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ABSTRACT

We treat semi-supervised semantic segmentation where a few pixel-wise labeled
samples and a large number of unlabeled samples are available. For this situation
we propose cosegmentation loss which enables us to transfer the knowledge of a
few pixel-wise labeled samples to a large number of unlabeled images. In the ex-
periments, for the task of human-part segmentation with a few pixel-wise labeled
images and 1715 unlabeled images, and proved that the proposed co-segmentation
loss helped make effective use of unlabeled images.

1 INTRODUCTION

Recently, weakly-supervised semantic segmentation has drawn a large attention to reduce costs to
prepare pixel-wise annotated training images which are time-consuming and costly to obtain. In
weakly-supervised segmentation, we use only image-level labels for training CNNs. However, most
of the existing methods on weakly-supervised segmentation have fatal drawbacks that they cannot
train a segmentation network for the targets having strong co-occurrency to each other such as “train”
with “railroad”, “chair” with “table”, and “boat” with “sea”. Strong co-occurrence objects will be
recognized as the same class objects, since weakly-supervised approach relies on only image-labels.
If all the image in a dataset contains both a car and road, it is impossible to discriminate between car
regions and road regions. In fact, “desk™ and “chair” are included in the Pascal VOC dataset which
is widely used as a benchmark dataset in the weakly-supervised semantic segmentation, and their
segmentation accuracy tends to be relatively lower.

As other datasets, there are more strong co-occurrence between targets in the images of road scene
segmentation which is known as one of the practical application of semantic segmentation. Since au-
tomotive images always include “road” and “sky”, it is extremely difficult to extract road and sky re-
gions using only image-level labels. Similarly, human-parts segmentation with weakly-supervision
is extremely difficult. Instead, semi-supervision is promising where a small part of training samples
are fully annotated (pixel-wise label in case of segmentation) and the rest has no labels.

In this work, we treat a semi-supervised approach to reduce pixel-wise annotation cost of semantic
segmentation for the situation where strong co-occurrence between targets exists. As recent semi-
supervised works for semantic segmentation, Hong et al. (2015) and Papandreou et al. (2015) exists
both of which assumed the setting of weakly-supervised segmentation where image-level class labels
were available for all the training samples. On the other hand, in our method, we assume that the
training samples excepts a few fully-annotated samples having pixel-level labels have no class labels.
Our setting is more realistic and practical than the setting of Hong et al. (2015) and Papandreou et al.
(2015) where even the samples having no pixel-wise labels have image-label class labels.

In our method, we follow co-segmentation approach which estimates similar regions between two
training images. We detect similar regions between fully-labeled samples and unlabeled samples,
and use similar regions in the unlabeled samples to the regions in fully annotated samples for training
of unlabeled samples. By using region masks in the fully-annotated samples as seeds, we search
unlabeled samples for similar regions to the seed regions.

In this work, we use the PASCAL VOC human part dataset (Chen et al. (2014)) as a dataset which
have co-occurrency between target classes. Especially, we use four class in the dataset, “head”,
“body”, “hand”, and “leg parts”, and made segmentation experiments on these four classes. For
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simplicity, we use bounding box annotations of human regions for all the training images, which
can be substituted in the practical situations by the results of state-of-the-art human detectors such
as Faster RCNN.

Our contributions in this paper are as follows:

e We propose a semi-supervised method for semantic segmentation which requires no image-
level class labels for unlabeled samples.

e We propose a novel co-segmentation loss for region knowledge transfer which takes ac-
count of region similarities between pairwise images.

e The proposed method achieved comparable or better results to the existing semi-supervised
methods for semantic segmentation without using image-level class label annotation of the
unlabeled samples.

2 METHOD

We denote an input image as x, human region mask as y, and human part region mask as z. Let

= {af,y!, 2/}, be a fully annotated set of n; samples and let X, = = {z},yi' }i, be a
unlabeled set of n,, samples. We assume that both set X ; and X, have human region mask y in this
setting.

We define the target image z! which is selected from X, as the most similar image to the :c . To

calculate image similarity, we use the output of a segmentation network, h7 () and h*(6), where 0
is a parameter set in a segmentation network to be optimized. We adapt masking layer (Dai et al.
(2015)) to the hidden representation in order to focus on parts segmentation. The masked feature is

given by element-wise product m/ (8) = hf () - 9/, m*(0) = h*(0) - §*, where § and §* are the
same size tensor to the hidden feature which is obtained by resizing and stacking v/ and y*.

To extract feature representation of an image, we convert the heat map m/ (9), m*(6) to vectors by
Global Average Pooling (GAP). Let G : RE>*W>H _ R be a GAP function. We calculate the
similarity for an image pair from converted feature g/ () = G(m/), g*(0) = G(m*()). Target
image « is obtained by } = argmaxy;c,, D(g! (0), g4(0)), where D(.,.) is Euclidean distance
function. We select the z! for each of xf during training time.

Co-segmentation is an algorithm to segment corresponding regions between pairs of images si-
multaneously. The insight of cosegmentation loss approach is to transfer fully annotated knowl-

edge xlf to unlabeled z! by mining similar regions. The network architecture used in our coseg-
mentation approach is shown in Fig.1 in Appendix. First, we define distinct representation for

each of the human-part classes. Let pf(#) and p! () be the softmax output of segmentation
network for class ¢ € C. The maximum point for p. can be regarded as important location

for each class. (ac,b:) = argmaxyc, pf(ak,bi;6). We provide the location (ac, be) to the
masked feature m7 (). We define the representation of xf for class c as 7 ;(0) = m; Mg, be3 0).
We explore similar regions to the r{ from m/ (). Vector distance d.(a,b) can be computed by
do(a,b;0) = D(rf,m*(a,b;0)). Let d be sorted result for d. We define the space s € S which

satisfies following condition: d(as, bs; 0) > d.(asy1,bss1;0). Cosegmentation loss is represented
by:

n£/2
Leose log p*(0) (1)
" |C| ; f/2 s oz;es

where n/ is the number of pixels z. It is better than fix value or random value, since the im-
age similarity is related to the region size. Cosegmentation loss relies on 77 (), so that we
need to combine this 108s: Lhumanparts = —ﬁ >eec |71£\ > wesd log pf (az,, by; 0)0 For addi-
tional loss, we use Lpuman 10ss, since masking layer is not enough for eliminating background
factor. Luuman = flyiﬂ Zkey} log(1 — pk(ag,bx;0))0 Our final loss is as follows: L, =
Lhumanparts + 0Lhuman + BLeoseg- We set the parameter «, 5 with 0.001 for generating bet-
ter representation rf (9) before decreasing the 10ss Lcosey-
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3 EXPERIMENTAL RESULTS

We performed experiments on human-part segmentation with the Pascal VOC human-part dataset
(Chen et al. (2014)). The dataset contains 1715 training images and 1818 validation images with
human-part annotation. We randomly selected a few (10 to 100) images as a few fully-annotated
samples from 1715 training images. Fig. in Appendix shows examples of 10 selected fully-annotated
samples. We selected four human parts, “head”, “body”, “hand” and “leg”, as the target part classes
by merging some classes provided by the authors. In the experiments, we trained the segmentation
network for each of the human-part models separately. That is, the segmentation network outputs
segmentation masks of three classes, human part, other region and backgrounds. The evaluation
protocol is based on a simple mean intersection over union (IOU). In evaluation, we do not take care
of the background class. We used the DeepLab large fov model (Chen et al. (2015)) as a segmenta-
tion network, and initialized parameters provided by the authors which was trained with ImageNet.
We set the batch size to 24 which was the maximum size for our GPU environment, and in each
mini-batch we assigned the size of the full supervised data to 1 and the size of the unlabeled data
size to 23 for a large search space.

We show the experimental results in Table 1. As baselines we prepared two simple full supervised
model, (a) and (c). The difference in the models is only the number of images. We trained (a)
with 10 selected images and (c) with all 1715 images. On the other hand, for our proposed method
(b), we used 10 pixel-wise labeled images and 1715 unlabeled images. Our method improved the
results from (a) consistently for each of the target parts. Particularly, our method enhanced the result
on “hand” in which the category score is only 2.5% in the (a) method. Fig.4 in Appendix shows
qualitative results. In many cases, our method improved the segmentation results compared to the
result of (a), and some results became close to the result of (c). These results indicated that co-
segmentation loss has the ability to transfer the region knowledge to unlabeled images. The reason
why the scores on “others” were lower than (a) is that the method of (a) had the strong tendency that
segments are classified as “other regions” in general, which brought better results on the scores of
“others”.

Table 2 in Appendix shows the result of simultaneous estimation of four-class human parts. The
evaluation was performed in the same way as Table 1. The graph in Fig. in Appendix shows the
Mean IoUs of the same experiments regarding the proposed method and three baselines including
EM-adapt (Papandreou et al. (2015)), only using fully-supervised samples and the method based
on Global Max Pooling. From these results, the proposed method is still effective for simultaneous
estimation. This tables also shows the results when varying the number of pixel-wise labeled images
from 10 to 100. In the most cases, the results by the proposed method using unlabeled images were
comparable or superior to the baseline results.

4 CONCLUSIONS

We have proposed cosegmentation loss which is a novel region knowledge transferring method. We
showed that the approach was effective for enhancing a few full-supervised data with a large amount
of unlabeled data. For the dataset where strong co-occurrency between the target classes exists, we
achieved comparable or better results to the existing semi-supervised methods for semantic segmen-
tation without using image-level class label annotation of the unlabeled samples.

We expect that the recent method on weakly supervised segmentation which is combination of
generating region seeds and re-training segmentation results using the seeds is effective even for
semi-supervised semantic segmentation. For future work, we plan to introduce this method to semi-
supervised segmentation with the same setting as this paper.

Table 1: Mean IoU score (%) for the each human part segmentation results.

u head body hand leg

f
Method " " head others | body others | hand others | Ieg  others

(a) Fully supervised only | 10 0 437 672 13.8  50.2 2.5 604 | 150 627

(b) Cosegmentation loss 10 [ 1715 ] 50.0 684 | 206 448 | 11.7 51.7 | 299 604

(c) Fully supervised only | 1715 0 56.1 713 | 364 542 | 230 63.1 |392 678
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APPENDIX
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Figure 1: The proposed network architecture. We mined the point (a., b.) from the softmax output
pf (). r1(0) is the representation for the input zf. We defined the 7/ (6) as the point of masked
feature m/ (#). Cosegmentation loss used similarity between rf (6) and m?(6).
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Figure 2: 10 selected pixel-wise labeled images as a few fully annotated samples.
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Figure 3: Qualitative results for the proposed method (b) and the baselines (a),(c). In the top four
rows, successful results are shown, and in the bottom row, failure results are shown.
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Figure 4: The average Mean IoU for each of the number of fully-annotated samples for the proposed
method and the baselines.
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Table 2: Mean IoU score (%) for the each human part segmentation results.

Method nt n* | head | body | hand | leg | mean
Fully supervised only 10 0 422 1264 | 76 |236] 249
Pathak et al. (2015) (with image-label) 10 | 1715 | 358 | 21.9 | 14.8 | 26.0 | 24.6
Papandreou et al. (2015) (with image-label) 10 1715 | 425 | 303 | 6.7 | 182 | 244
Cosegmentation loss 10 1715 | 44.1 | 255 | 12.8 | 25.6 | 27.0
Fully supervised only 20 0 448 | 227 | 143 | 32.7 | 28.6
Global Max Pooling (with image-label) 20 | 1715 | 42.0 | 24.0 | 18.2 | 30.6 | 28.7
Em-adapt (with image-label) 20 | 1715 | 46.6 | 27.6 | 16.1 | 31.3 | 304
Cosegmentation loss 20 1715 | 45.0 | 23.0 | 153 | 31.7 | 28.8
Fully supervised only 30 0 46.5 | 27.3 | 16.8 | 32.7 | 30.8
Global Max Pooling (with image-label) 30 1715 | 463 | 29.2 | 18.6 | 30.6 | 31.2
Em-adapt (with image-label) 30 1715 | 484 | 29.5 | 184 | 289 | 313
Cosegmentation loss 30 1715 | 47.1 | 284 | 18.8 | 31.3 | 314
Fully supervised only 40 0 48.1 | 29.5 | 185 | 30.0 | 31.5
Global Max Pooling (with image-label) 40 1715 | 47.5 | 28.8 | 21.6 | 32.7 | 32.7
Em-adapt (with image-label) 40 | 1715 | 49.7 | 31.8 | 20.8 | 30.7 | 333
Cosegmentation loss 40 1715 | 493 | 313 | 19.7 | 33.1 | 334
Fully supervised only 50 0 475 1 279 ] 203 | 32.8 | 32.1
Global Max Pooling (with image-label) 50 | 1715 | 48.8 | 30.4 | 22.6 | 30.2 | 33.0
Em-adapt (with image-label) 50 | 1715 | 47.7 | 303 | 21.5 | 29.5 | 323
Cosegmentation loss 50 | 1715 | 482 | 29.0 | 22.2 | 30.9 | 32.6
Fully supervised only 60 0 50.1 | 293 | 21.1 | 285 | 323
Global Max Pooling (with image-label) 60 | 1715 | 50.8 | 31.4 | 21.3 | 30.7 | 335
Em-adapt (with image-label) 60 1715 | 52.2 | 32.7 | 219 | 284 | 338
Cosegmentation loss 60 1715 | 52.2 | 31.7 | 22.5 | 304 | 34.2
Fully supervised only 70 0 50.2 | 31.1 | 184 | 27.6 | 31.8
Global Max Pooling (with image-label) 70 1715 | 51.2 | 31.0 | 22.0 | 30.1 | 33.6
Em-adapt (with image-label) 70 1715 | 50.0 | 32.6 | 19.7 | 30.2 | 33.1
Cosegmentation loss 70 1715 | 499 | 31.7 | 21.7 | 31.3 | 33.7
Fully supervised only 80 0 49.7 | 289 | 20.5 | 33.6 | 33.2
Global Max Pooling (with image-label) 80 1715 | 51.9 | 309 | 22.3 | 335 | 34.8
Em-adapt (with image-label) 80 | 1715 | 50.7 | 31.1 | 21.1 | 334 | 34.1
Cosegmentation loss 80 1715 | 51.6 | 31.2 | 21.0 | 354 | 34.8
Fully supervised only 90 0 50.0 | 30.6 | 21.6 | 29.1 | 32.8
Global Max Pooling (with image-label) 90 | 1715 | 51.5 | 31.5 | 23.1 | 31.1 | 343
Em-adapt (with image-label) 90 | 1715 | 52.1 | 324 | 22.7 | 31.3 | 34.6
Cosegmentation loss 90 | 1715 | 52.6 | 30.7 | 23.3 | 31.8 | 34.6
Fully supervised only 100 0 50.5 [ 31.0 | 22.8 | 33.0 | 343
Global Max Pooling (with image-label) 100 | 1715 | 52.8 | 31.9 | 25.3 | 339 | 36.0
Em-adapt (with image-label) 100 | 1715 | 53.0 | 339 | 24.7 | 343 | 36.5
Cosegmentation loss 100 | 1715 | 51.7 | 32.5 | 242 | 35.6 | 36.0
Fully supervised only 1715 0 55.8 | 41.6 | 25.6 | 39.5 | 40.6




