How Robust Are Code Summarization Models to Poor-Readability Code?
Fine-grained Evaluation and Benchmark

Anonymous ACL submission

Abstract

Pre-trained language models such as CodeT5
have demonstrated substantial achievement in
code comprehension. Despite the giant leap in
model architectures and training processes, we
find that the benchmarks used for evaluating
code summarization tasks are confined to high-
readability code, regardless of the popularity
of obfuscated code in reality. As such, they
are inadequate to demonstrate the fine-grained
ability of models, particularly the robustness to
varying readability degrees. In this paper, we
introduce OR-CodeSum, a robust evaluation
benchmark on code summarization tasks, in-
cluding seven obfuscated datasets derived from
existing datasets. OR-CodeSum innovatively
introduces the construction rules of obfusca-
tion code into the testing process, considering
semantic, syntactic, and cross-obfuscation ro-
bustness of code summarization tasks. Our
robustness evaluation reveals that the current
code summarization models rely heavily on the
readability of the code while not paying enough
attention to the syntactic information. We be-
lieve OR-CodeSum' can help researchers ob-
tain a more comprehensive and profound under-
standing of code summarization models, which
facilitates the improvement of model perfor-
mance.

1 Introduction

Efficient program comprehension is crucial for de-
velopers and significantly enhances software de-
velopment productivity. Code summarization, a
process that generates natural language descrip-
tions for source code, has witnessed substantial
progress in recent years, primarily driven by the
development of large pre-trained models such as
CodeBERT, CodeT?5, and CodeL.lama (Feng et al.,
2020; Wang et al., 2021; Roziere et al., 2023).

'"We make OR-CodeSum, benchmark models, and code
publicly available.

I0OE
HVI IHR
@ Python
Go
DBI IRS Java
/
00S FNE

Figure 1: Fine-grained evaluation for CodeT5 across
three programming languages. The seven dimensions
represent seven perturbed datasets derived from existing
datasets. Each value within the figure corresponds to
the percentage of results obtained from the perturbed
dataset in relation to the results from the original dataset.

While the majority of research efforts have fo-
cused on improving model architectures and train-
ing methodologies, it is apparent that the evaluation
of code summarization models faces significant
limitations. First, the test sets used for evaluating
code summarization models are confined to high-
readability code, characterized by well-structured
syntax, meaningful variable names, and conven-
tional coding styles. However, real-world software
engineering often involves code with poor readabil-
ity, as observed in various studies (Rani et al., 2021;
Shi et al., 2022b; Bielik and Vechev, 2020). Unlike
natural languages, source code exhibits varying for-
mats and styles due to programmers adhering to
different coding conventions and personal prefer-
ences. For instance, in reverse engineering, devel-
opers must comprehend decompiled code, which
may lack meaningful original identifiers. Addition-
ally, in the context of security, malicious code may
be intentionally obfuscated by rearranging identi-
fiers and structures to impede readability. To ef-
fectively address such challenges, it is crucial to
assess the robustness of existing code summariza-
tion models against obfuscated code, which often
features nonsense identifiers and dead code (Rani
et al., 2021; Shi et al., 2022b; Bielik and Vechev,

2020). Second, and more critically, the current
evaluation processes rely on single, coarse-grained
metrics, offering only an overall performance as-
sessment of neural network models on a specific
task. Consequently, these metrics fail to provide a
comprehensive and intuitive demonstration of the
fine-grained capabilities of pre-trained code mod-
els, particularly the model’s robustness to varying
readability degrees.

In this paper, we present OR-CodeSum, a ro-
bust evaluation benchmark designed to assess the
robustness of code summarization models. To pro-
vide a thorough evaluation of model robustness
against perturbations, we expand three widely used
datasets, namely TL-CodeSum (Hu et al., 2018b),
Deepcom (Hu et al., 2018a), and CodeSearch-
Net (Husain et al., 2019), into seven finer-grained
datasets using via obfuscated samples, i.e., obfus-
cated code that have the same semantics as the
original code. We construct obfuscation samples
according to seven perturbation rules that target
both semantic and syntactic aspects of code: Identi-
fier Order Erosion (IOE), Identifier Random Shuf-
fling (IRS), Identifier High-Frequency Replace-
ment (IHR), Function Name Erosion (FNE), Op-
erators and Operands Swap (OOS), Dead Branch
Injection (DBI), and High-Frequency Variable In-
jection (HVI). Figure 1 illustrates the fine-grained
performance of CodeT5 in our obfuscated test set.

We conduct a robustness analysis on three promi-
nent code LMs, namely CodeBERT (Feng et al.,
2020), CodeT5 (Wang et al., 2021), and CodeL-
lama (Roziere et al., 2023), using the obfuscated
datasets. This analysis aims to gain insights into
the model’s sensitivity to various aspects. Subse-
quently, we create cross-perturbed datasets by min-
imizing the impact of sensitive aspects, allowing us
to assess the comprehension ability of models on
low-sensitive code aspects. Finally, we scrutinize
the fine-grained performance of code summariza-
tion models using the results of both the robust
evaluation and cross-evaluation on the reduced sen-
sitivity datasets.

The primary contributions of this paper are sum-
marized as follows:

* We introduce a new benchmark dataset for a
fine-grained evaluation of the code summa-
rization task across three programming lan-
guages. To the best of our knowledge, it is the
first benchmark that can evaluate the model
from performance, capability, and robustness

by using obfuscated code.

* We create an evaluation workflow to assess
the fine-grained capability of neural code sum-
marization models, taking into account their
semantic, syntactic, and joint robustness.

* We conduct experiments to analyze the fine-
grained characteristics of state-of-the-art code
language models.

2 Related Work
2.1 Code Benchmarks

Besides our work, there have been other bench-
marks for code understanding and generation tasks
(Lu et al., 2021; Zhu et al., 2022).

CodeXGLUE (Lu et al., 2021), a benchmark
that provides a fine-grained taxonomy for a broad
range of code comprehension and generation tasks
by collecting and integrating the previously pub-
licly used datasets. The benchmark involves 14
datasets, a collection of 10 different code compre-
hension and generation tasks, and a platform for
model evaluation and comparison.

XLCoST (Zhu et al., 2022), a benchmark dataset
for cross-lingual code intelligence. As it is always
difficult to mine parallel code data, XL.CoST pro-
vides fine-grained parallel data in 7 commonly used
programming languages (C++, Java, Python, C#,
Javascipt, PHP, C), and natural language (English).

Table 1 compares OR-CodeSum with previous
code benchmarks on the code summarization task.
As seen, OR-CodeSum provides a more rigorous
evaluation for code summarization models: using
test data of more challenging readability to ana-
lyze fine-grained aspects of the model including
performance, capabilities, and robustness.

2.2 Studies on Code Summarization
Evaluation

Besides our work, there have been other works
that study the evaluation of code summarization
systems (Shi et al., 2022a,b). For example, (Shi
et al., 2022a) carried out an in-depth analysis of the
evaluation of the code summarization task. Their
work focuses on several aspects in the evaluation
process such as the data pre-processes, operation
model used, characteristics of datasets, and eval-
uation metrics. Shi et al. (2022b) concern about
the quality of the benchmark datasets built from
real-world projects and study the noise in different
benchmark datasets.

Evaluation Aspects

Benchmark Multilingual Multiple Datasets Performance Capability Robustness
CodeXGLUE Vv X vV X X
XLCoST Vv Vv Vv X X
OR-CodeSum vV v V vV Vv

Table 1: Comparison of different benchmarks on the code summarization task. The capability refers to the ability of

the model to capture semantics or syntax from code.

Dataset Language # of Functions
TL-CodeSum Java 8,714
DeepCom Java 58,811
Java 10,955
CodeSearchNet ~ Python 14,918
Go 8,122

Table 2: Number of test functions on the original dataset
in terms of different languages.

While these works study the quality of evalua-
tion data, OR-CodeSum aims at providing a fine-
grained evaluation of the model by obfuscating
the test data in different aspects and analyzing the
capability of the tested model.

3 Dataset

In this section, we introduce our proposed dataset
called OR-CodeSum. OR-CodeSum is built upon
three previously publicly used datasets. to provide
more fine-grained evaluations of code summariza-
tion models. We extend them into seven obfuscated
datasets via code perturbations.

3.1 Primary Datasets

OR-CodeSum is built on three existing code sum-
marization datasets, including TL-CodeSum 2(Hu
et al., 2018b), DeepCom3 (Hu et al., 2018a), and
CodeSearchNet 4(Husain et al., 2019).
TL-CodeSum (Hu et al., 2018b) released a dataset
that includes 87,136 (function, summary) pairs ex-
tracted from Java projects created from 2015 to
2016 with at least 20 stars.

DeepCom (Hu et al., 2018a) released a dataset that
includes 588,108 Java methods with documenta-
tion. The dataset was originally collected from
9,714 GitHub projects. It takes the first sentence

Zhttps://github.com/xing-hu/TL-CodeSum
*https://github.com/xing-hu/DeepCom
*https://github.com/github/CodeSearchNet

of the documentation comment as the summary of
each Java method.
CodeSearchNet (Husain et al., 2019) is a well-
formatted code language dataset. The dataset in-
volves a large number of functions along with their
documentation or comments written in Go, Java,
JavaScript, PHP, Python, and Ruby. It was parsed
using TreeSitter>.

The statistics of the primary datasets are pre-
sented in Table 2. As an evaluation benchmark,
OR-CodeSum only uses their test sets.

3.2 Obfuscation Datasets

To give a fine-grained evaluation of code summa-
rization models, we extend the primary datasets
with obfuscated samples. Obfuscation samples re-
fer to samples that are different from the original
samples but provide the same information for the
code summarization model (Margatina et al., 2021;
Jain and Jain, 2021; Chakraborty et al., 2022). They
are often used to deceive deep learning models in
the training stage and help improve the robustness
of the model (Margatina et al., 2021).

In our work, we want obfuscated examples to
contain the full aspects of the original code. Previ-
ous research has shown that source code involves
two channels of information: formal and natural
(Casalnuovo et al., 2020; Chakraborty et al., 2022).
The formal channel concerns more about the syntax
of code represented by abstract syntax trees (AST)
and data flow diagrams (DFS). The natural channel,
on the other hand, concerns the semantic features
(e.g., identifiers, keywords, and comments) used by
humans for code comprehension. As such, we con-
struct obfuscation samples by perturbing both the
semantics and syntax of the primary datasets. For
semantic perturbation, we use four rules to perturb
the identifiers and function names of the original
code. For syntactic perturbation, we use three rules
to perturb operators, condition statements, and vari-

Shttps://github.com/tree-sitter/tree-sitter

https://github.com/xing-hu/TL-CodeSum
https://github.com/xing-hu/DeepCom
https://github.com/github/CodeSearchNet
https://github.com/tree-sitter/tree-sitter

able declaration statements. We did not perturb the
loop statements like other work (Chakraborty et al.,
2022) because the for and while loops cannot com-
pletely be converted to each other across several
programming languages. Besides, they do not ac-
count for a high proportion of the primary datasets.
In addition, we consider the inclusiveness of the
evaluation system for programming languages, for
example, there is no "while" in Go.

Overall, we employ seven rules for constructing
obfuscated samples:

¢ Identifier Ordered Erosion (IOE) (Yan and
Li, 2021; Jain and Jain, 2021; Ding et al.,
2021), replace identifiers in the code with or-
dered symbols such as "v0" and "v1", and
modify the replaced identifier in the summary
accordingly. This perturbation rule aims to
erode the original identifiers with the ordered
symbols that are relatively rare to model.

¢ Identifier High-frequency Replacement
(IHR) derived from Identifier mangling (Jain
and Jain, 2021; Bui et al., 2021), replace iden-
tifiers with frequent tokens, and modify the
replaced identifier in the corresponding sum-
mary. Compared to IOE, data after IHR is
closer to the original data, as it only intro-
duces frequent tokens in the training corpus
instead of rare symbols adopted by 10OE.

¢ Identifier Random Shuffling (IRS) (Jain and
Jain, 2021; Bui et al., 2021) , randomly shuffle
identifiers within the same code snippets and
modify the replaced identifier in the summary
accordingly. This rule perturbs the code se-
quence from the perspective of preserving the
semantics of the original code.

* Function Name Erosion (FNE) considering
the importance of function name for code
snippets (Fernandes et al., 2018; David et al.,
2020; He et al., 2018), replace function names
with special tokens, such as "v0", "v1" and
modify all their occurrence in the correspond-
ing summary. The function name is always
the most informative in the source code. Simi-
lar to IOE, this rule, by erasing semantics in
the function name, can encourage the model
to learn the importance of different identifiers
in code.

* Operators and Operands Swap (OOS)
(Chakraborty et al., 2022), as logical and nu-
merical operations play an important role in

code syntax and style, we inverse the oper-
ators of binary and logical operations in the
code and swap the corresponding operands
to keep the same semantic. For inequalities
in logical operations, we replace "<" and ">"
with each other (including "<="and ">=") and
swap the corresponding operands. For opera-
tors such as "+", "*", "==","1="or "<>", we
only swap the operands.

* Dead Branch Injection (DBI) derived from
code injection (Ding et al., 2021; Chakraborty
et al., 2022), condition statement is the basis
of code syntax, we insert branch statements
in the code that will not affect the original
program execution process. We inject a dead
branch condition statement at the beginning
of the function body and put the original func-
tion body into the true branch while inserting
unrelated code into the false branch.

» High-frequency Variable Injection (HVI)
derived from code injection (Ding et al., 2021;
Chakraborty et al., 2022), we insert variable
declaration statements in the code that will not
affect the original program execution process.

Figure 2 illustrates examples of the seven pertur-
bation rules.

It is important to note that to maintain the read-
ability of the perturbed code and prevent significant
deviations from the original code, we treat func-
tion names, function parameters, and local variable
names as identifiers. This implies that external
APIs within the function body and global variable
names declared outside the function body will be
retained.

Finally, we apply the seven perturbation rules to
the original datasets and extend them into seven ob-
fuscation datasets. We will analyze the fine-grained
capability of the model by combining these pertur-
bation rules.

4 Evaluation Methodology

4.1 Baseline Models

We select three code language models as our base-
line models: CodeBERT, CodeT5, and CodelLlama.
They stand as the state-of-the-art models for code
summarization.

CodeBERT (Feng et al., 2020) is a BERT-style
pre-training model based on RoBERTa (Liu et al.,
2019). The model has been pre-trained on both

int int vO(int[] v1) {

int =0;

for (int vl |
if (va>v2) {

1
int 2
3
4
5 =
6
7
8
9

for (int
if (>

}
}

return

}
1

return

NVONOOTDWN =
n

} }

(a) Original Code

(int[1) 1
int =0;
for (int :)|
if (> max) |

}
}

return

int int
int
for (int :)
if ()

}
]

return

NVMoONOOBAWN=
n
NVoONOUAWN=
n

} }

(e) Function Name Erosion (f)
Swap

Operators & Operands (g) High-frequency Variable
Injection

int (intl]) {
int =0;

for (int i) { for (int :

if (>) if (>

1 int
2
3
4
H- =
} 6
7
8
9

(int[] max) {

int =0;

SRS
-

}
}

return

}

return

VNGO A WN =
1

} 1

(b) Identifier Ordered Erosion (c) Identifier High-frequency (d) Identifier Random Shuffle
Replacement

int int (int[] =rr) {

int

(int[])
=0;

for (int :) | =0;
)

return

int

1
2
3
4
5
6
7
8 return
9

O ®O~NOoO A

}
(h) Dead Branch Injection

Figure 2: Illustration of the seven perturbation rules. The perturbed parts are marked in green

natural and programming languages using two self-
supervised objectives, namely, masked language
model and replaced token detection. The pre-
trained model is finetuned on task-specific datasets
for code understanding tasks such as code search
and code summarization.

CodeT5 (Wang et al., 2021) is a pre-trained
model of code based on the encoder-decoder archi-
tecture. CodeT5 extends T5 by adding pre-training
tasks to capture identifier semantics. Moreover,
a bimodal dual generation task is proposed to en-
hance the decoder for generation tasks. We directly
run the pre-trained checkpoint® for code summa-
rization.

CodeLlama-7B (Roziere et al., 2023) stands as
the state-of-the-art LLM for code generation and
comprehension. It is built on top of Llama 2(Tou-
vron et al., 2023) and was pre-trained in Python.
CodeLlama can generate both code and natural
language about code. We generate summaries for
Python using the infilling method recommended
in the paper(Roziere et al., 2023). The infilling
method, as illustrated in Figure 4(a), replaces the
document content of the input Python code with
a special tag, and takes it as input to the model’.
The model will generate summaries to fill in the
special tag. Since the content generated by CodelL-
lama is too long, we only select the first line as
the final summary. CodelL.lama has not been pre-

8CodeT5 generation script.
"CodeLlama infilling method.

trained in Go and Java. Therefore, there is not
an officially recommended inference method in
these languages. We generate summaries using the
method in bigcode-evaluation-harness® which re-
sults in reasonable performance. Specifically, we
append a prompt at the end of the code to guide
the model to output summary text. The prompt
template can be found in Figure 4(b) and 4(c) in
Appendix.

Deep Code Model

| 008
Semantic) Syntactic
q HVI
Evaluation (| Evaluation
H H
H
[—

v

Robustness Analysis &
Fine-grained Analysis

Figure 3: The evaluation workflow of OR-CodeSum, the
solid blue arrow indicates the corresponding evaluation
of the model and the dashed green arrow indicates the
transmission of evaluation results.

4.2 Evaluation WorkFlow

Having obtained the obfuscated datasets, we design
an evaluation methodology to comprehensively in-

8Prompts for code-to-text task with large model.

https://github.com/salesforce/CodeT5/blob/main/CodeT5/run_gen.py
https://github.com/facebookresearch/codellama/blob/main/llama/generation.py
https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/bigcode_eval/tasks/codexglue_code_to_text.py

Dataset CodeBERT CodeT5 CodeLlama
Python Go Java Python Go Java Python Go Java
Primary
1795 17.78 18.62 20.38 19.67 20.66 22.03 12.78 15.11
Semantic Perturb.
IOE 13.89 11.02 13.85 1523 1690 14.18 11.15 12.75 13.34
IRS 1470 13.07 15.42 16.50 17.87 15.88 17.30 1240 1395
IHR 12.54 12.10 12.84 1584 1696 14.82 11.86 11.85 12.63
FNE 1474 1295 1540 17.05 16.19 15.72 1854 1242 14.17
average 1397 1229 14.38 16.16 1698 15.15 1471 1236 13.52
Syntactic Perturb.
00S 1794 1779 18.61 19.34 19.71 20.68 22.08 12.77 15.08
HVI 17.53 17.75 18.15 19.32 19.62 20.65 21.69 12.88 15.22
DBI 17.34 17.87 18.26 18.77 19.15 20.25 21.69 1295 14.95
average 17.60 17.80 18.34 19.14 1949 20.53 21.82 12.87 15.08

Table 3: BLEU scores on the obfuscated datasets.

vestigate the full aspects of model performance.
The entire evaluation workflow is summarized in
Figure 3. We begin with a robust evaluation that
aims to identify the most sensitive aspects of code
when the model summarizes source code. This
can be achieved by testing the baseline models
on the seven obfuscated datasets. For example,
when some perturbations have greater impacts on
the model, it means that the corresponding aspects
(e.g., identifiers) are the most critical to code sum-
marization models. We can also know whether the
model is sensitive to semantic or syntactic aspects
of the code.

Having identified sensitive aspects of code, we
face a new problem: The sensitive aspects of code
may obscure the effect of non-sensitive aspects in
testing model’s ability. For example, if the model
heavily relies on semantic features such as identi-
fiers, it will be difficult to identify the impact of
syntactic perturbation when the input code contains
much semantic information. In order to test mod-
els’ ability in recognizing low-sensitivity aspects
of code, we propose cross-obfuscation datasets that
reduce the dominance of high-sensitive aspects of
code. Specifically, we perturb the original datasets
by combining two perturbation rules, one from se-
mantic perturbation and the other from syntactic
perturbation.

Finally, through the two-phase evaluation, we
can have a fine-grained analysis of the model. By
summing up the results of both robust evaluation
and cross-obfuscation evaluation, we can gain more
comprehensive insights into the model’s ability in-

cluding performance, capacity, and robustness.

4.3 Implementation Details °

We trained all LLMs based on the released pre-
trained checkpoint on huggingface!?!12. All pa-
rameters were consistent with the open-source doc-
uments provided in the original papers of each
model. We trained and evaluated all models on
a GPU machine with Nivida Tesla V100.

4.4 Evaluation Metrics

We used smoothed BLEU-4 score (Lin and Och,
2004) and BERTScore (Zhang et al., 2019) as the
evaluation metrics, which are the most widely used
metric for shot-text summarization tasks. BLEU
is calculated with the same scripts provided by the
baseline models. BERTScore computes a sentence-
level similarity score by making use of token-level
similarities, produced by cosine similarities be-
tween their contextual embeddings.

5 Experiments and Analysis '*

5.1 Robust Evaluation

Table 3 compares the evaluation results of three
baseline models on the primary and perturbated
datasets, respectively.

“Hyperparameters about baseline models can be found in
Appendix A

https://huggingface.co/microsoft/codebert-base

https://huggingface.co/Salesforce/codet5-base

Phttps://huggingface.co/codellama/CodeLlama-7b-hf

We show brief results with BLEU scores in the main
content. The full results, including the other evaluation metric
BERTScore, can be found in Appendix C

https://huggingface.co/microsoft/codebert-base
https://huggingface.co/Salesforce/codet5-base
https://huggingface.co/codellama/CodeLlama-7b-hf

Dataset CodeBERT CodeT5 CodeLlama
Python Go Java Python Go Java Python Go Java
Semantic Perturb. THR IOE IHR IOE FNE IOE IOE 1IHR IHR
primary 12.54 11.02 12.84 15.23 16.19 14.18 11.15 11.85 12.63
Cross Perturb.
Semantic x OOS 12.52 1093 12.87 1421 16.25 1434 11.07 11.64 12.50
Semantic x HVI 11.57 10.81 12.16 13.75 15.75 13.58 8.85 11.82 12.51
Semantic x DBI 11.49 10.74 12.13 12.70 14.58 13.31 8.15 11.41 12.07
average 11.83 10.83 12.39 13.55 15.53 13.74 936 11.62 12.36

Table 4: BLEU scores on the cross-obfuscated datasets. The semantic perturbation chooses the one with the greatest

impact on the model in each programming language.

Comparing the perturbated datasets Across all
perturbations, IOE and IHR has the most significant
impact on the model performance. For example,
IOE drops the BLEU scores obtained by CodeT5
by 5.15 and 6.48 in Python and Java, respectively.
Codellama witnesses a BLEU drop by 10.88 in
Python. IHR decreases the BLEU score obtained
by CodeBERT by 5.41 and 5.68 in Python and Go,
respectively. A similar trend can be observed by
CodeLlama, with BLEU scores dropped by 0.93
and 2.48 in Java and Go, respectively.

FNE also plays a role in code summarization,
particularly for smaller models. For example, FNE
decreases the BLEU scores by 5.49 and 3.48 for
CodeBERT and CodeT5 respectively in the Go
language.

Overall, the results indicate that meaningful iden-
tifiers are critical for language models in code com-
prehension.

Comparing semantic and syntactic perturba-
tions The three baseline models are more sensi-
tive to semantic perturbations than syntax pertur-
bations on code, which means that state-of-the-art
code language models pay more attention to seman-
tic features in source code, such as function and
variable names.

We particularly notice that the impact of syn-
tactic perturbed datasets is obscured by semantic
perturbations. Hence we need a more fine-grained
evaluation of the effect of syntactic perturbations.

On the other hand, most downstream tasks of
pre-trained code models lack explicit syntactic su-
pervision, which strengthens the binding between
the meaningful identifier and the summary hereby
hampering the robustness of the model against se-
mantic perturbation.

5.2 Cross-Perturbation Evaluation

Recognizing that models exhibit heightened aware-
ness of semantic code features, we embark on an
in-depth examination of their capability in compre-
hending code syntax. To achieve this, we introduce
a novel cross-perturbation evaluation methodology
aimed at minimizing the impact of semantic pertur-
bations on the original code while intensifying the
syntactic features. We construct cross-perturbed
datasets by combining two distinct sets of perturba-
tion rules: one focusing on semantic perturbations
and the other on syntactic perturbations. Specif-
ically, we select semantic perturbation rules that
have the maximal impact on the specific language
14 and model. These chosen semantic perturba-
tion rules are then paired with one of the syntax
perturbation rules.

Table 4 shows the results of the cross-
perturbation evaluation. All BLEU scores on the
cross-perturbed datasets are compared to datasets
that have the most significant impact on models
and programming languages.

Comparing the perturbed datasets The results
indicate that nearly all baseline models exhibit sen-
sitivity to the perturbation involving dead branch
insertion. Additionally, the obfuscation technique
of high-frequency variable injection significantly
influences model performance. Unlike syntactic
perturbed datasets used for robustness evaluation,
cross-perturbed datasets offer a more explicit rev-
elation of the model’s ability on low-sensitive as-
pects. This is achieved by minimizing the impact
of high-sensitivity code aspects, providing a clearer
understanding of the model’s performance across
various dimensions.

“More cross-perturbation results in Appendix C

Lang Model Semantic Syntactic Overall

0.35/1.95% 4.33/24.12%
Python CodeT5 4.22/20.71% 1.24/6.08% 5.46/26.79%
CodeLlama 7.32/33.23% 0.21/0.95% 7.53/34.18%

CodeBERT 3.98/22.17 %

CodeBERT 5.49/30.88% -0.02/-0.11% 5.47/30.76%
Go CodeT5 2.69/13.68% 0.18/0.92% 2.87/14.59%
CodeLlama 0.42/3.29% -0.09/-0.70% 0.33/2.58%

CodeBERT 4.24/22.77% 0.28/1.50% 4.52/24.27%
CodeT5 5.51/26.67% 0.13/0.63% 5.64/27.30%
CodeLlama 1.59/10.52% 0.03/0.20% 1.62/10.72%

Java

Table 5: The decrease of BLEU scores with their relative
percentage for each robustness aspect.

Comparing different programming languages
Among the three programming languages, Python
exhibits the highest sensitivity to syntactic pertur-
bation. This sensitivity may stem from Python’s
syntactic flexibility, causing code models to overly
prioritize semantic information and making it chal-
lenging to differentiate syntactic perturbations.

5.3 Results Analysis

We provide our comprehensive analysis based on
three evaluation aspects: performance, capability,
and robustness. In terms of performance (Table
3), CodeLlama outperforms other baseline models
on the primary regular test sets, though it shows
suboptimal scores when not pretrained on Go and
Java. From the capability of the model, all three
baseline models tend to focus on the perturbation of
semantics over syntax. This is particularly evident
in larger language models such as CodelL.lama. For
robustness, the results presented in Table 5 suggest
that CodeBERT is robust to strong perturbations in
Python, while in Go and Java, CodeLlama exhibits
more robustness. Overall, the higher the score a
model achieves, the more sensitive it is to semantic
perturbations.

5.4 Case Study

In addition to the quantitative analysis, we also
provide a number of cases in Appendix D.

6 Discussion

6.1 Robustness and capability of code
summarization models

Our experiments reveal a notable distinction be-
tween a model’s capability and robustness. A
model that demonstrates robustness to perturba-
tions of specific features does not necessarily im-
ply its proficiency in capturing those features. For

example, our findings demonstrate that state-of-
the-art code language models excel in capturing
semantic features rather than syntax. Hence the
impact of syntax perturbations on these models
is marginal. In that sense, the model is robust to
syntax perturbations, but this robustness does not
inherently imply a strong ability to capture syntax
features. The high evaluation score observed in
metrics is a reflection of the model’s proficiency
in capturing semantic features, which may inad-
vertently overshadow its performance in capturing
syntax features.

6.2 Why are deep code summarization models
sensitive to identifier perturbations?

State-of-the-art code language models have been
pre-trained on large-scale code corpora. These pre-
training objectives force the models to focus on
semantic cues (such as identifiers) that appear in
both natural and programming languages. In other
words, the performance of PLMs depends on the
readability of code. In practice, however, the read-
ability of code cannot be guaranteed, which means
that the model that achieves high evaluation scores
on the original benchmarks may fail to comprehend
code with poor readability in real datasets. This
is particularly evident in larger language models
such as CodeLlama, which have been pre-trained
on large-scale standardized code.

7 Conclusion

In this paper, we propose OR-CodeSum, a robust-
ness evaluation benchmark for code summariza-
tion tasks. By extending existing benchmarks with
perturbation rules, OR-CodeSum enables a fine-
grained evaluation of code summarization models
on multiple aspects of model performance. Our
experiments, conducted on three baseline models,
reveal that existing models showcasing high BLEU
and BERTScores exhibit high sensitivity to seman-
tic features in code, particularly identifiers. No-
tably, larger models exhibit a more pronounced
dependence on these semantic features, making
them vulnerable to code with poor readability. Our
work can inspire future research to evaluate more
aspects of model capability, instead of relying on
individual metrics and datasets.

Limitations

The limitations of our work lie in two aspects: 1)
The studied baseline models are selected based on

performance. However, our studies indicate that
high-performance models do not necessarily have
robustness. Studying models with different archi-
tectures and training methods may lead to more
interesting conclusions. 2) We investigate the ro-
bustness of code models through seven obfuscation
rules. Other characteristics of code, such as code
length, could also affect the performance of the
model. For example, whether longer code hinders
models from comprehending source code. A more
rigorous methodology could be separating code
into groups with distinct characteristics, such as
long and short code, and analyzing each group in-
dividually. We leave the investigation of more code
characteristics in future work.

References

Pavol Bielik and Martin Vechev. 2020. Adversarial
robustness for code. In International Conference on
Machine Learning, pages 896-907. PMLR.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-
supervised contrastive learning for code retrieval and
summarization via semantic-preserving transforma-
tions. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 511-521.

Casey Casalnuovo, E Morgan, and P Devanbu. 2020.
Does surprisal predict code comprehension difficulty.
In Proceedings of the 42nd Annual Meeting of the
Cognitive Science Society. Cognitive Science Society
Toronto, Canada.

Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding,
Premkumar T Devanbu, and Baishakhi Ray. 2022.
NatGen: generative pre-training by “naturalizing”
source code. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,

pages 18-30.

Yaniv David, Uri Alon, and Eran Yahav. 2020. Neural
reverse engineering of stripped binaries using aug-
mented control flow graphs. Proceedings of the ACM
on Programming Languages, 4(OOPSLA):1-28.

Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessan-
dro Morari, Baishakhi Ray, and Saikat Chakraborty.
2021. Contrastive learning for source code with
structural and functional properties. arXiv preprint
arXiv:2110.03868.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages

1536-1547, Online. Association for Computational
Linguistics.

Patrick Fernandes, Miltiadis Allamanis, and Marc
Brockschmidt. 2018. Structured neural summariza-
tion. arXiv preprint arXiv:1811.01824.

Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Ray-
chev, and Martin Vechev. 2018. Debin: Predicting de-
bug information in stripped binaries. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 1667—1680.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018a.
Deep code comment generation. In 2018 IEEE/ACM
26th International Conference on Program Compre-
hension (ICPC), pages 200-20010. IEEE.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and
Zhi Jin. 2018b. Summarizing source code with trans-
ferred api knowledge.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436.

Paras Jain and Ajay Jain. 2021. Contrastive code repre-
sentation learning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing.

Chin-Yew Lin and Franz Josef Och. 2004. Orange: a
method for evaluating automatic evaluation metrics
for machine translation. In COLING 2004: Pro-
ceedings of the 20th International Conference on
Computational Linguistics, pages 501-507.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv
preprint arXiv:2102.04664.

Katerina Margatina, Giorgos Vernikos, Loic Barrault,
and Nikolaos Aletras. 2021. Active learning by ac-
quiring contrastive examples. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 650—663.

Pooja Rani, Suada Abukar, Nataliia Stulova, Alexandre
Bergel, and Oscar Nierstrasz. 2021. Do comments
follow commenting conventions? a case study in
java and python. In 2021 IEEE 21st International
Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 165-169. IEEE.

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi
Han, Hongyu Zhang, Dongmei Zhang, and Hong-
bin Sun. 2022a. On the evaluation of neural code
summarization. In Proceedings of the 44th Interna-

tional Conference on Software Engineering, pages
1597-1608.

Lin Shi, Fangwen Mu, Xiao Chen, Song Wang, Junjie
Wang, Ye Yang, Ge Li, Xin Xia, and Qing Wang.
2022b. Are we building on the rock? on the impor-
tance of data preprocessing for code summarization.
In Proceedings of the 30th ACM Joint European Soft-
ware Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 107—
119.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696—8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Fan Yan and Ming Li. 2021. Towards generating sum-
maries for lexically confusing code through code
erosion. In IJCAI, pages 3721-3727.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-
dran, Sindhu Tipirneni, and Chandan K Reddy. 2022.
Xlcost: A benchmark dataset for cross-lingual code
intelligence. arXiv preprint arXiv:2206.08474.

A Hyperparameters

The hyperparameters and specfications for all lan-
guage models are provided in Table A.

B Prompt Templates for LLMs

The prompts used for CodeLlama are shown in
Figure 4.

10

CodeBERT CodeT5 CodelLlama

Transformer layers 12 24 32
Max seq length 512 512 2048
Embedding size 768 768 4096
Attention head 12 12 32
Vocabulary size 50,265 32,100 32,000
of parameters 125M 220M 7B

Table 6: Hyperparameters of baseline models.

def sina_xml_to_url_list(xml_data):
rawurl = []
dom = parseString(xml_data)
for node in dom.getElementsByTagName('durl’):
url = node.getElementsByTagName('url')[0]
rawurl.append(url.childNodes[0].data)

return rawurl

(a) Prompt for Python.

func FiltersFromRequest(creq *pb.WatchCreateRequest) []mvcc.FilterFunc {

filters := make([]mvcc.FilterFunc, 0, len(creq.Filters))
for _, ft := range creq.Filters {
switch ft {

case pb.WatchCreateRequest_NOPUT:
filters = append(filters, filterNoPut)
case pb.WatchCreateRequest_NODELETE:
filters = append(filters, filterNoDelete)
default:
+
+

return filters

(b) Prompt for Go.

public long calculateDelay(TimeUnit unit) {

float delta = variancePercent / 100f; // e.g., 20 / 100f == 0.2f

float lowerBound = 1f - delta; // 0.2f --> 0.8f

float upperBound = 1f + delta; // 0.2f --> 1.2f

float bound = upperBound - lowerBound; // 1.2f - 0.8f == 0.4f

float delayPercent = lowerBound + (random.nextFloat() * bound); // 0.8 +
(rnd * 0.4

long callDelayMs = (long) (delayMs * delayPercent);

return MILLISECONDS.convert(callDelayMs, unit);

(c) Prompt for Java.

Figure 4: Prompts used for CodeLlama inference.

https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685

CodeBERT CodeT5 CodelLlama

Dataset Python Go Java Python Go Java Python Go Java

Primary
1795 17.78 18.62 20.38 19.67 20.66 22.03 1278 15.11

Semantic Perturb.

IOE 13.89 11.02 13.85 1523 1690 14.18 11.15 1275 13.34
IRS 1470 13.07 1542 16.50 17.87 15.88 1730 1240 1395
IHR 12.54 12.10 12.84 1584 1696 14.82 11.86 11.85 12.63
FNE 1474 1295 1540 17.05 16.19 15.72 1854 1242 14.17
Syntactic Perturb.
00S 1794 17.79 18.61 1934 19.71 20.68 22.08 12.77 15.08
HVI 17.53 17.75 18.15 19.32 19.62 20.65 21.69 12.88 15.22
DBI 17.34 17.87 18.26 18.77 19.15 20.25 21.69 1295 14.95

Cross Perturb.
IOE x O0S 14.07 1093 13.87 1421 1690 14.34 11.07 12.69 13.31
IOE x HVI 13.21 10.81 13.26 13.75 16.66 13.58 8.85 12.74 13.27
IOE x DBI 12.58 10.74 13.20 1270 1631 13.31 8.15 12.43 1248

IRS x OOS 1470 12.88 15.38 15.54 1790 1594 16.96 12.43 14.00
IRS x HVI 14.05 12.17 14.67 1532 1773 15.71 1529 12.61 14.08
IRS x DBI 13.16 12.13 14.71 13.93 1699 14.95 1494 1220 13.56

IHR x OOS 12,52 12.00 12.87 1445 1691 14.82 11.89 11.64 12.50
IHR x HVI 11.57 11.57 12.16 1416 1672 14.61 9.67 11.82 12.51
IHR x DBI 11.49 1125 12.13 13.23 16.08 13.78 8.66 11.41 12.07

FNE x OOS 14.69 1295 15.37 1597 1625 15.89 18.41 1242 14.18
FNE x HVI ~ 13.66 12.60 14.46 1522 15775 14.58 16.29 1246 14.21
FNE x DBI 1294 12.16 14.27 1425 1458 15.11 1573 12.09 13.28

Table 7: Smoothed BLEU-4 evaluation results.

11

CodeBERT CodeT5 CodelLlama

Dataset Python Go Java Python Go Java Python Go Java

Primary
29.64 40.11 31.92 3441 4318 3535 3891 2630 33.68

Semantic Perturb.

IOE 19.52 16.26 21.53 22.05 37.09 20.90 13.27 2626 29.40
IRS 22.82 2328 2550 26.97 37.64 26.51 30.03 25.54 3143
IHR 17.53 2238 19.61 25.03 36.26 24.65 20.02 24.01 27.85
FNE 22.63 2148 25.17 26.99 3573 22.60 31.78 25.18 31.28
Syntactic Perturb.
00S 29.63 40.14 31.90 3343 4327 3545 38.86 26.29 33.70
HVI 28.69 40.08 30.99 33.19 43.00 35.25 38.53 26.46 33.67
DBI 28.27 4040 3141 31.61 4251 34.87 3849 26.28 33.06

Cross Perturb.
IOE x O0S 19.71 16.05 21.56 20.95 37.08 21.42 13.19 26.24 29.32
I0OE x HVI 16.57 1596 20.22 19.11 36.85 18.79 6.76 26.26 29.18
IOE x DBI 16.71 16.03 20.05 16.82 36.51 20.06 6.43 25.70 27.51

IRS x OOS 2279 22.69 2548 2598 37.68 26.64 29.25 2537 31.51
IRS x HVI 21.16 21.76 23.90 25.15 3744 2594 25.26 25.57 30.98
IRS x DBI 1892 22779 24.38 21.09 3659 24.74 24.43 24839 30.20

IHR x OOS 17.52 2236 19.69 2342 36.88 24.85 19.62 23.85 27.81
IHR x HVI 1529 2149 17.99 22.49 36.63 23.82 14.44 2393 27.65
IHR x DBI 14.89 21.63 18.03 18.99 35.81 2197 11.50 22.87 26.34

FNE x OOS 2252 2152 25.10 25.89 35.83 23.15 3147 2523 31.22
FNE x HVI ~ 19.83 2095 23.10 2250 33.98 18.01 26.11 2535 31.19
FNE x DBI 18.15 21.33 22.71 2091 32.64 22.65 2488 24.62 29.67

Table 8: BERTScore evaluation results. All values are multiplied by 100 for ease of display

12

C Full Results and Results with Other
Metrics

Table 7 and 8 show the full results using BLEU-4
and BERTScore respectively. BERTScores often
lie in a small range. Following the general practice,
we rescale them with baselines to fall in [0, 1]"°.

The findings from BERTScore align closely with
those derived from BLEU. Generally, as the score
increases, the model tends to exhibit greater vulner-
ability to semantic perturbations. Notably, among
all semantic perturbations, IOE and IHR exhibit
the most significant impact. Among syntax pertur-
bations, DBI has the most impact on model perfor-
mance.

D Case Study

Figure 5 presents three cases of code summariza-
tion by CodeT5. We compare the original human-
written summary to model-generated summaries
with and without FNE perturbation, respectively.
We find that when the function name is eroded, the
summary generated by CodeT5 becomes confusing.
The example suggests that CodeTS5 focuses more
on semantic cues such as function names.

SRescaling BERTScore with Baselines

13

Code:

def get_pandas_df (self, hql, parameters=None) :
import pandas
cursor = self. get_cursor ()
cursor. execute (self. _strip_sql (hql), parameters)
data = cursor. fetchall ()
if data:
df = pandas. DataFrame (data)
df. columns = [c[0] for ¢ in column_descriptions]
else:
df = pandas. DataFrame ()
return df

Summary:
Original answer: Get a pandas DataFrame from the database .

FNE answer: Execute the given SQL query .

(a) A case in Python.

Code:
func NewResource (name, rtype, state, owner string,t time. Time) Resource

{

return Resource{

Name : name,

Type: rtype,
State: state,

Owner : owner,
LastUpdate: t,

UserData: &UserData{l,

Summary:
Original answer: NewResource creates a new resource

FNE answer: vO is the version of Resource .

(b) A case in Go.

Code:

static public byte[] intToBytes(int v) {
byte[l b = new byte[4];
int allbits = 255;
for (int i =0; i <4; i+ {
b[3-i] = (byte) ((v & (allbits << i * 8)) >> i * 8);
}

return b;

1

Summary:
Original answer: Convert an int to a byte array .

FNE answer: VO byte array .

(c) A case in Java.

Figure 5: Summaries generated by CodeT5 with and
without FNE perturbation.

https://github.com/Tiiiger/bert_score/blob/master/journal/rescale_baseline.md

