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ABSTRACT

Observation-based trajectory prediction for systems with unknown dynamics is
essential in fields such as physics and biology. Most existing approaches are limited
to learning within a single system with fixed dynamics patterns. However, many
real-world applications require learning across systems with evolving dynamics
patterns, a challenge that has been largely overlooked. To address this, we systemat-
ically investigate the problem of Continual Dynamics Learning (CDL), examining
task configurations and evaluating the applicability of existing techniques, while
identifying key challenges. In response, we propose the Mode-switching Graph
ODE (MS-GODE) model, which integrates the strengths LG-ODE and sub-network
learning with a mode-switching module, enabling efficient learning over varying
dynamics. Moreover, we construct a novel benchmark of biological dynamic sys-
tems for CDL, Bio-CDL, featuring diverse systems with disparate dynamics and
significantly enriching the research field of machine learning for dynamic systems.
Our code and benchmark datasets will be publicly available.

1 INTRODUCTION

Figure 1: Illustration of the key components of one biological cellular sys-
tem studied in our work: the RAN-regulated nucleocytoplasmic transport
(Moore, 2013). Briefly speaking, this model depicts the translocation of
cargo proteins (Exportin) via nuclear pores with the assistance of RAN
proteins. RAN is first activated (denoted as RAN*) and then binds to cargo
molecules (Exportin) forming a complex containing RAN* and Exportin.
Next, the complex is translocated across the nuclear membrane into the
cytoplasm with the assistance of RAN. Finally, RAN and Exportin are dis-
sociated after the translocation. Such systems contain multiple interacting
objects, e.g. the proteins and their interactions, and multiple factors could
change and alter the entire dynamics.

Scientific research often in-
volves systems composed of
interacting objects, such as
multi-body systems in physics
and cellular systems in biology,
with their evolution governed
by underlying dynamic rules.
However, due to potentially un-
known or incomplete dynamic
rules or incomplete observa-
tions, deriving explicit equa-
tions to simulate system evolu-
tion can be extremely challeng-
ing. As a result, data-driven
approaches based on machine
learning have emerged as a
promising solution for predict-
ing the future trajectories of
system states purely from ob-
servational data. For instance,
the Interaction Network (IN)
model (Battaglia et al., 2016)
explicitly learns interactions between pairs of objects and has demonstrated superior performance in
simulated physics systems, showcasing the potential of machine learning in studying physical system
dynamics. IN has inspired many subsequent works (Kipf et al., 2018; Sanchez-Gonzalez et al., 2019;
Huang et al., 2022; Liu et al., 2024). Later, to enable the modeling of incomplete and temporarily
irregular system observations, ODE-based models (Huang et al., 2020; 2021) were proposed to learn
the continuous dynamics of the systems.

Despite the success of these methods, existing approaches are often limited to learning within a single
system with a fixed type of dynamics. However, in many real-world scenarios, system dynamics
are subject to change over time. For example, in cellular systems (Figure 1), the dynamics of a
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set of variables are subject to change when the kinetic factors are altered. Besides, as a widely
adopted task in the field, predicting the trajectories of n-body physical systems (Huang et al., 2020;
Battaglia et al., 2016) may also require a model to learn over systems governed by different dynamics
factors including interaction types (e.g., elastic force or electrostatic force) and interaction strengths
(e.g., different amounts of charges on charged objects), as illustrated in Figure 7. In this work, we
term these learning scenarios as continual dynamics learning (CDL), and for the first time formally
formulate the setting of CDL. In CDL, continually learning from systems with varying dynamics may
overwrite a model’s knowledge encoded in the model weights and trigger the catastrophic forgetting
problem. In other words, the model may only accurately predict the most recently observed system
dynamics while failing on earlier systems. This phenomenon is empirically verified and reported
in Section 4.6. Moreover, many real-world systems exhibit repeated dynamics, and mitigating the
forgetting is actually crucial in a broad range of scenarios. For example, dynamics of many physics
systems are controlled by environmental factors, e.g. temperatures (Huang et al., 2023). The values
of these factors like temperatures typically oscillate within a certain range, therefore the dynamics of
the systems will also repeat. This is also true in biological systems. Moreover, biological cellular
systems also go through different phases of cell cycle. Catastrophic forgetting phenomenon has also
been observed in other fields like computer vision (Van de Ven & Tolias, 2019; Wang et al., 2024)
and graph learning (Zhang et al., 2024), and different approaches have been proposed to facilitate
the models in the continual learning setting. However, as demonstrated in our experiments (Section
4.3), most existing continual techniques, which are based on regularization or memory-replay (Yoon
et al., 2017; Kirkpatrick et al., 2017; Lopez-Paz & Ranzato, 2017), are designed to accommodate
the patterns of different tasks 1 within one set of model weights and fail to effectively alleviate the
forgetting issue in the context of dynamics learning, especially when the consecutive systems contain
different number of objects and exhibit significantly different dynamics patterns.

Targeting the challenge, we turn to the parameter-isolation based continual learning techniques,
and propose a novel mode-switching graph ODE (MS-GODE) model, which can continually learn
over varying system dynamics and automatically switch to the optimal mode during the test stage.
MS-GODE consists of three major components: a prediction network serving as the backbone, a
sub-network learning module for encoding the observed dynamics into masks, and a mode-switching
module for switching the sub-network mode based on the observation. To support irregular and
incomplete observational data in the practical scenario studied in our work, our backbone network is
built based on LG-ODE model (Huang et al., 2020), which has a Variational AutoEncoder (VAE)
(Kingma & Welling, 2013) structure facilitated by ODE-based prediction (Rubanova et al., 2019).
The basic workflow of MS-GODE is as follow: Given the observational data, an encoder network
first encodes the data into latent states, upon which an ODE-based generator predicts the future
system trajectories within the latent space. Finally, a decoder network maps the predicted latent
states back into the data space. Upon this framework , we adopt the sub-network learning strategy
(Wortsman et al., 2020; Ramanujan et al., 2020; Zhou et al., 2019), which fixes the model weights
after initialization and optimize a unique binary mask over the parameters for each system during
training. In this way, unlike standard training strategy that encodes data patterns solely in one set
of model weights, MS-GODE encodes different types of dynamics in different sub-networks by the
collaboration between the binary masks and the fixed-weight backbone network. In the test stage,
the model will be switched to the optimal mode by the switching module via selecting the the most
suitable mask that can most accurately reconstruct the given observation. Moreover, targeting that the
existing entropy-based mask selection technique is only applicable to classification tasks, we further
develop the novel observation reconstruction based mask selection strategy in the mode-switching
module. In this way, despite the significant difference between consecutive systems, catastrophic
forgetting is avoided.

Besides innovatively formulating the CDL setting and the technical contribution of an effective model
in CDL scenario, we have also created a novel dynamic system benchmark, Bio-CDL consisting of
biological cellular systems based on the VCell platform (Schaff et al., 1997; Cowan et al., 2012;
Blinov et al., 2017). Compared to the widely adopted simulated physics systems, cellular systems
contain heterogeneous objects and interactions, offering richer and more challenging patterns of
system dynamics. Therefore, Bio-CDL will significantly enhance the research of machine learning-
based system dynamics prediction. In experiments, we thoroughly investigate the influence of the

1In our work, a task refers to a system with a specific dynamics patterns. While in other fields, e.g. Computer
Vision, a task could refer to certain categories of images.
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system sequence configuration on model performance in CDL with both the widely adopted physics
systems and our newly constructed BioCDL, which demonstrates the advantage of MS-GODE over
existing state-of-the-art techniques.

2 RELATED WORKS

2.1 LEARNING BASED DYNAMIC SYSTEM PREDICTION

Figure 2: A molecule system may enter dif-
ferent phases and exhibit different dynamics
as environmental factors (e.g. temperature)
change. Molecules in solid state can only vi-
brate at fixed locations because of the strong
interaction between them. Upon entering
the liquid state, the interaction strength de-
creases and molecules can move around. In
gas state, molecules move more freely with
little molecule-wise interaction.

In recent years, graph neural networks (GNNs) have been
proven to be promising in modeling and predicting the
complex evolution of systems consisting of interacting
objects (Battaglia et al., 2016; Kipf et al., 2018; Sanchez-
Gonzalez et al., 2019; Huang et al., 2022; Liu et al., 2024).
This was firstly demonstrated by (Battaglia et al., 2016)
with Interaction Network (IN), which iteratively infers the
effects of the pair-wise interactions within a system and
predicts the changes of the system states. Following IN,
(Kipf et al., 2018) proposed neural relational inference
(NRI) to predict systems consisting of objects with un-
known relationships. (Mrowca et al., 2018) proposed the
Hierarchical Relation Network (HRN) that extends the
predictions to systems consisting of deformable objects.
(Sanchez-Gonzalez et al., 2019) proposed the Hamiltonian
ODE graph network (HOGN), which injects Hamiltonian
mechanics into the model as a physically informed induc-
tive bias. Later, to better consider the intrinsic symmetry
of the target systems, GNNs with different invariance and equivariance are proposed (Satorras et al.,
2021; Huang et al., 2022; Han et al., 2022; Brandstetter et al., 2021; Wu et al., 2023; Liu et al.,
2024). To better capture the complex system interactions, High-order graph ODE (HOPE) (Luo et al.,
2023) innovatively incorporates information from high-order spatial neighborhood and high-order
derivatives into dynamical system modeling. Considering that the observation of real-world systems
may be incomplete and irregular samples, (Huang et al., 2020) proposed LG-ODE, which is capa-
ble of generating continuous system dynamics based on the latent ordinary differential equations.
Later, Coupled Graph ODE (CG-ODE) (Huang et al., 2021) was proposed to apply ODE-based
modeling to both node features and interactions. Similar ideas are also adopted in other time series
research (Rubanova et al., 2019). By separating the commonalities intrinsic to the systems and the
environmental factors causing the dynamics shift, Generalized Graph Ordinary Differential Equations
(GG-ODE) (Huang et al., 2023) improves the generalization across systems in different environments.
Similarly, Prototypical Graph ODE (PGODE) (Luo et al.) disentangles object states and system
states to independently model their influence and improve the generalization capability. Disentangled
Intervention-based Dynamic graph Attention networks (DIDA) (Zhang et al., 2022b) disentangles
the invariant and variant patterns in dynamic graphs, and leverages the invariant patterns to ensure a
stable prediction performance under spatio-temporal distribution shift. Context-attended Graph ODE
(CARE) (Luo et al., 2024) models the continuously varying environmental factors with a context
variable, which is leveraged to better predict the system evolution with temporal environmental
variation. Online Relational Inference (ORI) (Kang et al., 2024) models the relationship among
the system components as trainable parameters, which is accompanied with the novel AdaRelation
technique for quick relational inference in the online setting. Despite the substantial contributions
these methods have made to dynamic system prediction, they have been limited to learning a single
system with fixed dynamics. As one of the two major components of our MS-GODE, the backbone
model for dynamics system prediction is mainly built upon the LG-ODE framework (Huang et al.,
2020). Different from the other approaches that are typically limited to data with regular intervals or
complete observation at each time stamp, LG-ODE supports irregular and incomplete observations,
which is essential to the applications studied in our work.

2.2 CONTINUAL LEARNING & MASKED NETWORKS

Existing continual learning methods can be categorized into three types (Parisi et al., 2019; Van de
Ven & Tolias, 2019; De Lange et al., 2021; Zhang et al., 2022a; Konishi et al., 2023). Regularization-
based methods slow down the adaption of important model parameters via regularization terms,
so that the forgetting problem is alleviated (Wu et al., 2024; Goswami et al., 2023). For example,
Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and Memory Aware Synapses (MAS)
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(Aljundi et al., 2018) estimate the importance of the model parameters to the learned tasks, and add
penalty terms to slow down the update rate of the parameters that are important to the previously
learned tasks. Second, experience replay-based methods replay the representative data stored from
previous tasks to the model when learning new tasks to prevent forgetting (Liang & Li, 2023; Rolnick
et al., 2019; Rebuffi et al., 2017; Prabhu et al., 2020). For example, Gradient Episodic Memory
(GEM) (Lopez-Paz & Ranzato, 2017) leverages the gradients computed based on the buffered data to
modify the gradients for learning the current task and avoid the negative interference between learning
different tasks. Finally, parameter isolation-based methods gradually introduce new parameters to
the model for new tasks to prevent the parameters that are important to previous tasks (Qiao et al.,
2023; Yoon et al., 2017). For example, Progressive Neural Network (PNN) (Rusu et al., 2016)
allocates new network branches for new tasks, such that the learning on new tasks does not modify
the parameters encoding knowledge of the old tasks. Our proposed MS-GODE also belongs to the
parameter isolation-based methods, and is related to subnetwork-based ones (Wortsman et al., 2020;
Kang et al., 2022; Zhou et al., 2019) and the edge-popup algorithm (Ramanujan et al., 2020). SupSup
studies continual learning for classification tasks with an output entropy-based mask selection, which
is not applicable to our task. Edge-popup algorithm provides a simple yet efficient strategy to select
a sub-network from the original network, and is adopted by us to optimize the binary masks over
the model parameters. As far as we are concerned, existing continual learning works have not
been applied to the dynamic system prediction targeted by this paper. Therefore, by customizing
the representative continual learning techniques to our task as baselines, we also contribute to the
community by extending the applicable areas of the existing methods and by demonstrating the
advantages and disadvantages of different methods on a new task.

3 LEARNING SYSTEM DYNAMICS WITHOUT FORGETTING

3.1 PRELIMINARIES

In CDL, a model is required to sequentially learn on multiple systems. A system is composed of
multiple interacting objects, and is naturally represented as a graph G = {V,E}. {V is the node set
denoting the objects of the system, and E is the edge set containing the information of the relation
and interaction between the objects. Based on E, the spatial neighbors of a node v is defined as
Ns(v) = {u|eu,v ∈ E}. Each object node v is accompanied by observational data containing the
observed states at certain time steps Xv = {xt

v|t ∈ Tv}, i.e. the trajectory of the system evolution.
With a system structured as a graph, its trajectory is naturally a spatial-temporal graph, in which each
node is an observed state xt

v . In the following, we will refer to xt
v as a ‘state’. In a multi-body system,

the trajectory records the 3D locations of the particles over time. While in other systems, e.g. cellular
systems, a state could be the amount of a certain substance instead of locations, and a trajectory
records the states at different time stamps. The set Tv contains the time steps (real numbers) when the
states of v are observed and can vary across different objects. For the prediction task, the observations
lie within a certain period, i.e.

⋃
v∈V Tv ∈[t0, t1], and the task is to predict the system states at future

time steps beyond t1. We denote the future time steps to predict for an object v as Tpred
v . In CDL,

different systems in a sequence may exhibit different dynamics and contain different objects (i.e. V).

3.2 FRAMEWORK OVERVIEW

In this subsection, we provide a high-level introduction to the workflow of MS-GODE (Figure 3),
while the details of each component are provided in the following subsections.

Overall, MS-GODE consists of three core components: 1) The backbone network; 2) The sub-
network learning module; 3) The mode switching module. The backbone network consists of: 1)
an encoder network Enc(·; θE) parameterized by the parameters θE for encoding the trajectories
into the latent space; 2) An ODE-based generator Gen(·; θG) parameterized by θG for predicting
the future trajectories within the latent space; 3) A decoder network Dec(·; θD) parameterized by
θD for transforming the predicted latent states back into the data space. Within a standard learning
scheme, the model will be trained by updating the parameters {θE , θG, θD}. However, as introduced
above, when continually training the model on multiple systems with different dynamics, this learning
scheme will bias the model towards the most recently observed system, causing the catastrophic
forgetting problem. In this work, inspired by the recent advances in sub-network learning (Ramanujan
et al., 2020; Wortsman et al., 2020), we propose to avoid direct optimization of the parameters
{θE , θG, θD}. Instead, we train the model by optimizing the connection topology of the backbone
model and encode the dynamics of each system into a sub-network. This is equivalent to encoding
each system-specific dynamics pattern into a binary mask overlaying the shared parameters with fixed
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Figure 3: The upper part illustrates the workflow of MS-GODE during mask selection and inference, which are
denoted by dashed and solid lines. During mask selection, the observation is split into two parts, and the first part
is fed into the model for selecting the mask that can best predict the second part (simulated prediction). During
inference, the entire observation is fed into the model to predict the unknown future states. The lower part
demonstrates the structure of the masked encoder, masked generator, and masked decoder. Different components
fetch their corresponding mask from the mask pool and apply the mask onto the parameters.

values. In this way, the interference between learning on different systems with different dynamics,
i.e. the forgetting problem, can be avoided. Moreover, this approach is also memory efficient since
the space for storing the binary masks is negligible. With the system-specific masks, the three model
components are formulated as:

Enc(·; θE ⊙Ms
E); Gen(·; θG ⊙Ms

G); Dec(·; θD ⊙Ms
D), (1)

where the superscript s is the system index. The details of the binary mask optimization during
training and mask selection during testing are provided in Section 3.5. In the following subsections,
all parameters are subsets of θE , θG, or θD and are controlled by the corresponding masks. For
example, Wmsg in Section 3.3 is part of the encoder parameters θE and is under the control of Ms

E .

3.3 MASKED ENCODER NETWORK

As the first component of the model, the masked encoder network serves to encode the dynamics
pattern in the observational data into the latent space. As introduced in Section 3.1, the trajectory
of a system is a spatial-temporal graph. Therefore, the encoder is constructed as an attention-based
spatial-temporal graph neural network framework (ST-GNN) (Huang et al., 2020; Hu et al., 2022;
Huang et al., 2021; Zhang et al., 2020). Originally, the graph attention network (GAT) (Veličković
et al., 2017) is designed to aggregate information over the spatially neighboring nodes. On spatial-
temporal graphs, the information aggregation is extended to both spatial and temporal neighboring
nodes. Such a spatial-temporal neighborhood of a state xt

v is defined as the states of the spatially
connected nodes within a specified temporal window δwindow,

Nst(x
t
v) := {xq

w|eu,v ∈ E and |q − t| < δwindow}. (2)

Then, iterative message passing is conducted over the spatial-temporal edges to update the represen-
tation of each state. The update of the hidden representation of a state xt

v at the l-the layer of the
ST-GNN is formulated as,

hl
v,t = hl−1

v,t + σ(
∑

xq
u∈Nst(xt

v)

a(hl−1
v,t ,h

l−1
u,q , q − t) ·Wmsg ·msg(hl−1

u,t , q − t)), (3)

where a(·, ·) calculates the attention score between a pair of states, and msg(·, ·) is the message
function commonly adopted in GNNs (Gilmer et al., 2017). However, different from the message
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function in typical GNNs, the temporal relationship between the states is a crucial part to understand
the system dynamics. Therefore, we follow the strategy in LG-ODE (Huang et al., 2020) to incorporate
the temporal distance between the states in the message function and attention function,

msg(hl−1
u,t , q − t)) := σ(Wtmp · concat(hl−1

u,t , q − t)) + TE(q − t), (4)

a(hl−1
v,t ,h

l−1
u,q , q − t) :=

exp(msg(hl−1
u,q , q − t))T · hl−1

v,t )∑
xp
w∈Nst(xt

v)
exp(msg(hl−1

w,p , p− t))T · hl−1
v,t )

, (5)

where TE(·) is a temporal position encoding developed based on the position encoding in Transformer
(Vaswani et al., 2017) for incorporating the temporal information into the representation. Finally, for
subsequent state prediction, the state representations are averaged over the temporal dimension,

hv
final =

1

|Tv|
∑
t∈Tv

σ(h̄T
v ·msg(hL

v,t)) ·msg(hL
v,t, t− t0), (6)

where t0 denotes the starting time of all states in the observational data (Section 3.1), and the average
term h̄v of each node v is a weighted summation over the representations at all time steps,

h̄v = σ(
1

|Tv|
∑
t∈Tv

msg(hL
v,t, t− t0) ·Wavg). (7)

3.4 MASKED ODE-BASED GENERATOR

ODE-based generator (Huang et al., 2020; Chen et al., 2018; Rubanova et al., 2019) ensures that the
model can handle observations with irregular temporal intervals and incomplete states, as well as
predict future states at any time denoted by real numbers. Specifically, the trajectory prediction is
formulated as solving an ODE initial value problem (IVP), where the initial values of the objects
({zt1v |v ∈ V}) are generated from the final representation of the states ({hv

final|v ∈ V}, Section 3.3).
Mathematically, the procedure of predicting the future trajectory of a system s is formulated as,

zt1v ∼ p(zt1v ), v ∈ V (8)

{zτv |v ∈ V, τ ∈ Tpred
v } = Gen({zt1v |v ∈ V}, {Tpred

v |v ∈ V}; θG ⊙Ms
G)), (9)

To estimate the posterior distribution q({zt1v |v ∈ V}|{Xv|v ∈ V}) based on the observation (i.e.
{Xv|v ∈ V}), the distribution is assumed to be Gaussian. Then the mean µv and standard deviation
σv are generated from {hv

final|v ∈ V} with a multi-layer perceptron (MLP),

q(zt1v |{Xv|v ∈ V}) = N (µv, σv) = N (mlp(hv
final; θG ⊙Ms

G)), v ∈ V. (10)

As noted in Section 3.2, the parameters of mlp(·) and Fint(·) are part of θG and controlled by Ms
G.

Based on the approximate posterior distribution q({zt1v |v ∈ V}|{Xv|v ∈ V}), we sample an initial
state for each object, upon which the ODE solver will be applied for generating the predicted states
in the latent space. The dynamics of each object in the system are governed by its interaction with
all the other objects. Therefore, the core part of the ODE-based generator is a trainable interaction
network that encodes the dynamics in the form of the derivative of each zv ,

dzv
dt

|t=t′ = Fint({zt
′

u |u ∈ Ns(v)}; θG ⊙MG), (11)

where the function Fint(·) parameterized by θI predicts the dynamics (derivative) of each object v
based on all the other objects interacting with v (i.e. Ns(v) defined in Section 3.1), and t′ denotes
any possible future time. Note that Ns(v) only contains the spatial neighbors and is different from
Nst(·), because the object-wise interaction at a certain time t′ is not dependent on system states at
other times. For example, in a charged particle system governed by electrostatic force, the force
between a pair of particles at t′ is solely determined by the relative positions (i.e. the states) of the
particles (Figure 7) at t′. In our work, we adopt the Neural Relational Inference (NRI) (Kipf et al.,
2018) as the function Fint(·). Based on Fint(·), the future state of the system at an arbitrary future
time t2 can be obtained via an integration

zt2v = zt1v +

∫ t2

t1

dzv
dt

dt = zt1v +

∫ t2

t1

Fint({ztu|u ∈ Ns(v)}; θG ⊙MG)dt, (12)
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which can be solved numerically by mature ODE solvers, e.g. Runge-Kutta method. After obtaining
the latent representations of the states at the future time steps ({ztv|t ∈ Tfuture, v ∈ V}), the
predictions are generated via a masked decoder network that projects the latent representations back
into the data space

yt
v = Dec(ztv; θD ⊙MD), t ∈ Tfuture, v ∈ V. (13)

In our work, Dec(·; θD) is instantiated as a multi-layer perceptron (MLP).

3.5 SUB-NETWORK LEARNING

MS-GODE is trained by maximizing the Evidence Lower Bound (ELBO). Denoting the concatenation
of all the initial latent states ({zt1v |v ∈ V}) as Zt1

V , the ELBO is formulated as

ELBO(Ms) = E
Z

t1
V ∼q(z

t1
v |{Xv|v∈V})[log(p({x

t
v|t ∈ Tfuture, v ∈ V}))] (14)

−KL[q(Zt1
V |{Xv|v ∈ V}))||p(Zt1

V )]. (15)

where p(Zt1
V ) denotes the prior distribution of Zt1

V , which is typically chosen as standard Gaus-
sian. Ms denotes the union of all masks over different modules of the framework (i.e. Ms =
{Ms

E ,M
s
I ,M

s
P }). In our model, the parameters (θE ,θI , and θP ) will be fixed, and the ELBO will

be maximized by optimizing the binary masks Ms overlaying the parameters via the Edge-popup
algorithm (Ramanujan et al., 2020). After learning each system, the obtained mask is added into a
mask pool M to be used in testing.

3.6 MODE-SWITCHING

During testing, MS-GODE will be evaluated on a sequence of systems exhibiting diverse dynamics
patterns, and it will automatically switch to the optimal mode that ensures the highest accuracy. This
is achieved by applying the most suitable mask based on the performance of reconstructing part of
the given observations. To obtain the most suitable mask, a given observation from [t0,t1] is first split
it into two periods [t0, t0+t1

2 ] and [ t0+t1
2 ,t1]. Then, the first half is fed into the model and the correct

mask can be chosen by selecting the one that can reconstruct the second half with the lowest error.

4 EXPERIMENTS

In this section, we aim to answer the following questions. 1. How to properly configure MS-GODE
for optimal performance? 2. How would the configuration of the system sequence influence the
performance? 3. How is the performance of the existing CL techniques? 4. Can MS-GODE
outperform the baselines?

4.1 EXPERIMENTAL SYSTEMS

In experiments, we adopt physics and biological cellular systems. A detailed introduction to the
system sequence construction is provided in Appendix A.1.

Simulated physics systems are commonly adopted to evaluate the machine learning models in the
task of learning system dynamics (Liu et al., 2024; Battaglia et al., 2016; Huang et al., 2020). The
physics systems adopted in this work include spring-connected particles and charged particles (Figure
7). We carefully adjust the system configuration and construct 3 system sequences with different
levels of dynamics shift (Appendix A.1).

Biological cellular systems are innovatively introduced in this work based on Virtual Cell plat-
form (Schaff et al., 1997; Cowan et al., 2012; Blinov et al., 2017). Currently, Bio-CDL includes two
types of cellular models. The first one is rule-based model of EGFR receptor interaction with two
adapter proteins Grb2 and Shc. The second is a compartmental rule based model of translocation
through the nuclear pore of a cargo protein based on the Ran protein (GTPase). In experiments, we
adjust the coefficients of the models to construct a sequence containing 2 EGFR and 2 Ran systems
interleaved with each other (EGFR1 → Ran1 → EGFR2 → Ran2). Full details are provided in
Appendix A.1.2.

4.2 EXPERIMENTAL SETUPS & EVALUATION

Model evaluation in CDL. The models in this work learn sequentially on multiple systems under
the continual learning setting, thus the evaluation is significantly different from standard learning
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Figure 4: Performance comparison among different strategies to binarize the mask values. (a) Comparison over
the cellular system sequence EGFR1 → Ran1 → EGFR2 → Ran2. (b)(c)(d) Comparison over different
physics system sequences. Blue line denotes the performance of top-k selection with different thresholds. Red
line demonstrates the performance of using fast selection.

settings. After learning each new task, the model is tested on all learned tasks and the results form a
performance matrix Mp ∈ RN×N , where Mp

i,j denotes the performance on the j-system after learning
from the 1-st to the i-th system, and N is the number of systems in the sequence. In our experiments,
each entry of Mp is a mean square error (MSE) evaluating the performance on a single system. To
evaluate the performance over all systems, average performance (AP) can be calculated. For example,∑N

j=1 Mp
N,j

N is the average performance after learning the entire sequence with N tasks. Similarly,

average forgetting (AF) can be calculated as
∑N−1

j=1 Mp
N,j−Mp

j,j

N−1 . More details on model evaluation can
be found in Appendix A.4. The baseline are configured by combining existing continual learning
techniques with the LG-ODE (Huang et al., 2020) model. Other dynamics learning models were
excluded because they typically don’t support the practical setting with irregular and incomplete
observation studied in this work. All experiments are repeated 5 times on a Nvidia Titan Xp GPU.
The results are reported with average and standard deviations.

Baselines & model settings. We adopt state-of-the-art baselines including the performance upper
(joint training) and lower bounds (fine-tune) in experiments. The state-of-the-art baselines adopted
in this work include Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) based on regu-
larization, Learning without Forgetting (LwF) (Li & Hoiem, 2017) based on knowledge distillation,
Gradient Episodic Memory (GEM) (Lopez-Paz & Ranzato, 2017) based on both memory replay
and regularization, Bias-Correction (Chrysakis & Moens, 2023) based Memory Replay (BCMR)
that integrates the idea of data sampling bias correction into memory replay, and Scheduled Data
Prior (SDP) (Koh et al., 2023) that adopts a data-driven approach to balance the contribution of
past and current data. Besides, joint training and fine-tuning are commonly adopted in continual
learning works. Joint training trains the model jointly over all systems, which does not follow the
continual learning setting. Fine-tune directly trains the model incrementally on new systems without
any continual learning technique. As revealed by Ramanujan et al. (2020), for learning subnetworks,
pre-trained models are the most suitable for serving as the backbone. However, unlike the Computer
Vision (CV) tasks studied by Ramanujan et al. (2020), pre-trained models are not readily available in
the context of dynamics system modeling. For example, Seifner et al. (2024) provides a promising
pre-trained model with valuable insights into pre-training for dynamical systems, but the model is
still limited to interpolation tasks. However, we will investigate how to adapt the provided model
to extrapolation tasks once their code and model are released. Therefore, we adopt the random
initialization strategy, which is shown by Ramanujan et al. (2020) to be less effective but could be
comparable to pre-trained models with a proper ratio of remaining parameters, which is thoroughly
investigated in our experiments reported in Section 4.3 (Figure 4). More details of experimental
settings and baselines and experimental settings are provided in Appendix A.1 A.3.

4.3 MODEL CONFIGURATION AND PERFORMANCE (RQ1)

When optimizing the system-specific masks using the edge-popup algorithm (Ramanujan et al., 2020)
(Appendix A.2), each entry of the mask is assigned with a continuous value for gradient descent after
backpropagation. During inference, different strategies can be adopted to transform the continuous
scores into binary values. In our experiments, we tested both ‘fast selection’ and ‘top-k selection’
with different thresholds. ‘Fast selection’ sets all entries with positive score values into ‘1’s and the
other entries into ‘0’s. ‘Top-k selection’ first ranks the score values and sets a specified ratio of entries
with the largest values into ‘1’s. In Figure 4, we show the performance of different strategies. Overall,
‘top-k selection’ is inferior to ‘fast selection’. This is potentially because ‘fast selection’ does not
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Table 1: Performance comparisons on physics system sequences (↓ lower means better).

Method Seq1: Low-level dynamics shift Seq2: Mid-level dynamics shift Seq3: High-level dynamics shift
AP ↓ AF ↓ AP ↓ AF /% ↓ AP ↓ AF /% ↓

Fine-tune 0.369±0.027 0.115±0.016 0.391±0.044 0.314±0.030 0.258±0.025 0.086±0.037
EWC 2017 0.208±0.015 -0.007±0.019 0.227±0.038 0.008±0.022 0.148±0.011 0.008±0.017
GEM 2017 0.251±0.037 0.079±0.020 0.379±0.023 0.302±0.030 0.163±0.037 -0.091±0.033
LwF 2017 0.258±0.011 0.104±0.042 0.363±0.039 0.312±0.042 0.130±0.025 0.016±0.032

BCMR 2023 0.284±0.017 -0.006±0.031 0.298±0.028 -0.001±0.033 0.233±0.017 0.027±0.023
SDP 2023 0.352±0.021 0.121±0.018 0.303±0.026 0.352±0.058 0.213±0.035 0.024±0.045

Joint 0.194±0.006 - 0.186±0.015 - 0.116±0.009 -

Ours 0.200±0.003 0.002±0.004 0.204±0.005 -0.001±0.001 0.113±0.001 -0.000±0.000

limit the number of selected entries, therefore allowing more flexibility for optimization. We also
observe that the performance of ‘top-k’ selection is more sensitive on the cellular systems compared
to the physics systems, indicating that the cellular systems have higher optimization difficulty for
sub-network (binary mask) learning over system sequences.

Figure 5: AP (a) and AF (b) of MS-GODE with different
dropout rate.

Second, sub-network learning will deactivate
some neurons in the model, which resem-
bles the dropout mechanism widely adopted
in machine learning models and may cause
the model to be over-sparsified. Therefore,
we investigate the influence of dropout rate
in MS-GODE. From Figure 5, we can see
that a smaller dropout rate results in lower
error (better performance). This corroborates
our hypothesis that the mask selection mech-
anism and dropout complement each other,
and the dropout rate should be decreased when the masking strategy is adopted.

4.4 SEQUENCE CONFIGURATION AND PERFORMANCE (RQ2)
In this subsection, we investigate the influence of system sequence configuration on the learning
difficulty and model performance. Specifically, we construct 3 physics system sequences with
increasing level of dynamics shift (Details are provided in Appendix A.1.1). Sequence 1 (low-level
dynamics shift) consists of 8 spring connected particle systems, in which consecutive systems are
only different in one system coefficient. Sequence 2 (mid-level dynamics shift) is constructed to have
a higher level of dynamics shift by simultaneously varying 2 system coefficients. Finally, sequence
3 (high-level dynamics shift) is constructed by interleaving spring-connected particle systems and
charged particle systems with disparate dynamics. As shown in Table 1, in terms of both AP and AF,
most methods, including MS-GODE, obtain similar performance over Sequence 1 and 2, and obtain
better performance on Sequence 3. For MS-GODE, since the systems with more diverse dynamics
are easier to distinguish for selecting the masks during inference. For all the methods in general,
two possible cases are: 1. The model is not well trained on any system (it has not encoded much
information), therefore it has nothing to forget. 2. The model is well trained and can maintain enough
information from each system. However, the lower AP (low MSE) obtained on the system sequence
with high-level dynamics shift indicates that the model has well adapted to each system, i,e, case
1 is not true. When case 2 holds, it indicates that the model’s parameters are sufficiently updated
to fit each system. When learning on one system, two possible cases are: 1. All parameters are
modified uniformly. 2. A subset of parameters are modified more than the others. When the baseline
is Fine-tune, if all the parameters are uniformly modified, it would be almost impossible to maintain
the performance on previous systems. Therefore, the potential case is that each system relies more on
a subset of the parameters, and systems with larger difference in dynamics may lead to less overlap in
the subsets of parameters they rely on.

4.5 COMPARISONS WITH STATE-OF-THE-ARTS (RQ3,4)
In this subsection, we compare MS-GODE with multiple state-of-the-arts methods including the joint
training, which is typically regarded as the upper bound on the performance in continual learning
research. The experiments are conducted on both physics systems (Table 1) and cellular systems

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 6: Visualization of performance matrices. (a), (b), (c), (d) corresponds to MS-GODE, fine-tune, EWC,
and LwF on the cellular system sequence. (e), (f), (g), (h) are the performance of MS-GODE, EWC, fine-tune,
and GEM, on the physics systems. Lower values indicate better performance.

(Table 2), which demonstrate that MS-GODE outperforms the baselines in both cellular systems and
physics systems with different configurations. Besides, by comparing the results across different
sequences in the two tables, we could find that the sequences with gradual dynamics shift (Sequence
1,2 of physics systems) are more difficult to learn than the sequences with abrupt dynamics shift
(Sequence 3 of the physics systems and the cellular system).The advantages of MS-GODE over the
baselines mainly come from two perspectives. First, since the learning of the subnetworks are learned
in a completely independent manner, the plasticity when learning new systems is guaranteed. Second,
the independency of the subnetworks also eliminates the forgetting issue and protect the performance
stability on previously learned systems.
4.6 IN-DEPTH INVESTIGATION ON THE LEARNING DYNAMICS (RQ3,4)

Table 2: Performance comparisons on biological cellu-
lar systems (↓ lower means better).

Method EGFR1 → Ran1 → EGFR2 → Ran2

AP ↓ AF ↓

Fine-tune 0.355±0.089 0.226±0.037
EWC 2017 0.312±0.028 -0.013±0.019
GEM 2017 0.316±0.083 0.352±0.109
LwF 2017 0.330±0.036 0.349±0.046

BCMR 2023 0.149±0.025 0.013±0.044
SDP 2023 0.197±0.025 0.167±0.045

Joint 0.055±<0.001 -

Ours 0.144±0.012 -0.003±0.036

Table 1 and 2 provide the overall perfor-
mance, which is convenient to compare dif-
ferent methods. However, as introduced in
Section 4.2, to obtain an in-depth under-
standing of the performance of different
methods, we have to seek help from the
most thorough metric, i.e. the performance
matrix. In Figure 6, we visualize the perfor-
mance matrices of different methods after
learning different system sequences. The
i-th column demonstrates the performance
of the i-th task when learning sequentially
over the systems. Comparing MS-GODE
((a) and (e)) and the other methods, we
find that MS-GODE could maintain a much
more stable performance of each system when learning over the sequence. EWC ((c) and (f)) also
maintains a relatively stable performance of each system based on its regularization strategy. However,
compared to MS-GODE, the model becomes less and less adaptive to new systems (the columns
become increasingly darker from left to right). This is because the regularization is applied to more
parameters when proceeding to each new task. Fine-tune ((b) and (g)) is not limited by regularization,
therefore is more adaptive on new systems but less capable of preserving the performance on previous
systems compared to EWC. LwF (d), although based on knowledge distillation, does not directly
limit the adaptation of the parameters like EWC. Finally, based on memory and gradient modification,
GEM (h) maintains the performance better than fine-tune (g), and is more adaptive to new tasks than
EWC (f). More details on the performance matrices are provided in Appendix A.5.

5 CONCLUSION

In this paper, we systematically study the problem of continual dynamics learning (CDL) from differ-
ent perspectives, including investigating the influence of task configuration on model performance
and evaluating the performance of existing continual learning techniques in CDL. Based on the
findings, we propose an effective method, Mode-switching Graph ODE (MS-GODE), for CDL. Addi-
tionally, we also construct a novel benchmark, Bio-CDL, consisting of biological cellular systems
and significantly enriching the research field of machine learning on system dynamics. Finally, we
conduct comprehensive experiments on both physics and cellular system sequences, which not only
demonstrate the effectiveness of MS-GODE, but also provide insights into the problem of machine
learning over system sequences with dynamics shift.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 SYSTEM SEQUENCE CONFIGURATION

A.1.1 PHYSICS SYSTEM SEQUENCE

Simulated physics systems are commonly adopted to evaluate the machine learning models in the task
of learning system dynamics (Liu et al., 2024; Battaglia et al., 2016; Huang et al., 2020). The physics
systems adopted in this work include spring connected particles and charged particles (Figure 7)
with disparate dynamics, therefore are ideal for constructing system sequences to evaluate a model’s
continual learning capability under severe significant dynamics shift. Besides, the configuration
of each system type is also adjustable. For the spring connected particles, the number of particles,
strength of the springs, and the size of the box containing the particles are adjustable. For the charged
particles, the number of particles, charge sign, and the size of box are adjustable. In our experiments,
we constructed multiple systems with different configurations, which are aligned into sequences for
the model to learn.

The physics system sequences are constructed to have different types of dynamics changes. System
sequence 1 is composed of 8 spring connected particle systems. Each system contains 5 particles,
and some pairs of particles are connected by springs. An illustration is given in Figure 7. For
each system, besides the number of particles, the size of the box containing the particles and the
strength of spring are adjustable. In Sequence 1, the first 4 systems have constant spring strength
and decreasing box size. From the 5-th system, the box size is fixed, and the spring strength is
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System S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Type Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring

# particles 5 5 5 5 5 5 5 5 5 5

Box size 10.0 5.0 3.0 1.0 0.5 0.5 0.5 0.5 3.0 1.0

Interaction strength 0.01 0.01 0.01 0.01 0.01 0.1 0.5 1.0 0.1 0.5

Table 3: Spring connected system configurations.

System C1 C2 C3 C4

Type Charge Charge Charge Charge

# particles 5 5 5 5

Box size 10.0 3.0 1.0 0.5

Interaction strength 0.01 0.1 0.5 1.0

Table 4: Charged particle system configurations.

gradually increased. Sequence 2 also contains 8 systems of spring connected particles and is designed
to posses more severe dynamics shift. Specifically, both the box size and spring strength vary from
the first to the last system, and the values are randomly aligned instead of monotonically increasing
or decreasing. Sequence 3 is designed to posses more significant dynamics shift than Sequence 2
by incorporating the charged particle systems in the sequence. Specifically, Sequence 3 contains 4
spring connected particle systems and 4 charged particle systems, which are aligned alternatively.
The box size gradually decreases and the interaction strength (spring strength or amount of charge
on the particles) gradually increases. In a charged particle system, the particles could carry either
positive or negative charge, and the system dynamics is governed by electrostatic force, which is
significantly different from the spring connected particle system.

Figure 7: Illustration of the continual learning over different
physics systems with different dynamics. The factors deter-
mining the dynamics shown in this figure include the type
and strength of the interactions.

Specifically, we list the configurations
of the systems in Table 3 and 4. Then
the three sequences can be precisely
represented as:

1. Sequence 1: S1 → S2 →
S3 → S4 → S5 → S6 →
S7 → S8

2. Sequence 2: S1 → S8 →
S2 → S7 → S3 → S6 →
S5 → S5

3. Sequence 3: S1 → C1 →
S9 → C2 → S10 → C3 →
S8 → C4

For each system, the simulation runs
for 6,000 steps, and the observation is
sampled every 100 steps, resulting in
a 60-step series. During training, the
first 60% part of the trajectory of each
system is fed to the model to generate
prediction for the remaining 40%. For each system sequence, 1,000 sequences are used for training,
and another 1,000 sequences are used for testing.

A.1.2 BIOLOGICAL CELLULAR SYSTEM

In this paper, we build a novel benchmark, Bio-CDL, containing biological cellular dynamic systems
based on Virtual Cell (Schaff et al., 1997; Cowan et al., 2012; Blinov et al., 2017) with different
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system configurations and variable selection. Currently, Bio-CDL is built based on two types of
cellular models. The first one is rule-based model of EGFR receptor interaction with two adapter
proteins Grb2 and Shc. The second is a compartmental rule based model of translocation through the
nuclear pore of a cargo protein based on the Ran protein (GTPase). An illustration of the Ran system
is provided in Figure 8.

Figure 8: Illustration of the RAN-regulated nucleocy-
toplasmic transport (Moore, 2013). Briefly speaking,
this model depicts the translocation of cargo proteins
(Exportin 1) via nuclear pores with the assistance of
RAN proteins. RAN-GDP is first activated into RAN-
GTP) and then binds to cargo molecules (Exportin 1)
forming a complex containing RAN-GTP and Exportin
1. Next, the complex is translocated across the nuclear
membrane into the cytoplasm with the assistance of
RAN. Finally, RAN and Exportin 1 are dissociated after
the translocation.

Detailed description of these
two systems can be found via
https://vcell.org/webstart/
VCell_Tutorials/VCell6.1_
Rule-Based_Tutorial.pdf and
https://vcell.org/webstart/
VCell_Tutorials/VCell6.1_
Rule-Based_Ran_Transport_
Tutorial.pdf. Based on these 2 types
of models, we construct multiple systems,
which are aligned into different system
sequences. Details are provided below.

Our new benchmark contains 1,200 system
sequences constructed based on the EGFR
receptor interaction model and Ran trans-
portation model. These sequences fall into
12 different types, each of which contains
different combinations of systems in dif-
ferent orders to creat different levels of dy-
namics shift. Denoting the basic systems as
EGFR<sub>i</sub> and Ran<sub>i</sub>
(i=1,2,3), the sequence types are listed be-
low. The length of the observation ranges
from 250 to 550 time steps for EGFR sys-
tems and 40 to 150 time steps for Ran sys-
tems.

1. EGFR1 → EGFR2 → EGFR3 →
EGFR4 (Low-level dynamics shift) 1.
Ran1 → Ran2 → Ran3 → Ran4 (Low-level dynamics shift) 1. EGFR1 → Ran1 → EGFR2 →
Ran2 (High-level dynamics shift) 1. Ran1 → EGFR1 → Ran2 → EGFR2 (High-level dynamics
shift)

1. EGFR1 → EGFR2 → EGFR3 → EGFR4 → EGFR5 → EGFR6 (Low-level dynamics
shift) 1. Ran1 → Ran2 → Ran3 → Ran4 → Ran5 → Ran6 (Low-level dynamics shift) 1.
EGFR1 → Ran1 → EGFR2 → Ran2 → EGFR3 → Ran3 (High-level dynamics shift) 1. Ran1

→ EGFR1 → Ran2 → EGFR2 → Ran3 → EGFR3 (High-level dynamics shift)

1. EGFR1 → EGFR2 → EGFR3 → EGFR4 → EGFR5 → EGFR6 → EGFR7 → EGFR8

(Low-level dynamics shift) 1. Ran1 → Ran2 → Ran3 → Ran4 → Ran5 → Ran6 → Ran7 →
Ran8 (Low-level dynamics shift) 1. EGFR1 → Ran1 → EGFR2 → Ran2 → EGFR3 → Ran3

→ EGFR4 → Ran4 (High-level dynamics shift) 1. Ran1 → EGFR1 → Ran2 → EGFR2 →
Ran3 → EGFR3 → Ran4 → EGFR4 (High-level dynamics shift)

Since we haven’t figured out a proper to anonymously release the large-size dataset online, we provide
below the details of data generation, and will release our generated data later. The code for generating
the configuration files for the simulations is contained in

VCell_config_gen.py.

We have restricted the model coefficients to a specific range to ensure the simulations remain stable.
After generating the configuration files, they should be uploaded into the VCell platform for generating
the simulations. The specific steps are listed below.
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Figure 9

Figure 10

1. Download the VCell client through https://vcell.org/run-vcell-software, create
a free account and log in. 2. Select the ’BioModel’ tab, in the ’Search’ box, locate and load the
models ’Rule-based_egfr_tutorial’ or ’rule-based_Ran_transport’ under the ’Tutorials’ directory for
the EGFR model or Ran model, respectively (Figure 9).

4. In the upper left part of the window, click the ’Applications’, then click the ’Simulations’ under
the ’network_determ’ tab (Figure 10).

4. In the main window on the upper right, select the ’Simulations’ tab and click the first icon under
the ’Simulations’ tab to create a new simulation (Figure 11).

5. Click to select the created simulation, then click the icon with a blue arrow and a gear to load the
previously generated simulations. 6. After the simulations are done, select all the simulations and
click the icon with a green arrow and a gear to export all the simulation results into a specified folder.
7. Specify the

data_store_path

and run

generate_dataset.py

to obtain the data files that can be loaded and used by the MS-GODE model.

This implementation of MS-GODE is based on [Pytorch Geometric]https://github.com/
rusty1s/pytorch_geometric API.

Figure 11
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Example command for running the experiments with MS-GODE:

python run_models.py --cut_num 20 \
--nepos 20 \
--device 5 \
--n_iters_to_viz 10 \
--thresholding ’fast’ \
--mask True \
--dropout_mask ’0.0’ \
--batch-size 10 \
--mode "ex" \
--normalizeVCellfeat ’universal’ \
--system ’VCell’ \
--repeats 5 \
--overwrite_results ’False’ \
--fix_random_seed ’False’ \
--save_results True

Example scripts for data generation of cellular/physics systems:

python ./data/generate_dataset.py --simulation VCell \
--num-train 3000 \
--num-test 3000 \
--n-balls 5

The generation of cellular simulation data requires first obtaining simulation data from VCell platform,
which is introduced in the Appendix A.1.2 of the submission.

python ./data/generate_dataset.py --simulation simulation \
--num-train 3000 \
--num-test 3000 \
--n-balls 5

Setup

The mdoel implementation is based on the following packages:

- [Python 3.6.10](https://www.python.org/)

- [Pytorch 1.4.0](https://pytorch.org/)

- [pytorch_geometric 1.4.3](https://pytorch-geometric.readthedocs.io/)

- torch-cluster==1.5.3 - torch-scatter==2.0.4 - torch-sparse==0.6.1

- [torchdiffeq](https://github.com/rtqichen/torchdiffeq)

- [numpy 1.16.1](https://numpy.org/)

In our experiments, we adjust the parameter configurations of these two types of models to construct
multiple systems with different dynamics, which are aligned into a sequence for the experiments.
We generate simulated data using the Virtual Cell platform (VCell) and pre-process the data. In
experiments, we adopt a 4-system sequence using the simulated data by alternatively align 2 EGFR
systems and 2 Ran systems. EGFR system is rule-based model of EGFR receptor interaction with
two adapter proteins Grb2 and Shc. Ran system is a compartmental rule based model of translocation
through the nuclear pore of a cargo protein based on the Ran protein (GTPase).

Using the code for generating cellular system data requires the following steps.

1. Using the script contained in our provided code ‘MS-GODE/VCell_config_gen’ to generate
the configuration files for VCell simulation. Users can freely adjust the configurations in the
script.

2. Download the VCell application from https://vcell.org/.
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3. Load the generated configuration files into the VCell platform.
4. Generate simulation results. Instruction of using this script is also provided in the ReadMe

file of our code.
5. Using the script ‘MS-GODE/data/generate_dataset.py’ for processing the simulation results.

After this step, the data can be used for experiments.

Since the entire dataset is much larger than the 100 MB limit, we cannot provide the data in
the supplementary materials. But we have provided all code and instruction for generating the
data, and will release the complete Bio-CDL benchmark to the public later. Besides the sequence
EGFR1 → Ran1 → EGFR2 → Ran2 adopted in the experiments, the complete Bio-CDL also
contain more different system configurations and sequence configurations. Moreover, we are also
working on enriching Bio-CDL with more diverse system types and system sequences.

For each cellular system, we generate 100 iterations of simulation using VCell. Different from the
physics systems, the temporal interval between two time steps of cellular system is not constant.
Similar to the physics systems, the first 60% part of the observation of each system simulation is fed
into the model to reconstruct the remaining 40% during training. For each system, we generate 20
systems for training and 20 systems for testing.

A.1.3 ADDITIONAL DETAILS OF EXPERIMENTAL SETTINGS

For the encoder network, the number of layers is 2, and the hidden dimension is 64. 1 head is used for
the attention mechanism. The interaction network of the generator is configured as 1-layer network,
and the number of hidden dimensions is 128. Finally, the decoder network is a fully-connected
layer. The model is trained for 20 epochs over each system in the given sequence. We adopt the
AdamW optimizer (Loshchilov & Hutter, 2017) and set the learning rate as 0.0005. In our work, task
boundaries are provided to the models during training.

A.1.4 ADDITIONAL DISCUSSION ON PERFORMANCE AND LOW-LEVEL DYNAMICS SHIFT

The performance of MS-GODE is mainly determined on two factors, including the performance on
each system and the forgetting issue. Therefore, to further improve the performance under gradual
dynamics shift, there are two promising approaches:

1. Enhancing the performance on each single system. As revealed in Ramanujan et al. (2020), the
larger the backbone network, the more probable the masked sub-network can reach the capacity of the
full backbone network. In other words, increasing the size of the model can improve the performance.

2. Reducing the performance decrease after learning new systems. Since MS-GODE completely
separate the masks for different dynamics, the forgetting issue has been eliminated. Therefore, the
performance decrease after learning new systems mainly comes from the incorrect mask selection.
The strategy above to increase model size can help improve the mask selection, because better fitting
to each system increases the difference between the masks. Furthermore, the mask selection can
also be improved by incorporating a mixture of selection criteria. Specifically, in our experiments,
the mode-switching module of MS-GODE selects the mask based on the error of reconstructing
the second 50% of the observation. This can be enhanced by incorporating different splitting ratios
and mixing the result. Since the correct mask tend to exhibit lower error with most splitting ratios,
selecting the one that succeeds in more splitting ratios could increase the possibility of finding the
correct one.

A.2 EDGE-POPUP ALGORITHM

In this work, we adopt the edge-popup algorithm (Ramanujan et al., 2020) for optimizing the binary
masks. The main idea is to optimize a continuous score value for each entry of the mask during
the backpropagation, and binarize the values into discrete binary values during forward propagation
(Appendix A.2). Accordingly, the strategy for binarizing the mask entry values is a crucial factor
influencing the performance. For convenience of the readers, we provide the details about this
algorithm in this subsection.

Given a fully connected layer, the input to a neuron v in the l-th layer can be formulated as a weighted
summation of the output of the neurons in the previous later,
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Iv =
∑

uVl−1

wuvzu, (16)

where V l−1 denotes the nodes in the previous layer and zu refers to the output of neuron u.

With the edge-popup strategy, the output is reformulated as

Iv =
∑

uVl−1

wuvzuh(suv), (17)

where h(suv) is the binary value over the weight wuv denoting whether this weight is selected and
suv the continuous score used in gradient descent based optimization. During backpropagation, the
gradient will ignore h(·) and goes through it, therefore the gradient over suv is

gsuv
=

∂L
∂Iv

∂Iv
∂suv

=
∂L
∂Iv

wuvzu, (18)

where L denotes the loss function.

During forward propagation, h(·) can take different options as we mentioned and studied in Section
4.3. In our experiments 4.3, we tested both ‘fast selection’ and ‘top-k selection’ with different
thresholds. ‘Fast selection’ set all entries with positive values into ‘1’s and the other entries into ‘0’s.
‘Top-k selection’ will rank the entry values and set a specified ratio of entries with the largest values
into ‘1’s.

A.3 BASELINES

1. Fine-tune denotes using the backbone model without any continual learning technique.
2. Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) applies a quadratic penalty

over the parameters of a model based on their importance to maintain its performance on
previous tasks.

3. Gradient Episodic Memory (GEM) (Lopez-Paz & Ranzato, 2017) selects and stores
representative data in an episodic memory buffer. During training, GEM will modify the
gradients calculated based on the current task with the gradient calculated based on the
stored data to avoid updating the model into a direction that is detrimental to the performance
on previous tasks.

4. Learning without Forgetting (LwF) (Li & Hoiem, 2017) is a knowledge distillation based
method, which minimizes the discrepancy between the the old model output and the new
model output to preserve the knowledge learned from the old tasks.

5. Bias Correction based Memory Replay (BCMR) (Chrysakis & Moens, 2023). This
baseline is constructed by integrating the navie memory replay with the data sampling bias
correction strategy (Chrysakis & Moens, 2023). In other words, the method does not train
the data immediately after observing the data. Instead, it stores the observed data into a
memory buffer. Whenever testing is required, the model will be trained over all buffered
data.

6. Scheduled Data Prior (SDP) (Koh et al., 2023) considers that the importance of new and
old data is dependent on the specific characteristics of the given data, therefore balance the
contribution of new and old data based on a data-driven approach.

7. Joint Training (Joint) jointly trains a given model on all data instead of following the
sequential continual learning setting.

A.4 MODEL EVALUATION

Different from standard learning setting with only one task to learn and evaluate, in our setting,
the model will continually learn on a sequence of systems, therefore the setting and evaluation are
significantly different. In the model training stage, the model is trained over a system sequence.
In the testing stage, the model will be tested on all learned tasks. Therefore the model will have
multiple performance corresponding to different tasks, and the most thorough evaluation metric is the
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performance matrix Mp ∈ RN×N , where Mp
i,j denotes the performance on the j-system after learning

from the 1-st to the i-th system, and N is the number of systems in the sequence. In our experiments,
each entry of Mp is a mean square error (MSE) value. To evaluate the overall performance on a
sequence, the average performance (AP) over all learnt tasks after learning multiple tasks could

be calculated. For example, i.e.,
∑i

j=1 Mp
N,j

N corresponds to the average model performance after
learning the entire sequence with N tasks. Similarly, the average forgetting (AF) after N tasks

can be formulated as
∑N−1

j=1 Mp
N,j−Mp

j,j

N−1 . These metrics are widely adopted in continual learning
works (Chaudhry et al., 2018; Lopez-Paz & Ranzato, 2017; Liu et al., 2021; Zhang et al., 2023; Zhou
& Cao, 2021), although the names are different in different works.

For convenience, the performance matrix can be visualized as a color map (Figure 6). For example,
they are named as Average Accuracy (ACC) and Backwarde Transfer (BWT) in (Chaudhry et al.,
2018; Lopez-Paz & Ranzato, 2017), Average Performance (AP) and Average Forgetting (AF) in
(Liu et al., 2021), Accuracy Mean (AM) and Forgetting Mean (FM) in (Zhang et al., 2023), and
performance mean (PM) and forgetting mean (FM) in (Zhou & Cao, 2021).

A.5 PERFORMANCE MATRIX ANALYSIS

Given a visualized performance matrix, we should approach it from two different dimensions. First,
the i-th row of the matrix denotes the performance on each previously learned system after the
model has learned from the 1-st system to the i-th system. Second, to check the performance of a
specific system over the entire learning process, we check the corresponding column. For example, in
Figure 6 (e), each column maintains a stable color from the top to the bottom. This indicates that the
performance of each system is perfectly maintained with little forgetting. But if the color becomes
darker and darker from top to bottom (increasing MSE), it indicates that the corresponding method is
exhibiting obvious forgetting problem.
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