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Abstract001

Recent research has delved into Retrieval-based002
In-Context Learning (RetICL), leveraging the003
power of large language models (LLMs) for004
text classification. Despite its promise, a persis-005
tent challenge lies in effectively retrieving rele-006
vant demonstrations from a support set. Many007
existing approaches have overlooked the essen-008
tial role of linguistic label information in guid-009
ing this retrieval process. To bridge this gap, we010
present Contrastive Linguistic Label Retrieval-011
based In-Context Learning (CLL-RetICL), a012
novel framework designed to identify the most013
relevant and impactful sentences without al-014
tering the model parameters. Our approach015
uniquely integrates sentence-query similarity016
with sentence-label similarity, enabling a more017
nuanced and comprehensive evaluation of rele-018
vance. We tested CLL-RetICL across diverse019
text classification tasks and evaluated its perfor-020
mance on various LLMs. Experimental results021
demonstrate that CLL-RetICL consistently out-022
performs previous retrieval methods that do not023
incorporate linguistic label information. These024
findings highlight the critical importance of lin-025
guistic label-aware selection in enhancing text026
classification accuracy.1027

1 Introduction028

A linguistic label represents the semantics of a cat-029

egory and plays a vital role in text classification030

tasks. Human annotators rely on the meaning con-031

veyed by these labels to accurately categorize text.032

Depending on the specific requirements of a cus-033

tom classification task, a linguistic label can often034

be substituted with synonyms or more descriptive035

phrases to better align with the task’s context.036

Recently, researchers have begun exploring few-037

shot in-context learning (ICL) using LLMs for text038

classification tasks. (Luo et al., 2024; Yu et al.,039

2023; Chae and Davidson, 2023; Rouzegar and040

1Our code is available: http://acl-org.github.io/
ACLPUB/formatting.html

Figure 1: An illustration of CLL-RetICL with N = 2
and k = 3, demonstrating a prediction between Positive
and Negative classes. Here, y0 and y1 represent the
vector representations of the linguistic labels "Negative"
and "Positive", respectively, in a pre-trained sentence
embedding model. Similarly, s0, s1, . . . represent the
vector representations of the sentences in a support set
within the same pre-trained sentence embedding model.

Makrehchi, 2024). Instead of selecting static, pre- 041

defined demonstration sets for ICL, RetICL adopts 042

a dynamic, context-sensitive approach. At its core, 043

adaptive demonstration selection leverages a spe- 044

cialized retriever to intelligently curate tailored 045

demonstrations for each task input. RetICL has 046

gained popularity because prior research suggests 047

that context-insensitive demonstrations can limit 048

the full potential of LLMs (Luo et al., 2024; Wu 049

et al., 2022). Despite RetICL consistently surpass- 050

ing approaches based on random or static demon- 051

strations, it still remains an open challenge to re- 052

trieve relevant demonstrations. 053

To address the problem, previous researchers 054

have proposed various strategies, including k- 055

nearest neighbors (KNN), NwayKshot, and 056

clustering-based RetICL (Li et al., 2024; Pecher 057

et al., 2024; Zhang et al., 2022a). However, these 058
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(a) KNN (b) NwayKshot (c) Clustering-Based (d) Ours

Figure 2: A comparison of four different approaches to RetICL strategies. (a) KNN suffers from two key weaknesses:
the copying effect and misleading by similarity. (b) NwayKshot always ignores any linguistic cues conveyed through
the labels. (c) Clustering-based approaches are hindered by the difficulty in estimating category centers and the
neglect of query similarity. (d) Our method avoids the copying effect, prevents misleading similarity, incorporates
linguistic label information, utilizes fixed label category centers, and integrates query similarity.

methods suffer from various challenges, as shown059

in Figure 2. To identify the most effective demon-060

strations, we analyzed failure cases. Our investi-061

gation revealed that there always exists a specific062

combination of demonstrations that enables LLMs063

to classify accurately. Additionally, our analysis064

uncovered that failure cases are error-prone: they065

often lie closer to the representation of an opposing066

linguistic label or near the representation of an in-067

correct label cluster center, despite their similarity068

to the query. In contrast, when the demonstrations069

are correctly combined, they align more closely070

with the representation of the intended linguistic071

label. A detailed discussion of these findings is072

presented in Section 3.073

Building on these observations, we present074

a novel RetICL framework, CLL-RetICL (Con-075

trastive Linguistic Label Retrieval-based In-076

Context Learning) as illustrated in Figure 1.077

Our approach introduces a trade-off method that078

computes a relevance score by integrating both079

sentence–query and sentence–label similarities,080

thereby effectively leveraging label information.081

Furthermore, to optimize the effectiveness of CLL-082

RetICL, we developed a universal N-way K-shot083

prompt structure applicable to all text classification084

tasks. This prompt design mitigates the copying085

effect and prevents LLMs from being misled by086

overly similar examples. Moreover, we demon-087

strate that the sentence embeddings of linguistic088

labels can serve as clustering centers—generated089

by a pre-trained sentence embedding model—to090

address the challenge of estimating clustering cen-091

ters. Additionally, we initiate four variations for092

integrating the linguistic label style into RetICL093

and evaluate their effectiveness on four text classifi-094

cation datasets. Finally, to assess the generalizabil-095

ity of CLL-RetICL, we conduct experiments using096

Gemini (Team et al., 2024), Llama (Dubey et al.,097

2024), and Mistral (Jiang et al., 2024). Empirical 098

experiments show that CLL-RetICL consistently 099

outperforms both previous RetICL baselines and 100

other variants across multiple datasets and LLMs. 101

Ablation studies further reveal several key findings: 102

(1) Effectiveness across variations: CLL-RetICL 103

maintains strong performance across different k- 104

shot settings, various pre-trained sentence embed- 105

ding models, and multiple similarity functions. (2) 106

Component dependency: The proposed method 107

relies on the original component responsible for 108

calculating sentence-query similarity; omitting this 109

component degrades performance. (3) Impact of 110

hyperparameters: Trade-off hyperparameters have 111

a minor influence on the final classification accu- 112

racy. The following summarizes our main contri- 113

butions: 114

• We present a novel perspective in which sen- 115

tence embeddings of linguistic labels serve as 116

highly accurate clustering centers, free from 117

the biases introduced by limited support data 118

and independent of data-driven constraints. 119

• We propose an innovative method, CLL- 120

RetICL, which employs a rigorous relevance 121

scoring metric that leverages linguistic label 122

information to select high-quality demonstra- 123

tions for improving LLMs in text classifica- 124

tion tasks. Our approach does not require 125

fine-tuning the pre-trained weights of either 126

the sentence embedding models or LLMs. 127

• We conduct extensive experiments to evaluate 128

the proposed method, achieving better perfor- 129

mance on most datasets compared to existing 130

RetICL methods. 131

2 Related Work 132

Text Classification via LLMs. Text classifica- 133

tion via LLMs has recently demonstrated excep- 134
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tional generalizability and reasoning capabilities,135

attracting significant research interest in their ap-136

plication to text classification tasks (Zhang et al.,137

2024; Wang et al., 2024; Fields et al., 2024). Ex-138

isting methods can be broadly divided into two139

groups, depending on whether they involve adapt-140

ing the parameters of LLMs or not. The first141

group concentrates on fine-tuning the parameters142

of LLMs to excel in custom text classification tasks143

(Chae and Davidson, 2023; Zhang et al., 2024;144

Yu et al., 2023; Jin et al., 2023). However, this145

approach generally demands significant compu-146

tational resources to load the full LLM model147

parameters, and fine-tuning these models can of-148

ten diminish their generalizability. The other cat-149

egory is known as ICL, or prompt engineering150

(Guo et al., 2024; Luo et al., 2024; Fan et al.,151

2024). While this method avoids the need to up-152

date LLM model parameters, it heavily depends153

on well-designed prompts, making it challenging154

to guide LLMs to consistently meet human expec-155

tations (Shi et al., 2023; Mavromatis et al., 2023;156

Edwards and Camacho-Collados, 2024).157

RetICL. RetICL can generally be divided into158

two categories: approaches that retrain or fine-tune159

a retriever for specific text classification tasks, and160

approaches that utilize pre-trained language models161

without additional fine-tuning. An intuitive strategy162

for RetICL involves directly selecting a few similar163

sentences, leveraging readily available demonstra-164

tion retrievers like those based on sentence em-165

beddings. Existing methods include KATE (Liu166

et al., 2021), Z-ICL (Lyu et al., 2022) and ICL-167

ML (Milios et al., 2023). However, recent research168

has shown that selecting the most similar demon-169

strations can lead to the copying effect and mis-170

leading by similarity, degrading performance in171

text classification tasks (Olsson et al., 2022; Zhang172

et al., 2022b). To mitigate the issue of homogeneity173

in retrieval, clustering retrieval approaches ensure174

the selection of a diverse and representative set of175

demonstrations, which is critical to its effectiveness176

(Luo et al., 2024). Several methods exist, including177

NwayKshot (Li et al., 2024), Votek (Su et al., 2022)178

and D-CALM (Hassan and Alikhani, 2023). While179

these approaches leverage label information and180

offer improvements, accurately estimating the clus-181

tering center for each category remains challenging.182

This difficulty arises because clustering center esti-183

mation is a data-driven process that depends on a184

support set.185

Figure 3: A comparison of the correct and incorrect
demonstration combinations is presented. On the left,
NwayKshot retrieves the top-k sentences most similar
to the query from each group; however, this approach
fails to classify the query correctly. In contrast, on the
right, CLL-RetICL does not rely solely on proximity to
the query, resulting in an accurate classification.

The second category of RetICL involves fine- 186

tuning or retraining a retriever model to rank rel- 187

evant sentences using either in-domain or out-of- 188

domain datasets for text classification tasks. There 189

are established methods, such as PEFT (Tunstall 190

et al., 2022), UDR (Li et al., 2023) and Ambig- 191

ICL (Gao et al., 2023). These methods utilize label 192

information and feedback to optimize model pa- 193

rameters, highlighting the essential role of labeled 194

data in yielding valuable insights for text classifica- 195

tion tasks. However, they often demand substantial 196

computational resources and considerable time to 197

construct a retriever. 198

3 Linguistic Label Retrieval Hypothesis 199

Previous studies have shown that retrieving sen- 200

tences closest to the query and applying a 201

clustering-based selection method can enhance the 202

diversity of demonstrations while mitigating the 203

risk of misleading results due to similarity (Li et al., 204

2020; Luo et al., 2024). Therefore, a question 205

arises: are the clustering centers reliable? To ex- 206

plore this further, we analyze the distribution of 207

clustering centers, as shown in Appendix C. Vary- 208

ing the proportion of fully supported data from 10% 209

to 100% reveals that the distribution of clustering 210

centers shifts according to the number of sentences 211

in the support set. Notably, negative-labeled cluster- 212

ing centers tend to be less distinct within a certain 213

range compared to positive-labeled ones. These 214

findings suggest that clustering center estimation 215

is inherently data-driven and prone to bias, mak- 216

ing it difficult to accurately identify true clustering 217
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centers. On the other hand, by analyzing failure218

cases, we find that, for a given query, there is an219

optimal combination of demonstrations that can220

effectively guide LLMs to classify the query cor-221

rectly. However, relying solely on the top-ranked222

closest demonstrations retrieved does not always223

yield accurate results. An example of this limita-224

tion is illustrated in Figure 3. To further investigate,225

we compared cases where the top-k closest demon-226

strations led to incorrect results versus cases where227

randomly selected demonstrations produced cor-228

rect outcomes. We provide five examples of such229

instances in Appendix C. We found that incorrect230

nearest-neighbor demonstrations exhibit an error-231

prone tendency, being either closer to the linguistic232

representation of an opposite label, closer to the233

center of an incorrect label cluster, or both—despite234

being similar to the query. Conversely, in correct235

combinations, the selected demonstrations exhibit236

a stronger alignment with the correct tendency. For237

example, sentences with a Negative label tend to238

show higher similarity to the linguistic word "Neg-239

ative" and the same holds for "Positive" label. Al-240

though correct demonstrations align closely with241

their respective cluster centers, we observe excep-242

tions where a correct output contains sentences that243

are nearer to the center of an incorrect label cluster.244

Furthermore, even sentences closest to their correct245

cluster centers can still lead to classification errors246

due to inaccurate estimation of those centers.247

Based on these observations, we hypothesize248

that the vector representations of linguistic labels249

should be explicitly incorporated into the retrieval250

process rather than relying on cluster center esti-251

mation. Compared to traditional clustering center252

estimation, this approach offers two advantages: (1)253

Independence from data Bias – The linguistic la-254

bel clustering center is not data-driven, preventing255

bias introduced by the support set. (2) Leveraging256

linguistic information – Linguistic labels play a257

crucial role in zero-shot ICL, as LLMs rely entirely258

on these labels for text classification tasks.259

4 Our Method: CLL-RetICL260

Preliminary. Let the query set Q represent a task,261

where q ∈ Q denotes a sample query for which we262

aim to find an answer via an LLM. In the context of263

RetICL, multiple demonstrations (d1, . . . , dk) are264

retrieved from a support set C. Each demonstration265

di consists of a sentence and its label, (si, yi) ∈ C,266

where yi belongs to the label set Y .267

Overview. We present CLL-RetICL, a novel Ret- 268

ICL approach leveraging information extraction 269

between demonstrations and linguistic labels to 270

predict the correct label for a given query input qi 271

(Wang et al., 2023). Unlike earlier methods (Liu 272

et al., 2021; Su et al., 2022; Li et al., 2022; Milios 273

et al., 2023) that create input-label pairs by retriev- 274

ing sentences closest to a given query, CLL-RetICL 275

selects demonstrations that balance a trade-off by 276

augmenting the corresponding label while penaliz- 277

ing others. 278

CLL-RetICL involves three key steps, as illus- 279

trated in Figure 1: (1) Retrieving more relevant 280

sentences by integrating sentence-query similarity 281

with sentence-label similarity (detailed in Section 282

4.1), (2) Forming demonstrations by organizing 283

the retrieved demonstrations into an N-way K-shot 284

format (discussed in Section 4.2), and (3) Making 285

inferences through ICL (explained in Section 4.3). 286

4.1 Linguistic Label Retriever 287

RetICL employs a retrieval mechanism to iden- 288

tify k examples from C that are most relevant to a 289

given query q. This process is guided by a similar- 290

ity function, sim, which quantifies the relationship 291

between a sentence si and a query q. The corre- 292

sponding formula is as follows: 293

scoreRetICL = sim(q, si) (1) 294

To build on this hypothesis, CLL-RetICL incor- 295

porates sentence-query similarity with sentence- 296

label similarity. Rather than solely considering 297

the similarity distance between a sentence si and 298

the query q, CLL-RetICL employs the following 299

formula: 300

scorec-RetICL = sim(q, si)

+ w1 ∗ log
expsim(si,yi)

1
n−1

∑y ̸=yi
y∈Y expsim(si,y)

(2)

301

where w1 is a trade-off hyperparameter that bal- 302

ances the relative importance of the corresponding 303

terms in the objective function. 304

CLL-RetICL considers the relationship between 305

sentences and linguistic labels by utilizing a simi- 306

larity function. It increases the score based on the 307

similarity between a sentence and its assigned cor- 308

rect label (referred to as the positive label) while 309

decreasing the score based on the similarity be- 310

tween the sentence and other labels (referred to as 311
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negative labels). Additionally, we propose several312

variations and evaluate their performance through313

experiments. These include Positive Label Aug-314

ment (PLA), Negative Label Penalty (NLP), and315

Contrastive Label (CTL). The corresponding for-316

mulas are provided below:317

scorePLA = sim(q, xi) + w1 ∗ sim(xi, yi) (3)318
319

scoreNLP = sim(q, xi)− w1 ∗ 1
n−1

∑y ̸=yi
y∈Y sim(xi, y)

(4)320
321

scoreCTL =sim(q, xi) + w1 ∗ sim(xi, yi)

− w2 ∗
1

n− 1

y ̸=yi∑
y∈Y

sim(xi, y)
(5)322

where w1 and w2 are trade-off hyperparameters.323

Our methods ensure that the selected sentences324

(1) maintain a safe distance from q to prevent the325

copying effect (Olsson et al., 2022; Zhang et al.,326

2022b), (2) incorporate the information between327

sentences and linguistic labels and (3) align closely328

with the requirements of the custom text classifica-329

tion task.330

4.2 N-way K-shot331

We adopt a clustering-based retrieval method, as332

prior research suggests that N-way K-shot effec-333

tively addresses the issue of homogeneity (Li and334

Qiu, 2023). Here, we partition all sentences into N335

sub-groups, aiming to cluster sentences that share336

the same label. Our retriever selects top K high337

demonstrations according to above score formula338

from each sub-group, resulting in a final set of339

N ×K demonstrations.340

4.3 Inference341

Finally, CLL-RetICL constructs a prompt by342

concatenating N-way K-shot input-label pairs343

(x1, y1), (x2, y2), . . . , (xk, yk) for each N-way la-344

bel, along with the query input q. This prompt345

is then fed into a LLM, which generates a predic-346

tion using argmaxy∈Y P (y|prompt). The univer-347

sal prompt template for each text classification task348

is outlined in Table 5 in Appendix B.349

5 Experimental Analysis350

5.1 Experimental Setup351

We evaluate multiple LLMs to identify factors af-352

fecting classification accuracy across four tasks.353

Key results are summarized in the main text, with354

additional details presented in the Appendix D.355

5.1.1 Datasets 356

We conduct experiments on four widely recognized 357

text classification tasks: SST2 (Socher et al., 2013), 358

CoLA (Warstadt et al., 2018), CARER (Saravia 359

et al., 2018) and BBCnews (Greene and Cunning- 360

ham, 2006). Similar to conventional text classifi- 361

cation methodologies, we treat the training sets as 362

support sets and the test sets as query sets, while 363

disregarding development sets if they exist. The 364

detailed data statistics are provided in Appendix A 365

and summarized in Table 3. 366

5.1.2 Baselines 367

We compare CLL-RetICL with the zero-shot ap- 368

proach as well as various RetICL methods. 369

Zero-shot predicts argmaxy∈Y P (y|q) without 370

using any demonstrations (Radford et al., 2019; 371

Brown et al., 2020). This method utilizes LLMs 372

and linguistic label information to enhance text 373

classification. 374

Z-ICL leverages physical neighbors to avoid se- 375

lecting demonstrations that are overly similar to 376

the query. Furthermore, it introduces the use of 377

synonymous labels to mitigate the copying effect, 378

highlighting the potential for effectively utilizing 379

the linguistic meaning of labels (Lyu et al., 2022). 380

KATE employs a standard KNN approach to 381

retrieve demonstrations, which remains the most 382

widely used method in RetICL (Liu et al., 2021). 383

NwayKshot is a clustering-based retrieval 384

method designed to tackle the challenge of 385

homogeneity in demonstrations (Li et al., 2024). 386

Cluster-TopN builds on NwayKshot but applies 387

k-means clustering to identify the cluster centers. It 388

then selects the demonstration closest to the center 389

from each sub-group (Zhdanov, 2019; Hassan and 390

Alikhani, 2023). 391

Votek selects k representatives from N sub- 392

groups through a voting mechanism to best rep- 393

resent the group (Su et al., 2022). 394

5.1.3 Experimental Details 395

LLMs. We conduct experiments using three 396

LLMs: Gemini (Team et al., 2024), Llama (Dubey 397

et al., 2024) and Mistral (Jiang et al., 2024). Specif- 398

ically, we utilize fixed versions of these models, 399

namely Gemini 1.5 Flash, Llama 3.2-90b-Vision, 400
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LLM
Zero-shot Z-ICL KATE Cluster-TopN Votek Nwaykshot CLL-RetICL

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1
SST2

Gemini 93.29.56 .933.002 92.31.29 .923.005 94.17.42 .941.004 94.93.47 .950.003 94.16.33 .942.004 94.67.47 .947.002 95.17.37 .952.004
Llama 94.83.62 .948.004 96.21.54 .962.006 94.78.56 .948.004 93.61.63 .936.005 94.77.47 .948.004 90.82.71 .908.003 95.06.43 .951.004
Mistral 90.08.32 .901.002 90.72.51 .906.003 93.78.21 .938.003 94.88.37 .949.004 94.34.46 .943.002 94.34.29 .943.003 95.60.21 .956.003
Avg. 92.73 .927 93.08 .930 94.24 .942 94.47 .945 94.42 .944 93.27 .933 95.28 .953

CoLA
Gemini 68.26.56 .663.008 60.21.67 .583.007 70.08.84 .641.008 80.32.49 .765.005 81.43.63 .783.007 82.74.72 .795.008 83.60.91 .801.006
Llama 61.74.89 .585.006 52.34.72 .511.007 68.36.83 .650.005 71.62.76 .711.007 61.42.69 .607.004 74.52.71 .686.008 77.66.84 .742.003
Mistral 74.30.34 .697.006 71.52.56 .666.003 78.71.56 .752.004 84.29.56 .811.005 84.48.56 .821.006 85.23.56 .816.007 85.52.56 .828.004
Avg. 68.10 .648 61.36 .587 72.38 .681 78.74 .762 75.78 .737 80.83 .766 82.26 .790

CARER
Gemini 59.20.51 .493.004 65.85.60 .607.002 70.85.52 .621.002 61.65.49 .533.004 59.95.67 .541.004 66.25.41 .596.002 72.65.67 .669.005
Llama 56.75.31 .488.005 65.70.60 .594.003 61.95.49 .537.006 57.35.32 .499.002 59.50.71 .526.003 64.25.54 .579.004 69.15.32 .635.002
Mistral 56.50.41 .506.002 67.10.48 .617.004 68.89.37 .601.003 60.25.29 .515.003 58.75.50 .498.002 72.10.43 .670.003 76.85.20 .717.004
Avg. 57.48 .495 66.22 .606 67.23 .586 59.75 .516 59.40 .521 67.53 .615 72.88 .674

BBCNews
Gemini 87.00.31 .869.013 87.70.45 .872.007 90.99.21 .909.005 85.30.64 .850.010 86.20.35 .858.011 88.60.56 .884.008 89.50.37 .892.006
Llama 94.89.56 .948.008 93.43.41 .933.004 94.70.31 .946.006 93.60.41 .935.004 96.00.21 .960.008 96.10.52 .960.007 96.80.50 .967.005
Mistral 91.70.26 .915.005 90.6031 .903.002 92.99.29 .929.006 83.10.46 .826.017 83.00.41 .825.007 87.20.29 .872.010 88.10.49 .879.009
Avg. 91.20 .910 90.57 .902 92.89 .928 87.33 .870 88.40 .881 90.63 .905 91.47 .912

Table 1: Text classification results evaluated on four datasets using three LLMs. Bold indicates the best result and
underline indicates the result worse than the best result.

Gemini Llama Mistral Avg.

Method ACC F1 ACC F1 ACC F1 ACC F1
SST2

Baseline 94.67.47 .947.002 90.82.71 .908.003 94.34.29 .943.003 93.27 .932
PLA 95.44.28 .954.003 93.46.31 .934.004 94.34.36 .943.005 94.41 .943
NLP 95.38.30 .954.003 92.31.16 .922.004 96.37.46 .963.002 94.68 .946
CTL 95.44.35 .954.002 91.65.62 .916.004 95.11.28 .951.003 94.06 .940
Ours 95.1737 .952.004 95.06.43 .951.004 95.60.21 .956.004 95.28 .953

CoLA
Baseline 82.74.72 .795.008 64.52.71 .586.008 85.23.56 .816.007 77.49 .732
PLA 83.31.54 .798.006 73.53.86 .656.008 85.31.75 .832.008 80.72 .762
NLP 82.45.43 .791.005 64.05.79 .579.008 85.04.64 .823.005 77.18 .731
CTL 82.74.86 .794.007 62.79.62 .579.004 85.04.95 .824.011 76.86 .732
Ours 83.60.91 .801.006 77.66.84 .742.003 85.52.58 .828.004 82.26 .790

CARER
Baseline 66.25.41 .596.002 64.25.54 .579.004 72.10.43 .670.003 67.53 .615
PLA 65.75.64 .598.005 61.65.52 .556.011 65.55.61 .596.008 64.32 .583
NLP 67.35.39 .619.004 64.40.25 .583.007 70.00.38 .644.005 67.25 .615
CTL 66.90.45 .605.007 65.40.50 .586.005 67.80.44 .615.007 66.70 .602
Ours 72.65.67 .669.005 69.15.32 .635.002 76.85.20 .717.004 72.88 .673

BBCNews
Baseline 88.60.56 .884.008 96.10.52 .960.007 87.20.29 .872.010 90.63 .905
PLA 89.40.35 .891.005 96.70.60 .966.003 89.50.29 .895.002 91.86 .917
NLP 89.00.37 .889.002 96.40.56 .964.004 88.40.42 .883.006 91.20 .875
CTL 90.30.54 .901.003 96.50.71 .964.003 89.40.63 .893.006 92.06 .919
Ours 89.50.37 .892.006 96.80.50 .967005 88.10.45 .879.009 91.47 .912

Table 2: A comparative analysis of various linguistic
label retrieval methods across four datasets.

and Mistral Large. These recently developed mod-401

els demonstrate strong performance and excep-402

tional generalization across a variety of tasks.403

Similarity function. We define a similarity func-404

tion, sim, as the cosine similarity between two405

sentence embeddings. These embeddings are gen-406

erated using the all-MiniLM-L6-v2 model from the407

SBERT (Reimers and Gurevych, 2019).408

Implementation details. For all LLMs, we use409

two random seeds and report the average results.410

We set the default number of demonstrationsk per411

class to 3 for all experiments. We adopt the typi-412

cal prompt design methodology proposed by (Luo413

et al., 2024). To ensure accurate and consistent414

results in text classification tasks, we employ fixed415

hyperparameters for LLMs, thereby minimizing 416

variability and limiting creative outputs. Further 417

details are provided in Appendix B. 418

5.2 Experimental Results 419

5.2.1 Main results 420

Table 1 presents the results obtained using vari- 421

ous retrieval strategies across three LLMs. The 422

zero-shot approach, which does not rely on retriev- 423

ing relevant demonstrations from the support set, 424

leverages only the semantic understanding of la- 425

bels. This strategy enables LLMs to achieve a base- 426

line level of accuracy without additional context. 427

Although Z-ICL mitigates the Copying Effect by 428

leveraging physical neighbors and synonym labels, 429

it only marginally outperforms the zero-shot base- 430

line. However, it lags behind other methods, likely 431

due to the inherent complexity and challenges as- 432

sociated with selecting appropriate synonym labels. 433

KATE achieves better performance than zero-shot 434

and Z-ICL by utilizing the most similar demon- 435

strations to the query. However, it is susceptible 436

to errors caused by misleading similarities. As a 437

result, KATE still struggles to perform well on the 438

CoLA and CARER datasets. To mitigate the effects 439

of misleading similarities, NwayKshot generally 440

outperforms KATE in most scenarios. However, as 441

noted earlier, NwayKshot still struggles to identify 442

an optimal combination of demonstrations. VoteK 443

attempts to further select more effective and rel- 444

evant demonstrations from the support set. How- 445

ever, this method still fails to utilize label informa- 446

tion effectively. On the other hand, Cluster-TopN 447

leverages label information from a distributional 448
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Figure 4: A comparison of the performance of various
shot configurations is presented across a baseline and
four linguistic label retrieval strategies. Evaluations for
the SST2 task (using Llama) are on the left, while results
for the CARER task (using Mistral) appear on the right.

Figure 5: A comparison of the performance of various
sentence embedding models is presented, with evalua-
tions conducted on SST2 on the left and CARER on the
right.

perspective but does not account for the linguis-449

tic meaning of the labels. While both VoteK and450

Cluster-TopN show improvements in accuracy for451

certain tasks, they fall short in addressing a fun-452

damental issue: the importance of linguistic label453

meaning in text classification tasks. This oversight454

leads to inconsistent performance and highlights455

their inherent weaknesses. Finally, our proposed456

method, CLL-RetICL, significantly outperforms all457

baseline approaches. On average, CLL-RetICL im-458

proves RetICL’s performance by an absolute mar-459

gin of 2–15% over the zero-shot strategy and by460

0.57–13.48% over existing RetICL-based methods.461

These results demonstrate consistent performance462

gains across all datasets and LLMs by effectively463

leveraging the relationships between linguistic la-464

bels and their corresponding sentences.465

Comparison to Variants of Label-Related Ret-466

ICL. We use the NwayKshot method as our base-467

line, a retrieval-based approach that does not uti-468

lize linguistic label information. To enhance per-469

formance, we evaluate four proposed strategies470

that incorporate linguistic label related retrieval471

methods, with the results summarized in Table 2.472

All four strategies outperform the baseline across473

all datasets and LLMs, demonstrating the bene-474

fits of leveraging label information. Among these,475

CLL-RetICL consistently delivers the best perfor-476

mance, achieving an average absolute improvement477

of 0.8–5.3% over the NwayKshot method. While478

PLA, NLP, and CTL also surpass the baseline, they 479

show minor performance drops on certain tasks. In 480

contrast, CLL-RetICL not only outperforms these 481

methods in most tasks but also achieves consistent 482

gains in classification accuracy. 483

5.3 Ablation Study 484

We conduct detailed ablation studies to analyze the 485

significance of each component in CLL-RetICL. In 486

our ablation study, the NwayKshot approach serves 487

as the baseline, as shown in the following tables 488

and figures. 489

Effect of the number of shots. The number 490

of shots significantly impacts the performance of 491

LLMs. We explore experiments comparing four 492

different shot configurations for each label class: 493

1-shot, 3-shot, 5-shot, and 8-shot. Figure 4 presents 494

partial results, while the complete results are pro- 495

vided in Appendix D.1. The results in Figure 4 496

demonstrate that CLL-RetICL consistently outper- 497

forms the baseline methods across different values 498

of k. While some alternative strategies occasionally 499

achieve better performance than CLL-RetICL, they 500

lack robustness and often fall short of both CLL- 501

RetICL and the baselines. This indicates that CLL- 502

RetICL delivers more stable performance across a 503

range of scenarios. Based on the experimental re- 504

sults, we selected k = 3 as the hyperparameter for 505

the number of shots, as CLL-RetICL demonstrated 506

higher improvement with a 3-shot configuration. 507

Effect of sentence embedding model. Pre- 508

trained sentence embeddings play a crucial role 509

in ICL. The objective is to evaluate the effective- 510

ness of the proposed methods by comparing them 511

against four off-the-shelf sentence embedding mod- 512

els. Figure 5 illustrates the average performance 513

of three LLMs across two datasets. CLL-RetICL 514

consistently outperforms the baseline and the other 515

three strategies across all sentence embedding mod- 516

els, with the exception of SimCSE (Gao et al., 517

2021) in the CARER dataset. We attribute the 518

relatively lower performance of our method with 519

SimCSE to the fact that SimCSE has already em- 520

ployed contrastive learning to fine-tune the pre- 521

trained sentence embedding model. This suggests 522

that our approach is generally more effective for 523

pre-trained sentence embeddings that do not uti- 524

lize contrastive learning strategies. Compared to 525

other sentence embedding models, MiniLM demon- 526

strates the greatest improvement over the baseline; 527
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Figure 6: A comparison of the performance of various
similarity functions is presented, with evaluations con-
ducted on CoLA on the left and CARER on the right.

therefore, we have chosen it as our default. Full528

results are presented in Appendix D.2.529

Effect of similarity function. To evaluate the530

effect of the similarity function in our CLL-RetICL531

model, we compare its performance using another532

similarity function, L1, as described in (Winata533

et al., 2023). The results are presented in Figure 6534

with detailed results provided in Appendix D.3.535

CLL-RetICL performs effectively with both co-536

sine and L1 similarity functions. However, ex-537

periments show that cosine similarity outperforms538

the L1 function, suggesting that it better leverages539

CLL-RetICL’s potential. Consequently, we use co-540

sine similarity as the default.541

Effect of w/o similarity between demonstra-542

tion and query. Because our proposed additional543

component can serve as a scoring criterion for se-544

lecting demonstrations, the question arises whether545

the similarity score between demonstrations and546

the query should be included in CLL-RetICL.547

We evaluate the problem and present the results548

in Figure 7. Our findings indicate that the per-549

formance without the component addressing the550

similarity between queries and sentences is con-551

sistently lower than that of linguistically labeled552

RetICL. In fact, it performs even worse than the553

baseline. These results highlight that the similarity554

component between queries and sentences is an es-555

sential part of the retrieval process. Detailed results556

are presented in Appendix D.4.557

Effect of trade-off hyperparameters. We use a558

trade-off approach to balance the impact between559

sentences and their label set. Based on the results of560

the previous experiment, sentence-query similarity561

remains a crucial factor in selecting relevant demon-562

strations. This raises an important question: how563

should we trade off between the original method,564

which retrieves the closest demonstrations to the565

query, and our approach? To address this question,566

we evaluate the effects of various hyperparameter567

Figure 7: A comparison of the retrieval process with
and without incorporating the similarity score between
the query and the sentence is illustrated on BBCNews
dataset. The baseline is represented by a dashed line.

settings. Specifically, we focus on hyperparameters 568

lower than 1.0, as previous research has consis- 569

tently shown that closer demonstrations generally 570

outperform those that are further away. We main- 571

tain the principle that proximity to the query re- 572

mains a core factor in our approach. Based on 573

these observations in Appendix D.5, we found that 574

the trade-off hyperparameter has some influence 575

on the final results. However, their impact on PLA, 576

NLP, and CTL methods is relatively small. Interest- 577

ingly, we observed that a trade-off hyperparameter 578

value of 1.0 yields the best performance for our 579

CLL-RetICL method. Consequently, we adopt 1.0 580

as the default hyperparameter. 581

6 Conclusion 582

This paper introduces a new paradigm Contrastive 583

Linguistic Label Retrieval-based In-Context Learn- 584

ing. Unlike existing approaches that universally 585

sample demonstrations without considering the lin- 586

guistic label information, we propose a general 587

framework for identifying more effective and rel- 588

evant demonstrations. This framework enhances 589

the capabilities of LLMs to produce more accu- 590

rate text classification results. Additionally, we 591

design a universal prompt that is adaptable to all 592

text classification tasks. Empirical evaluation on 593

four datasets demonstrates that CLL-RetICL sig- 594

nificantly outperforms conventional practices in 595

RetICL by incorporating the similarity between lin- 596

guistic labels and sentences. This highlights the 597

promising performance of CLL-RetICL and opens 598

up several intriguing research opportunities for fur- 599

ther methodological exploration. 600

7 Limitations 601

Requiring Semantic Labels. Our approach fo- 602

cuses exclusively on the semantic label text clas- 603
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sification task. Certain text classification scenar-604

ios, however, may involve ambiguous label classes,605

such as class0, class1, . . . . Ambiguities in labeling606

may introduce additional challenges, as discussed607

in Appendix E.1. Addressing these issues remains608

an open area for future research.609

Better Descriptive Labels Recently, the use of610

class-label synonyms has become a popular and611

compelling topic of research (Pawar et al., 2024).612

In our work, we also present results using class-613

label synonyms on the SST-2 dataset, as shown in614

Table 17. Our findings indicate that CLL-RetICL615

consistently performs well across different label616

synonym settings. However, the overall perfor-617

mance with label synonym settings is lower com-618

pared to using the original labels. These results619

suggest that more accurate, semantic, and suitable620

labels could further enhance the effectiveness of621

our method.622

Moreover, some classification tasks include ex-623

planations for the meaning of each label. Using624

more descriptive sentences and designing multi-625

label descriptors can help reduce the risk of bias626

and support effective mitigation strategies. In this627

work, we did not utilize those explanations. Incor-628

porating these explanations into the classification629

process is left as a direction for future work.630

Enhance prompt clarity. In previous work, re-631

searchers observed that well-crafted prompts can632

lead to better results. However, in this study, we did633

not compare the effects of different prompt formats.634

Determining how to construct optimal prompts to635

leverage the potential of our CLL-RetICL frame-636

work fully remains an open question and is left for637

future exploration.638
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A Data Statistics851

We take the four text classification tasks including852

SST2, CoLA, CARER, and BBCNews. See the853

descriptions and statistics in Table 3.854

We use the original SST-2 dataset that only com-855

prises the complete sentences that are not labeled856

neutral, and its original split is 6920/872/1821857

(Socher et al., 2013).858

CoLA comprises 10,657 sentences sourced from859

23 linguistics publications. Each sentence has been860

expertly annotated for acceptability (i.e., grammat-861

icality) by the original authors (Warstadt et al.,862

2018). CoLA is divided into two subsets: a training863

set and a development set. In our work, we treat864

the development set as the test set.865

CARER is a dataset of English Twitter messages866

with six basic emotions: anger, fear, joy, love, sad-867

ness, and surprise (Saravia et al., 2018). The orig-868

inal CARER dataset has been split into trainsets,869

validation, and test sets.870

The BBC News Topic Classification dataset con-871

sists of 2,225 articles published on the BBC News872

website between 2004 and 2005. Each article is873

labeled under one of 5 categories: business, enter-874

tainment, politics, sport, or tech (Greene and Cun-875

ningham, 2006). The original BBCNews dataset876

has been split into trainsets and test sets.877

As stated in the main text, we exclude the vali-878

dation set.879

B Implementation Details880

All implementations are done in PyTorch.881

Prompt template. We adopt the prompt used in882

the CARER task as a template. Following the ap-883

proach of Luo et al. (2024), we design our prompt884

for universal text classification tasks, as shown in885

Table 5. (demo_1), (demo_2), (demo_3) are se-886

lected demonstration from support set. (query) is887

the current query sentence.888

Budget. We conducted experiments on LLMs889

across four public datasets, utilizing APIs to com-890

pute the results. To ensure consistency and avoid891

generating creative outputs, we fixed the LLMs’892

hyperparameters, as detailed in Table 4. The total893

cost of running these experiments through the APIs894

amounted to approximately 1,000 US dollars.895

C Linguistic Label Retrieval Hypothesis896

To explore the question: Are the clustering centers897

reliable, we analyze the distribution of clustering898

Figure 8: An example illustrating the distribution of
queries, linguistic labels, and clustering centers in a
pre-trained sentence embedding model using t-SNE.
10%_N and 10%_P represent a pair, indicating that
10% of the support set is used to estimate the clustering
center. In this notation, "N" refers to the Negative-
labeled clustering center, while "P" denotes the Positive-
labeled clustering center.

Figure 9: A comparison of the retrieved demonstrations
between NwayKshot and our method in the sentence
embedding vector space. A yellow circle indicates a
selected sentence.

centers, as shown in Figure 8. 899

We present five examples in Table 6 to illustrate 900

our findings. The experiment was conducted on 901

the SST2 dataset, where we treated the training 902

set as the support set and the test set as the query 903

set. For each query example in the test set, we 904

provide its index and the indices of the selected 905

demonstrations from the training set. Additionally, 906

we report the similarity scores calculated using 907

cosine distance within the vector space of a pre- 908

trained sentence embedding model (Reimers and 909

Gurevych, 2019). 910

D Additional Results 911

D.1 Effect of the number of shots. 912

We present the detailed results in Table 7. 913
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Dataset Trainset Testset Label
SST2 6,920 1,821 "Negative","Positive"
CoLA 8,551 1,043 "Unacceptable", "Acceptable"
CARER 16,000 2,000 "Sadness", "Joy", "Love", "Anger", "Fear", "Surprise"
BBCNews 1,225 1,000 "Business", "Entertainment", "Politics", "Sport", "Tech"

Table 3: Statistics of datasets as well as their labels.

Configure Gemini Llama Mistral
”temperature” 0.2 0.01 0.01
”top_p” 0.9 0.9 0.5
”top_k” 1 1 1
”max_output_tokens” 2 2 2

Table 4: generation_configure of hyperparameters in
various LLMs.

D.2 Effect of sentence embedding model.914

We present the detailed results in Table 8.915

D.3 Effect of similarity function.916

We present the detailed results in Table 9.917

D.4 Effect of w/o similarity between918

demonstration and query.919

We present the detailed results in Table 12.920

D.5 Effect of trade-off hyperparameters.921

We present the detailed results in Table 13, Table922

14, Table 15, Table 10, Table 11.923

E Limitations924

E.1 Requiring Semantic Labels.925

Handling complex classification tasks with ambigu-926

ous labels presents additional challenges for our927

method, as CLL-RetICL relies heavily on semantic928

label representations. To illustrate this issue, we929

use the TREC dataset (Li and Roth, 2002; Hovy930

et al., 2001), which provides both abbreviated and931

full-form class labels. In our analysis, we adopt the932

coarse-label scheme and specifically compare the933

abbreviated class labels with their corresponding934

full descriptive labels. The abbreviated labels in-935

clude [ABBR, ENTY, DESC, HUM, LOC, NUM],936

while their full counterparts are [Abbreviation, En-937

tity, Description and abstract concept, Human be-938

ing, Location, Numeric value]. The results, shown939

in Table 16, demonstrate that using abbreviated la-940

bels weakens the performance of our method com-941

pared to using the full descriptive labels.942

E.2 Better Descriptive Labels943

System "You are given a task where there are
message multiple classes, and for each class,

a few labeled examples are provided.
Based on these examples, you need
to classify a new unseen instance.
Choose ONLY one tag and output the
tag. Do Not output others."

CARER
Prompt Class0: sadness

1. Example 1: (demo_1) -> "sadness"
2. Example 2: (demo_2) -> "sadness"
3. Example 3: (demo_3) -> "sadness"
Class1: joy
1. Example 1: (demo_1) -> "joy"
2. Example 2: (demo_2) -> "joy"
3. Example 3: (demo_3) -> "joy"
Class2: love
1. Example 1: (demo_1) -> "love"
2. Example 2: (demo_2) -> "love"
3. Example 3: (demo_3) -> "love"
Class3: anger
1. Example 1: (demo_1) -> "anger"
2. Example 2: (demo_2) -> "anger"
3. Example 3: (demo_3) -> "anger"
Class4: fear
1. Example 1: (demo_1) -> "fear"
2. Example 2: (demo_2) -> "fear"
3. Example 3: (demo_3) -> "fear"
Class5: surprise
1. Example 1: (demo_1) -> "surprise"
2. Example 2: (demo_2) -> "surprise"
3. Example 3: (demo_3) -> "surprise"
Query: (query)
Prediction:

Table 5: Designed universal prompt for all text classifi-
cation tasks.
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query label
Not Correct Correct

index sentence label_N label_P center_N center_P index sentence label_N label_P center_N center_P

36

N
3465 0.501 0.111 0.187 0.576 0.626 1344 0.379 0.173 0.087 0.432 0.417
5169 0.447 0.095 0.162 0.434 0.454 5012 0.399 0.124 0.063 0.656 0.613
4441 0.436 0.096 0.131 0.477 0.526 6432 0.399 0.188 0.131 0.461 0.450

P
5529 0.603 0.232 0.187 0.393 0.479 4310 0.580 0.170 0.247 0.363 0.444
4310 0.580 0.247 0.170 0.363 0.444 5529 0.603 0.187 0.231 0.393 0.479
5879 0.507 0.175 0.106 0.561 0.646 6723 0.427 0.129 0.291 0.442 0.591

49

N
4084 0.694 0.022 −0.033 0.525 0.458 4084 0.694 0.022 −0.033 0.525 0.458
3465 0.564 0.111 0.187 0.576 0.626 6331 0.562 0.122 0.015 0.647 0.569
6331 0.562 0.122 0.015 0.647 0.569 4290 0.543 0.093 0.044 0.583 0.569

P
1625 0.672 0.072 0.134 0.531 0.567 1625 0.672 0.072 0.134 0.531 0.567
4273 0.576 0.040 0.038 0.533 0.579 1268 0.506 −0.024 0.136 0.428 0.482
1936 0.565 0.669 0.103 0.510 0.550 543 0.516 0.126 0.272 0.379 0.448

1690

N
1613 0.569 -0.029 −0.053 0.341 0.321 1613 0.569 -0.029 −0.053 0.341 0.321
5550 0.520 0.025 0.015 0.283 0.247 4127 0.497 0.037 −0.033 0.271 0.250
4127 0.497 0.037 −0.033 0.271 0.250 801 0.466 0.127 0.047 0.464 0.396

P
3043 0.600 0.019 0.056 0.194 0.217 3043 0.600 0.019 0.056 0.194 0.217
444 0.502 0.112 0.093 0.334 0.338 4941 0.401 −0.029 0.091 0.464 0.562
1856 0.480 −0.008 -0.004 0.327 0.363 1856 0.480 −0.008 -0.004 0.327 0.363

1694

N
2433 0.545 −0.054 0.038 0.434 0.441 3367 0.485 0.092 0.061 0.586 0.540
3367 0.485 0.092 0.061 0.586 0.540 4925 0.478 -0.002 −0.041 0.507 0.456
4925 0.478 -0.002 −0.041 0.507 0.456 3643 0.428 0.057 −0.026 0.557 0.543

P
613 0.455 −0.031 -0.011 0.356 0.405 6713 0.433 0.110 0.258 0.549 0.615
324 0.447 0.181 0.105 0.572 0.623 5337 0.424 0.056 0.188 0.337 0.478
5135 0.446 0.114 0.198 0.470 0.572 5135 0.446 0.114 0.198 0.470 0.572

1809

N
5557 0.512 0.168 0.138 0.321 0.292 5557 0.512 0.168 0.138 0.321 0.292
2756 0.405 0.045 0.061 0.328 0.336 4071 0.388 0.114 0.099 0.402 0.376
2690 0.397 0.088 0.910 0.566 0.507 1430 0.382 0.038 0.023 0.331 0.332

P
2193 0.480 0.090 0.130 0.570 0.567 2193 0.480 0.090 0.130 0.570 0.567
6385 0.465 0.094 0.046 0.470 0.477 296 0.347 0.018 0.135 0.295 0.417
679 0.391 0.149 0.095 0.427 0.444 897 0.359 0.162 0.254 0.394 0.398

Table 6: Five examples comparing incorrect demonstration combinations with their correct counterparts, as evaluated
on SST2 task. In this notation, "N" refers to the "Negative" label, while "P" denotes the "Positive" label.

1-shot 3-shot 5-shot 8-shot

Method Gemini Llama Mistral Gemini Llama Mistral Gemini Llama Mistral Gemini Llama Mistral
SST2

Baseline 94.67 94.50 94.61 94.67 90.82 94.34 95.16 93.86 95.00 95.60 93.07 95.00
PLA 94.78 94.94 94.34 95.44 93.46 94.34 95.00 94.62 95.22 95.33 93.35 95.00
NLP 95.38 95.60 96.59 95.38 92.31 96.37 95.94 94.16 95.44 95.00 93.62 95.10
CTL 94.28 94.56 94.28 95.44 91.65 95.11 95.28 94.50 94.89 95.00 93.52 95.16
CLL-RetICL 94.89 95.05 95.33 95.17 95.06 95.60 95.28 95.00 95.71 96.21 93.66 95.16

CARER
Baseline 66.55 63.45 64.70 66.25 64.25 72.10 68.23 70.95 71.35 69.50 69.35 73.50
PLA 63.80 60.30 65.25 65.75 61.65 65.55 67.70 62.10 69.80 67.10 65.40 68.15
NLP 66.30 64.60 67.15 67.35 64.40 70.00 70.31 65.35 67.25 69.69 72.30 73.60
CTL 64.30 61.20 66.15 66.90 65.40 67.80 68.61 68.05 72.25 68.30 68.65 70.35
CLL-RetICL 66.75 65.50 67.95 72.65 69.15 76.85 69.05 74.45 72.30 70.75 71.35 75.10

Table 7: Full results of various shots effect in our proposed methods.

14



Approach
Bert Simcse Mpnet MiniLM

Gemini Llama Mistral Avg. Gemini Llama Mistral Avg. Gemini Llama Mistral Avg. Gemini Llama Mistral Avg.
SST2

Baseline 95.93 95.76 96.54 96.070.33 95.11 93.85 95.21 94.720.62 95.66 94.93 96.48 95.690.63 94.67 90.82 94.34 93.271.74
PLA 95.93 96.26 96.76 96.310.34 94.78 95.27 95.66 95.230.36 95.71 95.02 96.15 95.620.46 95.44 93.46 94.34 94.410.81
NLP 96.26 95.60 96.59 96.150.41 95.38 93.90 95.66 94.980.77 95.55 94.87 96.32 95.580.59 95.38 92.31 96.37 94.681.73
CTL 95.88 95.60 96.76 96.080.49 94.94 94.56 95.82 95.110.53 95.40 95.18 96.32 95.630.49 95.44 91.65 95.11 94.061.71

CLL-RetICL 96.32 96.37 96.92 96.530.27 95.77 94.83 95.39 95.330.39 95.44 95.60 96.48 95.840.46 95.17 95.06 95.60 95.280.23
CARER

Baseline 58.65 59.45 60.90 59.670.93 64.45 60.60 61.20 62.081.69 63.95 68.30 68.85 67.032.19 66.25 64.25 72.10 67.533.33
PLA 58.75 58.85 59.65 59.080.40 62.65 62.30 60.45 61.800.96 62.50 63.25 65.05 63.601.07 65.75 61.65 65.55 64.321.88
NLP 59.10 59.30 60.50 59.630.62 63.10 63.75 65.30 64.050.92 63.00 67.15 68.00 66.052.18 67.35 64.40 70.00 67.252.29
CTL 59.80 61.12 61.70 60.870.79 61.90 61.75 62.20 61.950.18 62.90 65.05 66.15 64.701.35 66.90 65.40 67.80 66.700.99

CLL-RetICL 59.90 60.05 62.20 60.721.05 59.05 62.80 63.15 61.671.86 64.65 69.15 69.30 67.702.16 72.65 69.15 76.85 72.883.14

Table 8: A Comparison of various pre-trained sentence embedding models.

Approach
Cosine L1

Gemini Llama Mistral Avg. Gemini Llama Mistral Avg.
CoLA

Baseline 82.74 64.52 85.23 77.509.23 85.43 79.65 86.28 83.792.95
PLA 83.31 73.53 85.31 80.725.14 84.66 80.09 85.62 83.462.41
NLP 82.45 64.05 85.04 77.189.34 85.13 82.64 86.57 84.781.62
CTL 82.74 62.79 85.04 76.869.99 84.56 81.17 86.57 84.102.23
CLL-RetICL 83.60 77.66 85.52 82.263.34 85.81 83.51 86.86 85.391.39

CARER
Baseline 66.25 64.25 72.10 67.533.33 57.30 57.20 59.40 57.971.01
PLA 65.75 61.65 65.55 64.321.88 55.95 56.75 58.75 57.151.18
NLP 67.35 64.40 70.00 67.252.29 57.95 58.75 57.95 58.220.38
CTL 66.90 65.40 67.80 66.700.99 56.75 57.20 59.30 57.751.11
CLL-RetICL 72.65 69.15 76.85 72.883.14 57.95 57.30 59.50 58.250.92

Table 9: A Comparison of Similar Function Methods

CTL ACC

LLM (0.3, 0.3) (0.3, 0.5) (0.3, 1.0) (0.5, 0.3) (0.5, 0.5) (0.5, 1.0) (1.0, 0.3) (1.0, 0.5) (1.0, 1.0)
CoLA

Gemini 82.92 83.30 84.35 83.39 83.40 84.05 83.84 83.76 83.60
Llama 62.24 63.44 62.73 63.26 63.44 63.53 65.45 64.04 62.79
Mistral 85.91 85.33 85.90 85.71 85.62 85.33 85.71 85.33 85.04

CARER
Gemini 65.55 65.80 65.45 67.00 66.50 65.35 63.65 63.65 66.90
Llama 64.35 62.95 63.30 68.25 67.75 63.15 63.10 63.05 65.40
Mistral 68.30 67.75 67.10 71.10 70.90 66.60 65.10 64.95 67.80

Table 10: A comparison of classification accuracy (%) to assess the impact of various trade-off hyperparameters in
the CTL strategy.

CTL F1

LLM (0.3, 0.3) (0.3, 0.5) (0.3, 1.0) (0.5, 0.3) (0.5, 0.5) (0.5, 1.0) (1.0, 0.3) (1.0, 0.5) (1.0, 1.0)
CoLA

Gemini 0.791 0.795 0.809 0.798 0.797 0.806 0.802 0.801 0.801
Llama 0.552 0.584 0.570 0.581 0.581 0.589 0.603 0.588 0.579
Mistral 0.825 0.817 0.824 0.823 0.821 0.819 0.820 0.816 0.824

CARER
Gemini 0.594 0.596 0.595 0.612 0.607 0.590 0.575 0.573 0.605
Llama 0.576 0.559 0.567 0.612 0.602 0.570 0.570 0.566 0.586
Mistral 0.631 0.605 0.607 0.648 0.645 0.595 0.585 0.582 0.615

Table 11: A comparison of F1 score (%) to assess the impact of various trade-off hyperparameters in the CTL
strategy.
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Gemini Llama Mistral Avg.

Method ACC F1 ACC F1 ACC F1 ACC F1
CARER

Baseline 66.25 0.596 64.25 0.579 72.10 0.670 67.53 0.615

PLA 65.75 0.598 61.65 0.556 65.55 0.596 64.32 0.583
w/o 57.80 0.514 56.75 0.497 56.10 0.488 56.88 0.499

NLP 67.35 0.619 64.40 0.583 70.00 0.644 67.25 0.615
w/o 57.05 0.502 58.90 0.512 59.70 0.529 58.55 0.514

CTL 66.90 0.605 65.40 0.586 67.80 0.615 66.70 0.602
w/o 58.40 0.521 56.30 0.494 57.75 0.505 57.48 0.507

Ours 72.65 0.669 69.15 0.635 76.85 0.717 72.88 0.673
w/o 52.25 0.468 55.50 0.486 51.70 0.463 53.15 0.472

BBCNews
Baseline 88.60 0.884 96.10 0.960 87.20 0.872 90.63 0.905

PLA 89.40 0.891 96.70 0.966 89.50 0.895 91.86 0.917
w/o 79.50 0.777 94.20 0.940 80.30 0.796 84.67 0.837

NLP 89.00 0.889 96.40 0.964 88.40 0.883 91.20 0.875
w/o 84.60 0.843 80.20 0.801 85.50 0.854 83.43 0.832

CTL 90.30 0.901 96.50 0.964 89.40 0.893 92.06 0.919
w/o 83.40 0.822 94.20 0.942 80.10 0.792 85.90 0.852

Ours 89.50 0.892 96.80 0.967 88.10 0.879 91.47 0.912
w/o 77.00 0.750 70.10 0.698 78.50 0.770 75.20 0.739

Table 12: A comparison of the retrieval process with
and without incorporating the similarity score between
the query and sentence.

CLL-RetICL 0.3 0.5 0.7 1.0

LLM ACC F1 ACC F1 ACC F1 ACC F1
CoLA

Gemini 82.92 0.791 83.21 0.794 83.01 0.793 83.60 0.801
Llama 77.60 0.746 77.68 0.757 76.53 0.737 77.66 0.742
Mistral 85.43 0.818 85.33 0.817 85.71 0.822 85.52 0.828

CARER
Gemini 69.10 0.636 69.85 0.640 70.10 0.640 72.65 0.669
Llama 68.50 0.625 68.65 0.625 69.95 0.635 69.15 0.635
Mistral 72.20 0.665 72.20 0.671 71.65 0.656 76.85 0.717

Table 13: A comparison of classification accuracy (%)
and F1 score to assess the impact of various trade-off
hyperparameters in CLL-RetICL strategy.

PLA 0.3 0.5 0.7 1.0

LLM ACC F1 ACC F1 ACC F1 ACC F1
CoLA

Gemini 83.57 0.799 82.42 0.784 83.17 0.794 83.31 0.798
Llama 73.12 0.661 73.03 0.649 74.29 0.681 73.53 0.656
Mistral 85.71 0.821 85.42 0.817 85.23 0.813 85.31 0.832

CARER
Gemini 66.60 0.602 66.70 0.603 65.85 0.598 65.75 0.598
Llama 65.15 0.585 64.90 0.585 62.50 0.562 61.65 0.556
Mistral 65.80 0.595 65.15 0.579 62.50 0.558 65.55 0.596

Table 14: A comparison of classification accuracy (%)
and F1 score to assess the impact of various trade-off
hyperparameters in PLA strategy.

NLP 0.3 0.5 0.7 1.0

LLM ACC F1 ACC F1 ACC F1 ACC F1
CoLA

Gemini 83.51 0.798 83.31 0.802 83.69 0.801 82.45 0.791
Llama 64.11 0.553 62.73 0.539 63.10 0.542 64.05 0.579
Mistral 85.52 0.820 85.53 0.820 85.33 0.817 85.04 0.823

CARER
Gemini 65.75 0.594 65.25 0.586 66.05 0.595 67.35 0.619
Llama 64.60 0.586 64.10 0.581 63.05 0.567 64.40 0.583
Mistral 70.40 0.636 68.65 0.625 69.70 0.632 70.00 0.644

Table 15: A comparison of classification accuracy (%)
and F1 score to assess the impact of various trade-off
hyperparameters in NLP strategy.

TREC
Abbr. Full

ACC F1 ACC F1
Llama

Nwaykshot 57.40 0.591 56.60 0.577
CLL-RetICL 56.40 0.603 57.60 0.603

Table 16: A comparison of classification accuracy (%)
and F1 score to evaluate the impact of abbreviated labels
versus full labels on the TREC dataset.

SST2
Positive/Negative Great/Terrible Good/Bad

ACC F1 ACC F1 ACC F1
Llama

Nwaykshot 90.82 0.908 92.48 0.927 91.98 0.923
CLL-RetICL 95.06 0.951 93.90 0.939 94.23 0.944

Table 17: A comparison of classification accuracy (%)
and F1 score to evaluate the impact of synonym labels
on the SST2 dataset. The synonym pairs used in this
study are drawn from previously published work (Pawar
et al., 2024).
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