〈θ,x〉 with GRW under gradient descent with the250

logistic loss. As noted earlier, in this setting, [BL19] made the empirical observation that importance251

weighting does not improve over ERM. Then, [XYR21] proved that for importance weighting252

algorithms, as t→∞, ‖θ(t)‖2 →∞ and θ(t)/‖θ(t)‖2 converges to a unit vector that does not depend253

on the sample weights, so it does not improve over ERM. To extend this theoretical result to the broad254

class of GRW algorithms, we will prove two results. First, in Theorem 7 we will show that under the255

logistic loss, any GRW algorithm satisfying the following weaker assumption:256

Assumption 3. For all i, lim inft→∞ q
(t)
i > 0,257

if the training error converges to 0, and the direction of the model weight converges to a fixed unit258

vector, then this unit vector must be the max-margin classifier defined as259

θ̂MM = arg max
θ:‖θ‖2=1

{
min

i=1,··· ,n
yi · 〈θ,xi〉

}
(17)

Second, Theorem 8 shows that for any GRW satisfying Assumption 1, the training error converges to260

0 and the direction of the model weight converges, so it does not improve over ERM.261

Theorem 7. If x1, · · · ,xn are linearly independent, then for the logistic loss, we have: for any262

GRW satisfying Assumption 3, if as t→∞ the empirical training risk R̂(f (t)) converges to 0 and263

θ(t)/‖θ(t)‖2 → u for some unit vector u, then u = θ̂MM.264

This result is an extension of [SHN+18]. Note that θ̂MM does not depend on q(t)i , so this result shows265

that the sample weights have no effect on the implicit bias. Thus, for any GRW method that only266

satisfies the weak Assumption 3, as long as the training error converges to 0 and the model weight267

direction converges, GRW does not improve over ERM. We next show that any GRW satisfying268

Assumption 1 does have its model weight direction converge, and its training error converge to 0.269

Theorem 8. For any loss ` that is convex, L-smooth in ŷ and strictly monotonically decreasing to270

zero as yŷ → +∞, and GRW satisfying Assumption 1, denote F (θ) =
∑n
i=1 qi`(〈θ,xi〉, yi). If271

x1, · · · ,xn are linearly independent, then with a sufficiently small learning rate η, we have:272
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F (θ(t))→ 0 as t→∞.(i)
∥∥θ(t)∥∥

2
→∞ as t→∞.(ii)273

Let θR = arg minθ{F (θ) : ‖θ‖2 ≤ R}. θR is unique for any R such that min‖θ‖2≤R F (θ) <

mini qi`(0, yi). And if limR→∞
θR
R exists, then limt→∞

θ(t)

‖θ(t)‖
2

also exists and they are equal.

(iii)274

This result is an extension of Theorem 1 of [JDST20]. For the logistic loss, it is easy to show that275

it satisfies the conditions of the above theorem and limR→∞
θR
R = θ̂MM. Thus, Theorems 8 and 7276

together imply that all GRW satisfying Assumption 1 (including ERM) have the same implicit bias277

(see Appendix D.5.3). We also have empirical verification for these results (see Appendix C).278

Remark. It is impossible to extend these results to wide NNs like Theorem 4 because for a neural279

network, if ‖θ(t)‖2 goes to infinity, then ‖∇θf‖2 will also go to infinity. However, for a linear model,280

the gradient is a constant. Consequently, the gap between the neural networks and its linearized281

counterpart will “explode” under gradient descent, so there can be no approximation theorem like282

Lemma 5 that can connect wide NNs to their linearized counterparts. Thus, we consider regularized283

GRW, for which θ(t) converges to a finite point and there is an approximation theorem.284

5.2 Wide Neural Networks, with L2 Regularization285

Consider minimizing the regularized weighted empirical risk (13) with ` being the logistic loss. As in286

the regression case, with L2 regularization, GRW methods have different implicit biases than ERM287

for the same reasons as in Section 4.3. And similarly, we can show that in order for GRW methods to288

be sufficiently different from ERM, the regularization needs to be large enough to significantly lower289

the training performance. Specifically, in the following theorem we show that if the regularization290

is too small to lower the training performance, then a wide neural network trained with regularized291

GRW and the logistic loss will still be very close to the max-margin linearized neural network:292

fMM(x) = 〈θ̂MM,∇θf (0)(x)〉 where θ̂MM = arg max
‖θ‖2=1

{
min

i=1,··· ,n
yi · 〈θ,∇θf (0)(xi)〉

}
(18)

Note that fMM does not depend on q(t)i . Moreover, using the result in the previous section we can293

show that a linearized neural network trained with unregularized ERM will converge to fMM:294

Theorem 9. Suppose there exists M0 > 0 such that
∥∥∇θf (0)(x)

∥∥
2
≤M0 for all test point x. For a295

wide NN satisfying Assumption 2, and for any GRW satisfying Assumption 1 with the logistic loss,296

if d1 = d2 = · · · = dL = d̃ and ∇θf (0)(x1), · · · ,∇θf (0)(xn) are linearly independent and the297

learning rate is sufficiently small, then for any δ > 0 there exists a constant C > 0 such that: with298

probability at least (1 − δ) over random initialization, as d̃ → ∞ we have: for any ε ∈ (0, 14 ), if299

the empirical training error satisfies lim supt→∞ R̂(f
(t)
reg ) < ε, then for any test point x such that300

|fMM(x)| > C · (− log 2ε)−1/2, f (t)reg (x) has the same sign as fMM(x) when t is sufficiently large.301

This result says that at any test point x on which the max-margin linear classifier classifies with a302

margin of Ω((− log 2ε)−1/2), the neural network has the same prediction. And as ε decreases, the303

confidence threshold also becomes lower. Similar to Theorem 6, this theorem provides the scaling of304

the gap between the regularized GRW model and the unregularized ERM model w.r.t. ε.305

This result justifies the empirical observation in [SKHL20] that with large regularization, some GRW306

algorithms can maintain a high worst-group test performance, with the cost of suffering a significant307

drop in training accuracy. On the other hand, if the regularization is small and the model can achieve308

nearly perfect training accuracy, then its worst-group test performance will still significantly drop.309

6 Discussion310

6.1 Distributionally Robust Generalization and Future Directions311

A large body of prior work focused on distributionally robust optimization, but we show that these312

methods have (almost) equivalent implicit biases as ERM. In other words, distributionally robust313

optimization (DRO) does not necessarily have better distributionally robust generalization (DRG).314
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Therefore, we argue that it is necessary to design principled ways to improve DRG, which is what315

people really want in the first place. Here we discuss three promising approaches to improving DRG.316

The first approach is data augmentation and pretraining on large datasets. Our theoretical findings317

suggest that the implicit bias of GRW is determined by the training samples and the initial point, but318

not the sample weights. Thus, to improve DRG, we can either obtain more training samples, or start319

from a better initial point, as demonstrated in two recent papers [WGS+22, SKL+22].320

The second approach (for classification) is to go beyond the class of (iterative) sample reweighting321

based GRW algorithms, for instance via logit adjustment [MJR+21], which makes a classifier have322

larger margins on smaller groups to improve its generalization on smaller groups. An early approach323

by [CWG+19] proposed to add an O(n
−1/4
k ) additive adjustment term to the logits output by the324

classifier. Following this spirit, [MJR+21] proposed the LA-loss which also adds an additive adjust-325

ment term to the logits. [YCZC20] proposed the CDT-loss which adds a multiplicative adjustment326

term to the logits by dividing the logits of different classes with different temperatures. [KPOT21]327

proposed the VS-loss which includes both additive and multiplicative adjustment terms, and they328

showed that only the multiplicative adjustment term affects the implicit bias, while the additive term329

only affects optimization, a fact that can be easily derived from our Theorem 8. Finally, [LZT+21]330

proposed AutoBalance which optimizes the adjustment terms with a bi-level optimization framework.331

The third approach is to stay within the class of GRW algorithms, but to change the classifica-332

tion/regression loss function to be suited to GRW. A recent paper [WCHH22] showed that for linear333

classifiers, one can make the implicit bias of GRW dependent on the sample weights by replacing the334

exponentially-tailed logistic loss with the following polynomially-tailed loss:335

`α,β(ŷ, y) =


`left(ŷy) , if ŷy < β

1

[ŷy − (β − 1)]α
, if ŷy ≥ β

(19)

And this result can be extended to GRW satisfying Assumption 1 using our Theorem 8. The reason336

why loss (19) works is that it changes limR→∞
θR
R , and the new limit depends on the sample weights.337

6.2 Limitations338

Like most theory papers, our work makes some strong assumptions. The two main assumptions are:339

(i) The model is a linear model or a sufficiently wide fully-connected neural network.340

(ii) The model is trained for sufficiently long time, i.e. without early stopping.341

Regarding (i), [COB19] argued that NTK neural networks fall in the “lazy training” regime and342

results might not be transferable to general neural networks. However, this class of neural networks343

has been widely studied in recent years and has provided considerable insights into the behavior344

of general neural networks, which is hard to analyze otherwise. Regarding (ii), in some easy tasks,345

when early stopping is applied, existing algorithms for distributional shift can do better than ERM346

[SKHL20]. However, as demonstrated in [GLP21, KSM+21], in real applications these methods still347

cannot significantly improve over ERM even with early stopping, so early stopping is not the ultimate348

universal solution. Thus, though inevitably our results rely on some strong assumptions, we believe349

that they provide important insights into the problems of existing methods and directions for future350

work, which are significant contributions to the study of distributional shift problems.351

7 Conclusion352

In this work, we posit a broad class of what we call Generalized Reweighting (GRW) algorithms that353

include popular approaches such as importance weighting, and Distributionally Robust Optimization354

(DRO) variants, that were designed towards the task of learning models that are robust to distributional355

shift. We show that when used to train overparameterized linear models or wide NN models, even this356

very broad class of GRW algorithms does not improve over ERM, because they have the same implicit357

biases. We also showed that regularization does not help if it is not large enough to significantly358

lower the average training performance. Our results thus suggest to make progress towards learning359

models that are robust to distributional shift, we have to either go beyond this broad class of GRW360

algorithms, or design new losses specifically targeted to this class.361
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