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ABSTRACT

Transformer-based architectures have demonstrated remarkable success across
various domains but remain challenging to deploy on edge devices due to high
memory and computational demands. In this paper, we propose UniForm (Unified
TransFormer), a novel transformer architecture that unifies multi-head attention
computations into a shared attention mechanism, Reuse Attention, and integrates it
into a lightweight, scalable backbone for efficient inference on edge devices, with-
out compromising accuracy. By consolidating redundant operations into a unified
representation, UniForm effectively reduces memory overhead and computational
complexity, enabling seamless deployment in resource-constrained environments.
Experiments on ImageNet-1K and downstream tasks show that UniForm achieves
state-of-the-art accuracy while improving inference speed and memory efficiency.
Notably, UniForm-l attains 76.7% Top-1 accuracy on ImageNet-1K with a 21.8ms
inference time on Jetson Nano, achieving up to a 5x speedup over compet-
ing benchmarks. These results highlight UniForm’s versatility across GPUs and
edge platforms, demonstrating its potential for real-time AI applications in low-
resource settings. Code available at https://github.com/seulkiyeom/
uniform.

1 INTRODUCTION

Transformers have revolutionized neural networks, excelling in NLP, computer vision, and speech
recognition (Vaswani et al., 2017; Devlin et al., 2018). At their core, the Attention mechanism en-
ables effective contextual learning but incurs high computational and memory costs, posing chal-
lenges for real-time deployment, especially on resource-constrained edge devices. While Vision
Transformers (ViTs) extend Transformers to computer vision, these inefficiencies persist across all
Transformer models (Dosovitskiy et al., 2021). Deploying Transformers on devices like Raspberry
Pi and Jetson Nano introduces severe constraints such as limited memory, low energy consumption,
and strict real-time processing (Yang et al., 2023b). A major bottleneck is the memory bandwidth
gap between high-performance GPUs and edge devices, as shown in Figure A.1 (Li et al., 2022).
For instance, GPUs like the NVIDIA H100 offer 3.35 TB/s bandwidth, while edge devices such as
Raspberry Pi 3B operate at just 17 GB/s—nearly 197 times lower—causing severe memory access
inefficiencies. This resource gap significantly impacts inference performance, even with optimized
GPUs like the NVIDIA A100 (Liang et al., 2023).

Various optimization techniques, including pruning, quantization, and Neural Architecture Search
(NAS), have been explored to mitigate these challenges (Chen et al., 2022a; Jaiswal et al., 2023).
However, they fail to address the fundamental memory access inefficiencies in attention mech-
anisms, which become a primary bottleneck in low-bandwidth environments. Studies such as
MCUNet and NAS for efficient edge inference (Lin et al., 2020; Zoph & Le, 2017) show that models
optimized for GPUs often struggle to scale effectively on edge hardware, underscoring the need for
edge-specific transformer designs.
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Figure 1: Comparison of speed and accuracy between UniForm and other efficient CNN and ViT
models, evaluated using the ImageNet-1K dataset in terms of (A) GPU throughput on an NVIDIA
A100 and (B) on-device inference time on a Raspberry Pi 4B.

To address this, we propose Reuse Attention, a novel mechanism that reuses a single shared atten-
tion matrix across multiple heads, significantly reducing redundant computations and minimizing
memory access by up to 80%. Unlike traditional Multi-Head Attention (MHA), which computes in-
dependent attention matrices per head, our approach consolidates memory operations and enhances
arithmetic intensity, enabling real-time AI inference on low-resource hardware (see Figure A.2). As
shown in Figure 1, Reuse Attention maintains strong representational power while substantially im-
proving computational efficiency, making it ideal for edge deployment. Despite these optimizations,
our method retains high accuracy across tasks like object detection and segmentation, ensuring broad
applicability. Experimental results demonstrate that UniForm, our newly designed transformer ar-
chitecture built around Reuse Attention, achieves a 5× speedup on Jetson Nano while maintaining
a new state-of-the-art Top-1 accuracy on ImageNet-1K, outperforming both ViT and CNN-based
models in inference efficiency. By reducing memory access by up to 80%, UniForm significantly
enhances efficiency and scalability for real-time edge AI applications.

In summary, our contributions are threefold:

• Efficient Attention Mechanism: Reduces redundant computations by reusing a shared atten-
tion matrix, minimizing memory access, and improving edge-device efficiency.

• Improved Throughput on Diverse Hardware: enhances inference speed on both high-
performance GPUs and resource-constrained devices, surpassing conventional attention
mechanisms.

• Versatility in Downstream Tasks: demonstrates strong performance in object detection and
segmentation while maintaining efficiency and scalability for real-world applications.

These advancements highlight the potential of Reuse Attention in bridging the gap between high-
end GPUs and edge devices, making real-time transformer deployment on constrained hardware a
practical reality.

2 PROPOSED METHOD

In this section, we introduce Reuse Attention with multi-scale processing, a novel mechanism de-
signed to minimize the memory and computational overheads of conventional Multi-Head Attention
(MHA). As illustrated in Figures 2 and A.3, our approach reuses a single unified attention matrix
across heads and integrates multi-scale value processing within a hierarchical backbone, substan-
tially improving efficiency while preserving representational capacity.

2



Published as a workshop paper at SCOPE - ICLR 2025

Multi-head
Attention

Grouped-query
Attention

Multi-query
Attention

Reuse
Attention

Queries

Keys

Values

Llama 3DeiT UniFormMQA

Figure 2: Overview of the Proposed Method compared to the previous attention mechanisms

Mitigating Redundancy in Attention Mechanisms Recent studies have underscored the com-
putational and memory overheads arising from redundant attention maps across heads in Vision
Transformers (ViTs). Liu et al. (2023) demonstrated that many heads learn highly similar attention
patterns, suggesting that distinct attention matrices for each head may be unnecessary. This ob-
servation aligns with findings in Mehta et al. (2021), where fixed or synthetic attention mechanisms
sometimes maintained or improved performance, pointing to opportunities for shared attention com-
putations.

Building on these insights, our Reuse Attention mechanism calculates a single shared attention ma-
trix:

A = softmax
(
QK⊤
√
D

)
, (1)

where Q = XWQ and K = XWK . By reusing A across all heads, our design circumvents repet-
itive attention computations, dramatically reducing both arithmetic operations and memory traffic.
As shown in Table A.1, this reuse strategy cuts down memory access costs, addressing the bandwidth
bottleneck that is particularly problematic on resource-constrained devices.

Enhancing Value Projections with Multi-Scale Processing While queries and keys can often
be reduced in dimensionality with minimal accuracy degradation, values typically carry the bulk
of feature information. Yang et al. (2023a) found that compressing value representations caused a
more severe performance degradation compared to reducing queries or keys. To preserve rich feature
information, we retain the original dimensionality of value projections and introduce multi-scale
processing through depthwise convolutions:

Vh = DWCONVkh
(XhW

Vh), (2)

where each head h employs a distinct kernel size kh. Inspired by multi-scale designs such as Mix-
Conv (Tan & Le, 2019) and Inception modules (Szegedy et al., 2015), this approach enables each
head to capture diverse receptive fields without escalating memory bandwidth demands. The shared
attention matrix A then aggregates all processed values: Oh = AVh. Finally, the outputs Oh from
all heads are concatenated before passing through a final linear projection:

Output = Concat(O1, O2, . . . , OH)WO, (3)

This multi-scale design retains high expressiveness while remaining efficient in both computation
and memory transfer—an imperative for real-time inference on edge devices.

2.1 COMPARATIVE ANALYSIS OF ATTENTION MECHANISMS

Figure 2 compares our Reuse Attention with existing approaches such as standard MHA (e.g., DeiT),
Grouped-Query Attention (e.g., Llama 3), and Multi-Query Attention (e.g., Falcon, PaLM). Unlike
these methods, which typically compute separate attention matrices for each head, our design reuses
a single attention matrix and focuses on multi-scale value projections. Notably, this kind of atten-
tion reuse has shown promise in large language models (LLMs) (Ribar et al., 2024) and speech
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Table 1: Performance comparison with the state-of-the art CNN and ViT models on ImageNet-1K.
Model Base Top-1 acc. Top-5 acc. Throughput (images/s) FLOPs Params

architecture (%) ↑ (%) ↑ GPU ↑ CPU ↑ (M) ↓ (M) ↓
EfficientViT-M0 (Liu et al., 2023) Transformer 63.2 85.4 64293 450 79 2.3

UniForm-t Transformer 66.0 86.6 77625 544 74 1.8
MobileNetV3-small (Howard et al., 2019) CNN 67.4 87.4 41965 360 57 2.5

EfficientViT-M1 (Liu et al., 2023) Transformer 68.4 88.7 47045 220 167 3.0
MobileViT-XXS (Mehta & Rastegari, 2022) Transformer 69.0 88.9 9663 59 410 1.3

ShuffleNetV2 1.0x (Ma et al., 2018) CNN 69.4 88.9 27277 138 146 2.3
UniForm-s Transformer 70.1 89.3 50582 231 164 2.4

EdgeNeXt-XXS (Maaz et al., 2022) Both 71.2 - 13051 121 261 1.3
MobileOne-S0 (Vasu et al., 2023) CNN 71.4 89.8 20642 26 275 2.1

Mixer-B/16 (Tolstikhin et al., 2021) MLP 71.7 - 2057 6 12610 59.8
RepVGG-A0 (Ding et al., 2021) CNN 72.4 - 19450 61 1366 8.3

SHViT (Yun & Ro, 2024) Transformer 72.8 91.0 33489 143 241 6.3
EfficientViT-M3 (Liu et al., 2023) Transformer 73.4 91.4 34427 166 263 6.9

ViG-Ti (Han et al., 2022) GNN 73.9 92.0 1406 6 1300 7.1
UniForm-m Transformer 74.1 91.9 36507 174 251 5.6

RepVGG-A1 (Ding et al., 2021) CNN 74.4 - 14155 39 2362 12.7
DeiT-Tiny (distilled) (Touvron et al., 2021) Transformer 74.5 - 13785 63 1085 5.9
MobileViT-XS (Mehta & Rastegari, 2022) Transformer 74.7 92.3 6098 13 986 2.3

ShuffleNetV2 2.0x (Ma et al., 2018) CNN 74.9 92.4 12910 67 591 7.4
EdgeNeXt-XS (Maaz et al., 2022) Both 75.0 - 8312 69 538 2.3
RepVGG-B0 (Ding et al., 2021) CNN 75.1 - 10868 30 15824 14.3

MobileNetV3-large (Howard et al., 2019) CNN 75.2 91.3 14798 69 217 5.4
MobileOne-S1 (Vasu et al., 2023) CNN 75.9 92.5 12150 22 825 4.8

ConvNeXtV2-Atto (Woo et al., 2023) CNN 76.2 93.0 9120 73 552 3.7
Mixer-L/16 (Tolstikhin et al., 2021) MLP 76.4 - 688 2 44570 208.2

RepVGG-A2 (Ding et al., 2021) CNN 76.4 - 8483 20 5123 25.4
UniForm-l Transformer 76.7 93.2 25356 113 467 10.0

recognition (Shim et al., 2023), indicating broader applicability across diverse Transformer-based
architectures. By alleviating the high memory bandwidth demand characteristic of MHA, Reuse
Attention is especially advantageous in resource-constrained scenarios.

3 EXPERIMENTAL RESULTS

3.1 IMAGE CLASSIFICATION

Performance on High-Performance Hardware (GPU/ CPU) The UniForm models (Tiny, Small,
Medium, and Large) consistently surpass state-of-the-art (SOTA) models across different scales,
demonstrating superior accuracy and computational efficiency. As shown in Figure 1 and Table 1,
UniForm achieves up to 76.7% Top-1 accuracy while maintaining significantly higher throughput
compared to conventional CNN and ViT architectures. Specifically, UniForm-s achieves 70.1% Top-
1 accuracy, outperforming MobileNetV3-small (67.4%), EfficientViT-M1 (68.4%), and MobileViT-
XXS (69.0%), while also offering a superior throughput on CPU (231 images/s) and GPU (50,582
images/s vs. 41,965 images/s for MobileNetV3-small and 47,045 images/s for EfficientViT-M1).
Moreover, UniForm-l also achieves 76.7% accuracy with 25,356 images/s throughput on GPU, sig-
nificantly outperforming Mixer-L/16 (688 images/s) and ViG-Ti (1,406 images/s) while maintaining
higher accuracy.

This trend is consistent across all UniForm variants, confirming that UniForm not only provides
higher accuracy but also achieves faster throughput on both GPU and CPU compared to other mod-
els of similar sizes. These results establish UniForm as a compelling choice for both large-scale
and edge-device environments, where efficient computation and high accuracy are critical (see also
Figure C.1.

Inference Speed and Efficiency on Edge Devices As shown in Table 2 and C.1, UniForm demon-
strates remarkable efficiency on resource-constrained devices, significantly reducing inference la-
tency while maintaining competitive accuracy. On the Jetson Nano, UniForm-t achieves a notable
11.9ms inference time, representing a 5x speedup over EfficientViT-M0 (56.8ms) while delivering
improved accuracy (66.0% vs. 63.2%). Similar trends extend across Raspberry Pi and Jetson plat-
forms, reinforcing UniForm’s suitability for edge computing applications. These results highlight
UniForm as an optimal solution for real-time deployment scenarios, where computational efficiency
and predictive performance are critical (see Figure C.1).
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Table 2: Inference speed and accuracy comparison between UniForm and state-of-the-art CNN and
ViT models across various edge devices.
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EfficientViT-M0 63.2 56.8 247.6 521.1 528.8 1908.3 10.5 25.3 14.1 93.3 6.0
UniForm-t 66.0 11.9 19.4 35.7 40.5 141.7 4.4 7.7 5.8 6.4 2.0

MobileNetV3-small 67.4 7.3 33.3 65.4 73.5 233.7 1.9 4.0 2.6 12.2 1.1
EfficientViT-M1 68.4 74.7 400.3 839.1 863.1 3162.2 12.0 32.3 17.8 147.7 6.7
MobileViT-XXS 69.0 75.1 84.6 156.8 172.0 549.4 5.0 10.5 7.1 31.7 2.1

ShuffleNetV2 1.0x 69.4 8.6 32.6 62.2 69.6 224.9 2.1 4.2 3.0 9.7 1.1
UniForm-s 70.1 13.5 31.9 60.4 67.0 244.0 4.4 8.0 6.0 9.7 2.0

EfficientViT-M2 70.8 84.9 473.1 975.2 985.6 3756.6 13.3 36.4 20.3 158.2 7.1
EdgeNeXt-XXS 71.2 64.6 59.4 105.3 120.0 390.7 4.1 8.5 5.7 22.1 2.0
MobileOne-S0 71.4 8.9 54.2 108.7 122.7 427.5 1.7 3.7 2.7 16.9 0.8

Mixer-B/16 71.7 991.6 987.8 N/A N/A N/A 32.8 80.0 50.2 321.1 5.8
RepVGG-A0 72.4 15.0 125.0 249.8 284.8 1205.0 2.8 6.1 3.8 33.9 0.9

EfficientViT-M3 73.4 101.6 568.1 1136.1 1223.9 4764.8 16.5 43.4 24.7 187.0 8.0
ViG-Ti 73.9 76.0 214.4 391.8 430.5 1943.5 14.0 32.7 21.1 98.4 5.3

UniForm-m 74.1 15.8 43.7 81.9 93.3 346.7 4.3 9.9 6.7 13.7 2.0

Input images Swin-T UniForm
with Original Attn.

UniForm-L
with Reuse Attn.

Figure 3: Visualization of feature maps from Swin-T, UniForm without and with Reuse Attention
using Grad-CAM. It is obvious that our method with reuse attention can more precisely locate the
objects of interest.

3.2 IMPACT OF REUSE ATTENTION ON INTERPRETABILITY AND INFERENCE EFFICIENCY

We compare the proposed UniForm model with Reuse Attention against Swin-T and UniForm
without Reuse Attention (i.e., with standard attention). As shown in Fig. 3, the CAM visualiza-
tions demonstrate that UniForm with Reuse Attention preserves strong interpretability, effectively
highlighting relevant regions, similar to Swin-T and the UniForm variant without Reuse Attention.
Despite the architectural simplicity of UniForm with Reuse Attention, it maintains comparable in-
terpretability while significantly improving inference time, making it more efficient for real-time
applications. This showcases the advantage of Reuse Attention, balancing between interpretability
and computational efficiency.

4 CONCLUSIONS

In this paper, we introduce UniForm, an efficient Transformer architecture that enhances computa-
tional efficiency and scalability. At its core, Reuse Attention reduces redundant computations and
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memory access, significantly improving inference speed while maintaining accuracy. UniForm ad-
dresses inefficiencies in conventional attention mechanisms, making Transformers more suitable for
real-time deployment on resource-constrained devices. Our approach provides a scalable and practi-
cal solution for efficient AI deployment by reducing memory overhead and optimizing computation.

In future work, we plan to extend UniForm to language-centric and vision-language tasks (e.g.,
VQA, image captioning, etc.) to further assess the cross-modal generality of Reuse Attention. While
we employ depthwise convolutions for efficient multi-scale value processing, they can incur subopti-
mal memory access patterns on certain hardware. To better align with the reuse-oriented philosophy
of our attention mechanism, we also explore more reuse-friendly alternatives—such as point-wise
group convolutions (Zhang et al., 2018b) or tensorized mixers (Novikov et al., 2015)—that offer
improved memory efficiency without sacrificing performance.
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Figure A.1: Comparison of Memory Bandwidth between High-Performance GPUs and Edge De-
vices.

A BACKGROUNDS

Transformer-based models, including Vision Transformers (ViTs) and Large Language Models
(LLMs), have demonstrated remarkable success across various domains due to their ability to cap-
ture long-range dependencies and global relationships in input data (Vaswani et al., 2017). At the
core of these models is Multi-Head Attention (MHA), which enables effective contextual learn-
ing but poses significant challenges, especially in resource-constrained environments such as edge
devices. This section explores the fundamental limitations of MHA, particularly its memory and
computational overhead, and the resulting performance gap between high-performance GPUs and
edge devices.

A.1 MEMORY BOTTLENECKS

MHA is inherently memory-intensive due to large matrix multiplications and frequent intermediate
storage, leading to significant memory traffic (Kong et al., 2022). As the length of the input sequence
increases, the memory traffic worsens, severely impacting the inference speed, particularly in real-
time applications (Li et al., 2023).

High-performance GPUs, equipped with High Bandwidth Memory (HBM), efficiently handle these
demands. For instance, the NVIDIA H100 provides a memory bandwidth of 3.35 TB/s, enabling
smooth execution of large-scale models. In contrast, edge devices like the Raspberry Pi 3B have
vastly lower bandwidth (17 GB/s), nearly 197 times smaller, as illustrated in Fig.A.1. This discrep-
ancy forces edge devices to perform frequent memory I/O operations, leading to increased cache
misses and latency (Lan et al., 2023). Techniques such as FlashAttention aim to alleviate these in-
efficiencies by optimizing memory transfers, yet they do not fully address the fundamental memory
constraints of edge hardware (Dong et al., 2023; Dao et al., 2022).

A.2 COMPUTATION AND PARAMETER OPTIMIZATION

Beyond memory constraints, MHA suffers from computational inefficiencies. Each attention head
processes its attention matrix independently, introducing redundant computations, particularly as
the number of heads increases (Liu et al., 2023). Studies indicate that many attention maps exhibit
substantial similarity, indicating many computations are unnecessary (Michel et al., 2019). Specif-
ically, Michel et al. found that over 60% of attention heads in BERT can be pruned with minimal
accuracy loss, highlighting significant redundancy. This redundancy not only wastes computational
resources but also exacerbates memory usage, making MHA less viable for deployment on resource-
constrained edge devices.

Furthermore, parameter redundancy remains a major concern. ViT pruning studies show that Query
and Key components have high redundancy across layers, whereas the Value component retains
crucial information (Yang et al., 2023a). Selectively pruning these elements significantly reduces
parameter overhead without sacrificing accuracy. Table A.1 compares memory access costs between
MHA and Reuse Attention, demonstrating a notable reduction in memory I/O requirements. It shows
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Table A.1: MAC comparison between Multi-Head and Reuse Attention.
Multi-Head Attention Reuse Attention

Memory Load Memory Store Memory Load Memory Store

S = QKT 2× (N × d)× h N2 × h 2× (N ×D) N2

P = Softmax(S) N2 × h N2 × h N2 N2

O = PV (N2 + (N × d))× h (N × d)× h N2 + (N × d× h) (N × d)× h

Figure A.2: Impact of the number of tokens on Memory Access and Arithmetic Intensity in Atten-
tion.

the substantial memory I/O required by MHA at every stage, as the cost scales with the number of
heads, highlighting the need for more efficient attention mechanisms.

In contrast to recent single-head designs like SHViT (Yun & Ro, 2024), which reduce complexity by
removing multi-head attention entirely, our method retains multi-head structure and expressiveness
via efficient attention reuse and multi-scale value processing.

A.3 PERFORMANCE GAP BETWEEN HIGH-PERFORMANCE GPUS VS. EDGE DEVICES

The main difference in hardware capabilities between high-performance GPUs and edge devices
results in a substantial performance gap for Transformer-based models. While GPUs leverage HBM
for low-latency processing, edge devices like Jetson Nano (25.6 GB/s bandwidth) struggle with
memory-constrained computations. As token counts increase, memory demands grow exponentially,
overwhelming edge resources and causing frequent cache misses (Lan et al., 2023).

Figure A.2 illustrates how memory access and arithmetic intensity scale with token count in con-
ventional and optimized attention mechanisms. As sequence length surpasses 1024 tokens, memory
access becomes the primary bottleneck, significantly slowing down edge-device inference. In con-
trast, high-performance GPUs maintain efficient execution due to their ample memory bandwidth.

Table A.2: MACs between multi-head and reuse attention across various model categories, including
LLM (Llama 2 7B, GPT-3, ALBERT xxlarge, BERT Large, Transformer XL, T5 Large), VLM
(CLIP Text Encoder), ViT (ViT Base), and Text-to-Image Generation (Stable Diffusion). Reuse
Attention demonstrates a significant reduction in MAC compared to multi-head attention.

Model Multi-Head Attention Reuse Attention Reduction (%)
Llama 2 7B 141.73 GB 8.59 GB 93.94
GPT-3 328.56 GB 22.55 GB 93.14
ALBERT xxlarge 1.81 GB 226.49 MB 87.50
BERT Large 905.97 MB 150.99 MB 83.33
Transformer XL 679.48 MB 113.25 MB 83.33
T5 Large 905.97 MB 150.99 MB 83.33
CLIP Text Encoder 8.34 MB 4.35 MB 47.78
ViT Base 59.23 MB 18.25 MB 69.19
Stable Diffusion 16.68 MB 8.33 MB 50.06

To further emphasize the substantial memory access costs associated with traditional MHA across
various models, Table A.2 compares the MAC between MHA and optimized attention mechanisms
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Table A.3: Comparison of attention mechanisms in terms of key performance metrics: model per-
formance, GPU efficiency, edge device efficiency, and memory scalability. Each category is rated on
a scale of one to three stars (★), with more stars indicating superior performance in that category.

Model GPU Edge Memory
Performance Efficiency Efficiency Scalability

Attention ★ ★ ★ ★ ★
Linear Attention ★ ★ ★ ★ ★ ★ ★ ★

Cascaded Attention ★ ★ ★ ★ ★ ★ ★ ★
Flash Attention ★ ★ ★ ★ ★ ★ ★

Ours ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★
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Figure A.3: (a) The architecture of UniForm; (b) UniForm Block including Reuse Attention.

across different model categories, including LLMs (e.g., Llama 2 7B, GPT-3), Vision-Language
Models (e.g., CLIP Text Encoder), Vision Transformers (e.g., ViT Base), and Text-to-Image Gener-
ation models (e.g., Stable Diffusion). The results demonstrate that MHA incurs significantly higher
MAC, exacerbating the performance gap between high-performance GPUs and edge devices.

In contrast, our proposed method effectively mitigates these inefficiencies by reusing the attention
matrix across heads and employing multi-scale value processing to reduce memory and computa-
tional demands, making it a viable solution for edge deployment. Table A.2 highlights the significant
reduction in memory access costs across various model categories (i.e. model performance, GPU ef-
ficiency, edge efficiency, and memory scalability).

B OVERALL ARCHITECTURE

Figure A.3 provides an overview of UniForm, our hierarchical backbone incorporating Reuse Atten-
tion. Similar to other multi-stage architectures (e.g., Swin (Liu et al., 2021), EfficientViT (Liu et al.,
2023), and MobileNetV3 (Howard et al., 2019)), UniForm adopts a progressive design with three
stages that successively increase feature dimensionality, depth, and the number of attention heads.
Each stage refines features at increasing levels of abstraction while controlling computational cost.
Key components of the UniForm include:

• Overlapping Patch Embedding: We begin by converting 16×16 input patches into to-
ken embeddings of dimension C1. Overlapping windows capture fine-grained local details
while minimizing compute overhead.

• UniForm Blocks: Each stage comprises multiple UniForm Blocks that embed the pro-
posed Reuse Attention. After each block, the spatial resolution is reduced by a factor of
4 through downsampling. This hierarchical progression maintains spatial coherence while
reducing computational load, following the logic of Swin Transformers and other hierar-
chical ViTs (Liu et al., 2021; 2023).

• Depthwise Convolutions and FFN Layers: Placed before and after the Reuse Attention
modules, DWConv and Feed-Forward Network (FFN) layers provide a balanced treatment
of local and global information. This arrangement enhances model capacity without the
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overhead of full self-attention at each step, echoing prior efficiency-driven designs (Li et al.,
2023; Chen et al., 2022b).

• Scalability: As detailed in Table B.1, UniForm supports Tiny, Small, Medium, and Large
configurations, each tailored for different computational budgets and task complexities. By
adjusting the channels, depths, and heads, UniForm scales seamlessly to meet the require-
ments of diverse edge and server-level deployments.

Table B.1: Architecture detail of UniForm model variants.
Architecture Channel Depth Head

[C1, C2, C3] [L1, L2, L3] [H1, H2, H3]

Tiny [64, 128, 192] [1, 2, 2] [4, 4, 4]
Small [128, 144, 192] [1, 2, 2] [4, 4, 4]

Medium [128, 240, 320] [1, 2, 3] [4, 3, 4]
Large [192, 288, 384] [1, 2, 3] [3, 3, 4]

UniForm leverages intermediate feature reuse within and across stages to further reduce compu-
tational overhead, all while preserving accuracy. This flexible framework accommodates varying
patch sizes and resolutions, ensuring broad applicability in tasks ranging from object recognition to
dense prediction.

C IMPLEMENTATION DETAILS

To rigorously evaluate the effectiveness of UniForm, we conduct extensive experiments spanning
both large-scale benchmarks and real-world deployment scenarios. Our evaluation aims to validate
the efficiency, scalability, and generalizability of the proposed architecture, emphasizing both accu-
racy and inference efficiency across diverse hardware configurations. The models are implemented
using PyTorch 2.3.0 (Paszke et al., 2019) and MMPreTrain 1.2.0 (Contributors, 2023) and trained
from scratch on ImageNet-1K (Deng et al., 2009) for 300 epochs using two NVIDIA A100 GPUs.
We adopt the AdamW optimizer (Loshchilov & Hutter, 2019) with a cosine annealing learning rate
scheduler (Loshchilov & Hutter, 2017), setting the total batch size to 512. Input images are resized
and randomly cropped to 224×224. The initial learning rate is set to 0.001 with a weight decay of
0.025. We incorporate advanced augmentation and regularization techniques such as Mixup (Zhang
et al., 2018a), Cutmix (Yun et al., 2019), and random erasing (Zhong et al., 2020) to enhance gener-
alization.

Additionally, we assess throughput across different hardware platforms. For GPU performance,
throughput is measured on an NVIDIA A100 with a batch size of 2048 to ensure a fair compari-
son across models. For CPU-based inference, we evaluate runtime on an Intel Xeon Gold 6426Y @
2.50 GHz processor using a batch size of 16 and single-thread execution following the methodology
in (Graham et al., 2021).

In contrast to prior works, we conduct extensive inference evaluations on a range of edge devices.
Specifically, we test on multiple versions of the Jetson (Nano, Xavier, Tx2, Nx, and AGX Orin) and
Raspberry Pi (2B, 3B, 3B Plus, 4B, and 5). All models are evaluated with a batch size of 16 and
executed in single-thread mode to ensure consistency. For all edge devices, we used ONNX Run-
time with the default CPU Execution Provider. All inferences were performed using FP32 precision
without quantization or mixed precision optimization. This evaluation underscores the practicality
of UniForm for edge computing environments, where computational and memory constraints are
significantly more stringent than those encountered in server-grade hardware.

Furthermore, we assess the transferability of UniForm to downstream tasks. For image classification,
we fine-tune the models for 300 epochs following the methodology of (Zhang et al., 2022) with
similar hyperparameter settings. For instance segmentation on the COCO dataset (Lin et al., 2014),
we use Mask R-CNN and train for 12 epochs (1× schedule) with the same settings as (Liu et al.,
2021) using the MMDetection framework (Chen et al., 2019).
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(A) Small (B) Middle (C) Large

Figure C.1: Chart comparison of UniForm models with comparable state-of-the-art models across
different sizes on a variety of metrics (Top-1 Accuracy and GPU/CPU/Edge-device throughput).

Table C.1: Inference speed and accuracy comparison between UniForm and state-of-the-art CNN
and ViT models across various edge devices.
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EfficientViT-M4 74.3 108.6 634.9 1264.7 1352.8 5263.7 17.2 45.6 25.9 201.7 8.3
RepVGG-A1 74.4 22.4 212.4 425.6 478.4 1991.4 3.6 9.0 6.0 73.2 1.1

DeiT-Tiny (distilled) 74.5 39.0 134.0 237.5 260.1 1109.6 7.5 16.6 10.2 49.9 2.0
MobileViT-XS 74.7 36.4 196.1 353.7 389.0 1290.3 7.0 16.3 10.3 84.3 2.9
EdgeNeXt-XS 75.0 115.0 109.9 186.2 209.9 723.9 6.0 13.1 8.3 42.3 2.8
RepVGG-B0 75.1 264.4 269.7 546.3 608.0 2529.4 4.4 11.0 7.3 91.1 1.3

MobileNetV3-large 75.2 14.9 84.2 163.5 181.7 566.5 3.1 6.7 4.2 29.1 1.7
MobileOne-S1 75.9 119.0 130.1 228.7 265.3 973.6 3.2 7.5 4.9 35.8 1.2

ConvNeXtV2-Atto 76.2 146.4 156.1 294.5 318.2 993.1 6.6 14.5 8.9 62.8 2.7
Mixer-L/16 76.4 N/A 4113.5 N/A N/A N/A 105.6 N/A N/A 1323.3 14.2

RepVGG-A2 76.4 43.6 416.5 885.7 960.8 4170.4 6.9 16.8 10.6 145.3 1.8
UniForm-l 76.7 19.6 69.7 134.3 148.7 567.5 5.1 12.0 7.8 21.8 2.4

D DOWNSTREAM TASKS

We validated the effectiveness of UniForm models on several downstream tasks, focusing on image
classification and instance segmentation to showcase the model’s adaptability and competitive edge
over state-of-the-art architectures.

D.1 IMAGE CLASSIFICATION DOWNSTREAM TASKS

To further assess its generalization capability, UniForm is evaluated on various image classifica-
tion benchmarks, including CIFAR-10, CIFAR-100, Flowers-102, and Oxford-IIIT Pet. Table D.1
illustrates that UniForm-l achieves 98.2% accuracy on CIFAR-10 and 97.5% on Flowers-102,
demonstrating its adaptability across diverse dataset distributions. These findings affirm that the ef-
ficiency improvements of UniForm do not compromise its generalization ability, making it a robust
solution for various vision tasks.

D.2 INSTANCE SEGMENTATION

Table D.2 shows the performance of UniForm on instance segmentation tasks with COCO dataset
using Mask R-CNN. UniForm-l achieves APb of 33.2 and APm of 31.5, outperforming EfficientViT-
m4 and MobileNetV3, indicating its effectiveness in instance segmentation.
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Table D.1: Results of UniForm and other state-of-the-art models on various downstream image clas-
sification datasets (CIFAR-10, CIFAR-100, Flowers-102, and Oxford-IIIT Pet).

Model Throughput ↑ Inference Time on Edge ↓ ImageNet CIFAR-10 CIFAR-100 Flowers-102 Oxford-IIIT PetGPU CPU

DeiT-Tiny 13785 63 49.9 74.5 98.1 86.3 96.9 91.5
MobileViT-XS 6098 13 84.3 74.7 97.5 84.1 96.1 91.9
RepVGG-B0 10868 30 91.1 75.1 97.7 85.4 96.0 91.2

ConvNeXtV2-Atto 9120 73 62.8 76.2 97.2 83.4 87.7 71.4
MobileOne-S1 12150 22 35.8 75.9 97.7 85.8 97.4 92.2
RepVGG-A2 8483 20 145.3 76.4 97.9 85.5 95.9 91.9

EfficientViT-M5 21572 101 326.5 77.1 98.0 86.4 97.1 92.0
DeiT-small 5768 17 147.4 80.6 98.5 87.2 95.7 91.8
UniForm-l 25356 113 21.8 76.7 98.2 86.5 97.5 92.2

Table D.2: Performance comparison of instance segmentation on COCO2017
Model APb APb

50 APb
75 APm APm

50 APm
75

MobileNetV2 29.6 48.3 31.5 27.2 45.2 28.6
MobileNetV3 29.2 48.6 30.3 27.1 45.5 28.2
FairNAS-C 31.8 51.2 33.8 29.4 48.3 31.0

EfficientNet-B0 31.9 51.0 34.5 29.4 47.9 31.2
MNASNet-A1 32.1 51.9 34.2 29.7 49.0 31.4

EfficientViT-m4 32.8 54.4 34.5 31.0 51.2 32.2
UniForm-l 33.2 54.9 35.3 31.5 51.8 32.8
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