
Workshop track - ICLR 2018

CLUSTERING MEETS IMPLICIT GENERATIVE MODELS

Francesco Locatello1,3, Damien Vincent2, Ilya Tolstikhin1, Gunnar Rätsch3, Sylvain Gelly2,
Bernhard Schölkopf1
1 Max Planck Institute for Intelligent Systems, Tübingen, Germany
2 Google Brain
3 ETH Zurich, Switzerland
1{flocatello,ilya,bs}@tuebingen.mpg.de
2{damienv,sylvaingelly}@google.com
3{raetsch}@inf.ethz.ch

ABSTRACT

Clustering is a cornerstone of unsupervised learning which can be thought as
disentangling multiple generative mechanisms underlying the data. In this paper we
introduce an algorithmic framework to train mixtures of implicit generative models
which we particularize for variational autoencoders. Relying on an additional set of
discriminators, we propose a competitive procedure in which the models only need
to approximate the portion of the data distribution from which they can produce
realistic samples. As a byproduct, each model is simpler to train, and a clustering
interpretation arises naturally from the partitioning of the training points among
the models. We empirically show that our approach splits the training distribution
in a reasonable way and increases the quality of the generated samples.

1 INTRODUCTION

In recent years, (implicit) generative models have attracted significant attention in machine learning.
Two of the most prominent approaches are Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) and Variational Autoencoders (VAEs) (Kingma & Welling, 2013). Both approaches aim
at minimizing the discrepancy between the true data distribution and the one learned by the model.
The model distribution is typically parametrized with a neural network which transforms random
vectors into samples in the space of the training data (e.g., images). Variational Autencoders maximize
a log-likelihood and are able to perform efficient approximate inference on probabilistic models with
continuous latent variables and intractable posterior. Unfortunately, VAEs are known to produce
blurry samples when applied to natural images. GANs take a completely different approach, relying
on adversarial training. This resulted in impressive empirical results. On the other hand, adversarial
training comes at a cost. GANs are harder to train and suffer from the mode collapse problem. One
solution to this problem is to train multiple generative models either sequentially (Tolstikhin et al.,
2017) or in parallel (Hoang et al., 2017). In contrast to GANs, VAEs suffer huge loss if they do not
model the whole support of the data distribution with sufficiently high probability. As a consequence,
they often place a significant probability mass in regions outside the support of the data distribution.

We aim at bridging this gap, developing a general approach to train multiple generative models in
parallel which focus on different parts of the training distribution. We particularize this framework
for VAEs. As a consequence, each VAE will be able to collapse on some modes while the mixture of
generators (decoders) will still approximate the whole data distribution. Borrowing ideas both from
the literature on clustering and on causality, we assume that the data was generated by independent
mechanisms, i.e., that the generative process of the overall distribution is composed of separate
modules that do not inform nor influence each other (Peters et al., 2017). Consider the special case of
a variable X0 which is caused by (mixing) several independent sources X1, . . . , XK without parents
in the causal graph. In this case, the causal generative model can be written as

p(X0, . . . , XK) = p(X0|X1, . . . , XK)

K∏
j=1

p(Xj). (1)

1



Workshop track - ICLR 2018

Note that only one of the mechanisms, p(X0|X1, . . . , XK), implementing the mixing, is still
a conditional; the others reduce to unconditional distributions since the sources have no par-
ents. The conditional can be written as a structural equation (Pearl, 2000) in the form of
X0 := f(X1, . . . , XK , j) ≡ Xj , where j is a discrete noise variable taking values in {1, . . . ,K}.
The distribution of j determines the mixing coefficients. This structural equation expresses the condi-
tional as a mechanism represented by a noisy function. Suppose each training point was generated
by one of the mechanisms Xj , but we get to observe only the mixture X0 of all these realizations.
Recovering the mechanisms would amount to learning a particular kind of structural causal generative
models, and it could form a building block of more complex causal models (Schölkopf et al., 2016).
We make the simplifying assumption that the supports of the different mechanisms do not overlap,
hence if we observe two identical realizations of X0 we assume they were generated by the same
mechanism.

2 TRAINING INDEPENDENT GENERATIVE MODELS

Algorithm 1 Mixture training

1: init K generative models gj , c
(0)
j

2: for t = 0 . . . T

3: minPgj
Df

(
Pgj‖P (t)

dj

)
for every gj in

parallel.
4: Update c(t+1)

j (x) for every gj
5: end for

Let X be a dataset composed of N samples x
from the data space X , which are realizations
of X0. Furthermore, let Pd be an unknown data
distribution defined over the data space X with
support X to be approximated with an easy to
sample distribution Pmodel =

∑k
j=1 αjPgj by

minimizing an f -Divergence (Nowozin et al.,
2016). Each component Pgj should specialize
on one of the generating mechanisms. Intu-
itively, our training procedure is related to the
k-means algorithm. In k-means, one first decou-

ples the training data across the centroids and then update the centroid based on the assignment. Our
approach is informally depicted in Algorithm 1. For a given assignment function cj we define dPdj
as the density obtain by normalizing dPd(x)cj(x). We further define the weighting αj as the normal-
ization constant of dPdj . This can be empirically estimated by counting how many training points
are assigned to the j-th generator. We can decouple the training of the generators by minimizing an
upper bound of the f -divergence (proof in the Appendix):

min
Pgj

∑
j

αjDf (Pgj |Pdj ), (2)

Since each term in the sum in Equation (3) is independent, each generative model can be trained
independently to approximate dP (t)

dj
.

After training the generative models, we fix them and update the assignment of each training point by
maximizing an estimate of their likelihood. We train a discriminator to distinguish samples from Pgj
and samples from Pd, for which we have that:

dP (t)
gj (xi) ≈ dPd(xi)

1−D(t)
gj (xi)

D
(t)
gj (xi)

Note that this approximation makes sense only when computed on the training points. Therefore,
we approximate dP (t)

gj (xi) as the empirical estimate over the training set. We now assign each
training point to the mechanism j that generates the most similar samples, i.e. c(t+1)

j (xi) = 1 if j =

argmaxl dP
(t)
gl (xi) and 0 otherwise. A sketch of the competitive training procedure, using VAEs

decoders as generators (which we call kVAEs), is depicted in Figure 1. In the Appendix we further
discuss the clustering interpretation.

3 EXPERIMENTAL PROOF OF CONCEPT

In Figure 2 we depict the output of our algorithm trained on synthetic data from a distribution with
5 different modes, in which one is more complex than the others. In Table 1a we report the log
likelihood of the true data under the generative model distribution.

2



Workshop track - ICLR 2018

Figure 3: MNIST: samples generated by 15 mixture components and real digits clustered after 10 iterations

For the experiment on MNIST, we do not know the number of modes. There is no reason to believe the
optimal number of modes should be the number of digits. We arbitrarily use 15 models, to also capture
stylistic differences between digits, following the insights from (Tolstikhin et al., 2017). Note that the
different VAEs did specialize on distinct parts of the data distribution as similar digits and styles tend
to be grouped together. In Table 1b we report the FID score (Heusel et al., 2017) and compare it against
an ensemble of 15 VAEs trained uniformly and with bagging, a single VAE of the same capacity of the
ones in the ensembles (maximum 64 filters per layer) and a larger VAE (maximum 512 filters per layer).
We note that our approach increases the FID score of a single model and is competitive with larger
models. At the same time, our approach is more scalable, as it allows one to decouple the complexity
of the overall model across the different VAEs. All experimental details are deferred to the Appendix.

q(z|x)

q(z|x)

pg1
(x|z)

pg2
(x|z)

x ⇠ pg2
(x|z)

x ⇠ pg1
(x|z)

Discriminator

Discriminator

Argmax

x ⇠ P 1
data

x ⇠ P 2
data

VAE

VAE
x ⇠ Pdata

x ⇠ Pdata

P̂ (xdata|gj) =
1

Z

1 � Dj(xdata)

Dj(xdata)

Figure 1: Training pipeline

Figure 2: Synthetic data experi-
ment, 5 modes and 5 VAEs (ini-
tialized with 100 epochs of uni-
form training) after 130 iterations
of the meta-algorithm.

experiment kVAEs bag VAE-150
3 modes -4.59 -6.49 -5.42
5 modes -2.74 -7.7 -5.71
9 modes -2.51 -7.05 -6.83

(a)

kVAEs kVAEs init bag VAE-64 VAE-512
9.99 15.33 21.38 17.96 9.44

(b)

Table 1: (a) Log-likelihood of the true data under the generated distribution after 100 iterations of the kVAE
algorithm with as many components as modes and 50 units per layer, 100 epochs of bagging and 1000 epochs of
a single larger VAE (150 units per layer). (b) FID score on MNIST. A random split of the training set hurts the
performance of the models as it does not carry any semantic and each model is trained on less data overall.

4 CONCLUSIONS:
In this paper, we introduced a clustering procedure using implicit generative models, which encour-
ages them to generate more realistic samples. We train networks with limited capacity and let them
compete between each other in the pursuit of generating more realistic samples. We empirically
validated that the model can successfully recover the true generative mechanisms and in general
allows one to generate samples which are closer to the support of the data distribution. In MNIST
we obtained FID scores which are competitive with the ones of larger VAEs. The approach we
presented is extremely modular and there are several possible extension. For example, given enough
computational resources one can dramatically increase the number of generative models.

3



Workshop track - ICLR 2018

REFERENCES

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems, pp. 6629–6640, 2017.

Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. Multi-generator gernerative adversarial
nets. arXiv preprint arXiv:1708.02556, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are gans created
equal? a large-scale study. arXiv preprint arXiv:1711.10337, 2017.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. In Advances in Neural Information Processing Systems,
pp. 271–279, 2016.

J. Pearl. Causality. Cambridge University Press, 2000.

J. Peters, D. Janzing, and B. Schölkopf. Elements of Causal Inference - Foundations and Learning
Algorithms. Adaptive Computation and Machine Learning Series. The MIT Press, Cambridge,
MA, USA, 2017.

B. Schölkopf, D. Janzing, and D. Lopez-Paz. Causal and statistical learning. In Oberwolfach Reports,
volume 13, pp. 1896–1899, 2016. doi: 10.4171/OWR/2016/33.

Ilya O Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, and Bernhard
Schölkopf. AdaGAN - Boosting Generative Models. NIPS, 2017.

4



Workshop track - ICLR 2018

A IMPLEMENTATION DETAILS

We generate synthetic data in 2 dimensions by first sampling 64,000 points from a Gaussian
distribution and then we skew the second dimension x2 with the non-linear transformation
x2 = x2 + 0.04 · x21 − 100 · 0.04. This ensures that each mode is sufficiently complex so that
the VAEs cannot perfectly learn the data distribution by encoding each mode in a different dimension
of the latent space. We use a small and standard architecture for the VAE: a neural network with
two hidden layers with 50 units each as both the decoder and the encoder. The discriminator has a
similar architecture. We use a 5 dimensional latent space and assume a Gaussian encoder. At each
iteration, we train each VAE for 10 epochs on a split of the dataset (VAEs are pretrained uniformly
on the dataset), and the classifier is trained for 2 epochs for the first two experiments and 5 for the
third. We use Adam (Kingma & Ba, 2014) with step size 0.005, β = 0.5 batch size 32. We perform
three different experiments.

We compute the log-likelihood of the true data under the generated distribution using a Kernel Density
Estimation with Gaussian kernel. We compare against a larger VAE with 150 units per layer (instead
of 50), trained uniformly over the training set, and a bag of VAEs with 50 units trained on a random
subsample of the training set (sampled with replacement) containing N/K training points. We note
that the random splitting of the training set did not help the VAE to specialize and actually made the
log-likelihood worse after training for 100 epochs.

A.1 MNIST

We again use a small and simple architecture, with relu activation functions. The encoders and the
decoders have 4 convolutional layers with 8-16-32-64 4 × 4 filters. We use batch normalization
with ε = 10−5 and decay 0.9. Each VAE has a cross-entropy reconstruction loss and a latent space
dimension of 8, and we fix the learning rate of Adam for all networks to 0.005. The discriminator
has 3 convolutional layers and a linear layer with number of filters 64-128-256. As opposed to the
synthetic data example, we do not reinitialize the classifier at each iteration of the meta algorithm.
Instead, we train it for a single batch in every iteration of the meta-algorithm. The reason is that we
found the classifier output to be too sensitive to the initialization if it is not trained sufficiently long.
On the other hand, training a full discriminator in every iteration was too expensive, and if trained too
much, it would learn to distinguish fake example by just looking at specific blurriness patterns. In the
synthetic experiments, the data produced by each VAE was indistinguishable from the real data if the
support was correct, so training a classifier from scratch was feasible and gave best results.

To evaluate our generated samples we used the FID score (Heusel et al., 2017). We remark that our
FID score is competitive with the one obtained with a large VAE, as well as the one that can be
obtained with GANs (slightly less than 10 was reported in (Lucic et al., 2017, Figure 5)).

B PROOF OF EQUATION 3

Lemma 1. For a fixed partition function cj , we minimize for all j ∈ [K]:

min
Pgj

∑
j

αjDf (Pgj‖Pdj ), (3)

which is an upper bound on the f -divergence for a mixture model.

Proof. By definition of the model we write the f -divergence as:

Df (Pmodel‖Pd) = Df (

k∑
j=1

αjPgj‖Pd)

Now, we have that αj =
∫
X
dPd(x)cj(x). Since Xj ∩ Xk = ∅ for j 6= k, we can write:

Df (

k∑
j=1

αjPgj‖Pd) = Df (

k∑
j=1

αjPgj‖
k∑
j=1

αjPdj )

Joint convexity of Df concludes the proof.

5



Workshop track - ICLR 2018

C CLUSTERING INTERPRETATION

The general approach we introduced is closely related to clustering. In this section we revisit classical
clustering notions in view of our framework. We show that we generalize k-means in non-metric
spaces, and we recover it when the space is euclidean.

In the generative interpretation of clustering, one assumes that the data was generated from each
centroid µ with an additive Gaussian noise vector, i.e., x = µ+ ε. This formulation naturally yields
an euclidean cost for the cluster assignment when decoupling the data between the different centroids.

Unfortunately, the euclidean distance is known not to be a good metric for clustering images. Our
goal in the present paper is to find a clustering of the data across the generating mechanism in a
setting in which the metric of the space is not known.

We now show how to recover k-means clustering from our framework. Assume that the data is
generated by a mixture of Gaussians. We can lower bound the log-likelihood of the data using a
variational bound:

log(P (X)) ≥
∑
i

∑
j

qi(j) log

(
P (xi, j)

qi(j)

)
where q is the variational approximation of the posterior and j is the index of the components. One can
then simply rewrite P (xi, j) = P (xi|j)p(j). Then, for a Gaussian mixture model one parametrizes
P (xi|j) with a Gaussian distribution. If the Gaussian is isotropic and when the covariance vanishes
one obtains that qi(j), the variational approximation of the posterior, degenerates to a hard assignment.
Instead of approximating the generative model with a Gaussian distribution, we parametrize P (xi|j)
with an implicit generative model from which it is easy to sample. If Pj is the decoder of a variational
autoencoder, we can obtain the k-means algorithm by assuming that the mean of the encoder is
constant and independent of x. Note that VAEs are trained to maximize the log-likelihood as in EM.
Assume we have a Gaussian encoder which maps all the input to a single point (degenerate Gaussian
with σ = 0). Now, say we have the identity as decoder. The result of this procedure is that when
training the autencoder with the reparametrization trick, one has to minimize

Ex∼Pdj

[
− logPgj (x|µj)

]
= Ex∼Pdj

[
1

2
‖x− µj‖2

]
.

Then, using EM, we compute the update for the (degenerate) variational distribution:

qi(j = 1) = lim
σ→0

αe−‖xi−µj‖/2σ∑
j αje

−‖xi−µj‖/2σ

And recalling that logPgj = −‖xi − µj‖2/2 we notice that the degenerate posterior is obtained by
maximizing the likelihood. Instead of using the autencoder loss, we estimate Pgj using a discriminator
to account for the fact that we might not have a clear notion of distance. In an euclidean space, one
could simply use a nearest neighbor classifier between the output of the VAEs (i.e. the centroids) and
the training points. Note that this procedure is exactly k-means.

6


	Introduction
	Training Independent Generative Models
	Experimental Proof of Concept
	Conclusions:
	Implementation Details
	MNIST

	Proof of Equation 3
	Clustering Interpretation

