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ABSTRACT

Recently, numerous fine-tuning techniques for diffusion models have been de-
veloped, enabling diffusion models to generate content that closely resembles a
specific image set, such as specific facial identities and artistic styles. However,
this advancement also poses potential security risks. The primary risk comes from
copyright violations due to using public domain images without authorization to
fine-tune diffusion models. Furthermore, if such models generate harmful content
linked to the source images, tracing the origin of the fine-tuning data is crucial to
clarify responsibility. To achieve fine-tuning traceability of customized diffusion
models, dataset watermarking for diffusion model has been proposed, involving
embedding imperceptible watermarks into images that require traceability. No-
tably, even after using the watermarked images to fine-tune diffusion models, the
watermarks remain detectable in the generated outputs. However, existing dataset
watermarking approaches lack a unified framework for performance evaluation,
thereby limiting their effectiveness in practical scenarios. To address this gap,
this paper first establishes a generalized threat model and subsequently introduces
a comprehensive framework for evaluating dataset watermarking methods, com-
prising three dimensions: Universality, Transmissibility, and Robustness. Our
evaluation results demonstrate that existing methods exhibit universality across di-
verse fine-tuning approaches and tasks, as well as transmissibility even when only
a small proportion of watermarked images is used. In terms of robustness, existing
methods show good performance against common image proces sing operations,
but this does not match real-world threat scenarios. To address this issue, this pa-
per proposes a practical watermark removal method that can completely remove
dataset watermarks without affecting fine-tuning, revealing their vulnerabilities
and pointing to a new challenge for future research.

1 INTRODUCTION

Currently, diffusion models have been widely adopted for customized content generation via fine-
tuning techniques. These methods enable the adaptation of models to specific datasets, such as the
individual identity and image style, As shown in figure 1.While these fine-tuning methods signifi-
cantly enhances the utility of diffusion models, it also raises serious security and ethical concerns. A
primary issue is the risk of copyright infringement, particularly when proprietary images are utilized
for fine-tuning without authorization. Furthermore, the generation of inappropriate or harmful con-
tent by fine-tuned models requires the implementation of source traceability mechanisms to establish
clear accountability. To address this challenge, dataset watermarking technology has been proposed
to trace the outputs of diffusion models that have been fine-tuned using watermarked datasets. This
technique involves embedding imperceptible watermarks into the images within a dataset intended
for fine-tuning diffusion models. Notably, such watermarks are capable of persisting in the model’s
outputs following fine-tuning, thus facilitating post-hoc attribution. However, existing approaches
exhibit varying definitions of threat models for dataset watermarking, which complicates the uniform
evaluation of their performance in practical applications. Therefore, it is imperative to establish a
unified evaluation framework to assess the performance of existing dataset watermarking techniques,
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Figure 1: Visualization results of the four fine-tuning methods on three datasets. The first column
shows the result without training the text encoder, the second column shows the result of training
the text encoder, and the third column generates the corresponding prompt for each sample.

thereby enabling the identification of currently optimal approaches and fostering the development
of more practical watermarking solutions.

To address this limitation, this paper first propose the definition of a universal threat model that
characterizes the realistic adversarial scenarios encountered by dataset watermarking approaches
tailored to diffusion models. Based on this threat model, we establish an evaluation framework
encompassing three key dimensions: Universality, which refers to the applicability of dataset ap-
proaches across diverse generation tasks and various fine-tuning methods; Transmissibility, defined
as the capability whereby the inclusion of a watermarked subset in the fine-tuning dataset is sufficient
to propagate the watermarking effect, thereby ensuring the presence of watermarks in the outputs
generated following fine-tuning; and Robustness, measuring the resilience against post-processing
operations. Subsequently, we establish a comprehensive benchmark to systematically evaluate the
existing dataset watermarking methods for diffusion models in terms of universality, transmissi-
bility, and robustness. The experimental results demonstrates that existing dataset watermarking
methods perform well in terms of universality and transmissibility. In robustness assessment, we
initially evaluate the resilience of existing methods against common image processing operations,
including noise addition, blurring, and compression. The results indicate that these methods ex-
hibit a high level of robustness with respect to such common distortions. However, in practical
scenarios, adversaries may utilize more advanced image editing techniques to remove watermarks, a
challenge that has not been sufficiently addressed in prior research. To further demonstrate the sig-
nificance of this issue, we propose a practical watermark removal approach that effectively removes
dataset watermarks while preserving the performance of the fine-tuned model. The experimental
results demonstrate that existing methods exhibit vulnerability to the proposed watermark removal
approach, thereby highlighting the need for future dataset watermarking techniques to improve ro-
bustness against customized watermark removal methods. Our contributions can be summarized as
follows:

• This paper defines a universal threat model for the dataset watermarking techniques that are
tailored to trace diffusion models fine-tuning. Based on this, a unified evaluation framework
including universality, transmissibility, and robustness is proposed to systematically assess
existing methods.

• This paper establishes a comprehensive benchmark for existing dataset watermarking meth-
ods based on the evaluation framework. Experiments across diverse generation tasks and
various fine-tuning methods reveal the universality and transmissibility of existing meth-
ods.

• This paper proposes a practical watermark removal method to evaluate the robustness of
existing dataset watermarking techniques. Experimental results show that current dataset
watermarking methods are resilient to common image processing operations but vulnerable
to targeted removal attacks.
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Figure 2: Overview of the threat model. Image Owners embed binary watermarks into datasets
to establish ownership and ensure traceability. Upon acquiring the data, Image Users may gen-
erate customized images using various fine-tuning or model adaptation techniques. If the original
watermark is successfully detected in the generated images, the protection mechanism is deemed
effective; otherwise, it is considered to have failed.

2 RELATED WORKS

2.1 FINE-TUNING STABLE DIFFUSION

Due to the high computational cost of training stable diffusion models from scratch, recent research
has focused on fine-tuning pre-trained models to add specific concepts. This approach leverages ex-
isting generative capabilities while greatly reducing training costs. Several fine-tuning methods have
been proposed, such as Textual Inversion Gal et al. (2022), DreamBooth Ruiz et al. (2023), Custom
Diffusion Kumari et al. (2023), Low-Rank Adaptation (LoRA) Hu et al. (2022), and Singular Value
Diffusion (Svdiff) Han et al. (2023). These methods adapt pre-trained models in different ways
to effectively introduce new concepts or styles. For instance, Textual Inversion only changes text
embeddings, DreamBooth modifies the UNet architecture, Custom Diffusion targets cross-attention
mechanisms, LoRA uses a low-rank matrix for parameter updates, and Svdiff adjusts singular values
to create a compact parameter space.

2.2 IMAGE WATERMARKING

Image watermarking refers to the process of embedding imperceptible information into carrier im-
ages, primarily for the purpose of asserting and verifying copyright ownership. Traditional wa-
termarking techniques are typically classified into spatial domain and frequency domain methods
Cox et al. (2002); Navas et al. (2008); Shih & Wu (2003), where watermark data is embedded by
modifying pixel intensities Cox et al. (2002), frequency coefficients Navas et al. (2008), or a com-
bination of both Shih & Wu (2003); Kumar (2019). In recent years, an increasing number of digital
watermarking approaches based on Deep Neural Networks (DNNs) Zhu et al. (2018); Zhang et al.
(2019); Weng et al. (2019); Tancik et al. (2020) have been proposed, providing improved robust-
ness and adaptability. Concurrently, several models have been developed to protect data copyrights
from potential infringement by Generative Diffusion Models (GDMs). These techniques Wang et al.
(2024); Cui et al. (2025b); Zhao et al. (2023); Zhu et al. (2024); Li et al. (2025); Yu et al. (2021); Cui
et al. (2025a) enable traceability of unauthorized data usage through the embedding of authorized
encoding information or the application of image transformation strategies.
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3 EVALUATION FRAMEWORK

3.1 THREAT MODEL

This section defines a universal threat model addressing copyright protection and traceability of
generated images in the context of fine-tuning diffusion models, as shown in figure 2. We define two
key parties involved: (1) Image Owner and (2) Image User. The specific objectives of each party
are outlined as follows:

Image Owner: Image Owner holds the copyright for an image dataset that may be utilized by
Image User to fine-tune a diffusion model. For the purpose of copyright protection, Image Owner
aims to ensure that the output of the fine-tuned model remain copyright information. Furthermore,
in scenarios where the generated content is considered inappropriate, traceability to the training
dataset utilized during fine-tuning should be implemented to support accountability. Therefore,
Image Owner employs dataset watermarking techniques to achieve copyright protection and trace-
ability. The embedded watermarks should satisfy the imperceptibility requirement, ensuring that it
remains undetectable to human eyes and does not interfere with the generative performance of the
fine-tuned diffusion model.

Image User: Image User collects multiple images related to the same character or style and sub-
sequently fine-tune a diffusion model using this dataset. In cases where the fine-tuning dataset is
protected through dataset watermarking, the outputs generated by the fine-tuned model should retain
the embedded watermark information. On the Image User side, dataset watermarking faces three
primary challenges: (1) Image User may apply various fine-tuning methods to address diverse gen-
eration tasks, with both the specific fine-tuning methods and tasks being unknown to Image Owner;
(2) Image User may employ a mixed dataset containing both watermarked and original images for
fine-tuning; and (3) malicious Image User may apply post-processing techniques to remove dataset
watermarks prior to fine-tuning in an attempt to infringe copyrights. Therefore, dataset watermark-
ing techniques must exhibit effectiveness across all three aforementioned challenging scenarios.

3.2 DIMENSIONS OF EVALUATION

Building upon the above analysis of the threat model, we categorize the requirements of dataset
watermarking in diffusion models into three key dimensions, which collectively constitute the eval-
uation framework: (1) Universality: the watermarking methods should be adaptive to various fine-
tuning approaches and diverse generation tasks; (2) Transmissibility: the watermarking methods
should be capable of preserving and propagating the watermarking effect, even when only a portion
of the images in the entire fine-tuning dataset are watermarked; (3) Robustness: the watermark-
ing methods should be resilience against post-processing operations including both common image
quality degradation and tailored watermark removal attack. The following sections will present a
comprehensive evaluation of existing dataset watermarking techniques for diffusion model, based
on these three dimensions.

4 COMPREHENSIVE BENCHMARK

This section presents a comprehensive benchmark that is established for dataset watermarking tech-
niques within the context of tracking diffusion model fine-tuning.

4.1 EXPERIMENTAL SETTINGS

We evaluate four state-of-the-art dataset watermarking methods which are open source: DIAG-
NOSIS Wang et al. (2024), DiffusionShield Cui et al. (2025b), SIREN Li et al. (2025), and Water-
markDM Zhao et al. (2023). In experiments, all fine-tuning methods are based on stable diffusion 1.4
(SD1.4)Rombach et al. (2022). To evaluate the universality across various generation tasks, we se-
lect three datasets in distinct styles for fine-tuning: CelebA-HQ Liu et al. (2015), Pokemon Pinkney
(2022), and WikiArt Wikiart (2016). To quantify the performance of these methods, we employ
three evaluation metrics: FID Heusel et al. (2017), CLIP similarity Wang et al. (2023), and water-
marking detection accuracy (referred to as Acc in the tables). All experiments are conducted on 4
A800 GPUs.
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Fine-Tuning Method Trainable Layers
FULL-UNet VAE CA TE

Text-to-Image w te ✓ ✓ ✗ ✓
w/o te ✓ ✗ ✓ ✗

LoRA w te ✗ ✗ ✓ ✓
w/o te ✗ ✗ ✓ ✗

DreamBooth w te ✓ ✗ ✓ ✓
w/o te ✓ ✗ ✓ ✗

Textual Inversion w te ✗ ✗ ✗ ✓
w/o te ✗ ✗ ✗ ✗

Table 1: Specific configurations for the four fine-tuning methods. In UNet, ”CA” denotes the Cross-
Attention, and ”TE” (te) refers to the Text Encoder. Among the four fine-tuning approaches, the text
encoder can be configured in either a trainable mode (w/ te) or a frozen mode (w/o te).

Dataset te
FT Text-to-Image LoRA DreamBooth Textual Inversion

Metrics CLIP-T↑ FID↓ Acc.(%)↑ CLIP-T↑ FID↓ Acc.(%)↑ CLIP-T↑ FID↓ Acc.(%)↑ CLIP-T↑ FID↓ Acc.(%)↑

CelebA-HQ

w/o(without)

Clean 0.2309 224.70 N/A 0.2625 221.10 N/A 0.2565 207.94 N/A 0.2630 222.49 N/A
DIAGNOSIS 0.1947 247.45 64.00 0.2038 226.11 40.00 0.2384 261.38 20.00 0.2304 280.24 36.00

DiffusionShield 0.2184 259.99 99.83 0.2603 276.64 99.00 0.2511 245.11 100.00 0.2390 264.55 98.78
WatermarkDM 0.1814 286.58 98.44 0.2328 239.68 96.88 0.2600 246.40 95.31 0.2611 285.06 96.88

SIREN 0.2155 255.96 55.25 0.2593 274.40 55.04 0.2552 260.58 55.83 0.2636 270.83 53.83

w(with)

Clean 0.2323 213.85 N/A 0.2459 264.44 N/A 0.2684 229.83 N/A 0.2649 226.88 N/A
DIAGNOSIS 0.1946 253.52 92.00 0.2188 274.43 46.00 0.2634 257.45 84.00 0.2311 274.67 50.00

DiffusionShield 0.2023 251.19 100.00 0.2612 283.58 100.00 0.2647 264.84 100.00 0.2358 271.05 100.00
WatermarkDM 0.1819 307.61 95.31 0.2350 239.29 93.75 0.2692 252.46 90.63 0.2600 280.33 92.19

SIREN 0.2174 256.78 54.63 0.2576 270.40 54.13 0.2742 271.23 54.58 0.2629 274.55 54.04

Pokémon

w/o(without)

Clean 0.2281 127.07 N/A 0.2856 158.83 N/A 0.2931 218.68 N/A 0.2864 184.81 N/A
DIAGNOSIS 0.2171 303.99 84.00 0.2597 277.88 94.00 0.2922 273.28 70.00 0.2860 259.04 70.00

DiffusionShield 0.2013 206.85 96.19 0.2843 247.60 98.78 0.2951 223.50 98.34 0.2825 267.79 98.81
WatermarkDM 0.2050 258.19 100.00 0.2447 191.65 98.44 0.2932 231.38 98.44 0.2924 260.91 95.31

SIREN 0.2098 201.16 57.04 0.2926 235.50 57.04 0.2953 211.87 57.08 0.2907 267.77 55.96

w(with)

Clean 0.2060 136.15 N/A 0.2592 212.30 N/A 0.2902 200.60 N/A 0.2859 179.20 N/A
DIAGNOSIS 0.2050 338.90 98.00 0.2597 262.30 96.00 0.2916 270.58 18.00 0.2823 264.96 44.00

DiffusionShield 0.2139 220.54 99.64 0.2899 234.32 98.92 0.2929 213.00 99.91 0.2844 268.66 99.87
WatermarkDM 0.1943 273.59 96.88 0.2283 204.78 98.44 0.2913 230.89 90.63 0.2938 273.69 87.50

SIREN 0.2131 205.86 56.88 0.2839 244.35 56.58 0.2868 223.12 57.75 0.2864 247.05 56.00

WikiArt

w/o(without)

Clean 0.1401 320.86 N/A 0.2703 312.60 N/A 0.2670 320.12 N/A 0.2735 320.63 N/A
DIAGNOSIS 0.1458 365.44 90.00 0.2678 308.55 82.00 0.2680 310.55 30.00 0.2765 318.46 66.00

DiffusionShield 0.1671 326.28 100.00 0.2742 307.60 97.73 0.2755 318.46 99.91 0.2770 312.09 98.77
WatermarkDM 0.1388 362.88 90.56 0.1624 352.12 71.34 0.2480 336.02 51.31 0.2791 324.83 91.47

SIREN 0.1574 329.96 52.08 0.2713 325.00 53.46 0.2662 319.62 53.54 0.2789 329.95 54.54

w(with)

Clean 0.1482 317.17 N/A 0.2703 306.54 N/A 0.2720 325.00 N/A 0.2745 315.48 N/A
DIAGNOSIS 0.1164 384.54 16.00 0.2612 301.19 44.00 0.2690 316.08 74.00 0.2785 324.58 30.00

DiffusionShield 0.1782 294.04 100.00 0.2657 306.48 99.80 0.2751 319.39 97.41 0.2787 326.07 99.77
WatermarkDM 0.1410 361.31 73.94 0.1659 351.42 68.00 0.2606 333.59 51.47 0.2777 326.14 49.84

SIREN 0.1528 306.82 51.63 0.2704 320.81 53.63 0.2742 329.37 53.71 0.2821 321.96 53.67

Table 2: The results of different watermark protection methods using various fine-tuning methods
on CelebA-HQ, Pokémon and WikiArt datasets. The reference, best, and worst performance are
marked by bold, red, and blue, respectively.

4.2 UNIVERSALITY EVALUATION

To evaluate the cross-method universality, we conduct assessments of these dataset watermarking
techniques under various fine-tuning methodologies. Specifically, four fine-tuning methods with
distinct configurations are utilized in the experiments, as detailed in Table 1. The table summarizes
the trainable modules associated with each fine-tuning approach, where ”te” denotes whether the text
encoder is frozen during the fine-tuning process. All methods employ the default hyperparameter
configurations specified in original papers, ensuring convergence of the fine-tuning process to an
optimal state. Quantitative results obtained from evaluations on three datasets using four fine-tuning
approaches are presented in Table 2. Regarding the generation quality after fine-tuning, fine-tuning
with watermarked images adversely affects performance, potentially leading to a decrease in FID
score and an increase in CLIP-T score. Specifically, the use of watermarked images for fine-tuning
resulted in the most significant decline in generation performance on the Pokémon dataset.

To ensure a fair comparison of each watermarking method’s ability to detect watermarks from gen-
erated images, we calibrate the watermark embedding strength across all methods, thereby guaran-
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Protection
Ratio te

FT Text-to-Image LoRA DreamBooth Textual Inversion
Metrics CLIP-T↑ FID↓ Acc.(%)↑ CLIP-T↑ FID↓ Acc.(%)↑ CLIP-T↑ FID↓ Acc.(%)↑ CLIP-T↑ FID↓ Acc.(%)↑

20%

w/o(without)

DIAGNOSIS 0.2047 259.62 80.00 0.2601 279.06 40.00 0.2632 255.46 16.00 0.2634 283.63 44.00
DiffusionShield 0.2049 252.40 100.00 0.2585 278.47 100.00 0.2592 252.05 99.56 0.2672 289.95 99.91
WatermarkDM 0.2191 257.56 98.44 0.2606 276.72 89.06 0.2540 249.44 85.94 0.2618 285.29 92.19

SIREN 0.2145 256.13 57.25 0.2663 283.66 53.92 0.2607 272.31 55.13 0.2668 280.46 55.17

w(with)

DIAGNOSIS 0.2119 251.84 76.00 0.2615 279.03 26.00 0.2630 265.31 46.00 0.2674 275.48 36.00
DiffusionShield 0.1987 257.69 100.00 0.2586 273.14 98.88 0.2697 277.35 100.00 0.2628 277.96 100.00
WatermarkDM 0.2120 268.10 96.88 0.2530 282.16 95.31 0.2721 260.63 95.31 0.2661 267.53 93.75

SIREN 0.2025 261.54 57.58 0.2701 284.60 53.67 0.2737 272.81 56.13 0.2634 279.70 54.21

40%

w/o(without)

DIAGNOSIS 0.2025 261.50 44.00 0.2683 287.50 36.00 0.2598 247.40 6.00 0.2605 275.94 40.00
DiffusionShield 0.2048 256.56 100.00 0.2565 276.34 99.00 0.2534 259.52 99.00 0.2600 271.86 100.00
WatermarkDM 0.1870 253.48 89.06 0.2602 279.92 78.13 0.2532 252.08 98.44 0.2657 278.50 90.63

SIREN 0.2024 264.39 56.58 0.2658 281.70 54.29 0.2613 262.93 54.04 0.2671 279.16 54.00

w(with)

DIAGNOSIS 0.2101 247.40 80.00 0.2646 275.39 36.00 0.2643 274.05 52.00 0.2616 272.49 78.00
DiffusionShield 0.2085 257.46 100.00 0.2645 276.76 100.00 0.2682 266.83 100.00 0.2644 275.95 98.95
WatermarkDM 0.1903 255.94 98.44 0.2570 278.65 85.94 0.2729 265.11 96.88 0.2582 275.12 95.31

SIREN 0.1966 262.58 55.29 0.2712 275.09 55.29 0.2692 281.19 55.25 0.2611 268.52 54.58

60%

w/o(without)

DIAGNOSIS 0.2139 250.92 20.00 0.2599 273.85 92.00 0.2628 250.70 18.00 0.2646 273.28 52.00
DiffusionShield 0.2081 232.99 100.00 0.2573 280.14 99.73 0.2517 246.38 99.91 0.2642 269.59 99.19
WatermarkDM 0.2019 259.35 95.31 0.2613 274.82 92.19 0.2511 250.54 90.63 0.2590 288.34 89.06

SIREN 0.2078 256.26 53.25 0.2617 281.14 54.67 0.2673 257.28 56.33 0.2648 268.78 54.79

w(with)

DIAGNOSIS 0.2066 246.85 34.00 0.2556 273.47 70.00 0.2631 268.76 26.00 0.2654 269.74 20.00
DiffusionShield 0.2064 241.85 99.94 0.2531 278.91 98.78 0.2638 262.69 100.00 0.2630 280.64 100.00
WatermarkDM 0.2002 269.80 93.75 0.2581 279.70 92.19 0.2699 261.96 93.75 0.2643 275.62 90.63

SIREN 0.2033 268.06 53.88 0.2587 280.42 54.33 0.2714 280.42 55.42 0.2664 271.40 54.67

80%

w/o(without)

DIAGNOSIS 0.1962 268.29 60.00 0.2528 280.73 50.00 0.2667 246.12 70.00 0.2647 275.99 50.00
DiffusionShield 0.2126 251.40 100.00 0.2543 276.66 99.97 0.2513 249.16 99.19 0.2632 279.37 100.00
WatermarkDM 0.1969 257.88 98.44 0.2577 273.84 100.00 0.2594 246.49 98.99 0.2637 272.91 98.44

SIREN 0.2024 248.74 54.63 0.2696 282.74 54.13 0.2598 255.20 56.67 0.2632 276.49 54.08

w(with)

DIAGNOSIS 0.1967 268.98 52.00 0.2581 281.58 70.00 0.2657 269.38 60.00 0.2600 280.34 50.00
DiffusionShield 0.1971 265.04 99.80 0.2565 286.48 100.00 0.2649 264.26 100.00 0.2626 280.84 99.00
WatermarkDM 0.1926 266.00 98.44 0.2664 285.49 98.44 0.2625 260.70 96.88 0.2696 267.71 95.31

SIREN 0.1996 264.95 54.13 0.2709 278.61 54.08 0.2727 267.00 55.96 0.2662 272.22 54.67

Table 3: Summary of watermark protection ratio results using different fine-tuning methods on the
CelebA-HQ dataset. The best and worst performance are marked by red, and blue, respectively.

teeing that the fine-tuned generation results based on each watermarked dataset exhibit comparable
performance in terms of FID and CLIP-T metrics. The detection accuracy results of watermark ex-
traction are presented in Table 2. The experimental results demonstrate that DiffusionShield achieves
the best performance, exhibiting a watermark detection accuracy approaching 100% across various
datasets and fine-tuning methods. Conversely, SIREN exhibits the lowest performance, with a de-
tection accuracy of approximately 50% across all datasets and fine-tuning methods, which is equiv-
alent to random prediction. The poor performance of SIREN can be attributed to its original design,
which is tailored for simple datasets such as CIFAR, and its limited generalization capability for
more complex datasets. Consequently, SIREN struggles to effectively trace the origin data of gener-
ated images, such as portraits and artworks, in real-world applications. The remaining two methods
exhibit comparatively favorable performance under specific experimental conditions. Specifically,
WatermarkDM attains a watermark detection accuracy exceeding 90% on the WikiArt dataset for
both Text-to-Image and Textual Inversion fine-tuning, suggesting a degree of adaptability of the
watermark to varying text conditions. Nevertheless, the detection accuracy of this method declines
substantially when fine-tuning is applied to the text encoder. DIAGNOSIS presents satisfactory per-
formance across four fine-tuning methods on the Pokémon dataset. The adoption of fine-tuning the
text encoder also significantly decreases the detection accuracy.

4.3 TRANSMISSIBILITY EVALUATION

In real-world applications, users may employ mixed datasets comprising both unwatermarked origi-
nal images and watermarked traceable images to fine-tune diffusion models. Therefore, it is essential
to assess the transmissibility performance of existing dataset watermarks, specifically whether the
watermarks remain intact after the model has been fine-tuned using a subset of watermarked images.
To this end, we conduct mixed fine-tuning using both original and watermarked data. Specifically,
the proportion of watermarked images is set at 20%, 40%, 60%, and 80% respectively. Compared
to the results obtained when fine-tuning with fully watermarked images, the detection accuracy of
DIAGNOSIS decreases significantly, whereas the DiffusionShield remains largely unaffected. The

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Distortion
Type te

FT Text-to-Image LoRA DreamBooth Textual Inversion
Metrics CLIP-T↑ FID↓ Acc.(%)↑ CLIP-T↑ FID↓ Acc.(%)↑ CLIP-T↑ FID↓ Acc.(%)↑ CLIP-T↑ FID↓ Acc.(%)↑

Blur

w/o(without)

DIAGNOSIS 0.2136 239.78 100.00 0.2547 286.35 64.00 0.2503 262.86 68.00 0.2604 267.97 26.00
DiffusionShield 0.2067 386.99 100.00 0.2582 289.61 100.00 0.2383 351.66 100.00 0.2660 279.73 100.00
WatermarkDM 0.2040 276.36 98.44 0.2588 270.90 89.06 0.2523 276.02 95.31 0.2617 279.46 92.19

SIREN 0.2246 246.81 51.71 0.2615 279.04 52.17 0.2426 259.72 52.33 0.2648 282.85 51.88

w(with)

DIAGNOSIS 0.2073 238.28 92.00 0.2526 278.83 16.00 0.2504 271.76 60.00 0.2649 277.83 58.00
DiffusionShield 0.2070 372.00 100.00 0.2538 292.73 100.00 0.2493 321.52 100.00 0.2624 278.38 100.00
WatermarkDM 0.2053 273.67 98.44 0.2650 260.28 92.19 0.2607 261.10 93.75 0.2622 271.23 90.63

SIREN 0.2149 245.44 51.17 0.2564 273.18 52.08 0.2595 274.34 51.63 0.2662 270.26 52.04

JPEG

w/o(without)

DIAGNOSIS 0.2097 253.33 54.00 0.2513 278.11 40.00 0.2315 267.46 50.00 0.2615 283.02 90.00
DiffusionShield 0.2223 254.74 100.00 0.2582 279.15 100.00 0.2483 249.81 99.50 0.2558 274.64 99.98
WatermarkDM 0.2049 284.84 100.00 0.2618 268.99 95.31 0.2440 262.14 98.44 0.2709 270.01 93.75

SIREN 0.2149 253.97 52.58 0.2577 273.47 51.63 0.2591 254.38 54.42 0.2637 276.30 51.88

w(with)

DIAGNOSIS 0.2088 257.33 82.00 0.2550 268.54 94.00 0.2646 270.64 76.00 0.2649 272.11 100.00
DiffusionShield 0.2194 277.31 100.00 0.2648 274.72 99.98 0.2703 259.33 99.67 0.2598 270.88 100.00
WatermarkDM 0.2128 276.14 92.19 0.2624 270.72 95.31 0.2646 253.28 90.63 0.2660 273.31 89.06

SIREN 0.2133 252.88 53.25 0.2591 272.66 52.21 0.2708 264.26 53.08 0.2615 287.28 52.21

Noise

w/o(without)

DIAGNOSIS 0.2213 264.12 60.00 0.2614 279.73 70.00 0.2485 261.32 74.00 0.2694 272.99 36.00
DiffusionShield 0.1990 388.39 82.16 0.2629 307.26 92.52 0.2400 369.91 88.67 0.2697 274.24 100.00
WatermarkDM 0.2055 387.67 98.44 0.2640 283.23 98.44 0.2514 323.49 92.19 0.2602 270.56 95.31

SIREN 0.2072 313.27 50.67 0.2701 282.57 51.25 0.2593 263.95 49.96 0.2627 279.44 52.38

w(with)

DIAGNOSIS 0.2157 270.54 100.00 0.2613 278.00 34.00 0.2718 282.14 96.00 0.2678 267.09 100.00
DiffusionShield 0.2081 392.11 88.30 0.2500 303.06 93.08 0.2490 319.35 86.98 0.2607 275.41 98.89
WatermarkDM 0.2098 422.80 96.88 0.2670 274.59 98.44 0.2805 287.30 90.63 0.2647 271.09 90.63

SIREN 0.2015 341.88 49.79 0.2576 283.16 50.54 0.2737 276.27 50.08 0.2627 274.34 52.17

Table 4: Summary of natural distortion to watermark protection results under different fine-tuning
methods on CelebA-HQ. The best and worst performance are marked by red, and blue, respectively.

Figure 3: The visualization of generation results after applying natural distortion. The figure
indicates the optimal FID score and CLIP-T similarity for each fine-tuning approach.

other two methods fail to demonstrate the traceability of the dataset watermark to the results gener-
ated after fine-tuning.

4.4 ROBUSTNESS EVALUATION UNDER COMMON DISTORTIONS

Dataset watermarking methods may be vulnerable to potential post-processing operations, which
can compromise the integrity of the embedded watermark signals. Hence, it is crucial to evalu-
ate the robustness of existing dataset watermarking approaches against a variety of post-processing
techniques. We categorize potential post-processing operations into two classes: common image
processing techniques and specifically designed watermark removal methods. The first category
of post-processing operations may lead to overall quality degradation in watermarked images, con-
sequently resulting in diminished performance during fine-tuning. We evaluate the robustness of
existing methods under common image degradation operations, including Gaussian noise, Gaussian
blur, and JPEG compression. These three types of image processing techniques are typically intro-
duced during the transmission and processing of datasets, rather than being specifically applied for

7
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Pixel

space
encoder

Rep.

space
decoder

Pixel

space

Restoration

Rep.

space

Degradation Construction

Guassian noise in pixel space Guassian noise in rep. space

Latent 
Rep.

Noise 
added

Cold degradation in pixel space

×(T-1)

Figure 4: The architecture of DeAttack. A unified framework for watermark removal, utilizing
image degradation and restoration processes.

malicious attacks. As shown in Table 4, both DIAGNOSIS and DiffusionShield exhibit robustness
in these conditions.

5 WATERMARK REMOVAL APPROACH

As some watermarking methods remain robust under common image degradations, tailored strate-
gies are required for effective watermark removal. In the Regeneration Attack approaches proposed
by Zhao et al.Bansal et al. (2023) for watermark removal, the destructive process is implemented by
adding Gaussian noise either in the pixel space or the representation space. However, this choice
may not be optimal for wa termark removal tasks. The following presents a theoretical analysis.
Additive Gaussian noise in pixel space. Let I(x, y) denote the original image, and suppose a
watermark has been embedded to produce a watermarked image Iw(x, y) = I(x, y) + αW (x, y),
where W (x, y) denotes the watermark signal and α ≪ 1 is the embedding strength. An attacker
may attempt to disrupt the watermark by adding zero-mean Gaussian noise with variance σ2:

I ′(x, y) = Iw(x, y) + n(x, y), n(x, y) ∼ N (0, σ2) (1)

Applying the Fourier transform yields:

Î ′(u, v) = Îw(u, v) + n̂(u, v) (2)

Since white Gaussian noise has a flat power spectral density, n̂(u, v) contributes equally to all fre-
quency bands:

E[|n̂(u, v)|2] = σ2MN (3)

This uniform perturbation can effectively mask the spectral structure of Ŵ (u, v), particularly when
the watermark is embedded in mid- or high-frequency regions. However, the random and unstruc-
tured nature of the noise implies that some watermark energy may remain intact, especially under
robust extraction algorithms.

Gaussian blur in pixel space. Another attack method applies Gaussian blur to the watermarked
image:

I ′(x, y) = (Iw ∗Gσ)(x, y) (4)
where Gσ is a Gaussian kernel. In the frequency domain, this operation becomes:

Î ′(u, v) = Îw(u, v) ·H(u, v) (5)

with
H(u, v) = exp(−2π2σ2(u2 + v2)) (6)

This exponential low-pass filter suppresses high-frequency components where watermarks are often
embedded. The watermark spectrum is thus attenuated as:

αŴ (u, v) ·H(u, v)→ 0 as ∥(u, v)∥ → ∞ (7)

8
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Method
VAE (Bmshj2018) VAE (Cheng2020) Diffusion SwinIR (denoise) SwinIR (JPEG AR) IRNeXt (deblur)

CLIP-T↑ FID↓ Acc.(%)↑CLIP-T↑ FID↓ Acc.(%)↑CLIP-T↑ FID↓ Acc.(%)↑CLIP-T↑ FID↓ Acc.(%)↑CLIP-T↑ FID↓ Acc.(%)↑CLIP-T↑ FID↓ Acc.(%)↑
DIAGNOSIS 0.2594 273.36 72.00 0.2613 283.34 64.00 0.2628 280.06 84.00 0.2557 269.89 70.00 0.2531 275.03 68.00 0.2508 278.79 78.00

DiffusionShield 0.2611 268.64 99.99 0.2609 282.65 99.78 0.2654 274.22 100.00 0.2614 268.66 98.39 0.2565 272.21 100.00 0.2519 257.92 100.00
WatermarkDM 0.2571 270.79 62.50 0.2652 277.76 57.81 0.2696 269.35 54.69 0.2589 269.68 51.56 0.2579 268.63 48.44 0.2525 258.28 56.25

SIREN 0.2601 270.64 51.83 0.2593 285.56 52.29 0.2554 277.21 51.92 0.2584 273.65 52.38 0.2555 275.34 52.38 0.2519 263.98 52.21

Table 5: Results of different DeAttack methods on CelebA-HQ (LoRA, w/o te). The best and worst
performance are marked by red, and blue, respectively.

Compared to additive noise, this strategy systematically targets and reduces the energy of frequency-
domain watermarks, making it particularly effective in scenarios where the watermark is localized
in the high-frequency spectrum.

Additive Gaussian noise in latent space. In encoder-based models, images are mapped to a latent
representation z = E(I), where additive Gaussian noise ϵ ∼ N (0, σ2I) can be injected:

z′ = z + ϵ (8)

Unlike pixel-space noise, which perturbs all frequencies uniformly, latent-space noise leads to struc-
tured, model-dependent distortions in the image. Due to the encoder’s compression and abstraction,
high-frequency details are often underrepresented in z. As a result, latent noise tends to produce low-
to mid-frequency artifacts, which may be less effective in suppressing high-frequency watermarks.

To establish a more general framework of regeneration attacks for watermark removal, we first
formulate the process in a simplified form:

x = R(D(x)). (9)

Here, D denotes a degradation process, and R denotes the image restoration process. The degra-
dation D can be categorized into three types: additive noise in the pixel space, additive noise in
the representation space, and deterministic degradation (cold degradation) in the pixel space Bansal
et al. (2023). The image restoration process can be implemented using models such as DAE, VAE,
diffusion models, or other restoration architectures.

As shown in Figure 4, we propose DeAttack, a unified framework that leverages various image
degradation and restoration processes to remove watermarks. The network architecture used in
DeAttack can be uniformly described as an autoencoder, with optional restoration blocks inserted
between the encoder and decoder. Image degradation is applied either before the encoder in the
pixel space, or after the encoder in the representation space via Gaussian noise.

To better remove the watermark, we train IRNeXt Cui et al. (2023; 2024) on the DIV2K Agustsson
& Timofte (2017), Flickr2K, and WED Ma et al. (2016) datasets by generating Gaussian-blurred
images with a kernel size of 71 × 71 and standard deviation σ = 15. In addition, we adopt two
pretrained SwinIR Liang et al. (2021) models for denoising and JPEG compression artifact reduction
to perform image-restoration-based watermark removal. We also evaluate the three regeneration
attack methods proposed by Zhao et al. Bansal et al. (2023). As shown in Table 5, our IRNeXt-
based model achieves effective watermark removal while preserving image quality.

6 CONCLUSION

This paper analyzes image watermarking techniques aimed at tracing unauthorized fine-tuning of
data by Stable Diffusion. Experimental results show these methods lack robustness in real-world
scenarios. The results of some existing methods exhibit universality across diverse fine-tuning ap-
proaches and tasks, as well as transmissibility even when only a small proportion of watermarked
images is used. Finally, we propose DeAttack, a unified watermark removal framework based on
image degradation and restoration. We assess how various types of noise and degradation impact
watermark removal. Results show our method outperforms existing approaches under DeAttack and
could inspire more robust watermarking techniques.

9
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A APPENDIX

The appendix provides additional information that complements the main text. It includes imple-
mentation details, extended experimental results, and further analyses that were excluded from the
main paper due to space constraints. All experiments were conducted following the same setup and
evaluation protocols described in the main manuscript.

A.1 ETHICS STATEMENT

This study adheres to the ICLR ethical guidelines. No human subjects or animal experiments were
involved in this research. All datasets used, including {CelebA, Pokémon, and WikiArt}, were
obtained in accordance with the relevant usage guidelines to ensure no privacy was violated.

A.2 REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of the results presented in this paper. The
experimental setup, including the training procedures, model configurations, and hardware details,
are all described in detail in the paper. In addition, all the public datasets used in this paper are
publicly available, which ensures the consistency and reproducibility of the evaluation results.

A.3 LLM USAGE

Large language models (LLMs) were only used to enhance the language quality of the manuscript,
including rewriting, grammar checking, and improving fluency. They were not involved in the
research conception, methodology, or experimental design. All scientific content was completed
by the authors, and the use of LLMs was ensured to comply with academic norms, without any
plagiarism or academic misconduct.

A.4 DATASET DETAILS

In this section, we present the details of the three datasets used in this paper.

• CelebA Liu et al. (2015): This dataset comprises facial images of various celebrities, each
paired with a descriptive caption generated by the LLaVA Liu et al. (2023) model. Given
that the original dataset is large in size and the fine-tuning diffusion model requires a low
amount of data, we sampled 1,000 images from the original dataset for experimental use.

• Pokémon Pinkney (2022): This dataset comprises 833 high-quality Pokémon images, each
paired with a text caption generated by the BLIP Li et al. (2022) captioning model.

• WikiArt Wikiart (2016): This dataset containing 81444 pieces of visual art from various
artists, taken from WikiArt.org, along with class labels for each image: ”artist”, ”genre”
and ”style”.

A.5 50 PROMPTS FOR GENERATION

This section lists in detail the prompts used to generate samples after fine-tuning the stable diffusion
model. Each dataset has 50 prompts.

A.5.1 CELEBA

1. ”A young woman with red hair, heart-shaped face, small nose, large brown eyes, glasses,
and a necklace. Likely a young adult.”

2. ”A young bald man with a beard and round face, wearing a football helmet. He has thick
lips and a large nose.”

3. ”A blonde young woman with a heart-shaped face, small nose, thin lips, wearing a black
dress and a necklace. Smiling.”

4. ”A young woman with dark hair, heart-shaped face, full lips, straight nose, and a necklace.
Likely in her late teens.”
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5. ”A bald man with glasses, wide face, thick lips, wearing a suit and standing at a micro-
phone. He is an adult.”

6. ”An elderly white man with glasses, wide face, large nose, thin mouth, and beard. Wearing
a tie and brown jacket.”

7. ”A young blonde woman with glasses, small nose, wide mouth, brown eyes, a bracelet, and
a nose piercing. No facial hair.”

8. ”A smiling young man with a round face, glasses, beard, brown eyes, and wearing a suit
and tie. A flag is behind him.”

9. ”A man with a wide face, thick mustache, black hair, and glasses. Smiling, with no other
accessories visible.”

10. ”A young woman with dark hair, brown cat-like eyes, heart-shaped face, wide mouth, small
nose, and black dress.”

11. ”A man with blonde hair, wide face, small nose, thick lips, large eyes, and glasses. Wearing
a white shirt and smiling.”

12. ”A young woman with a narrow heart-shaped face, dark hair, large eyes, small nose, thin
lips, wearing pink dress and necklace.”

13. ”A smiling young blonde woman with heart-shaped face, brown eyes, small nose, glasses,
thick eyebrows, and a necklace.”

14. ”A young man with glasses, dark hair, large nose, black eyes, strong jawline, and straight
mouth. Likely a young adult.”

15. ”A woman with blonde bobbed hair, red dress, heart-shaped face, small nose, smiling.
Possibly young, not clearly elderly.”

16. ”A young blonde woman with large expressive eyes, small nose, thin mouth, glasses, white
shirt, and heart-shaped face.”

17. ”A smiling young blonde woman with heart-shaped face, blue eyes, glasses, small wide
nose, thick lips, and jewelry.”

18. ”A young woman with brown eyes, glasses, thick lips, pearl necklace, heart-shaped face,
small nose, and a smile.”

19. ”A young woman with auburn hair, glasses, brown eyes, wide mouth, heart-shaped face,
and a necklace.”

20. ”A young woman with a ponytail, dark hair, glasses, small nose, full mouth, black clothes,
and heart-shaped face.”

21. ”An elderly bald man with a beard, wide thick face, large nose, wearing a jacket and hat.
Seated in front of a camera.”

22. ”A young man with shaved sides and ponytail, large brown eyes, wide upturned nose,
glasses, beard, and rectangular face.”

23. ”A smiling young blonde woman with heart-shaped face, pointed nose, full lips, earrings,
and brown eyes. No glasses.”

24. ”A young blonde woman with wide face, small wide nose, thick lips, large earrings, neck-
lace, and a smile.”

25. ”A young bald man with glasses, beard, large nose, wide face, thick eyebrows, and a black
jacket. Likely young adult.”

26. ”A goofy young man with round face, large eyes, small nose, thin mouth, glasses, and a
playful smile.”

27. ”A young man with shaved head, large nose, wide open eyes, black hoodie, wide mouth.
Possibly a teen or young adult.”

28. ”A young woman in pink dress with round face, glasses, pink bow, large brown eyes,
holding a cherry in her mouth.”

29. ”An elderly bald man with glasses, large nose, thick mustache, red-striped shirt, tie, and a
big smile.”
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30. ”A man with long hair, beard, glasses, large nose, wide mouth, wearing a black shirt and
jacket. Likely adult.”

31. ”A young blonde woman with heart-shaped face, large brown eyes, small nose, necklace,
and a thin mouth. Wearing a dress.”

32. ”A smiling woman with almond-shaped eyes, wide nose, large mouth, pink dress, blonde
hair. Likely a young adult.”

33. ”A young woman with red shirt, heart-shaped face, large dark eyes, full lips, small nose,
necklace, and ponytail.”

34. ”A smiling young woman with heart-shaped face, small nose, large brown eyes, pink
bathing suit, and pink headband.”

35. ”A young man in a suit and tie with round face, small nose, brown eyes, glasses, beard, and
a thin mouth.”

36. ”A young woman with long black hair, glasses, small nose, heart-shaped face, necklace,
and a thin mouth. Likely teen.”

37. ”A smiling young woman with heart-shaped face, wide mouth, large eyes, necklace, and
ponytail. Possibly young adult.”

38. ”An elderly person with wide face, large black eyes, round nose, bushy eyebrows, suit, tie,
and hat.”

39. ”A smiling young woman with curly dark hair, large brown eyes, full lips, small nose,
necklace, and heart-shaped face.”

40. ”A man with beard, sunglasses, black suit and tie, large nose, wide mouth, and prominent
chin. Handsome appearance.”

41. ”An elderly bald man with white beard, glasses, very wide face, small nose, thick mouth,
wearing a suit and tie.”

42. ”A woman with round face, glasses, blonde hair, thick lips, blue shirt, small wide nose, and
a friendly smile.”

43. ”A man with shaved head and beard, blue shirt, wide mouth, large nose, small blue eyes,
and a youthful appearance.”

44. ”A young woman with dark straight hair, glasses, brown eyes, small nose, full lips, neck-
lace, bracelet, and oval face.”

45. ”A thin-faced bald man with glasses, large nose, close-set eyes, suit and tie, looking directly
at the camera.”

46. ”A young woman with heart-shaped face, dark hair, large expressive eyes, full mouth, small
nose, and earrings.”

47. ”A young woman with blue hair, red dress, large round eyes, thick lips, wide face, necklace,
and blue eyes.”

48. ”A person with long black hair, white shirt, large black eyes, wide nose, glasses, and nose
piercing. Teen or adult.”

49. ”A smiling young blonde woman with round face, small nose, blue eyes, glasses, necklace,
and red background.”

50. ”A young man with round face, glasses, full beard, small nose, wearing a suit and tie.
Appears formally dressed.”

A.5.2 POKÉMON

1. ”a drawing of a green pokemon with red eyes”
2. ”a cartoon monkey flying with a bone in its mouth”
3. ”a drawing of a purple dragon with spikes on it’s head”
4. ”a drawing of a cat sitting on top of a flower”
5. ”a pink bird with orange eyes and a pink tail”
6. ”a cartoon bee with a big smile on it’s face”
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7. ”a blue cartoon character with a target in his hand”
8. ”a cartoon bird with a green leaf on its head”
9. ”a drawing of a blue dinosaur with wings”

10. ”a drawing of a green pokemon sitting on top of a leaf”
11. ”a very cute looking pokemon type”
12. ”a drawing of a shark with its mouth open”
13. ”a cartoon character with a mushroom on his head”
14. ”a drawing of a cat wearing a helmet”
15. ”a drawing of a cat with a pink tail”
16. ”a cartoon elephant with a red nose and orange ears”
17. ”a drawing of a black and white animal with horns”
18. ”a drawing of a purple and white animal”
19. ”a drawing of a red and yellow insect”
20. ”a drawing of a green and yellow lizard”
21. ”a drawing of a blue and orange pokemon”
22. ”a drawing of a gray and white pokemon”
23. ”a cartoon picture of a green vegetable with eyes”
24. ”a drawing of a green cartoon character with a sad look”
25. ”a cartoon giraffe with a ball in its mouth”
26. ”a cartoon bird with a hat on its head”
27. ”a cartoon dog is standing in a pose”
28. ”a drawing of a star with a red eye”
29. ”a cartoon turtle with a tree on its back”
30. ”a drawing of a pink cartoon character”
31. ”a drawing of a fox with wings on it’s back”
32. ”a blue and yellow cartoon character with its mouth open”
33. ”a cartoon mouse with a pink shirt and tie”
34. ”a cartoon character with a yellow shirt and blue pants”
35. ”a drawing of a fish with a horn on it’s head”
36. ”a drawing of a white and red pokemon”
37. ”a drawing of a blue fish with yellow eyes”
38. ”a cartoon bunny flying through the air”
39. ”a drawing of a small animal with a pink nose”
40. ”a blue and white cartoon character flying through the air”
41. ”a green and yellow toy with a red nose”
42. ”a drawing of a woman in a pink dress with a dragon head”
43. ”a cartoon character with a magnifying glass”
44. ”a drawing of a blue sea turtle holding a rock”
45. ”a cartoon bear with a ring around its neck”
46. ”a cartoon cat is holding onto a leash”
47. ”a cartoon rat with its mouth open and it’s mouth wide open”
48. ”a green bird with a red tail and a black nose”
49. ”a cartoon sheep is kicking a soccer ball”
50. ”a close up of a cartoon character with big eyes”
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A.5.3 WIKIART

1. ”surreal oil painting, Salvador Dalı́ style, hyper-detailed, high quality”
2. ”romantic landscape, 19th-century French painting, soft brushwork, ultra high-res”
3. ”cubist still life, abstract geometric shapes, Picasso-inspired, vibrant colors”
4. ”impressionist river scene, vivid brush strokes, Claude Monet style, realistic lighting”
5. ”art nouveau floral pattern, elegant flowing lines, Alphonse Mucha inspired, intricate de-

tails”
6. ”German expressionist portrait, emotional color palette, dramatic, cinematic lighting”
7. ”Russian avant-garde constructivist poster, vintage style, bold typography, clean vector”
8. ”hyper-realistic Baroque portrait, dramatic chiaroscuro, Rembrandt style, 8K”
9. ”abstract color field painting, Rothko inspired, vivid colors, minimalist”

10. ”Italian Renaissance fresco, mythological figures, high detail, realistic faces”
11. ”minimalist geometric abstraction, Malevich style, pure shapes, modern design”
12. ”medieval illuminated manuscript, gold leaf, intricate patterns, ancient calligraphy”
13. ”gothic cathedral interior, stained glass, atmospheric light, photorealistic”
14. ”Japanese woodblock print, Hokusai style, traditional ukiyo-e, fine linework”
15. ”fauvist landscape, intense color contrasts, Matisse inspired, expressive painting”
16. ”surreal dreamscape, Magritte style, hyper-realistic, conceptual art”
17. ”art deco poster, glamorous 1920s woman, vintage illustration, high detail”
18. ”Russian symbolist painting, mystical, ethereal lighting, rich textures”
19. ”rococo palace interior, pastel colors, ornate details, photorealistic”
20. ”Dutch golden age still life, flowers and fruits, realistic lighting, master painting”
21. ”pre-Raphaelite portrait, medieval-inspired, flowing hair, detailed textile”
22. ”Chinese ink landscape, shan shui style, misty mountains, traditional painting”
23. ”Bauhaus modernist architectural drawing, clean lines, geometric composition”
24. ”Italian futurist cityscape, motion blur, dynamic angles, vibrant”
25. ”Byzantine mosaic, religious icon, gold tesserae, intricate details”
26. ”Spanish romantic painting, dramatic history scene, vivid brushwork, realistic”
27. ”symbolist fantasy scene, allegorical figures, mystical atmosphere, high detail”
28. ”social realism mural, workers, propaganda style, bold colors, large format”
29. ”abstract expressionist painting, chaotic brushstrokes, Pollock style, large canvas”
30. ”Venetian rococo carnival scene, masked figures, ornate costumes, detailed”
31. ”French rococo pastoral painting, elegant people, romantic light, high realism”
32. ”Russian lubok folk art, storytelling style, bright colors, naive art”
33. ”Egyptian revival decorative motif, hieroglyphs, ancient style, symmetrical pattern”
34. ”neoclassical sculpture study, idealized human figure, marble texture, photorealistic”
35. ”academic classical painting, mythological subject, realistic anatomy, dramatic light”
36. ”Neue Sachlichkeit portrait, German realism, neutral colors, intense gaze”
37. ”surrealist collage, Max Ernst style, dreamlike, high-res details”
38. ”pre-Columbian inspired pattern, tribal geometric symbols, earthy colors”
39. ”gothic illuminated manuscript page, ornate borders, medieval style, hyper-detailed”
40. ”classical Greek vase painting, heroic myth scene, terracotta style, authentic”
41. ”romantic seascape, stormy sky, 19th-century painting style, high detail”
42. ”Renaissance-inspired religious altarpiece, golden halos, realistic faces, dramatic”
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43. ”art brut, outsider art style, raw brushstrokes, expressive emotion”

44. ”Victorian fairy painting, delicate wings, flower garden, high detail”

45. ”expressionist cityscape, angular architecture, dramatic colors, thick brush strokes”

46. ”post-impressionist village scene, vivid colors, Van Gogh style, swirling strokes”

47. ”orientalist painting, Middle Eastern architecture, rich textures, historical”

48. ”pop art reinterpretation, classical sculpture, bright bold colors, high contrast”

49. ”suprematist non-objective composition, simple shapes, modernist, clean vector”

50. ”primitivist figure painting, tribal inspiration, earthy colors, simplified forms”

A.6 EXPERIMENTAL SETTINGS

Our experiments were implemented in Python 3.10 and PyTorch 2.7.1. All experiments were per-
formed on Ubuntu 20.04 equipped with 4 A800 GPUs.

A.6.1 MODELS&DATASETS

We selected DIAGNOSIS Wang et al. (2024), DiffusionShield Cui et al. (2025b), SIREN Li et al.
(2025), and WatermarkDM Zhao et al. (2023) as the primary watermark protection methods. These
approaches safeguard the original images by embedding invisible watermarks and enable the tracing
of unauthorized data usage. The evaluation primarily focuses on three protection aspects: face
protection, virtual object protection, and artistic style protection, conducted on three high-resolution
datasets: CelebA-HQ Liu et al. (2015), Pokémon Pinkney (2022), and WikiArt Wikiart (2016),

A.6.2 IMPLEMENTATION DETAILS

During the watermark embedding phase, we utilized the model’s default configuration and adjusted
the image resolution to 512 × 512. In the fine-tuning phase, SD1.4 Rombach et al. (2022) was
uniformly employed, and the same prompt template was applied across the four fine-tuning methods
to ensure a fair comparison based on 10 images from the datasets. During the generation phase, five
images were generated for each of the 50 prompts, and their average FID score and CLIP similarity
were calculated.

A.7 COMMON DISTORTION PROCESSING

We used three common distortions, which are implemented as follows:

A.7.1 IMAGE BLUR

Iblur(x, y) = (I ∗G)(x, y) =

k∑
u=−k

k∑
v=−k

I(x− u, y − v) ·G(u, v), (10)

G(u, v) =
1

2πσ2
exp

(
−u2 + v2

2σ2

)
, (11)

where I is the original image, G is a two-dimensional Gaussian kernel, σ is standard deviation. We
used a 31× 31 kernel, which automatically calculates the corresponding standard deviation.

A.7.2 JPEG COMPRESSION

For JPEG compression, we divide the image into 8× 8 blocks and perform Discrete Cosine Trans-
form (DCT), and then quantize the frequency domain coefficients C(u, v), as follows:

Cq(u, v) = round
(
C(u, v)

Q(u, v)

)
, (12)

where Q(u, v) is the standard quantization matrix. The distortion mainly comes from this quantiza-
tion operation. The JPEG quality level used in the code is 15.
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A.7.3 GAUSSIAN NOISE

For Gaussian noise, the process is as follows:

Inoisy(x, y, c) = clip
(
I(x, y, c) +N (0, σ2), 0, 1

)
, (13)

where N (0, σ2) represents Gaussian noise with mean 0 and variance x; the clip function clamps
the pixel values to the interval [0, 1]. The distortion is added independently in the dimension of the
color channel c.

The overall processing flow can be described as Algorithm 1.

Algorithm 1 Apply Image Distortions: Gaussian Blur, JPEG Compression, and Gaussian Noise
Require: Original image I; JPEG quality q = 15; Gaussian noise std σ = 0.3
Ensure: Distorted images: Iblur, Ijpeg, Inoise

1: Gaussian Blur:
2: Iblur ← GaussianBlur(I, kernel size = 31, σ = 0)
3: JPEG Compression:
4: Ijpeg ← JPEGEncode(I, quality = q)
5: Gaussian Noise:
6: Inorm ← I/255
7: Sample ε ∼ N (0, σ2)
8: Inoise ← clip(Inorm + ε, 0, 1)
9: Inoise ← Inoise × 255

10: Return: Iblur, Ijpeg, Inoise

A.8 VISUALIZATION OF DEATTACK METHOD

DIAGNOSIS SIREN DiffusionShield Gaussian noise Gaussian blur

Figure 5: Visualization of DeAttack Method.
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