
How Robust Are Code Summarization Models to Poor-Readability Code?
Fine-grained Evaluation and Benchmark

Anonymous ACL submission

Abstract

Pre-trained language models such as CodeT5001
have demonstrated substantial achievement in002
code comprehension. Despite the giant leap in003
model architectures and training processes, we004
find that the benchmarks used for evaluating005
code summarization tasks are confined to high-006
readability code, regardless of the popularity007
of obfuscated code in reality. As such, they008
are inadequate to demonstrate the fine-grained009
ability of models, particularly the robustness to010
varying readability degrees. In this paper, we011
introduce OR-CodeSum, a robust evaluation012
benchmark on code summarization tasks, in-013
cluding seven obfuscated datasets derived from014
existing datasets. OR-CodeSum innovatively015
introduces the construction rules of obfusca-016
tion code into the testing process, considering017
semantic, syntactic, and cross-obfuscation ro-018
bustness of code summarization tasks. Our019
robustness evaluation reveals that the current020
code summarization models rely heavily on the021
readability of the code while not paying enough022
attention to the syntactic information. We be-023
lieve OR-CodeSum1 can help researchers ob-024
tain a more comprehensive and profound under-025
standing of code summarization models, which026
facilitates the improvement of model perfor-027
mance.028

1 Introduction029

Efficient program comprehension is crucial for de-030

velopers and significantly enhances software de-031

velopment productivity. Code summarization, a032

process that generates natural language descrip-033

tions for source code, has witnessed substantial034

progress in recent years, primarily driven by the035

development of large pre-trained models such as036

CodeBERT, CodeT5, and CodeLlama (Feng et al.,037

2020; Wang et al., 2021; Roziere et al., 2023).038

1We make OR-CodeSum, benchmark models, and code
publicly available.

IOE

IHR

IRS

FNEOOS

DBI

HVI

Python
Go
Java

Figure 1: Fine-grained evaluation for CodeT5 across
three programming languages. The seven dimensions
represent seven perturbed datasets derived from existing
datasets. Each value within the figure corresponds to
the percentage of results obtained from the perturbed
dataset in relation to the results from the original dataset.

While the majority of research efforts have fo- 039

cused on improving model architectures and train- 040

ing methodologies, it is apparent that the evaluation 041

of code summarization models faces significant 042

limitations. First, the test sets used for evaluating 043

code summarization models are confined to high- 044

readability code, characterized by well-structured 045

syntax, meaningful variable names, and conven- 046

tional coding styles. However, real-world software 047

engineering often involves code with poor readabil- 048

ity, as observed in various studies (Rani et al., 2021; 049

Shi et al., 2022b; Bielik and Vechev, 2020). Unlike 050

natural languages, source code exhibits varying for- 051

mats and styles due to programmers adhering to 052

different coding conventions and personal prefer- 053

ences. For instance, in reverse engineering, devel- 054

opers must comprehend decompiled code, which 055

may lack meaningful original identifiers. Addition- 056

ally, in the context of security, malicious code may 057

be intentionally obfuscated by rearranging identi- 058

fiers and structures to impede readability. To ef- 059

fectively address such challenges, it is crucial to 060

assess the robustness of existing code summariza- 061

tion models against obfuscated code, which often 062

features nonsense identifiers and dead code (Rani 063

et al., 2021; Shi et al., 2022b; Bielik and Vechev, 064

1

2020). Second, and more critically, the current065

evaluation processes rely on single, coarse-grained066

metrics, offering only an overall performance as-067

sessment of neural network models on a specific068

task. Consequently, these metrics fail to provide a069

comprehensive and intuitive demonstration of the070

fine-grained capabilities of pre-trained code mod-071

els, particularly the model’s robustness to varying072

readability degrees.073

In this paper, we present OR-CodeSum, a ro-074

bust evaluation benchmark designed to assess the075

robustness of code summarization models. To pro-076

vide a thorough evaluation of model robustness077

against perturbations, we expand three widely used078

datasets, namely TL-CodeSum (Hu et al., 2018b),079

Deepcom (Hu et al., 2018a), and CodeSearch-080

Net (Husain et al., 2019), into seven finer-grained081

datasets using via obfuscated samples, i.e., obfus-082

cated code that have the same semantics as the083

original code. We construct obfuscation samples084

according to seven perturbation rules that target085

both semantic and syntactic aspects of code: Identi-086

fier Order Erosion (IOE), Identifier Random Shuf-087

fling (IRS), Identifier High-Frequency Replace-088

ment (IHR), Function Name Erosion (FNE), Op-089

erators and Operands Swap (OOS), Dead Branch090

Injection (DBI), and High-Frequency Variable In-091

jection (HVI). Figure 1 illustrates the fine-grained092

performance of CodeT5 in our obfuscated test set.093

We conduct a robustness analysis on three promi-094

nent code LMs, namely CodeBERT (Feng et al.,095

2020), CodeT5 (Wang et al., 2021), and CodeL-096

lama (Roziere et al., 2023), using the obfuscated097

datasets. This analysis aims to gain insights into098

the model’s sensitivity to various aspects. Subse-099

quently, we create cross-perturbed datasets by min-100

imizing the impact of sensitive aspects, allowing us101

to assess the comprehension ability of models on102

low-sensitive code aspects. Finally, we scrutinize103

the fine-grained performance of code summariza-104

tion models using the results of both the robust105

evaluation and cross-evaluation on the reduced sen-106

sitivity datasets.107

The primary contributions of this paper are sum-108

marized as follows:109

• We introduce a new benchmark dataset for a110

fine-grained evaluation of the code summa-111

rization task across three programming lan-112

guages. To the best of our knowledge, it is the113

first benchmark that can evaluate the model114

from performance, capability, and robustness115

by using obfuscated code. 116

• We create an evaluation workflow to assess 117

the fine-grained capability of neural code sum- 118

marization models, taking into account their 119

semantic, syntactic, and joint robustness. 120

• We conduct experiments to analyze the fine- 121

grained characteristics of state-of-the-art code 122

language models. 123

2 Related Work 124

2.1 Code Benchmarks 125

Besides our work, there have been other bench- 126

marks for code understanding and generation tasks 127

(Lu et al., 2021; Zhu et al., 2022). 128

CodeXGLUE (Lu et al., 2021), a benchmark 129

that provides a fine-grained taxonomy for a broad 130

range of code comprehension and generation tasks 131

by collecting and integrating the previously pub- 132

licly used datasets. The benchmark involves 14 133

datasets, a collection of 10 different code compre- 134

hension and generation tasks, and a platform for 135

model evaluation and comparison. 136

XLCoST (Zhu et al., 2022), a benchmark dataset 137

for cross-lingual code intelligence. As it is always 138

difficult to mine parallel code data, XLCoST pro- 139

vides fine-grained parallel data in 7 commonly used 140

programming languages (C++, Java, Python, C#, 141

Javascipt, PHP, C), and natural language (English). 142

Table 1 compares OR-CodeSum with previous 143

code benchmarks on the code summarization task. 144

As seen, OR-CodeSum provides a more rigorous 145

evaluation for code summarization models: using 146

test data of more challenging readability to ana- 147

lyze fine-grained aspects of the model including 148

performance, capabilities, and robustness. 149

2.2 Studies on Code Summarization 150

Evaluation 151

Besides our work, there have been other works 152

that study the evaluation of code summarization 153

systems (Shi et al., 2022a,b). For example, (Shi 154

et al., 2022a) carried out an in-depth analysis of the 155

evaluation of the code summarization task. Their 156

work focuses on several aspects in the evaluation 157

process such as the data pre-processes, operation 158

model used, characteristics of datasets, and eval- 159

uation metrics. Shi et al. (2022b) concern about 160

the quality of the benchmark datasets built from 161

real-world projects and study the noise in different 162

benchmark datasets. 163

2

Benchmark Multilingual Multiple Datasets Evaluation Aspects
Performance Capability Robustness

CodeXGLUE
√

×
√

× ×
XLCoST

√ √ √
× ×

OR-CodeSum
√ √ √ √ √

Table 1: Comparison of different benchmarks on the code summarization task. The capability refers to the ability of
the model to capture semantics or syntax from code.

Dataset Language # of Functions

TL-CodeSum Java 8,714

DeepCom Java 58,811

CodeSearchNet
Java 10,955

Python 14,918
Go 8,122

Table 2: Number of test functions on the original dataset
in terms of different languages.

While these works study the quality of evalua-164

tion data, OR-CodeSum aims at providing a fine-165

grained evaluation of the model by obfuscating166

the test data in different aspects and analyzing the167

capability of the tested model.168

3 Dataset169

In this section, we introduce our proposed dataset170

called OR-CodeSum. OR-CodeSum is built upon171

three previously publicly used datasets. to provide172

more fine-grained evaluations of code summariza-173

tion models. We extend them into seven obfuscated174

datasets via code perturbations.175

3.1 Primary Datasets176

OR-CodeSum is built on three existing code sum-177

marization datasets, including TL-CodeSum 2(Hu178

et al., 2018b), DeepCom3 (Hu et al., 2018a), and179

CodeSearchNet 4(Husain et al., 2019).180

TL-CodeSum (Hu et al., 2018b) released a dataset181

that includes 87,136 (function, summary) pairs ex-182

tracted from Java projects created from 2015 to183

2016 with at least 20 stars.184

DeepCom (Hu et al., 2018a) released a dataset that185

includes 588,108 Java methods with documenta-186

tion. The dataset was originally collected from187

9,714 GitHub projects. It takes the first sentence188

2https://github.com/xing-hu/TL-CodeSum
3https://github.com/xing-hu/DeepCom
4https://github.com/github/CodeSearchNet

of the documentation comment as the summary of 189

each Java method. 190

CodeSearchNet (Husain et al., 2019) is a well- 191

formatted code language dataset. The dataset in- 192

volves a large number of functions along with their 193

documentation or comments written in Go, Java, 194

JavaScript, PHP, Python, and Ruby. It was parsed 195

using TreeSitter5. 196

The statistics of the primary datasets are pre- 197

sented in Table 2. As an evaluation benchmark, 198

OR-CodeSum only uses their test sets. 199

3.2 Obfuscation Datasets 200

To give a fine-grained evaluation of code summa- 201

rization models, we extend the primary datasets 202

with obfuscated samples. Obfuscation samples re- 203

fer to samples that are different from the original 204

samples but provide the same information for the 205

code summarization model (Margatina et al., 2021; 206

Jain and Jain, 2021; Chakraborty et al., 2022). They 207

are often used to deceive deep learning models in 208

the training stage and help improve the robustness 209

of the model (Margatina et al., 2021). 210

In our work, we want obfuscated examples to 211

contain the full aspects of the original code. Previ- 212

ous research has shown that source code involves 213

two channels of information: formal and natural 214

(Casalnuovo et al., 2020; Chakraborty et al., 2022). 215

The formal channel concerns more about the syntax 216

of code represented by abstract syntax trees (AST) 217

and data flow diagrams (DFS). The natural channel, 218

on the other hand, concerns the semantic features 219

(e.g., identifiers, keywords, and comments) used by 220

humans for code comprehension. As such, we con- 221

struct obfuscation samples by perturbing both the 222

semantics and syntax of the primary datasets. For 223

semantic perturbation, we use four rules to perturb 224

the identifiers and function names of the original 225

code. For syntactic perturbation, we use three rules 226

to perturb operators, condition statements, and vari- 227

5https://github.com/tree-sitter/tree-sitter

3

https://github.com/xing-hu/TL-CodeSum
https://github.com/xing-hu/DeepCom
https://github.com/github/CodeSearchNet
https://github.com/tree-sitter/tree-sitter

able declaration statements. We did not perturb the228

loop statements like other work (Chakraborty et al.,229

2022) because the for and while loops cannot com-230

pletely be converted to each other across several231

programming languages. Besides, they do not ac-232

count for a high proportion of the primary datasets.233

In addition, we consider the inclusiveness of the234

evaluation system for programming languages, for235

example, there is no "while" in Go.236

Overall, we employ seven rules for constructing237

obfuscated samples:238

• Identifier Ordered Erosion (IOE) (Yan and239

Li, 2021; Jain and Jain, 2021; Ding et al.,240

2021), replace identifiers in the code with or-241

dered symbols such as "v0" and "v1", and242

modify the replaced identifier in the summary243

accordingly. This perturbation rule aims to244

erode the original identifiers with the ordered245

symbols that are relatively rare to model.246

• Identifier High-frequency Replacement247

(IHR) derived from Identifier mangling (Jain248

and Jain, 2021; Bui et al., 2021), replace iden-249

tifiers with frequent tokens, and modify the250

replaced identifier in the corresponding sum-251

mary. Compared to IOE, data after IHR is252

closer to the original data, as it only intro-253

duces frequent tokens in the training corpus254

instead of rare symbols adopted by IOE.255

• Identifier Random Shuffling (IRS) (Jain and256

Jain, 2021; Bui et al., 2021) , randomly shuffle257

identifiers within the same code snippets and258

modify the replaced identifier in the summary259

accordingly. This rule perturbs the code se-260

quence from the perspective of preserving the261

semantics of the original code.262

• Function Name Erosion (FNE) considering263

the importance of function name for code264

snippets (Fernandes et al., 2018; David et al.,265

2020; He et al., 2018), replace function names266

with special tokens, such as "v0", "v1" and267

modify all their occurrence in the correspond-268

ing summary. The function name is always269

the most informative in the source code. Simi-270

lar to IOE, this rule, by erasing semantics in271

the function name, can encourage the model272

to learn the importance of different identifiers273

in code.274

• Operators and Operands Swap (OOS)275

(Chakraborty et al., 2022), as logical and nu-276

merical operations play an important role in277

code syntax and style, we inverse the oper- 278

ators of binary and logical operations in the 279

code and swap the corresponding operands 280

to keep the same semantic. For inequalities 281

in logical operations, we replace "<" and ">" 282

with each other (including "<=" and ">=") and 283

swap the corresponding operands. For opera- 284

tors such as "+", "*", "==", "!=" or "<>", we 285

only swap the operands. 286

• Dead Branch Injection (DBI) derived from 287

code injection (Ding et al., 2021; Chakraborty 288

et al., 2022), condition statement is the basis 289

of code syntax, we insert branch statements 290

in the code that will not affect the original 291

program execution process. We inject a dead 292

branch condition statement at the beginning 293

of the function body and put the original func- 294

tion body into the true branch while inserting 295

unrelated code into the false branch. 296

• High-frequency Variable Injection (HVI) 297

derived from code injection (Ding et al., 2021; 298

Chakraborty et al., 2022), we insert variable 299

declaration statements in the code that will not 300

affect the original program execution process. 301

Figure 2 illustrates examples of the seven pertur- 302

bation rules. 303

It is important to note that to maintain the read- 304

ability of the perturbed code and prevent significant 305

deviations from the original code, we treat func- 306

tion names, function parameters, and local variable 307

names as identifiers. This implies that external 308

APIs within the function body and global variable 309

names declared outside the function body will be 310

retained. 311

Finally, we apply the seven perturbation rules to 312

the original datasets and extend them into seven ob- 313

fuscation datasets. We will analyze the fine-grained 314

capability of the model by combining these pertur- 315

bation rules. 316

4 Evaluation Methodology 317

4.1 Baseline Models 318

We select three code language models as our base- 319

line models: CodeBERT, CodeT5, and CodeLlama. 320

They stand as the state-of-the-art models for code 321

summarization. 322

CodeBERT (Feng et al., 2020) is a BERT-style 323

pre-training model based on RoBERTa (Liu et al., 324

2019). The model has been pre-trained on both 325

4

1 int findMaxByFor(int[] arr) {
2 int max = 0;
3 for (int item : arr) {
4 if (item > max) {
5 max = item;
6 }
7 }
8 return max;
9 }

(a) Original Code

1 int v0(int[] v1) {
2 int v2 = 0;
3 for (int v3 : v1) {
4 if (v3 > v2) {
5 v2 = v3;
6 }
7 }
8 return v2;
9 }

(b) Identifier Ordered Erosion

1 int value(int[] i) {
2 int name = 0;
3 for (int result : i) {
4 if (result > name) {
5 name = result;
6 }
7 }
8 return name;
9 }

(c) Identifier High-frequency
Replacement

1 int arr(int[] max) {
2 int item = 0;
3 for (int findMaxByFor:max){
4 if (findMaxByFor>item){
5 item = findMaxByFor;
6 }
7 }
8 return item;
9 }

(d) Identifier Random Shuffle

1 int v0(int[] arr) {
2 int max = 0;
3 for (int item : arr) {
4 if (item > max) {
5 max = item;
6 }
7 }
8 return max;
9 }

(e) Function Name Erosion

1 int findMaxByFor(int[] arr) {
2 int max = 0;
3 for (int item : arr) {
4 if (max < item) {
5 max = item;
6 }
7 }
8 return max;
9 }

(f) Operators & Operands
Swap

1 int findMaxByFor(int[] arr) {
2 int max = 0;
3 int i = 2;
4 int result = 0;
5 int value = 0;
6 for (int item : arr) {
7 …}
8 return max;
9 }

(g) High-frequency Variable
Injection

1 int findMaxByFor(int[] arr) {
2 if (false) {
3 return
Math.sin(Math.PI*x)/(Math.PI*x);
4 } else {
5 int max = 0;
6 …
7 return max;
8 }
9 }

(h) Dead Branch Injection

Figure 2: Illustration of the seven perturbation rules. The perturbed parts are marked in green

natural and programming languages using two self-326

supervised objectives, namely, masked language327

model and replaced token detection. The pre-328

trained model is finetuned on task-specific datasets329

for code understanding tasks such as code search330

and code summarization.331

CodeT5 (Wang et al., 2021) is a pre-trained332

model of code based on the encoder-decoder archi-333

tecture. CodeT5 extends T5 by adding pre-training334

tasks to capture identifier semantics. Moreover,335

a bimodal dual generation task is proposed to en-336

hance the decoder for generation tasks. We directly337

run the pre-trained checkpoint6 for code summa-338

rization.339

CodeLlama-7B (Roziere et al., 2023) stands as340

the state-of-the-art LLM for code generation and341

comprehension. It is built on top of Llama 2(Tou-342

vron et al., 2023) and was pre-trained in Python.343

CodeLlama can generate both code and natural344

language about code. We generate summaries for345

Python using the infilling method recommended346

in the paper(Roziere et al., 2023). The infilling347

method, as illustrated in Figure 4(a), replaces the348

document content of the input Python code with349

a special tag, and takes it as input to the model7.350

The model will generate summaries to fill in the351

special tag. Since the content generated by CodeL-352

lama is too long, we only select the first line as353

the final summary. CodeLlama has not been pre-354

6CodeT5 generation script.
7CodeLlama infilling method.

trained in Go and Java. Therefore, there is not 355

an officially recommended inference method in 356

these languages. We generate summaries using the 357

method in bigcode-evaluation-harness8 which re- 358

sults in reasonable performance. Specifically, we 359

append a prompt at the end of the code to guide 360

the model to output summary text. The prompt 361

template can be found in Figure 4(b) and 4(c) in 362

Appendix. 363

Semantic
Evaluation

IOE

FNE

IHR

IRS
Syntactic

Evaluation

DBI

OOS

HVI

Deep Code Model

Cross Evaluation

Robustness Analysis &
Fine-grained Analysis

Figure 3: The evaluation workflow of OR-CodeSum, the
solid blue arrow indicates the corresponding evaluation
of the model and the dashed green arrow indicates the
transmission of evaluation results.

4.2 Evaluation WorkFlow 364

Having obtained the obfuscated datasets, we design 365

an evaluation methodology to comprehensively in- 366

8Prompts for code-to-text task with large model.

5

https://github.com/salesforce/CodeT5/blob/main/CodeT5/run_gen.py
https://github.com/facebookresearch/codellama/blob/main/llama/generation.py
https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/bigcode_eval/tasks/codexglue_code_to_text.py

Dataset CodeBERT CodeT5 CodeLlama
Python Go Java Python Go Java Python Go Java

Primary
17.95 17.78 18.62 20.38 19.67 20.66 22.03 12.78 15.11

Semantic Perturb.
IOE 13.89 11.02 13.85 15.23 16.90 14.18 11.15 12.75 13.34
IRS 14.70 13.07 15.42 16.50 17.87 15.88 17.30 12.40 13.95
IHR 12.54 12.10 12.84 15.84 16.96 14.82 11.86 11.85 12.63
FNE 14.74 12.95 15.40 17.05 16.19 15.72 18.54 12.42 14.17
average 13.97 12.29 14.38 16.16 16.98 15.15 14.71 12.36 13.52

Syntactic Perturb.
OOS 17.94 17.79 18.61 19.34 19.71 20.68 22.08 12.77 15.08
HVI 17.53 17.75 18.15 19.32 19.62 20.65 21.69 12.88 15.22
DBI 17.34 17.87 18.26 18.77 19.15 20.25 21.69 12.95 14.95
average 17.60 17.80 18.34 19.14 19.49 20.53 21.82 12.87 15.08

Table 3: BLEU scores on the obfuscated datasets.

vestigate the full aspects of model performance.367

The entire evaluation workflow is summarized in368

Figure 3. We begin with a robust evaluation that369

aims to identify the most sensitive aspects of code370

when the model summarizes source code. This371

can be achieved by testing the baseline models372

on the seven obfuscated datasets. For example,373

when some perturbations have greater impacts on374

the model, it means that the corresponding aspects375

(e.g., identifiers) are the most critical to code sum-376

marization models. We can also know whether the377

model is sensitive to semantic or syntactic aspects378

of the code.379

Having identified sensitive aspects of code, we380

face a new problem: The sensitive aspects of code381

may obscure the effect of non-sensitive aspects in382

testing model’s ability. For example, if the model383

heavily relies on semantic features such as identi-384

fiers, it will be difficult to identify the impact of385

syntactic perturbation when the input code contains386

much semantic information. In order to test mod-387

els’ ability in recognizing low-sensitivity aspects388

of code, we propose cross-obfuscation datasets that389

reduce the dominance of high-sensitive aspects of390

code. Specifically, we perturb the original datasets391

by combining two perturbation rules, one from se-392

mantic perturbation and the other from syntactic393

perturbation.394

Finally, through the two-phase evaluation, we395

can have a fine-grained analysis of the model. By396

summing up the results of both robust evaluation397

and cross-obfuscation evaluation, we can gain more398

comprehensive insights into the model’s ability in-399

cluding performance, capacity, and robustness. 400

4.3 Implementation Details 9 401

We trained all LLMs based on the released pre- 402

trained checkpoint on huggingface101112. All pa- 403

rameters were consistent with the open-source doc- 404

uments provided in the original papers of each 405

model. We trained and evaluated all models on 406

a GPU machine with Nivida Tesla V100. 407

4.4 Evaluation Metrics 408

We used smoothed BLEU-4 score (Lin and Och, 409

2004) and BERTScore (Zhang et al., 2019) as the 410

evaluation metrics, which are the most widely used 411

metric for shot-text summarization tasks. BLEU 412

is calculated with the same scripts provided by the 413

baseline models. BERTScore computes a sentence- 414

level similarity score by making use of token-level 415

similarities, produced by cosine similarities be- 416

tween their contextual embeddings. 417

5 Experiments and Analysis 13 418

5.1 Robust Evaluation 419

Table 3 compares the evaluation results of three 420

baseline models on the primary and perturbated 421

datasets, respectively. 422

9Hyperparameters about baseline models can be found in
Appendix A

10https://huggingface.co/microsoft/codebert-base
11https://huggingface.co/Salesforce/codet5-base
12https://huggingface.co/codellama/CodeLlama-7b-hf
13We show brief results with BLEU scores in the main

content. The full results, including the other evaluation metric
BERTScore, can be found in Appendix C

6

https://huggingface.co/microsoft/codebert-base
https://huggingface.co/Salesforce/codet5-base
https://huggingface.co/codellama/CodeLlama-7b-hf

Dataset CodeBERT CodeT5 CodeLlama
Python Go Java Python Go Java Python Go Java

Semantic Perturb. IHR IOE IHR IOE FNE IOE IOE IHR IHR
primary 12.54 11.02 12.84 15.23 16.19 14.18 11.15 11.85 12.63

Cross Perturb.
Semantic × OOS 12.52 10.93 12.87 14.21 16.25 14.34 11.07 11.64 12.50
Semantic × HVI 11.57 10.81 12.16 13.75 15.75 13.58 8.85 11.82 12.51
Semantic × DBI 11.49 10.74 12.13 12.70 14.58 13.31 8.15 11.41 12.07
average 11.83 10.83 12.39 13.55 15.53 13.74 9.36 11.62 12.36

Table 4: BLEU scores on the cross-obfuscated datasets. The semantic perturbation chooses the one with the greatest
impact on the model in each programming language.

Comparing the perturbated datasets Across all423

perturbations, IOE and IHR has the most significant424

impact on the model performance. For example,425

IOE drops the BLEU scores obtained by CodeT5426

by 5.15 and 6.48 in Python and Java, respectively.427

Codellama witnesses a BLEU drop by 10.88 in428

Python. IHR decreases the BLEU score obtained429

by CodeBERT by 5.41 and 5.68 in Python and Go,430

respectively. A similar trend can be observed by431

CodeLlama, with BLEU scores dropped by 0.93432

and 2.48 in Java and Go, respectively.433

FNE also plays a role in code summarization,434

particularly for smaller models. For example, FNE435

decreases the BLEU scores by 5.49 and 3.48 for436

CodeBERT and CodeT5 respectively in the Go437

language.438

Overall, the results indicate that meaningful iden-439

tifiers are critical for language models in code com-440

prehension.441

Comparing semantic and syntactic perturba-442

tions The three baseline models are more sensi-443

tive to semantic perturbations than syntax pertur-444

bations on code, which means that state-of-the-art445

code language models pay more attention to seman-446

tic features in source code, such as function and447

variable names.448

We particularly notice that the impact of syn-449

tactic perturbed datasets is obscured by semantic450

perturbations. Hence we need a more fine-grained451

evaluation of the effect of syntactic perturbations.452

On the other hand, most downstream tasks of453

pre-trained code models lack explicit syntactic su-454

pervision, which strengthens the binding between455

the meaningful identifier and the summary hereby456

hampering the robustness of the model against se-457

mantic perturbation.458

5.2 Cross-Perturbation Evaluation 459

Recognizing that models exhibit heightened aware- 460

ness of semantic code features, we embark on an 461

in-depth examination of their capability in compre- 462

hending code syntax. To achieve this, we introduce 463

a novel cross-perturbation evaluation methodology 464

aimed at minimizing the impact of semantic pertur- 465

bations on the original code while intensifying the 466

syntactic features. We construct cross-perturbed 467

datasets by combining two distinct sets of perturba- 468

tion rules: one focusing on semantic perturbations 469

and the other on syntactic perturbations. Specif- 470

ically, we select semantic perturbation rules that 471

have the maximal impact on the specific language 472
14 and model. These chosen semantic perturba- 473

tion rules are then paired with one of the syntax 474

perturbation rules. 475

Table 4 shows the results of the cross- 476

perturbation evaluation. All BLEU scores on the 477

cross-perturbed datasets are compared to datasets 478

that have the most significant impact on models 479

and programming languages. 480

Comparing the perturbed datasets The results 481

indicate that nearly all baseline models exhibit sen- 482

sitivity to the perturbation involving dead branch 483

insertion. Additionally, the obfuscation technique 484

of high-frequency variable injection significantly 485

influences model performance. Unlike syntactic 486

perturbed datasets used for robustness evaluation, 487

cross-perturbed datasets offer a more explicit rev- 488

elation of the model’s ability on low-sensitive as- 489

pects. This is achieved by minimizing the impact 490

of high-sensitivity code aspects, providing a clearer 491

understanding of the model’s performance across 492

various dimensions. 493

14More cross-perturbation results in Appendix C

7

Lang Model Semantic Syntactic Overall

Python
CodeBERT 3.98/22.17% 0.35/1.95% 4.33/24.12%
CodeT5 4.22/20.71% 1.24/6.08% 5.46/26.79%
CodeLlama 7.32/33.23% 0.21/0.95% 7.53/34.18%

Go
CodeBERT 5.49/30.88% -0.02/-0.11% 5.47/30.76%
CodeT5 2.69/13.68% 0.18/0.92% 2.87/14.59%
CodeLlama 0.42/3.29% -0.09/-0.70% 0.33/2.58%

Java
CodeBERT 4.24/22.77% 0.28/1.50% 4.52/24.27%
CodeT5 5.51/26.67% 0.13/0.63% 5.64/27.30%
CodeLlama 1.59/10.52% 0.03/0.20% 1.62/10.72%

Table 5: The decrease of BLEU scores with their relative
percentage for each robustness aspect.

Comparing different programming languages494

Among the three programming languages, Python495

exhibits the highest sensitivity to syntactic pertur-496

bation. This sensitivity may stem from Python’s497

syntactic flexibility, causing code models to overly498

prioritize semantic information and making it chal-499

lenging to differentiate syntactic perturbations.500

5.3 Results Analysis501

We provide our comprehensive analysis based on502

three evaluation aspects: performance, capability,503

and robustness. In terms of performance (Table504

3), CodeLlama outperforms other baseline models505

on the primary regular test sets, though it shows506

suboptimal scores when not pretrained on Go and507

Java. From the capability of the model, all three508

baseline models tend to focus on the perturbation of509

semantics over syntax. This is particularly evident510

in larger language models such as CodeLlama. For511

robustness, the results presented in Table 5 suggest512

that CodeBERT is robust to strong perturbations in513

Python, while in Go and Java, CodeLlama exhibits514

more robustness. Overall, the higher the score a515

model achieves, the more sensitive it is to semantic516

perturbations.517

5.4 Case Study518

In addition to the quantitative analysis, we also519

provide a number of cases in Appendix D.520

6 Discussion521

6.1 Robustness and capability of code522

summarization models523

Our experiments reveal a notable distinction be-524

tween a model’s capability and robustness. A525

model that demonstrates robustness to perturba-526

tions of specific features does not necessarily im-527

ply its proficiency in capturing those features. For528

example, our findings demonstrate that state-of- 529

the-art code language models excel in capturing 530

semantic features rather than syntax. Hence the 531

impact of syntax perturbations on these models 532

is marginal. In that sense, the model is robust to 533

syntax perturbations, but this robustness does not 534

inherently imply a strong ability to capture syntax 535

features. The high evaluation score observed in 536

metrics is a reflection of the model’s proficiency 537

in capturing semantic features, which may inad- 538

vertently overshadow its performance in capturing 539

syntax features. 540

6.2 Why are deep code summarization models 541

sensitive to identifier perturbations? 542

State-of-the-art code language models have been 543

pre-trained on large-scale code corpora. These pre- 544

training objectives force the models to focus on 545

semantic cues (such as identifiers) that appear in 546

both natural and programming languages. In other 547

words, the performance of PLMs depends on the 548

readability of code. In practice, however, the read- 549

ability of code cannot be guaranteed, which means 550

that the model that achieves high evaluation scores 551

on the original benchmarks may fail to comprehend 552

code with poor readability in real datasets. This 553

is particularly evident in larger language models 554

such as CodeLlama, which have been pre-trained 555

on large-scale standardized code. 556

7 Conclusion 557

In this paper, we propose OR-CodeSum, a robust- 558

ness evaluation benchmark for code summariza- 559

tion tasks. By extending existing benchmarks with 560

perturbation rules, OR-CodeSum enables a fine- 561

grained evaluation of code summarization models 562

on multiple aspects of model performance. Our 563

experiments, conducted on three baseline models, 564

reveal that existing models showcasing high BLEU 565

and BERTScores exhibit high sensitivity to seman- 566

tic features in code, particularly identifiers. No- 567

tably, larger models exhibit a more pronounced 568

dependence on these semantic features, making 569

them vulnerable to code with poor readability. Our 570

work can inspire future research to evaluate more 571

aspects of model capability, instead of relying on 572

individual metrics and datasets. 573

Limitations 574

The limitations of our work lie in two aspects: 1) 575

The studied baseline models are selected based on 576

8

performance. However, our studies indicate that577

high-performance models do not necessarily have578

robustness. Studying models with different archi-579

tectures and training methods may lead to more580

interesting conclusions. 2) We investigate the ro-581

bustness of code models through seven obfuscation582

rules. Other characteristics of code, such as code583

length, could also affect the performance of the584

model. For example, whether longer code hinders585

models from comprehending source code. A more586

rigorous methodology could be separating code587

into groups with distinct characteristics, such as588

long and short code, and analyzing each group in-589

dividually. We leave the investigation of more code590

characteristics in future work.591

References592

Pavol Bielik and Martin Vechev. 2020. Adversarial593
robustness for code. In International Conference on594
Machine Learning, pages 896–907. PMLR.595

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-596
supervised contrastive learning for code retrieval and597
summarization via semantic-preserving transforma-598
tions. In Proceedings of the 44th International ACM599
SIGIR Conference on Research and Development in600
Information Retrieval, pages 511–521.601

Casey Casalnuovo, E Morgan, and P Devanbu. 2020.602
Does surprisal predict code comprehension difficulty.603
In Proceedings of the 42nd Annual Meeting of the604
Cognitive Science Society. Cognitive Science Society605
Toronto, Canada.606

Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding,607
Premkumar T Devanbu, and Baishakhi Ray. 2022.608
NatGen: generative pre-training by “naturalizing”609
source code. In Proceedings of the 30th ACM Joint610
European Software Engineering Conference and Sym-611
posium on the Foundations of Software Engineering,612
pages 18–30.613

Yaniv David, Uri Alon, and Eran Yahav. 2020. Neural614
reverse engineering of stripped binaries using aug-615
mented control flow graphs. Proceedings of the ACM616
on Programming Languages, 4(OOPSLA):1–28.617

Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessan-618
dro Morari, Baishakhi Ray, and Saikat Chakraborty.619
2021. Contrastive learning for source code with620
structural and functional properties. arXiv preprint621
arXiv:2110.03868.622

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-623
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,624
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-625
BERT: A pre-trained model for programming and626
natural languages. In Findings of the Association627
for Computational Linguistics: EMNLP 2020, pages628

1536–1547, Online. Association for Computational 629
Linguistics. 630

Patrick Fernandes, Miltiadis Allamanis, and Marc 631
Brockschmidt. 2018. Structured neural summariza- 632
tion. arXiv preprint arXiv:1811.01824. 633

Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Ray- 634
chev, and Martin Vechev. 2018. Debin: Predicting de- 635
bug information in stripped binaries. In Proceedings 636
of the 2018 ACM SIGSAC Conference on Computer 637
and Communications Security, pages 1667–1680. 638

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018a. 639
Deep code comment generation. In 2018 IEEE/ACM 640
26th International Conference on Program Compre- 641
hension (ICPC), pages 200–20010. IEEE. 642

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and 643
Zhi Jin. 2018b. Summarizing source code with trans- 644
ferred api knowledge. 645

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 646
Allamanis, and Marc Brockschmidt. 2019. Code- 647
searchnet challenge: Evaluating the state of semantic 648
code search. arXiv preprint arXiv:1909.09436. 649

Paras Jain and Ajay Jain. 2021. Contrastive code repre- 650
sentation learning. In Proceedings of the 2021 Con- 651
ference on Empirical Methods in Natural Language 652
Processing. 653

Chin-Yew Lin and Franz Josef Och. 2004. Orange: a 654
method for evaluating automatic evaluation metrics 655
for machine translation. In COLING 2004: Pro- 656
ceedings of the 20th International Conference on 657
Computational Linguistics, pages 501–507. 658

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 659
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 660
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 661
Roberta: A robustly optimized bert pretraining ap- 662
proach. arXiv preprint arXiv:1907.11692. 663

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey 664
Svyatkovskiy, Ambrosio Blanco, Colin Clement, 665
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021. 666
Codexglue: A machine learning benchmark dataset 667
for code understanding and generation. arXiv 668
preprint arXiv:2102.04664. 669

Katerina Margatina, Giorgos Vernikos, Loïc Barrault, 670
and Nikolaos Aletras. 2021. Active learning by ac- 671
quiring contrastive examples. In Proceedings of the 672
2021 Conference on Empirical Methods in Natural 673
Language Processing, pages 650–663. 674

Pooja Rani, Suada Abukar, Nataliia Stulova, Alexandre 675
Bergel, and Oscar Nierstrasz. 2021. Do comments 676
follow commenting conventions? a case study in 677
java and python. In 2021 IEEE 21st International 678
Working Conference on Source Code Analysis and 679
Manipulation (SCAM), pages 165–169. IEEE. 680

9

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten681
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,682
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.683
Code llama: Open foundation models for code. arXiv684
preprint arXiv:2308.12950.685

Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi686
Han, Hongyu Zhang, Dongmei Zhang, and Hong-687
bin Sun. 2022a. On the evaluation of neural code688
summarization. In Proceedings of the 44th Interna-689
tional Conference on Software Engineering, pages690
1597–1608.691

Lin Shi, Fangwen Mu, Xiao Chen, Song Wang, Junjie692
Wang, Ye Yang, Ge Li, Xin Xia, and Qing Wang.693
2022b. Are we building on the rock? on the impor-694
tance of data preprocessing for code summarization.695
In Proceedings of the 30th ACM Joint European Soft-696
ware Engineering Conference and Symposium on697
the Foundations of Software Engineering, pages 107–698
119.699

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-700
bert, Amjad Almahairi, Yasmine Babaei, Nikolay701
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti702
Bhosale, et al. 2023. Llama 2: Open founda-703
tion and fine-tuned chat models. arXiv preprint704
arXiv:2307.09288.705

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.706
Hoi. 2021. CodeT5: Identifier-aware unified pre-707
trained encoder-decoder models for code understand-708
ing and generation. In Proceedings of the 2021709
Conference on Empirical Methods in Natural Lan-710
guage Processing, pages 8696–8708, Online and711
Punta Cana, Dominican Republic. Association for712
Computational Linguistics.713

Fan Yan and Ming Li. 2021. Towards generating sum-714
maries for lexically confusing code through code715
erosion. In IJCAI, pages 3721–3727.716

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q717
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-718
uating text generation with bert. arXiv preprint719
arXiv:1904.09675.720

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-721
dran, Sindhu Tipirneni, and Chandan K Reddy. 2022.722
Xlcost: A benchmark dataset for cross-lingual code723
intelligence. arXiv preprint arXiv:2206.08474.724

A Hyperparameters725

The hyperparameters and specfications for all lan-726

guage models are provided in Table A.727

B Prompt Templates for LLMs728

The prompts used for CodeLlama are shown in729

Figure 4.730

CodeBERT CodeT5 CodeLlama

Transformer layers 12 24 32
Max seq length 512 512 2048
Embedding size 768 768 4096
Attention head 12 12 32
Vocabulary size 50,265 32,100 32,000
of parameters 125M 220M 7B

Table 6: Hyperparameters of baseline models.

def sina_xml_to_url_list(xml_data):

"""<FILL_ME>"""
rawurl = []
dom = parseString(xml_data)
for node in dom.getElementsByTagName('durl’):

url = node.getElementsByTagName('url')[0]

rawurl.append(url.childNodes[0].data)
return rawurl

(a) Prompt for Python.

func FiltersFromRequest(creq *pb.WatchCreateRequest) []mvcc.FilterFunc {
 filters := make([]mvcc.FilterFunc, 0, len(creq.Filters))
 for _, ft := range creq.Filters {
 switch ft {
 case pb.WatchCreateRequest_NOPUT:
 filters = append(filters, filterNoPut)
 case pb.WatchCreateRequest_NODELETE:
 filters = append(filters, filterNoDelete)
 default:
 }
 }
 return filters
}
Please fill this sentence "The goal of this function is to " in 12 words:

(b) Prompt for Go.

public long calculateDelay(TimeUnit unit) {
 float delta = variancePercent / 100f; // e.g., 20 / 100f == 0.2f
 float lowerBound = 1f - delta; // 0.2f --> 0.8f
 float upperBound = 1f + delta; // 0.2f --> 1.2f
 float bound = upperBound - lowerBound; // 1.2f - 0.8f == 0.4f
 float delayPercent = lowerBound + (random.nextFloat() * bound); // 0.8 +
(rnd * 0.4)
 long callDelayMs = (long) (delayMs * delayPercent);
 return MILLISECONDS.convert(callDelayMs, unit);
}
Please fill this sentence "The goal of this function is to " in 12 words:

(c) Prompt for Java.

Figure 4: Prompts used for CodeLlama inference.

10

https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685

Dataset CodeBERT CodeT5 CodeLlama
Python Go Java Python Go Java Python Go Java

Primary
17.95 17.78 18.62 20.38 19.67 20.66 22.03 12.78 15.11

Semantic Perturb.
IOE 13.89 11.02 13.85 15.23 16.90 14.18 11.15 12.75 13.34
IRS 14.70 13.07 15.42 16.50 17.87 15.88 17.30 12.40 13.95
IHR 12.54 12.10 12.84 15.84 16.96 14.82 11.86 11.85 12.63
FNE 14.74 12.95 15.40 17.05 16.19 15.72 18.54 12.42 14.17

Syntactic Perturb.
OOS 17.94 17.79 18.61 19.34 19.71 20.68 22.08 12.77 15.08
HVI 17.53 17.75 18.15 19.32 19.62 20.65 21.69 12.88 15.22
DBI 17.34 17.87 18.26 18.77 19.15 20.25 21.69 12.95 14.95

Cross Perturb.
IOE × OOS 14.07 10.93 13.87 14.21 16.90 14.34 11.07 12.69 13.31
IOE × HVI 13.21 10.81 13.26 13.75 16.66 13.58 8.85 12.74 13.27
IOE × DBI 12.58 10.74 13.20 12.70 16.31 13.31 8.15 12.43 12.48

IRS × OOS 14.70 12.88 15.38 15.54 17.90 15.94 16.96 12.43 14.00
IRS × HVI 14.05 12.17 14.67 15.32 17.73 15.71 15.29 12.61 14.08
IRS × DBI 13.16 12.13 14.71 13.93 16.99 14.95 14.94 12.20 13.56

IHR × OOS 12.52 12.00 12.87 14.45 16.91 14.82 11.89 11.64 12.50
IHR × HVI 11.57 11.57 12.16 14.16 16.72 14.61 9.67 11.82 12.51
IHR × DBI 11.49 11.25 12.13 13.23 16.08 13.78 8.66 11.41 12.07

FNE × OOS 14.69 12.95 15.37 15.97 16.25 15.89 18.41 12.42 14.18
FNE × HVI 13.66 12.60 14.46 15.22 15.75 14.58 16.29 12.46 14.21
FNE × DBI 12.94 12.16 14.27 14.25 14.58 15.11 15.73 12.09 13.28

Table 7: Smoothed BLEU-4 evaluation results.

11

Dataset CodeBERT CodeT5 CodeLlama
Python Go Java Python Go Java Python Go Java

Primary
29.64 40.11 31.92 34.41 43.18 35.35 38.91 26.30 33.68

Semantic Perturb.
IOE 19.52 16.26 21.53 22.05 37.09 20.90 13.27 26.26 29.40
IRS 22.82 23.28 25.50 26.97 37.64 26.51 30.03 25.54 31.43
IHR 17.53 22.38 19.61 25.03 36.26 24.65 20.02 24.01 27.85
FNE 22.63 21.48 25.17 26.99 35.73 22.60 31.78 25.18 31.28

Syntactic Perturb.
OOS 29.63 40.14 31.90 33.43 43.27 35.45 38.86 26.29 33.70
HVI 28.69 40.08 30.99 33.19 43.00 35.25 38.53 26.46 33.67
DBI 28.27 40.40 31.41 31.61 42.51 34.87 38.49 26.28 33.06

Cross Perturb.
IOE × OOS 19.71 16.05 21.56 20.95 37.08 21.42 13.19 26.24 29.32
IOE × HVI 16.57 15.96 20.22 19.11 36.85 18.79 6.76 26.26 29.18
IOE × DBI 16.71 16.03 20.05 16.82 36.51 20.06 6.43 25.70 27.51

IRS × OOS 22.79 22.69 25.48 25.98 37.68 26.64 29.25 25.37 31.51
IRS × HVI 21.16 21.76 23.90 25.15 37.44 25.94 25.26 25.57 30.98
IRS × DBI 18.92 22.79 24.38 21.09 36.59 24.74 24.43 24.89 30.20

IHR × OOS 17.52 22.36 19.69 23.42 36.88 24.85 19.62 23.85 27.81
IHR × HVI 15.29 21.49 17.99 22.49 36.63 23.82 14.44 23.93 27.65
IHR × DBI 14.89 21.63 18.03 18.99 35.81 21.97 11.50 22.87 26.34

FNE × OOS 22.52 21.52 25.10 25.89 35.83 23.15 31.47 25.23 31.22
FNE × HVI 19.83 20.95 23.10 22.50 33.98 18.01 26.11 25.35 31.19
FNE × DBI 18.15 21.33 22.71 20.91 32.64 22.65 24.88 24.62 29.67

Table 8: BERTScore evaluation results. All values are multiplied by 100 for ease of display

12

C Full Results and Results with Other731

Metrics732

Table 7 and 8 show the full results using BLEU-4733

and BERTScore respectively. BERTScores often734

lie in a small range. Following the general practice,735

we rescale them with baselines to fall in [0, 1]15.736

The findings from BERTScore align closely with737

those derived from BLEU. Generally, as the score738

increases, the model tends to exhibit greater vulner-739

ability to semantic perturbations. Notably, among740

all semantic perturbations, IOE and IHR exhibit741

the most significant impact. Among syntax pertur-742

bations, DBI has the most impact on model perfor-743

mance.744

D Case Study745

Figure 5 presents three cases of code summariza-746

tion by CodeT5. We compare the original human-747

written summary to model-generated summaries748

with and without FNE perturbation, respectively.749

We find that when the function name is eroded, the750

summary generated by CodeT5 becomes confusing.751

The example suggests that CodeT5 focuses more752

on semantic cues such as function names.753

15Rescaling BERTScore with Baselines

Code:

def get_pandas_df(self, hql, parameters=None):
import pandas
cursor = self.get_cursor()

cursor.execute(self._strip_sql(hql), parameters)
data = cursor.fetchall()

if data:
df = pandas.DataFrame(data)
df.columns = [c[0] for c in column_descriptions]

else:
df = pandas.DataFrame()

return df

Original answer: Get a pandas DataFrame from the database .

FNE answer: Execute the given SQL query .

Summary: Get a pandas dataframe from a sql query .

(a) A case in Python.

Code:

func NewResource(name,rtype,state,owner string,t time.Time) Resource
{

return Resource{
Name: name,
Type: rtype,
State: state,
Owner: owner,
LastUpdate: t,
UserData: &UserData{},

}
}

Original answer: NewResource creates a new resource

FNE answer: v0 is the version of Resource .

Summary: NewResource creates a new Boskos Resource .

(b) A case in Go.

Code:

static public byte[] intToBytes(int v) {
byte[] b = new byte[4];
int allbits = 255;
for (int i = 0; i < 4; i++) {

b[3-i] = (byte)((v & (allbits << i * 8)) >> i * 8);
}
return b;

}

Original answer: Convert an int to a byte array .

FNE answer: V0 byte array .

Summary: Convert an int to an array of 4 bytes .

(c) A case in Java.

Figure 5: Summaries generated by CodeT5 with and
without FNE perturbation.

13

https://github.com/Tiiiger/bert_score/blob/master/journal/rescale_baseline.md

